1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/errno.h> 19 #include <linux/types.h> 20 #include <linux/net.h> 21 #include <linux/route.h> 22 #include <linux/netdevice.h> 23 #include <linux/in6.h> 24 #include <linux/init.h> 25 #include <linux/list.h> 26 #include <linux/slab.h> 27 28 #include <net/ip.h> 29 #include <net/ipv6.h> 30 #include <net/ndisc.h> 31 #include <net/addrconf.h> 32 #include <net/lwtunnel.h> 33 #include <net/fib_notifier.h> 34 35 #include <net/ip6_fib.h> 36 #include <net/ip6_route.h> 37 38 static struct kmem_cache *fib6_node_kmem __read_mostly; 39 40 struct fib6_cleaner { 41 struct fib6_walker w; 42 struct net *net; 43 int (*func)(struct fib6_info *, void *arg); 44 int sernum; 45 void *arg; 46 bool skip_notify; 47 }; 48 49 #ifdef CONFIG_IPV6_SUBTREES 50 #define FWS_INIT FWS_S 51 #else 52 #define FWS_INIT FWS_L 53 #endif 54 55 static struct fib6_info *fib6_find_prefix(struct net *net, 56 struct fib6_table *table, 57 struct fib6_node *fn); 58 static struct fib6_node *fib6_repair_tree(struct net *net, 59 struct fib6_table *table, 60 struct fib6_node *fn); 61 static int fib6_walk(struct net *net, struct fib6_walker *w); 62 static int fib6_walk_continue(struct fib6_walker *w); 63 64 /* 65 * A routing update causes an increase of the serial number on the 66 * affected subtree. This allows for cached routes to be asynchronously 67 * tested when modifications are made to the destination cache as a 68 * result of redirects, path MTU changes, etc. 69 */ 70 71 static void fib6_gc_timer_cb(struct timer_list *t); 72 73 #define FOR_WALKERS(net, w) \ 74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 75 76 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 77 { 78 write_lock_bh(&net->ipv6.fib6_walker_lock); 79 list_add(&w->lh, &net->ipv6.fib6_walkers); 80 write_unlock_bh(&net->ipv6.fib6_walker_lock); 81 } 82 83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 84 { 85 write_lock_bh(&net->ipv6.fib6_walker_lock); 86 list_del(&w->lh); 87 write_unlock_bh(&net->ipv6.fib6_walker_lock); 88 } 89 90 static int fib6_new_sernum(struct net *net) 91 { 92 int new, old; 93 94 do { 95 old = atomic_read(&net->ipv6.fib6_sernum); 96 new = old < INT_MAX ? old + 1 : 1; 97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 98 old, new) != old); 99 return new; 100 } 101 102 enum { 103 FIB6_NO_SERNUM_CHANGE = 0, 104 }; 105 106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 107 { 108 struct fib6_node *fn; 109 110 fn = rcu_dereference_protected(f6i->fib6_node, 111 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 112 if (fn) 113 fn->fn_sernum = fib6_new_sernum(net); 114 } 115 116 /* 117 * Auxiliary address test functions for the radix tree. 118 * 119 * These assume a 32bit processor (although it will work on 120 * 64bit processors) 121 */ 122 123 /* 124 * test bit 125 */ 126 #if defined(__LITTLE_ENDIAN) 127 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 128 #else 129 # define BITOP_BE32_SWIZZLE 0 130 #endif 131 132 static __be32 addr_bit_set(const void *token, int fn_bit) 133 { 134 const __be32 *addr = token; 135 /* 136 * Here, 137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 138 * is optimized version of 139 * htonl(1 << ((~fn_bit)&0x1F)) 140 * See include/asm-generic/bitops/le.h. 141 */ 142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 143 addr[fn_bit >> 5]; 144 } 145 146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 147 { 148 struct fib6_info *f6i; 149 size_t sz = sizeof(*f6i); 150 151 if (with_fib6_nh) 152 sz += sizeof(struct fib6_nh); 153 154 f6i = kzalloc(sz, gfp_flags); 155 if (!f6i) 156 return NULL; 157 158 /* fib6_siblings is a union with nh_list, so this initializes both */ 159 INIT_LIST_HEAD(&f6i->fib6_siblings); 160 refcount_set(&f6i->fib6_ref, 1); 161 162 return f6i; 163 } 164 165 void fib6_info_destroy_rcu(struct rcu_head *head) 166 { 167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 168 169 WARN_ON(f6i->fib6_node); 170 171 if (f6i->nh) 172 nexthop_put(f6i->nh); 173 else 174 fib6_nh_release(f6i->fib6_nh); 175 176 ip_fib_metrics_put(f6i->fib6_metrics); 177 kfree(f6i); 178 } 179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 180 181 static struct fib6_node *node_alloc(struct net *net) 182 { 183 struct fib6_node *fn; 184 185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 186 if (fn) 187 net->ipv6.rt6_stats->fib_nodes++; 188 189 return fn; 190 } 191 192 static void node_free_immediate(struct net *net, struct fib6_node *fn) 193 { 194 kmem_cache_free(fib6_node_kmem, fn); 195 net->ipv6.rt6_stats->fib_nodes--; 196 } 197 198 static void node_free_rcu(struct rcu_head *head) 199 { 200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 201 202 kmem_cache_free(fib6_node_kmem, fn); 203 } 204 205 static void node_free(struct net *net, struct fib6_node *fn) 206 { 207 call_rcu(&fn->rcu, node_free_rcu); 208 net->ipv6.rt6_stats->fib_nodes--; 209 } 210 211 static void fib6_free_table(struct fib6_table *table) 212 { 213 inetpeer_invalidate_tree(&table->tb6_peers); 214 kfree(table); 215 } 216 217 static void fib6_link_table(struct net *net, struct fib6_table *tb) 218 { 219 unsigned int h; 220 221 /* 222 * Initialize table lock at a single place to give lockdep a key, 223 * tables aren't visible prior to being linked to the list. 224 */ 225 spin_lock_init(&tb->tb6_lock); 226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 227 228 /* 229 * No protection necessary, this is the only list mutatation 230 * operation, tables never disappear once they exist. 231 */ 232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 233 } 234 235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 236 237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 238 { 239 struct fib6_table *table; 240 241 table = kzalloc(sizeof(*table), GFP_ATOMIC); 242 if (table) { 243 table->tb6_id = id; 244 rcu_assign_pointer(table->tb6_root.leaf, 245 net->ipv6.fib6_null_entry); 246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 247 inet_peer_base_init(&table->tb6_peers); 248 } 249 250 return table; 251 } 252 253 struct fib6_table *fib6_new_table(struct net *net, u32 id) 254 { 255 struct fib6_table *tb; 256 257 if (id == 0) 258 id = RT6_TABLE_MAIN; 259 tb = fib6_get_table(net, id); 260 if (tb) 261 return tb; 262 263 tb = fib6_alloc_table(net, id); 264 if (tb) 265 fib6_link_table(net, tb); 266 267 return tb; 268 } 269 EXPORT_SYMBOL_GPL(fib6_new_table); 270 271 struct fib6_table *fib6_get_table(struct net *net, u32 id) 272 { 273 struct fib6_table *tb; 274 struct hlist_head *head; 275 unsigned int h; 276 277 if (id == 0) 278 id = RT6_TABLE_MAIN; 279 h = id & (FIB6_TABLE_HASHSZ - 1); 280 rcu_read_lock(); 281 head = &net->ipv6.fib_table_hash[h]; 282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 283 if (tb->tb6_id == id) { 284 rcu_read_unlock(); 285 return tb; 286 } 287 } 288 rcu_read_unlock(); 289 290 return NULL; 291 } 292 EXPORT_SYMBOL_GPL(fib6_get_table); 293 294 static void __net_init fib6_tables_init(struct net *net) 295 { 296 fib6_link_table(net, net->ipv6.fib6_main_tbl); 297 fib6_link_table(net, net->ipv6.fib6_local_tbl); 298 } 299 #else 300 301 struct fib6_table *fib6_new_table(struct net *net, u32 id) 302 { 303 return fib6_get_table(net, id); 304 } 305 306 struct fib6_table *fib6_get_table(struct net *net, u32 id) 307 { 308 return net->ipv6.fib6_main_tbl; 309 } 310 311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 312 const struct sk_buff *skb, 313 int flags, pol_lookup_t lookup) 314 { 315 struct rt6_info *rt; 316 317 rt = pol_lookup_func(lookup, 318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 319 if (rt->dst.error == -EAGAIN) { 320 ip6_rt_put_flags(rt, flags); 321 rt = net->ipv6.ip6_null_entry; 322 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 323 dst_hold(&rt->dst); 324 } 325 326 return &rt->dst; 327 } 328 329 /* called with rcu lock held; no reference taken on fib6_info */ 330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 331 struct fib6_result *res, int flags) 332 { 333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 334 res, flags); 335 } 336 337 static void __net_init fib6_tables_init(struct net *net) 338 { 339 fib6_link_table(net, net->ipv6.fib6_main_tbl); 340 } 341 342 #endif 343 344 unsigned int fib6_tables_seq_read(struct net *net) 345 { 346 unsigned int h, fib_seq = 0; 347 348 rcu_read_lock(); 349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 350 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 351 struct fib6_table *tb; 352 353 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 354 fib_seq += tb->fib_seq; 355 } 356 rcu_read_unlock(); 357 358 return fib_seq; 359 } 360 361 static int call_fib6_entry_notifier(struct notifier_block *nb, 362 enum fib_event_type event_type, 363 struct fib6_info *rt, 364 struct netlink_ext_ack *extack) 365 { 366 struct fib6_entry_notifier_info info = { 367 .info.extack = extack, 368 .rt = rt, 369 }; 370 371 return call_fib6_notifier(nb, event_type, &info.info); 372 } 373 374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 375 enum fib_event_type event_type, 376 struct fib6_info *rt, 377 unsigned int nsiblings, 378 struct netlink_ext_ack *extack) 379 { 380 struct fib6_entry_notifier_info info = { 381 .info.extack = extack, 382 .rt = rt, 383 .nsiblings = nsiblings, 384 }; 385 386 return call_fib6_notifier(nb, event_type, &info.info); 387 } 388 389 int call_fib6_entry_notifiers(struct net *net, 390 enum fib_event_type event_type, 391 struct fib6_info *rt, 392 struct netlink_ext_ack *extack) 393 { 394 struct fib6_entry_notifier_info info = { 395 .info.extack = extack, 396 .rt = rt, 397 }; 398 399 rt->fib6_table->fib_seq++; 400 return call_fib6_notifiers(net, event_type, &info.info); 401 } 402 403 int call_fib6_multipath_entry_notifiers(struct net *net, 404 enum fib_event_type event_type, 405 struct fib6_info *rt, 406 unsigned int nsiblings, 407 struct netlink_ext_ack *extack) 408 { 409 struct fib6_entry_notifier_info info = { 410 .info.extack = extack, 411 .rt = rt, 412 .nsiblings = nsiblings, 413 }; 414 415 rt->fib6_table->fib_seq++; 416 return call_fib6_notifiers(net, event_type, &info.info); 417 } 418 419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 420 { 421 struct fib6_entry_notifier_info info = { 422 .rt = rt, 423 .nsiblings = rt->fib6_nsiblings, 424 }; 425 426 rt->fib6_table->fib_seq++; 427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 428 } 429 430 struct fib6_dump_arg { 431 struct net *net; 432 struct notifier_block *nb; 433 struct netlink_ext_ack *extack; 434 }; 435 436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 437 { 438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 439 int err; 440 441 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 442 return 0; 443 444 if (rt->fib6_nsiblings) 445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 446 rt, 447 rt->fib6_nsiblings, 448 arg->extack); 449 else 450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 451 arg->extack); 452 453 return err; 454 } 455 456 static int fib6_node_dump(struct fib6_walker *w) 457 { 458 int err; 459 460 err = fib6_rt_dump(w->leaf, w->args); 461 w->leaf = NULL; 462 return err; 463 } 464 465 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 466 struct fib6_walker *w) 467 { 468 int err; 469 470 w->root = &tb->tb6_root; 471 spin_lock_bh(&tb->tb6_lock); 472 err = fib6_walk(net, w); 473 spin_unlock_bh(&tb->tb6_lock); 474 return err; 475 } 476 477 /* Called with rcu_read_lock() */ 478 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 479 struct netlink_ext_ack *extack) 480 { 481 struct fib6_dump_arg arg; 482 struct fib6_walker *w; 483 unsigned int h; 484 int err = 0; 485 486 w = kzalloc(sizeof(*w), GFP_ATOMIC); 487 if (!w) 488 return -ENOMEM; 489 490 w->func = fib6_node_dump; 491 arg.net = net; 492 arg.nb = nb; 493 arg.extack = extack; 494 w->args = &arg; 495 496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 497 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 498 struct fib6_table *tb; 499 500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 501 err = fib6_table_dump(net, tb, w); 502 if (err < 0) 503 goto out; 504 } 505 } 506 507 out: 508 kfree(w); 509 510 return err; 511 } 512 513 static int fib6_dump_node(struct fib6_walker *w) 514 { 515 int res; 516 struct fib6_info *rt; 517 518 for_each_fib6_walker_rt(w) { 519 res = rt6_dump_route(rt, w->args, w->skip_in_node); 520 if (res >= 0) { 521 /* Frame is full, suspend walking */ 522 w->leaf = rt; 523 524 /* We'll restart from this node, so if some routes were 525 * already dumped, skip them next time. 526 */ 527 w->skip_in_node += res; 528 529 return 1; 530 } 531 w->skip_in_node = 0; 532 533 /* Multipath routes are dumped in one route with the 534 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 535 * last sibling of this route (no need to dump the 536 * sibling routes again) 537 */ 538 if (rt->fib6_nsiblings) 539 rt = list_last_entry(&rt->fib6_siblings, 540 struct fib6_info, 541 fib6_siblings); 542 } 543 w->leaf = NULL; 544 return 0; 545 } 546 547 static void fib6_dump_end(struct netlink_callback *cb) 548 { 549 struct net *net = sock_net(cb->skb->sk); 550 struct fib6_walker *w = (void *)cb->args[2]; 551 552 if (w) { 553 if (cb->args[4]) { 554 cb->args[4] = 0; 555 fib6_walker_unlink(net, w); 556 } 557 cb->args[2] = 0; 558 kfree(w); 559 } 560 cb->done = (void *)cb->args[3]; 561 cb->args[1] = 3; 562 } 563 564 static int fib6_dump_done(struct netlink_callback *cb) 565 { 566 fib6_dump_end(cb); 567 return cb->done ? cb->done(cb) : 0; 568 } 569 570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 571 struct netlink_callback *cb) 572 { 573 struct net *net = sock_net(skb->sk); 574 struct fib6_walker *w; 575 int res; 576 577 w = (void *)cb->args[2]; 578 w->root = &table->tb6_root; 579 580 if (cb->args[4] == 0) { 581 w->count = 0; 582 w->skip = 0; 583 w->skip_in_node = 0; 584 585 spin_lock_bh(&table->tb6_lock); 586 res = fib6_walk(net, w); 587 spin_unlock_bh(&table->tb6_lock); 588 if (res > 0) { 589 cb->args[4] = 1; 590 cb->args[5] = w->root->fn_sernum; 591 } 592 } else { 593 if (cb->args[5] != w->root->fn_sernum) { 594 /* Begin at the root if the tree changed */ 595 cb->args[5] = w->root->fn_sernum; 596 w->state = FWS_INIT; 597 w->node = w->root; 598 w->skip = w->count; 599 w->skip_in_node = 0; 600 } else 601 w->skip = 0; 602 603 spin_lock_bh(&table->tb6_lock); 604 res = fib6_walk_continue(w); 605 spin_unlock_bh(&table->tb6_lock); 606 if (res <= 0) { 607 fib6_walker_unlink(net, w); 608 cb->args[4] = 0; 609 } 610 } 611 612 return res; 613 } 614 615 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 616 { 617 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 618 .filter.dump_routes = true }; 619 const struct nlmsghdr *nlh = cb->nlh; 620 struct net *net = sock_net(skb->sk); 621 unsigned int h, s_h; 622 unsigned int e = 0, s_e; 623 struct fib6_walker *w; 624 struct fib6_table *tb; 625 struct hlist_head *head; 626 int res = 0; 627 628 if (cb->strict_check) { 629 int err; 630 631 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 632 if (err < 0) 633 return err; 634 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 635 struct rtmsg *rtm = nlmsg_data(nlh); 636 637 if (rtm->rtm_flags & RTM_F_PREFIX) 638 arg.filter.flags = RTM_F_PREFIX; 639 } 640 641 w = (void *)cb->args[2]; 642 if (!w) { 643 /* New dump: 644 * 645 * 1. hook callback destructor. 646 */ 647 cb->args[3] = (long)cb->done; 648 cb->done = fib6_dump_done; 649 650 /* 651 * 2. allocate and initialize walker. 652 */ 653 w = kzalloc(sizeof(*w), GFP_ATOMIC); 654 if (!w) 655 return -ENOMEM; 656 w->func = fib6_dump_node; 657 cb->args[2] = (long)w; 658 } 659 660 arg.skb = skb; 661 arg.cb = cb; 662 arg.net = net; 663 w->args = &arg; 664 665 if (arg.filter.table_id) { 666 tb = fib6_get_table(net, arg.filter.table_id); 667 if (!tb) { 668 if (rtnl_msg_family(cb->nlh) != PF_INET6) 669 goto out; 670 671 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 672 return -ENOENT; 673 } 674 675 if (!cb->args[0]) { 676 res = fib6_dump_table(tb, skb, cb); 677 if (!res) 678 cb->args[0] = 1; 679 } 680 goto out; 681 } 682 683 s_h = cb->args[0]; 684 s_e = cb->args[1]; 685 686 rcu_read_lock(); 687 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 688 e = 0; 689 head = &net->ipv6.fib_table_hash[h]; 690 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 691 if (e < s_e) 692 goto next; 693 res = fib6_dump_table(tb, skb, cb); 694 if (res != 0) 695 goto out_unlock; 696 next: 697 e++; 698 } 699 } 700 out_unlock: 701 rcu_read_unlock(); 702 cb->args[1] = e; 703 cb->args[0] = h; 704 out: 705 res = res < 0 ? res : skb->len; 706 if (res <= 0) 707 fib6_dump_end(cb); 708 return res; 709 } 710 711 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 712 { 713 if (!f6i) 714 return; 715 716 if (f6i->fib6_metrics == &dst_default_metrics) { 717 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 718 719 if (!p) 720 return; 721 722 refcount_set(&p->refcnt, 1); 723 f6i->fib6_metrics = p; 724 } 725 726 f6i->fib6_metrics->metrics[metric - 1] = val; 727 } 728 729 /* 730 * Routing Table 731 * 732 * return the appropriate node for a routing tree "add" operation 733 * by either creating and inserting or by returning an existing 734 * node. 735 */ 736 737 static struct fib6_node *fib6_add_1(struct net *net, 738 struct fib6_table *table, 739 struct fib6_node *root, 740 struct in6_addr *addr, int plen, 741 int offset, int allow_create, 742 int replace_required, 743 struct netlink_ext_ack *extack) 744 { 745 struct fib6_node *fn, *in, *ln; 746 struct fib6_node *pn = NULL; 747 struct rt6key *key; 748 int bit; 749 __be32 dir = 0; 750 751 RT6_TRACE("fib6_add_1\n"); 752 753 /* insert node in tree */ 754 755 fn = root; 756 757 do { 758 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 759 lockdep_is_held(&table->tb6_lock)); 760 key = (struct rt6key *)((u8 *)leaf + offset); 761 762 /* 763 * Prefix match 764 */ 765 if (plen < fn->fn_bit || 766 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 767 if (!allow_create) { 768 if (replace_required) { 769 NL_SET_ERR_MSG(extack, 770 "Can not replace route - no match found"); 771 pr_warn("Can't replace route, no match found\n"); 772 return ERR_PTR(-ENOENT); 773 } 774 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 775 } 776 goto insert_above; 777 } 778 779 /* 780 * Exact match ? 