xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 
43 struct fib6_cleaner {
44 	struct fib6_walker w;
45 	struct net *net;
46 	int (*func)(struct rt6_info *, void *arg);
47 	int sernum;
48 	void *arg;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 	struct net *net = dev_net(rt->dst.dev);
111 	struct fib6_node *fn;
112 
113 	fn = rcu_dereference_protected(rt->rt6i_node,
114 			lockdep_is_held(&rt->rt6i_table->tb6_lock));
115 	if (fn)
116 		fn->fn_sernum = fib6_new_sernum(net);
117 }
118 
119 /*
120  *	Auxiliary address test functions for the radix tree.
121  *
122  *	These assume a 32bit processor (although it will work on
123  *	64bit processors)
124  */
125 
126 /*
127  *	test bit
128  */
129 #if defined(__LITTLE_ENDIAN)
130 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
131 #else
132 # define BITOP_BE32_SWIZZLE	0
133 #endif
134 
135 static __be32 addr_bit_set(const void *token, int fn_bit)
136 {
137 	const __be32 *addr = token;
138 	/*
139 	 * Here,
140 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 	 * is optimized version of
142 	 *	htonl(1 << ((~fn_bit)&0x1F))
143 	 * See include/asm-generic/bitops/le.h.
144 	 */
145 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 	       addr[fn_bit >> 5];
147 }
148 
149 static struct fib6_node *node_alloc(struct net *net)
150 {
151 	struct fib6_node *fn;
152 
153 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154 	if (fn)
155 		net->ipv6.rt6_stats->fib_nodes++;
156 
157 	return fn;
158 }
159 
160 static void node_free_immediate(struct net *net, struct fib6_node *fn)
161 {
162 	kmem_cache_free(fib6_node_kmem, fn);
163 	net->ipv6.rt6_stats->fib_nodes--;
164 }
165 
166 static void node_free_rcu(struct rcu_head *head)
167 {
168 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
169 
170 	kmem_cache_free(fib6_node_kmem, fn);
171 }
172 
173 static void node_free(struct net *net, struct fib6_node *fn)
174 {
175 	call_rcu(&fn->rcu, node_free_rcu);
176 	net->ipv6.rt6_stats->fib_nodes--;
177 }
178 
179 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
180 {
181 	int cpu;
182 
183 	if (!non_pcpu_rt->rt6i_pcpu)
184 		return;
185 
186 	for_each_possible_cpu(cpu) {
187 		struct rt6_info **ppcpu_rt;
188 		struct rt6_info *pcpu_rt;
189 
190 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
191 		pcpu_rt = *ppcpu_rt;
192 		if (pcpu_rt) {
193 			dst_dev_put(&pcpu_rt->dst);
194 			dst_release(&pcpu_rt->dst);
195 			*ppcpu_rt = NULL;
196 		}
197 	}
198 }
199 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
200 
201 static void fib6_free_table(struct fib6_table *table)
202 {
203 	inetpeer_invalidate_tree(&table->tb6_peers);
204 	kfree(table);
205 }
206 
207 static void fib6_link_table(struct net *net, struct fib6_table *tb)
208 {
209 	unsigned int h;
210 
211 	/*
212 	 * Initialize table lock at a single place to give lockdep a key,
213 	 * tables aren't visible prior to being linked to the list.
214 	 */
215 	spin_lock_init(&tb->tb6_lock);
216 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
217 
218 	/*
219 	 * No protection necessary, this is the only list mutatation
220 	 * operation, tables never disappear once they exist.
221 	 */
222 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
223 }
224 
225 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
226 
227 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
228 {
229 	struct fib6_table *table;
230 
231 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
232 	if (table) {
233 		table->tb6_id = id;
234 		rcu_assign_pointer(table->tb6_root.leaf,
235 				   net->ipv6.ip6_null_entry);
236 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
237 		inet_peer_base_init(&table->tb6_peers);
238 	}
239 
240 	return table;
241 }
242 
243 struct fib6_table *fib6_new_table(struct net *net, u32 id)
244 {
245 	struct fib6_table *tb;
246 
247 	if (id == 0)
248 		id = RT6_TABLE_MAIN;
249 	tb = fib6_get_table(net, id);
250 	if (tb)
251 		return tb;
252 
253 	tb = fib6_alloc_table(net, id);
254 	if (tb)
255 		fib6_link_table(net, tb);
256 
257 	return tb;
258 }
259 EXPORT_SYMBOL_GPL(fib6_new_table);
260 
261 struct fib6_table *fib6_get_table(struct net *net, u32 id)
262 {
263 	struct fib6_table *tb;
264 	struct hlist_head *head;
265 	unsigned int h;
266 
267 	if (id == 0)
268 		id = RT6_TABLE_MAIN;
269 	h = id & (FIB6_TABLE_HASHSZ - 1);
270 	rcu_read_lock();
271 	head = &net->ipv6.fib_table_hash[h];
272 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
273 		if (tb->tb6_id == id) {
274 			rcu_read_unlock();
275 			return tb;
276 		}
277 	}
278 	rcu_read_unlock();
279 
280 	return NULL;
281 }
282 EXPORT_SYMBOL_GPL(fib6_get_table);
283 
284 static void __net_init fib6_tables_init(struct net *net)
285 {
286 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
287 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
288 }
289 #else
290 
291 struct fib6_table *fib6_new_table(struct net *net, u32 id)
292 {
293 	return fib6_get_table(net, id);
294 }
295 
296 struct fib6_table *fib6_get_table(struct net *net, u32 id)
297 {
298 	  return net->ipv6.fib6_main_tbl;
299 }
300 
301 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
302 				   int flags, pol_lookup_t lookup)
303 {
304 	struct rt6_info *rt;
305 
306 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
307 	if (rt->dst.error == -EAGAIN) {
308 		ip6_rt_put(rt);
309 		rt = net->ipv6.ip6_null_entry;
310 		dst_hold(&rt->dst);
311 	}
312 
313 	return &rt->dst;
314 }
315 
316 static void __net_init fib6_tables_init(struct net *net)
317 {
318 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
319 }
320 
321 #endif
322 
323 unsigned int fib6_tables_seq_read(struct net *net)
324 {
325 	unsigned int h, fib_seq = 0;
326 
327 	rcu_read_lock();
328 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
329 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
330 		struct fib6_table *tb;
331 
332 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
333 			fib_seq += tb->fib_seq;
334 	}
335 	rcu_read_unlock();
336 
337 	return fib_seq;
338 }
339 
340 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
341 				    enum fib_event_type event_type,
342 				    struct rt6_info *rt)
343 {
344 	struct fib6_entry_notifier_info info = {
345 		.rt = rt,
346 	};
347 
348 	return call_fib6_notifier(nb, net, event_type, &info.info);
349 }
350 
351 static int call_fib6_entry_notifiers(struct net *net,
352 				     enum fib_event_type event_type,
353 				     struct rt6_info *rt,
354 				     struct netlink_ext_ack *extack)
355 {
356 	struct fib6_entry_notifier_info info = {
357 		.info.extack = extack,
358 		.rt = rt,
359 	};
360 
361 	rt->rt6i_table->fib_seq++;
362 	return call_fib6_notifiers(net, event_type, &info.info);
363 }
364 
365 struct fib6_dump_arg {
366 	struct net *net;
367 	struct notifier_block *