781 */ 782 783 if (plen == fn->fn_bit) { 784 /* clean up an intermediate node */ 785 if (!(fn->fn_flags & RTN_RTINFO)) { 786 RCU_INIT_POINTER(fn->leaf, NULL); 787 fib6_info_release(leaf); 788 /* remove null_entry in the root node */ 789 } else if (fn->fn_flags & RTN_TL_ROOT && 790 rcu_access_pointer(fn->leaf) == 791 net->ipv6.fib6_null_entry) { 792 RCU_INIT_POINTER(fn->leaf, NULL); 793 } 794 795 return fn; 796 } 797 798 /* 799 * We have more bits to go 800 */ 801 802 /* Try to walk down on tree. */ 803 dir = addr_bit_set(addr, fn->fn_bit); 804 pn = fn; 805 fn = dir ? 806 rcu_dereference_protected(fn->right, 807 lockdep_is_held(&table->tb6_lock)) : 808 rcu_dereference_protected(fn->left, 809 lockdep_is_held(&table->tb6_lock)); 810 } while (fn); 811 812 if (!allow_create) { 813 /* We should not create new node because 814 * NLM_F_REPLACE was specified without NLM_F_CREATE 815 * I assume it is safe to require NLM_F_CREATE when 816 * REPLACE flag is used! Later we may want to remove the 817 * check for replace_required, because according 818 * to netlink specification, NLM_F_CREATE 819 * MUST be specified if new route is created. 820 * That would keep IPv6 consistent with IPv4 821 */ 822 if (replace_required) { 823 NL_SET_ERR_MSG(extack, 824 "Can not replace route - no match found"); 825 pr_warn("Can't replace route, no match found\n"); 826 return ERR_PTR(-ENOENT); 827 } 828 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 829 } 830 /* 831 * We walked to the bottom of tree. 832 * Create new leaf node without children. 833 */ 834 835 ln = node_alloc(net); 836 837 if (!ln) 838 return ERR_PTR(-ENOMEM); 839 ln->fn_bit = plen; 840 RCU_INIT_POINTER(ln->parent, pn); 841 842 if (dir) 843 rcu_assign_pointer(pn->right, ln); 844 else 845 rcu_assign_pointer(pn->left, ln); 846 847 return ln; 848 849 850 insert_above: 851 /* 852 * split since we don't have a common prefix anymore or 853 * we have a less significant route. 854 * we've to insert an intermediate node on the list 855 * this new node will point to the one we need to create 856 * and the current 857 */ 858 859 pn = rcu_dereference_protected(fn->parent, 860 lockdep_is_held(&table->tb6_lock)); 861 862 /* find 1st bit in difference between the 2 addrs. 863 864 See comment in __ipv6_addr_diff: bit may be an invalid value, 865 but if it is >= plen, the value is ignored in any case. 866 */ 867 868 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 869 870 /* 871 * (intermediate)[in] 872 * / \ 873 * (new leaf node)[ln] (old node)[fn] 874 */ 875 if (plen > bit) { 876 in = node_alloc(net); 877 ln = node_alloc(net); 878 879 if (!in || !ln) { 880 if (in) 881 node_free_immediate(net, in); 882 if (ln) 883 node_free_immediate(net, ln); 884 return ERR_PTR(-ENOMEM); 885 } 886 887 /* 888 * new intermediate node. 889 * RTN_RTINFO will 890 * be off since that an address that chooses one of 891 * the branches would not match less specific routes 892 * in the other branch 893 */ 894 895 in->fn_bit = bit; 896 897 RCU_INIT_POINTER(in->parent, pn); 898 in->leaf = fn->leaf; 899 fib6_info_hold(rcu_dereference_protected(in->leaf, 900 lockdep_is_held(&table->tb6_lock))); 901 902 /* update parent pointer */ 903 if (dir) 904 rcu_assign_pointer(pn->right, in); 905 else 906 rcu_assign_pointer(pn->left, in); 907 908 ln->fn_bit = plen; 909 910 RCU_INIT_POINTER(ln->parent, in); 911 rcu_assign_pointer(fn->parent, in); 912 913 if (addr_bit_set(addr, bit)) { 914 rcu_assign_pointer(in->right, ln); 915 rcu_assign_pointer(in->left, fn); 916 } else { 917 rcu_assign_pointer(in->left, ln); 918 rcu_assign_pointer(in->right, fn); 919 } 920 } else { /* plen <= bit */ 921 922 /* 923 * (new leaf node)[ln] 924 * / \ 925 * (old node)[fn] NULL 926 */ 927 928 ln = node_alloc(net); 929 930 if (!ln) 931 return ERR_PTR(-ENOMEM); 932 933 ln->fn_bit = plen; 934 935 RCU_INIT_POINTER(ln->parent, pn); 936 937 if (addr_bit_set(&key->addr, plen)) 938 RCU_INIT_POINTER(ln->right, fn); 939 else 940 RCU_INIT_POINTER(ln->left, fn); 941 942 rcu_assign_pointer(fn->parent, ln); 943 944 if (dir) 945 rcu_assign_pointer(pn->right, ln); 946 else 947 rcu_assign_pointer(pn->left, ln); 948 } 949 return ln; 950 } 951 952 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 953 const struct fib6_info *match, 954 const struct fib6_table *table) 955 { 956 int cpu; 957 958 if (!fib6_nh->rt6i_pcpu) 959 return; 960 961 /* release the reference to this fib entry from 962 * all of its cached pcpu routes 963 */ 964 for_each_possible_cpu(cpu) { 965 struct rt6_info **ppcpu_rt; 966 struct rt6_info *pcpu_rt; 967 968 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 969 pcpu_rt = *ppcpu_rt; 970 971 /* only dropping the 'from' reference if the cached route 972 * is using 'match'. The cached pcpu_rt->from only changes 973 * from a fib6_info to NULL (ip6_dst_destroy); it can never 974 * change from one fib6_info reference to another 975 */ 976 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 977 struct fib6_info *from; 978 979 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 980 fib6_info_release(from); 981 } 982 } 983 } 984 985 struct fib6_nh_pcpu_arg { 986 struct fib6_info *from; 987 const struct fib6_table *table; 988 }; 989 990 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 991 { 992 struct fib6_nh_pcpu_arg *arg = _arg; 993 994 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 995 return 0; 996 } 997 998 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 999 const struct fib6_table *table) 1000 { 1001 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1002 * while we are cleaning them here. 1003 */ 1004 f6i->fib6_destroying = 1; 1005 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1006 1007 if (f6i->nh) { 1008 struct fib6_nh_pcpu_arg arg = { 1009 .from = f6i, 1010 .table = table 1011 }; 1012 1013 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1014 &arg); 1015 } else { 1016 struct fib6_nh *fib6_nh; 1017 1018 fib6_nh = f6i->fib6_nh; 1019 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1020 } 1021 } 1022 1023 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1024 struct net *net) 1025 { 1026 struct fib6_table *table = rt->fib6_table; 1027 1028 fib6_drop_pcpu_from(rt, table); 1029 1030 if (rt->nh && !list_empty(&rt->nh_list)) 1031 list_del_init(&rt->nh_list); 1032 1033 if (refcount_read(&rt->fib6_ref) != 1) { 1034 /* This route is used as dummy address holder in some split 1035 * nodes. It is not leaked, but it still holds other resources, 1036 * which must be released in time. So, scan ascendant nodes 1037 * and replace dummy references to this route with references 1038 * to still alive ones. 1039 */ 1040 while (fn) { 1041 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1042 lockdep_is_held(&table->tb6_lock)); 1043 struct fib6_info *new_leaf; 1044 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1045 new_leaf = fib6_find_prefix(net, table, fn); 1046 fib6_info_hold(new_leaf); 1047 1048 rcu_assign_pointer(fn->leaf, new_leaf); 1049 fib6_info_release(rt); 1050 } 1051 fn = rcu_dereference_protected(fn->parent, 1052 lockdep_is_held(&table->tb6_lock)); 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Insert routing information in a node. 1059 */ 1060 1061 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1062 struct nl_info *info, 1063 struct netlink_ext_ack *extack) 1064 { 1065 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1066 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1067 struct fib6_info *iter = NULL; 1068 struct fib6_info __rcu **ins; 1069 struct fib6_info __rcu **fallback_ins = NULL; 1070 int replace = (info->nlh && 1071 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1072 int add = (!info->nlh || 1073 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1074 int found = 0; 1075 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1076 bool notify_sibling_rt = false; 1077 u16 nlflags = NLM_F_EXCL; 1078 int err; 1079 1080 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1081 nlflags |= NLM_F_APPEND; 1082 1083 ins = &fn->leaf; 1084 1085 for (iter = leaf; iter; 1086 iter = rcu_dereference_protected(iter->fib6_next, 1087 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1088 /* 1089 * Search for duplicates 1090 */ 1091 1092 if (iter->fib6_metric == rt->fib6_metric) { 1093 /* 1094 * Same priority level 1095 */ 1096 if (info->nlh && 1097 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1098 return -EEXIST; 1099 1100 nlflags &= ~NLM_F_EXCL; 1101 if (replace) { 1102 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1103 found++; 1104 break; 1105 } 1106 fallback_ins = fallback_ins ?: ins; 1107 goto next_iter; 1108 } 1109 1110 if (rt6_duplicate_nexthop(iter, rt)) { 1111 if (rt->fib6_nsiblings) 1112 rt->fib6_nsiblings = 0; 1113 if (!(iter->fib6_flags & RTF_EXPIRES)) 1114 return -EEXIST; 1115 if (!(rt->fib6_flags & RTF_EXPIRES)) 1116 fib6_clean_expires(iter); 1117 else 1118 fib6_set_expires(iter, rt->expires); 1119 1120 if (rt->fib6_pmtu) 1121 fib6_metric_set(iter, RTAX_MTU, 1122 rt->fib6_pmtu); 1123 return -EEXIST; 1124 } 1125 /* If we have the same destination and the same metric, 1126 * but not the same gateway, then the route we try to 1127 * add is sibling to this route, increment our counter 1128 * of siblings, and later we will add our route to the 1129 * list. 1130 * Only static routes (which don't have flag 1131 * RTF_EXPIRES) are used for ECMPv6. 1132 * 1133 * To avoid long list, we only had siblings if the 1134 * route have a gateway. 1135 */ 1136 if (rt_can_ecmp && 1137 rt6_qualify_for_ecmp(iter)) 1138 rt->fib6_nsiblings++; 1139 } 1140 1141 if (iter->fib6_metric > rt->fib6_metric) 1142 break; 1143 1144 next_iter: 1145 ins = &iter->fib6_next; 1146 } 1147 1148 if (fallback_ins && !found) { 1149 /* No matching route with same ecmp-able-ness found, replace 1150 * first matching route 1151 */ 1152 ins = fallback_ins; 1153 iter = rcu_dereference_protected(*ins, 1154 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1155 found++; 1156 } 1157 1158 /* Reset round-robin state, if necessary */ 1159 if (ins == &fn->leaf) 1160 fn->rr_ptr = NULL; 1161 1162 /* Link this route to others same route. */ 1163 if (rt->fib6_nsiblings) { 1164 unsigned int fib6_nsiblings; 1165 struct fib6_info *sibling, *temp_sibling; 1166 1167 /* Find the first route that have the same metric */ 1168 sibling = leaf; 1169 notify_sibling_rt = true; 1170 while (sibling) { 1171 if (sibling->fib6_metric == rt->fib6_metric && 1172 rt6_qualify_for_ecmp(sibling)) { 1173 list_add_tail(&rt->fib6_siblings, 1174 &sibling->fib6_siblings); 1175 break; 1176 } 1177 sibling = rcu_dereference_protected(sibling->fib6_next, 1178 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1179 notify_sibling_rt = false; 1180 } 1181 /* For each sibling in the list, increment the counter of 1182 * siblings. BUG() if counters does not match, list of siblings 1183 * is broken! 1184 */ 1185 fib6_nsiblings = 0; 1186 list_for_each_entry_safe(sibling, temp_sibling, 1187 &rt->fib6_siblings, fib6_siblings) { 1188 sibling->fib6_nsiblings++; 1189 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1190 fib6_nsiblings++; 1191 } 1192 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1193 rt6_multipath_rebalance(temp_sibling); 1194 } 1195 1196 /* 1197 * insert node 1198 */ 1199 if (!replace) { 1200 if (!add) 1201 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1202 1203 add: 1204 nlflags |= NLM_F_CREATE; 1205 1206 /* The route should only be notified if it is the first 1207 * route in the node or if it is added as a sibling 1208 * route to the first route in the node. 1209 */ 1210 if (!info->skip_notify_kernel && 1211 (notify_sibling_rt || ins == &fn->leaf)) { 1212 enum fib_event_type fib_event; 1213 1214 if (notify_sibling_rt) 1215 fib_event = FIB_EVENT_ENTRY_APPEND; 1216 else 1217 fib_event = FIB_EVENT_ENTRY_REPLACE; 1218 err = call_fib6_entry_notifiers(info->nl_net, 1219 fib_event, rt, 1220 extack); 1221 if (err) { 1222 struct fib6_info *sibling, *next_sibling; 1223 1224 /* If the route has siblings, then it first 1225 * needs to be unlinked from them. 1226 */ 1227 if (!rt->fib6_nsiblings) 1228 return err; 1229 1230 list_for_each_entry_safe(sibling, next_sibling, 1231 &rt->fib6_siblings, 1232 fib6_siblings) 1233 sibling->fib6_nsiblings--; 1234 rt->fib6_nsiblings = 0; 1235 list_del_init(&rt->fib6_siblings); 1236 rt6_multipath_rebalance(next_sibling); 1237 return err; 1238 } 1239 } 1240 1241 rcu_assign_pointer(rt->fib6_next, iter); 1242 fib6_info_hold(rt); 1243 rcu_assign_pointer(rt->fib6_node, fn); 1244 rcu_assign_pointer(*ins, rt); 1245 if (!info->skip_notify) 1246 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1247 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1248 1249 if (!(fn->fn_flags & RTN_RTINFO)) { 1250 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1251 fn->fn_flags |= RTN_RTINFO; 1252 } 1253 1254 } else { 1255 int nsiblings; 1256 1257 if (!found) { 1258 if (add) 1259 goto add; 1260 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1261 return -ENOENT; 1262 } 1263 1264 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1265 err = call_fib6_entry_notifiers(info->nl_net, 1266 FIB_EVENT_ENTRY_REPLACE, 1267 rt, extack); 1268 if (err) 1269 return err; 1270 } 1271 1272 fib6_info_hold(rt); 1273 rcu_assign_pointer(rt->fib6_node, fn); 1274 rt->fib6_next = iter->fib6_next; 1275 rcu_assign_pointer(*ins, rt); 1276 if (!info->skip_notify) 1277 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1278 if (!(fn->fn_flags & RTN_RTINFO)) { 1279 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1280 fn->fn_flags |= RTN_RTINFO; 1281 } 1282 nsiblings = iter->fib6_nsiblings; 1283 iter->fib6_node = NULL; 1284 fib6_purge_rt(iter, fn, info->nl_net); 1285 if (rcu_access_pointer(fn->rr_ptr) == iter) 1286 fn->rr_ptr = NULL; 1287 fib6_info_release(iter); 1288 1289 if (nsiblings) { 1290 /* Replacing an ECMP route, remove all siblings */ 1291 ins = &rt->fib6_next; 1292 iter = rcu_dereference_protected(*ins, 1293 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1294 while (iter) { 1295 if (iter->fib6_metric > rt->fib6_metric) 1296 break; 1297 if (rt6_qualify_for_ecmp(iter)) { 1298 *ins = iter->fib6_next; 1299 iter->fib6_node = NULL; 1300 fib6_purge_rt(iter, fn, info->nl_net); 1301 if (rcu_access_pointer(fn->rr_ptr) == iter) 1302 fn->rr_ptr = NULL; 1303 fib6_info_release(iter); 1304 nsiblings--; 1305 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1306 } else { 1307 ins = &iter->fib6_next; 1308 } 1309 iter = rcu_dereference_protected(*ins, 1310 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1311 } 1312 WARN_ON(nsiblings != 0); 1313 } 1314 } 1315 1316 return 0; 1317 } 1318 1319 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1320 { 1321 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1322 (rt->fib6_flags & RTF_EXPIRES)) 1323 mod_timer(&net->ipv6.ip6_fib_timer, 1324 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1325 } 1326 1327 void fib6_force_start_gc(struct net *net) 1328 { 1329 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1330 mod_timer(&net->ipv6.ip6_fib_timer, 1331 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1332 } 1333 1334 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1335 int sernum) 1336 { 1337 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1338 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1339 1340 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1341 smp_wmb(); 1342 while (fn) { 1343 fn->fn_sernum = sernum; 1344 fn = rcu_dereference_protected(fn->parent, 1345 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1346 } 1347 } 1348 1349 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1350 { 1351 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1352 } 1353 1354 /* allow ipv4 to update sernum via ipv6_stub */ 1355 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1356 { 1357 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1358 fib6_update_sernum_upto_root(net, f6i); 1359 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1360 } 1361 1362 /* 1363 * Add routing information to the routing tree. 1364 * <destination addr>/<source addr> 1365 * with source addr info in sub-trees 1366 * Need to own table->tb6_lock 1367 */ 1368 1369 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1370 struct nl_info *info, struct netlink_ext_ack *extack) 1371 { 1372 struct fib6_table *table = rt->fib6_table; 1373 struct fib6_node *fn, *pn = NULL; 1374 int err = -ENOMEM; 1375 int allow_create = 1; 1376 int replace_required = 0; 1377 int sernum = fib6_new_sernum(info->nl_net); 1378 1379 if (info->nlh) { 1380 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1381 allow_create = 0; 1382 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1383 replace_required = 1; 1384 } 1385 if (!allow_create && !replace_required) 1386 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1387 1388 fn = fib6_add_1(info->nl_net, table, root, 1389 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1390 offsetof(struct fib6_info, fib6_dst), allow_create, 1391 replace_required, extack); 1392 if (IS_ERR(fn)) { 1393 err = PTR_ERR(fn); 1394 fn = NULL; 1395 goto out; 1396 } 1397 1398 pn = fn; 1399 1400 #ifdef CONFIG_IPV6_SUBTREES 1401 if (rt->fib6_src.plen) { 1402 struct fib6_node *sn; 1403 1404 if (!rcu_access_pointer(fn->subtree)) { 1405 struct fib6_node *sfn; 1406 1407 /* 1408 * Create subtree. 1409 * 1410 * fn[main tree] 1411 * | 1412 * sfn[subtree root] 1413 * \ 1414 * sn[new leaf node] 1415 */ 1416 1417 /* Create subtree root node */ 1418 sfn = node_alloc(info->nl_net); 1419 if (!sfn) 1420 goto failure; 1421 1422 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1423 rcu_assign_pointer(sfn->leaf, 1424 info->nl_net->ipv6.fib6_null_entry); 1425 sfn->fn_flags = RTN_ROOT; 1426 1427 /* Now add the first leaf node to new subtree */ 1428 1429 sn = fib6_add_1(info->nl_net, table, sfn, 1430 &rt->fib6_src.addr, rt->fib6_src.plen, 1431 offsetof(struct fib6_info, fib6_src), 1432 allow_create, replace_required, extack); 1433 1434 if (IS_ERR(sn)) { 1435 /* If it is failed, discard just allocated 1436 root, and then (in failure) stale node 1437 in main tree. 1438 */ 1439 node_free_immediate(info->nl_net, sfn); 1440 err = PTR_ERR(sn); 1441 goto failure; 1442 } 1443 1444 /* Now link new subtree to main tree */ 1445 rcu_assign_pointer(sfn->parent, fn); 1446 rcu_assign_pointer(fn->subtree, sfn); 1447 } else { 1448 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1449 &rt->fib6_src.addr, rt->fib6_src.plen, 1450 offsetof(struct fib6_info, fib6_src), 1451 allow_create, replace_required, extack); 1452 1453 if (IS_ERR(sn)) { 1454 err = PTR_ERR(sn); 1455 goto failure; 1456 } 1457 } 1458 1459 if (!rcu_access_pointer(fn->leaf)) { 1460 if (fn->fn_flags & RTN_TL_ROOT) { 1461 /* put back null_entry for root node */ 1462 rcu_assign_pointer(fn->leaf, 1463 info->nl_net->ipv6.fib6_null_entry); 1464 } else { 1465 fib6_info_hold(rt); 1466 rcu_assign_pointer(fn->leaf, rt); 1467 } 1468 } 1469 fn = sn; 1470 } 1471 #endif 1472 1473 err = fib6_add_rt2node(fn, rt, info, extack); 1474 if (!err) { 1475 if (rt->nh) 1476 list_add(&rt->nh_list, &rt->nh->f6i_list); 1477 __fib6_update_sernum_upto_root(rt, sernum); 1478 fib6_start_gc(info->nl_net, rt); 1479 } 1480 1481 out: 1482 if (err) { 1483 #ifdef CONFIG_IPV6_SUBTREES 1484 /* 1485 * If fib6_add_1 has cleared the old leaf pointer in the 1486 * super-tree leaf node we have to find a new one for it. 1487 */ 1488 if (pn != fn) { 1489 struct fib6_info *pn_leaf = 1490 rcu_dereference_protected(pn->leaf, 1491 lockdep_is_held(&table->tb6_lock)); 1492 if (pn_leaf == rt) { 1493 pn_leaf = NULL; 1494 RCU_INIT_POINTER(pn->leaf, NULL); 1495 fib6_info_release(rt); 1496 } 1497 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1498 pn_leaf = fib6_find_prefix(info->nl_net, table, 1499 pn); 1500 #if RT6_DEBUG >= 2 1501 if (!pn_leaf) { 1502 WARN_ON(!pn_leaf); 1503 pn_leaf = 1504 info->nl_net->ipv6.fib6_null_entry; 1505 } 1506 #endif 1507 fib6_info_hold(pn_leaf); 1508 rcu_assign_pointer(pn->leaf, pn_leaf); 1509 } 1510 } 1511 #endif 1512 goto failure; 1513 } else if (fib6_requires_src(rt)) { 1514 fib6_routes_require_src_inc(info->nl_net); 1515 } 1516 return err; 1517 1518 failure: 1519 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1520 * 1. fn is an intermediate node and we failed to add the new 1521 * route to it in both subtree creation failure and fib6_add_rt2node() 1522 * failure case. 1523 * 2. fn is the root node in the table and we fail to add the first 1524 * default route to it. 1525 */ 1526 if (fn && 1527 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1528 (fn->fn_flags & RTN_TL_ROOT && 1529 !rcu_access_pointer(fn->leaf)))) 1530 fib6_repair_tree(info->nl_net, table, fn); 1531 return err; 1532 } 1533 1534 /* 1535 * Routing tree lookup 1536 * 1537 */ 1538 1539 struct lookup_args { 1540 int offset; /* key offset on fib6_info */ 1541 const struct in6_addr *addr; /* search key */ 1542 }; 1543 1544 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1545 struct lookup_args *args) 1546 { 1547 struct fib6_node *fn; 1548 __be32 dir; 1549 1550 if (unlikely(args->offset == 0)) 1551 return NULL; 1552 1553 /* 1554 * Descend on a tree 1555 */ 1556 1557 fn = root; 1558 1559 for (;;) { 1560 struct fib6_node *next; 1561 1562 dir = addr_bit_set(args->addr, fn->fn_bit); 1563 1564 next = dir ? rcu_dereference(fn->right) : 1565 rcu_dereference(fn->left); 1566 1567 if (next) { 1568 fn = next; 1569 continue; 1570 } 1571 break; 1572 } 1573 1574 while (fn) { 1575 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1576 1577 if (subtree || fn->fn_flags & RTN_RTINFO) { 1578 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1579 struct rt6key *key; 1580 1581 if (!leaf) 1582 goto backtrack; 1583 1584 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1585 1586 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1587 #ifdef CONFIG_IPV6_SUBTREES 1588 if (subtree) { 1589 struct fib6_node *sfn; 1590 sfn = fib6_node_lookup_1(subtree, 1591 args + 1); 1592 if (!sfn) 1593 goto backtrack; 1594 fn = sfn; 1595 } 1596 #endif 1597 if (fn->fn_flags & RTN_RTINFO) 1598 return fn; 1599 } 1600 } 1601 backtrack: 1602 if (fn->fn_flags & RTN_ROOT) 1603 break; 1604 1605 fn = rcu_dereference(fn->parent); 1606 } 1607 1608 return NULL; 1609 } 1610 1611 /* called with rcu_read_lock() held 1612 */ 1613 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1614 const struct in6_addr *daddr, 1615 const struct in6_addr *saddr) 1616 { 1617 struct fib6_node *fn; 1618 struct lookup_args args[] = { 1619 { 1620 .offset = offsetof(struct fib6_info, fib6_dst), 1621 .addr = daddr, 1622 }, 1623 #ifdef CONFIG_IPV6_SUBTREES 1624 { 1625 .offset = offsetof(struct fib6_info, fib6_src), 1626 .addr = saddr, 1627 }, 1628 #endif 1629 { 1630 .offset = 0, /* sentinel */ 1631 } 1632 }; 1633 1634 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1635 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1636 fn = root; 1637 1638 return fn; 1639 } 1640 1641 /* 1642 * Get node with specified destination prefix (and source prefix, 1643 * if subtrees are used) 1644 * exact_match == true means we try to find fn with exact match of 1645 * the passed in prefix addr 1646 * exact_match == false means we try to find fn with longest prefix 1647 * match of the passed in prefix addr. This is useful for finding fn 1648 * for cached route as it will be stored in the exception table under 1649 * the node with longest prefix length. 1650 */ 1651 1652 1653 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1654 const struct in6_addr *addr, 1655 int plen, int offset, 1656 bool exact_match) 1657 { 1658 struct fib6_node *fn, *prev = NULL; 1659 1660 for (fn = root; fn ; ) { 1661 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1662 struct rt6key *key; 1663 1664 /* This node is being deleted */ 1665 if (!leaf) { 1666 if (plen <= fn->fn_bit) 1667 goto out; 1668 else 1669 goto next; 1670 } 1671 1672 key = (struct rt6key *)((u8 *)leaf + offset); 1673 1674 /* 1675 * Prefix match 1676 */ 1677 if (plen < fn->fn_bit || 1678 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1679 goto out; 1680 1681 if (plen == fn->fn_bit) 1682 return fn; 1683 1684 if (fn->fn_flags & RTN_RTINFO) 1685 prev = fn; 1686 1687 next: 1688 /* 1689 * We have more bits to go 1690 */ 1691 if (addr_bit_set(addr, fn->fn_bit)) 1692 fn = rcu_dereference(fn->right); 1693 else 1694 fn = rcu_dereference(fn->left); 1695 } 1696 out: 1697 if (exact_match) 1698 return NULL; 1699 else 1700 return prev; 1701 } 1702 1703 struct fib6_node *fib6_locate(struct fib6_node *root, 1704 const struct in6_addr *daddr, int dst_len, 1705 const struct in6_addr *saddr, int src_len, 1706 bool exact_match) 1707 { 1708 struct fib6_node *fn; 1709 1710 fn = fib6_locate_1(root, daddr, dst_len, 1711 offsetof(struct fib6_info, fib6_dst), 1712 exact_match); 1713 1714 #ifdef CONFIG_IPV6_SUBTREES 1715 if (src_len) { 1716 WARN_ON(saddr == NULL); 1717 if (fn) { 1718 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1719 1720 if (subtree) { 1721 fn = fib6_locate_1(subtree, saddr, src_len, 1722 offsetof(struct fib6_info, fib6_src), 1723 exact_match); 1724 } 1725 } 1726 } 1727 #endif 1728 1729 if (fn && fn->fn_flags & RTN_RTINFO) 1730 return fn; 1731 1732 return NULL; 1733 } 1734 1735 1736 /* 1737 * Deletion 1738 * 1739 */ 1740 1741 static struct fib6_info *fib6_find_prefix(struct net *net, 1742 struct fib6_table *table, 1743 struct fib6_node *fn) 1744 { 1745 struct fib6_node *child_left, *child_right; 1746 1747 if (fn->fn_flags & RTN_ROOT) 1748 return net->ipv6.fib6_null_entry; 1749 1750 while (fn) { 1751 child_left = rcu_dereference_protected(fn->left, 1752 lockdep_is_held(&table->tb6_lock)); 1753 child_right = rcu_dereference_protected(fn->right, 1754 lockdep_is_held(&table->tb6_lock)); 1755 if (child_left) 1756 return rcu_dereference_protected(child_left->leaf, 1757 lockdep_is_held(&table->tb6_lock)); 1758 if (child_right) 1759 return rcu_dereference_protected(child_right->leaf, 1760 lockdep_is_held(&table->tb6_lock)); 1761 1762 fn = FIB6_SUBTREE(fn); 1763 } 1764 return NULL; 1765 } 1766 1767 /* 1768 * Called to trim the tree of intermediate nodes when possible. "fn" 1769 * is the node we want to try and remove. 1770 * Need to own table->tb6_lock 1771 */ 1772 1773 static struct fib6_node *fib6_repair_tree(struct net *net, 1774 struct fib6_table *table, 1775 struct fib6_node *fn) 1776 { 1777 int children; 1778 int nstate; 1779 struct fib6_node *child; 1780 struct fib6_walker *w; 1781 int iter = 0; 1782 1783 /* Set fn->leaf to null_entry for root node. */ 1784 if (fn->fn_flags & RTN_TL_ROOT) { 1785 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1786 return fn; 1787 } 1788 1789 for (;;) { 1790 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1791 lockdep_is_held(&table->tb6_lock)); 1792 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1793 lockdep_is_held(&table->tb6_lock)); 1794 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1795 lockdep_is_held(&table->tb6_lock)); 1796 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1797 lockdep_is_held(&table->tb6_lock)); 1798 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1799 lockdep_is_held(&table->tb6_lock)); 1800 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1801 lockdep_is_held(&table->tb6_lock)); 1802 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1803 lockdep_is_held(&table->tb6_lock)); 1804 struct fib6_info *new_fn_leaf; 1805 1806 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1807 iter++; 1808 1809 WARN_ON(fn->fn_flags & RTN_RTINFO); 1810 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1811 WARN_ON(fn_leaf); 1812 1813 children = 0; 1814 child = NULL; 1815 if (fn_r) { 1816 child = fn_r; 1817 children |= 1; 1818 } 1819 if (fn_l) { 1820 child = fn_l; 1821 children |= 2; 1822 } 1823 1824 if (children == 3 || FIB6_SUBTREE(fn) 1825 #ifdef CONFIG_IPV6_SUBTREES 1826 /* Subtree root (i.e. fn) may have one child */ 1827 || (children && fn->fn_flags & RTN_ROOT) 1828 #endif 1829 ) { 1830 new_fn_leaf = fib6_find_prefix(net, table, fn); 1831 #if RT6_DEBUG >= 2 1832 if (!new_fn_leaf) { 1833 WARN_ON(!new_fn_leaf); 1834 new_fn_leaf = net->ipv6.fib6_null_entry; 1835 } 1836 #endif 1837 fib6_info_hold(new_fn_leaf); 1838 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1839 return pn; 1840 } 1841 1842 #ifdef CONFIG_IPV6_SUBTREES 1843 if (FIB6_SUBTREE(pn) == fn) { 1844 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1845 RCU_INIT_POINTER(pn->subtree, NULL); 1846 nstate = FWS_L; 1847 } else { 1848 WARN_ON(fn->fn_flags & RTN_ROOT); 1849 #endif 1850 if (pn_r == fn) 1851 rcu_assign_pointer(pn->right, child); 1852 else if (pn_l == fn) 1853 rcu_assign_pointer(pn->left, child); 1854 #if RT6_DEBUG >= 2 1855 else 1856 WARN_ON(1); 1857 #endif 1858 if (child) 1859 rcu_assign_pointer(child->parent, pn); 1860 nstate = FWS_R; 1861 #ifdef CONFIG_IPV6_SUBTREES 1862 } 1863 #endif 1864 1865 read_lock(&net->ipv6.fib6_walker_lock); 1866 FOR_WALKERS(net, w) { 1867 if (!child) { 1868 if (w->node == fn) { 1869 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1870 w->node = pn; 1871 w->state = nstate; 1872 } 1873 } else { 1874 if (w->node == fn) { 1875 w->node = child; 1876 if (children&2) { 1877 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1878 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1879 } else { 1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1881 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1882 } 1883 } 1884 } 1885 } 1886 read_unlock(&net->ipv6.fib6_walker_lock); 1887 1888 node_free(net, fn); 1889 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1890 return pn; 1891 1892 RCU_INIT_POINTER(pn->leaf, NULL); 1893 fib6_info_release(pn_leaf); 1894 fn = pn; 1895 } 1896 } 1897 1898 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1899 struct fib6_info __rcu **rtp, struct nl_info *info) 1900 { 1901 struct fib6_info *leaf, *replace_rt = NULL; 1902 struct fib6_walker *w; 1903 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1904 lockdep_is_held(&table->tb6_lock)); 1905 struct net *net = info->nl_net; 1906 bool notify_del = false; 1907 1908 RT6_TRACE("fib6_del_route\n"); 1909 1910 /* If the deleted route is the first in the node and it is not part of 1911 * a multipath route, then we need to replace it with the next route 1912 * in the node, if exists. 1913 */ 1914 leaf = rcu_dereference_protected(fn->leaf, 1915 lockdep_is_held(&table->tb6_lock)); 1916 if (leaf == rt && !rt->fib6_nsiblings) { 1917 if (rcu_access_pointer(rt->fib6_next)) 1918 replace_rt = rcu_dereference_protected(rt->fib6_next, 1919 lockdep_is_held(&table->tb6_lock)); 1920 else 1921 notify_del = true; 1922 } 1923 1924 /* Unlink it */ 1925 *rtp = rt->fib6_next; 1926 rt->fib6_node = NULL; 1927 net->ipv6.rt6_stats->fib_rt_entries--; 1928 net->ipv6.rt6_stats->fib_discarded_routes++; 1929 1930 /* Flush all cached dst in exception table */ 1931 rt6_flush_exceptions(rt); 1932 1933 /* Reset round-robin state, if necessary */ 1934 if (rcu_access_pointer(fn->rr_ptr) == rt) 1935 fn->rr_ptr = NULL; 1936 1937 /* Remove this entry from other siblings */ 1938 if (rt->fib6_nsiblings) { 1939 struct fib6_info *sibling, *next_sibling; 1940 1941 /* The route is deleted from a multipath route. If this 1942 * multipath route is the first route in the node, then we need 1943 * to emit a delete notification. Otherwise, we need to skip 1944 * the notification. 1945 */ 1946 if (rt->fib6_metric == leaf->fib6_metric && 1947 rt6_qualify_for_ecmp(leaf)) 1948 notify_del = true; 1949 list_for_each_entry_safe(sibling, next_sibling, 1950 &rt->fib6_siblings, fib6_siblings) 1951 sibling->fib6_nsiblings--; 1952 rt->fib6_nsiblings = 0; 1953 list_del_init(&rt->fib6_siblings); 1954 rt6_multipath_rebalance(next_sibling); 1955 } 1956 1957 /* Adjust walkers */ 1958 read_lock(&net->ipv6.fib6_walker_lock); 1959 FOR_WALKERS(net, w) { 1960 if (w->state == FWS_C && w->leaf == rt) { 1961 RT6_TRACE("walker %p adjusted by delroute\n", w); 1962 w->leaf = rcu_dereference_protected(rt->fib6_next, 1963 lockdep_is_held(&table->tb6_lock)); 1964 if (!w->leaf) 1965 w->state = FWS_U; 1966 } 1967 } 1968 read_unlock(&net->ipv6.fib6_walker_lock); 1969 1970 /* If it was last route, call fib6_repair_tree() to: 1971 * 1. For root node, put back null_entry as how the table was created. 1972 * 2. For other nodes, expunge its radix tree node. 1973 */ 1974 if (!rcu_access_pointer(fn->leaf)) { 1975 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1976 fn->fn_flags &= ~RTN_RTINFO; 1977 net->ipv6.rt6_stats->fib_route_nodes--; 1978 } 1979 fn = fib6_repair_tree(net, table, fn); 1980 } 1981 1982 fib6_purge_rt(rt, fn, net); 1983 1984 if (!info->skip_notify_kernel) { 1985 if (notify_del) 1986 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1987 rt, NULL); 1988 else if (replace_rt) 1989 call_fib6_entry_notifiers_replace(net, replace_rt); 1990 } 1991 if (!info->skip_notify) 1992 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1993 1994 fib6_info_release(rt); 1995 } 1996 1997 /* Need to own table->tb6_lock */ 1998 int fib6_del(struct fib6_info *rt, struct nl_info *info) 1999 { 2000 struct net *net = info->nl_net; 2001 struct fib6_info __rcu **rtp; 2002 struct fib6_info __rcu **rtp_next; 2003 struct fib6_table *table; 2004 struct fib6_node *fn; 2005 2006 if (rt == net->ipv6.fib6_null_entry) 2007 return -ENOENT; 2008 2009 table = rt->fib6_table; 2010 fn = rcu_dereference_protected(rt->fib6_node, 2011 lockdep_is_held(&table->tb6_lock)); 2012 if (!fn) 2013 return -ENOENT; 2014 2015 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2016 2017 /* 2018 * Walk the leaf entries looking for ourself 2019 */ 2020 2021 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2022 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2023 lockdep_is_held(&table->tb6_lock)); 2024 if (rt == cur) { 2025 if (fib6_requires_src(cur)) 2026 fib6_routes_require_src_dec(info->nl_net); 2027 fib6_del_route(table, fn, rtp, info); 2028 return 0; 2029 } 2030 rtp_next = &cur->fib6_next; 2031 } 2032 return -ENOENT; 2033 } 2034 2035 /* 2036 * Tree traversal function. 2037 * 2038 * Certainly, it is not interrupt safe. 2039 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2040 * It means, that we can modify tree during walking 2041 * and use this function for garbage collection, clone pruning, 2042 * cleaning tree when a device goes down etc. etc. 2043 * 2044 * It guarantees that every node will be traversed, 2045 * and that it will be traversed only once. 2046 * 2047 * Callback function w->func may return: 2048 * 0 -> continue walking. 2049 * positive value -> walking is suspended (used by tree dumps, 2050 * and probably by gc, if it will be split to several slices) 2051 * negative value -> terminate walking. 2052 * 2053 * The function itself returns: 2054 * 0 -> walk is complete. 2055 * >0 -> walk is incomplete (i.e. suspended) 2056 * <0 -> walk is terminated by an error. 2057 * 2058 * This function is called with tb6_lock held. 2059 */ 2060 2061 static int fib6_walk_continue(struct fib6_walker *w) 2062 { 2063 struct fib6_node *fn, *pn, *left, *right; 2064 2065 /* w->root should always be table->tb6_root */ 2066 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2067 2068 for (;;) { 2069 fn = w->node; 2070 if (!fn) 2071 return 0; 2072 2073 switch (w->state) { 2074 #ifdef CONFIG_IPV6_SUBTREES 2075 case FWS_S: 2076 if (FIB6_SUBTREE(fn)) { 2077 w->node = FIB6_SUBTREE(fn); 2078 continue; 2079 } 2080 w->state = FWS_L; 2081 fallthrough; 2082 #endif 2083 case FWS_L: 2084 left = rcu_dereference_protected(fn->left, 1); 2085 if (left) { 2086 w->node = left; 2087 w->state = FWS_INIT; 2088 continue; 2089 } 2090 w->state = FWS_R; 2091 fallthrough; 2092 case FWS_R: 2093 right = rcu_dereference_protected(fn->right, 1); 2094 if (right) { 2095 w->node = right; 2096 w->state = FWS_INIT; 2097 continue; 2098 } 2099 w->state = FWS_C; 2100 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2101 fallthrough; 2102 case FWS_C: 2103 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2104 int err; 2105 2106 if (w->skip) { 2107 w->skip--; 2108 goto skip; 2109 } 2110 2111 err = w->func(w); 2112 if (err) 2113 return err; 2114 2115 w->count++; 2116 continue; 2117 } 2118 skip: 2119 w->state = FWS_U; 2120 fallthrough; 2121 case FWS_U: 2122 if (fn == w->root) 2123 return 0; 2124 pn = rcu_dereference_protected(fn->parent, 1); 2125 left = rcu_dereference_protected(pn->left, 1); 2126 right = rcu_dereference_protected(pn->right, 1); 2127 w->node = pn; 2128 #ifdef CONFIG_IPV6_SUBTREES 2129 if (FIB6_SUBTREE(pn) == fn) { 2130 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2131 w->state = FWS_L; 2132 continue; 2133 } 2134 #endif 2135 if (left == fn) { 2136 w->state = FWS_R; 2137 continue; 2138 } 2139 if (right == fn) { 2140 w->state = FWS_C; 2141 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2142 continue; 2143 } 2144 #if RT6_DEBUG >= 2 2145 WARN_ON(1); 2146 #endif 2147 } 2148 } 2149 } 2150 2151 static int fib6_walk(struct net *net, struct fib6_walker *w) 2152 { 2153 int res; 2154 2155 w->state = FWS_INIT; 2156 w->node = w->root; 2157 2158 fib6_walker_link(net, w); 2159 res = fib6_walk_continue(w); 2160 if (res <= 0) 2161 fib6_walker_unlink(net, w); 2162 return res; 2163 } 2164 2165 static int fib6_clean_node(struct fib6_walker *w) 2166 { 2167 int res; 2168 struct fib6_info *rt; 2169 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2170 struct nl_info info = { 2171 .nl_net = c->net, 2172 .skip_notify = c->skip_notify, 2173 }; 2174 2175 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2176 w->node->fn_sernum != c->sernum) 2177 w->node->fn_sernum = c->sernum; 2178 2179 if (!c->func) { 2180 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2181 w->leaf = NULL; 2182 return 0; 2183 } 2184 2185 for_each_fib6_walker_rt(w) { 2186 res = c->func(rt, c->arg); 2187 if (res == -1) { 2188 w->leaf = rt; 2189 res = fib6_del(rt, &info); 2190 if (res) { 2191 #if RT6_DEBUG >= 2 2192 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2193 __func__, rt, 2194 rcu_access_pointer(rt->fib6_node), 2195 res); 2196 #endif 2197 continue; 2198 } 2199 return 0; 2200 } else if (res == -2) { 2201 if (WARN_ON(!rt->fib6_nsiblings)) 2202 continue; 2203 rt = list_last_entry(&rt->fib6_siblings, 2204 struct fib6_info, fib6_siblings); 2205 continue; 2206 } 2207 WARN_ON(res != 0); 2208 } 2209 w->leaf = rt; 2210 return 0; 2211 } 2212 2213 /* 2214 * Convenient frontend to tree walker. 2215 * 2216 * func is called on each route. 2217 * It may return -2 -> skip multipath route. 2218 * -1 -> delete this route. 2219 * 0 -> continue walking 2220 */ 2221 2222 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2223 int (*func)(struct fib6_info *, void *arg), 2224 int sernum, void *arg, bool skip_notify) 2225 { 2226 struct fib6_cleaner c; 2227 2228 c.w.root = root; 2229 c.w.func = fib6_clean_node; 2230 c.w.count = 0; 2231 c.w.skip = 0; 2232 c.w.skip_in_node = 0; 2233 c.func = func; 2234 c.sernum = sernum; 2235 c.arg = arg; 2236 c.net = net; 2237 c.skip_notify = skip_notify; 2238 2239 fib6_walk(net, &c.w); 2240 } 2241 2242 static void __fib6_clean_all(struct net *net, 2243 int (*func)(struct fib6_info *, void *), 2244 int sernum, void *arg, bool skip_notify) 2245 { 2246 struct fib6_table *table; 2247 struct hlist_head *head; 2248 unsigned int h; 2249 2250 rcu_read_lock(); 2251 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2252 head = &net->ipv6.fib_table_hash[h]; 2253 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2254 spin_lock_bh(&table->tb6_lock); 2255 fib6_clean_tree(net, &table->tb6_root, 2256 func, sernum, arg, skip_notify); 2257 spin_unlock_bh(&table->tb6_lock); 2258 } 2259 } 2260 rcu_read_unlock(); 2261 } 2262 2263 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2264 void *arg) 2265 { 2266 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2267 } 2268 2269 void fib6_clean_all_skip_notify(struct net *net, 2270 int (*func)(struct fib6_info *, void *), 2271 void *arg) 2272 { 2273 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2274 } 2275 2276 static void fib6_flush_trees(struct net *net) 2277 { 2278 int new_sernum = fib6_new_sernum(net); 2279 2280 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2281 } 2282 2283 /* 2284 * Garbage collection 2285 */ 2286 2287 static int fib6_age(struct fib6_info *rt, void *arg) 2288 { 2289 struct fib6_gc_args *gc_args = arg; 2290 unsigned long now = jiffies; 2291 2292 /* 2293 * check addrconf expiration here. 2294 * Routes are expired even if they are in use. 2295 */ 2296 2297 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2298 if (time_after(now, rt->expires)) { 2299 RT6_TRACE("expiring %p\n", rt); 2300 return -1; 2301 } 2302 gc_args->more++; 2303 } 2304 2305 /* Also age clones in the exception table. 2306 * Note, that clones are aged out 2307 * only if they are not in use now. 2308 */ 2309 rt6_age_exceptions(rt, gc_args, now); 2310 2311 return 0; 2312 } 2313 2314 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2315 { 2316 struct fib6_gc_args gc_args; 2317 unsigned long now; 2318 2319 if (force) { 2320 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2321 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2322 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2323 return; 2324 } 2325 gc_args.timeout = expires ? (int)expires : 2326 net->ipv6.sysctl.ip6_rt_gc_interval; 2327 gc_args.more = 0; 2328 2329 fib6_clean_all(net, fib6_age, &gc_args); 2330 now = jiffies; 2331 net->ipv6.ip6_rt_last_gc = now; 2332 2333 if (gc_args.more) 2334 mod_timer(&net->ipv6.ip6_fib_timer, 2335 round_jiffies(now 2336 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2337 else 2338 del_timer(&net->ipv6.ip6_fib_timer); 2339 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2340 } 2341 2342 static void fib6_gc_timer_cb(struct timer_list *t) 2343 { 2344 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2345 2346 fib6_run_gc(0, arg, true); 2347 } 2348 2349 static int __net_init fib6_net_init(struct net *net) 2350 { 2351 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2352 int err; 2353 2354 err = fib6_notifier_init(net); 2355 if (err) 2356 return err; 2357 2358 spin_lock_init(&net->ipv6.fib6_gc_lock); 2359 rwlock_init(&net->ipv6.fib6_walker_lock); 2360 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2361 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2362 2363 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2364 if (!net->ipv6.rt6_stats) 2365 goto out_timer; 2366 2367 /* Avoid false sharing : Use at least a full cache line */ 2368 size = max_t(size_t, size, L1_CACHE_BYTES); 2369 2370 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2371 if (!net->ipv6.fib_table_hash) 2372 goto out_rt6_stats; 2373 2374 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2375 GFP_KERNEL); 2376 if (!net->ipv6.fib6_main_tbl) 2377 goto out_fib_table_hash; 2378 2379 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2380 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2381 net->ipv6.fib6_null_entry); 2382 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2383 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2384 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2385 2386 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2387 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2388 GFP_KERNEL); 2389 if (!net->ipv6.fib6_local_tbl) 2390 goto out_fib6_main_tbl; 2391 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2392 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2393 net->ipv6.fib6_null_entry); 2394 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2395 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2396 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2397 #endif 2398 fib6_tables_init(net); 2399 2400 return 0; 2401 2402 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2403 out_fib6_main_tbl: 2404 kfree(net->ipv6.fib6_main_tbl); 2405 #endif 2406 out_fib_table_hash: 2407 kfree(net->ipv6.fib_table_hash); 2408 out_rt6_stats: 2409 kfree(net->ipv6.rt6_stats); 2410 out_timer: 2411 fib6_notifier_exit(net); 2412 return -ENOMEM; 2413 } 2414 2415 static void fib6_net_exit(struct net *net) 2416 { 2417 unsigned int i; 2418 2419 del_timer_sync(&net->ipv6.ip6_fib_timer); 2420 2421 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2422 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2423 struct hlist_node *tmp; 2424 struct fib6_table *tb; 2425 2426 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2427 hlist_del(&tb->tb6_hlist); 2428 fib6_free_table(tb); 2429 } 2430 } 2431 2432 kfree(net->ipv6.fib_table_hash); 2433 kfree(net->ipv6.rt6_stats); 2434 fib6_notifier_exit(net); 2435 } 2436 2437 static struct pernet_operations fib6_net_ops = { 2438 .init = fib6_net_init, 2439 .exit = fib6_net_exit, 2440 }; 2441 2442 int __init fib6_init(void) 2443 { 2444 int ret = -ENOMEM; 2445 2446 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2447 sizeof(struct fib6_node), 2448 0, SLAB_HWCACHE_ALIGN, 2449 NULL); 2450 if (!fib6_node_kmem) 2451 goto out; 2452 2453 ret = register_pernet_subsys(&fib6_net_ops); 2454 if (ret) 2455 goto out_kmem_cache_create; 2456 2457 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2458 inet6_dump_fib, 0); 2459 if (ret) 2460 goto out_unregister_subsys; 2461 2462 __fib6_flush_trees = fib6_flush_trees; 2463 out: 2464 return ret; 2465 2466 out_unregister_subsys: 2467 unregister_pernet_subsys(&fib6_net_ops); 2468 out_kmem_cache_create: 2469 kmem_cache_destroy(fib6_node_kmem); 2470 goto out; 2471 } 2472 2473 void fib6_gc_cleanup(void) 2474 { 2475 unregister_pernet_subsys(&fib6_net_ops); 2476 kmem_cache_destroy(fib6_node_kmem); 2477 } 2478 2479 #ifdef CONFIG_PROC_FS 2480 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2481 { 2482 struct fib6_info *rt = v; 2483 struct ipv6_route_iter *iter = seq->private; 2484 struct fib6_nh *fib6_nh = rt->fib6_nh; 2485 unsigned int flags = rt->fib6_flags; 2486 const struct net_device *dev; 2487 2488 if (rt->nh) 2489 fib6_nh = nexthop_fib6_nh(rt->nh); 2490 2491 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2492 2493 #ifdef CONFIG_IPV6_SUBTREES 2494 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2495 #else 2496 seq_puts(seq, "00000000000000000000000000000000 00 "); 2497 #endif 2498 if (fib6_nh->fib_nh_gw_family) { 2499 flags |= RTF_GATEWAY; 2500 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2501 } else { 2502 seq_puts(seq, "00000000000000000000000000000000"); 2503 } 2504 2505 dev = fib6_nh->fib_nh_dev; 2506 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2507 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2508 flags, dev ? dev->name : ""); 2509 iter->w.leaf = NULL; 2510 return 0; 2511 } 2512 2513 static int ipv6_route_yield(struct fib6_walker *w) 2514 { 2515 struct ipv6_route_iter *iter = w->args; 2516 2517 if (!iter->skip) 2518 return 1; 2519 2520 do { 2521 iter->w.leaf = rcu_dereference_protected( 2522 iter->w.leaf->fib6_next, 2523 lockdep_is_held(&iter->tbl->tb6_lock)); 2524 iter->skip--; 2525 if (!iter->skip && iter->w.leaf) 2526 return 1; 2527 } while (iter->w.leaf); 2528 2529 return 0; 2530 } 2531 2532 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2533 struct net *net) 2534 { 2535 memset(&iter->w, 0, sizeof(iter->w)); 2536 iter->w.func = ipv6_route_yield; 2537 iter->w.root = &iter->tbl->tb6_root; 2538 iter->w.state = FWS_INIT; 2539 iter->w.node = iter->w.root; 2540 iter->w.args = iter; 2541 iter->sernum = iter->w.root->fn_sernum; 2542 INIT_LIST_HEAD(&iter->w.lh); 2543 fib6_walker_link(net, &iter->w); 2544 } 2545 2546 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2547 struct net *net) 2548 { 2549 unsigned int h; 2550 struct hlist_node *node; 2551 2552 if (tbl) { 2553 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2554 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2555 } else { 2556 h = 0; 2557 node = NULL; 2558 } 2559 2560 while (!node && h < FIB6_TABLE_HASHSZ) { 2561 node = rcu_dereference_bh( 2562 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2563 } 2564 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2565 } 2566 2567 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2568 { 2569 if (iter->sernum != iter->w.root->fn_sernum) { 2570 iter->sernum = iter->w.root->fn_sernum; 2571 iter->w.state = FWS_INIT; 2572 iter->w.node = iter->w.root; 2573 WARN_ON(iter->w.skip); 2574 iter->w.skip = iter->w.count; 2575 } 2576 } 2577 2578 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2579 { 2580 int r; 2581 struct fib6_info *n; 2582 struct net *net = seq_file_net(seq); 2583 struct ipv6_route_iter *iter = seq->private; 2584 2585 ++(*pos); 2586 if (!v) 2587 goto iter_table; 2588 2589 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next); 2590 if (n) 2591 return n; 2592 2593 iter_table: 2594 ipv6_route_check_sernum(iter); 2595 spin_lock_bh(&iter->tbl->tb6_lock); 2596 r = fib6_walk_continue(&iter->w); 2597 spin_unlock_bh(&iter->tbl->tb6_lock); 2598 if (r > 0) { 2599 return iter->w.leaf; 2600 } else if (r < 0) { 2601 fib6_walker_unlink(net, &iter->w); 2602 return NULL; 2603 } 2604 fib6_walker_unlink(net, &iter->w); 2605 2606 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2607 if (!iter->tbl) 2608 return NULL; 2609 2610 ipv6_route_seq_setup_walk(iter, net); 2611 goto iter_table; 2612 } 2613 2614 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2615 __acquires(RCU_BH) 2616 { 2617 struct net *net = seq_file_net(seq); 2618 struct ipv6_route_iter *iter = seq->private; 2619 2620 rcu_read_lock_bh(); 2621 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2622 iter->skip = *pos; 2623 2624 if (iter->tbl) { 2625 loff_t p = 0; 2626 2627 ipv6_route_seq_setup_walk(iter, net); 2628 return ipv6_route_seq_next(seq, NULL, &p); 2629 } else { 2630 return NULL; 2631 } 2632 } 2633 2634 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2635 { 2636 struct fib6_walker *w = &iter->w; 2637 return w->node && !(w->state == FWS_U && w->node == w->root); 2638 } 2639 2640 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2641 __releases(RCU_BH) 2642 { 2643 struct net *net = seq_file_net(seq); 2644 struct ipv6_route_iter *iter = seq->private; 2645 2646 if (ipv6_route_iter_active(iter)) 2647 fib6_walker_unlink(net, &iter->w); 2648 2649 rcu_read_unlock_bh(); 2650 } 2651 2652 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2653 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2654 struct bpf_iter_meta *meta, 2655 void *v) 2656 { 2657 struct bpf_iter__ipv6_route ctx; 2658 2659 ctx.meta = meta; 2660 ctx.rt = v; 2661 return bpf_iter_run_prog(prog, &ctx); 2662 } 2663 2664 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2665 { 2666 struct ipv6_route_iter *iter = seq->private; 2667 struct bpf_iter_meta meta; 2668 struct bpf_prog *prog; 2669 int ret; 2670 2671 meta.seq = seq; 2672 prog = bpf_iter_get_info(&meta, false); 2673 if (!prog) 2674 return ipv6_route_native_seq_show(seq, v); 2675 2676 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2677 iter->w.leaf = NULL; 2678 2679 return ret; 2680 } 2681 2682 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2683 { 2684 struct bpf_iter_meta meta; 2685 struct bpf_prog *prog; 2686 2687 if (!v) { 2688 meta.seq = seq; 2689 prog = bpf_iter_get_info(&meta, true); 2690 if (prog) 2691 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2692 } 2693 2694 ipv6_route_native_seq_stop(seq, v); 2695 } 2696 #else 2697 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2698 { 2699 return ipv6_route_native_seq_show(seq, v); 2700 } 2701 2702 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2703 { 2704 ipv6_route_native_seq_stop(seq, v); 2705 } 2706 #endif 2707 2708 const struct seq_operations ipv6_route_seq_ops = { 2709 .start = ipv6_route_seq_start, 2710 .next = ipv6_route_seq_next, 2711 .stop = ipv6_route_seq_stop, 2712 .show = ipv6_route_seq_show 2713 }; 2714 #endif /* CONFIG_PROC_FS */ 2715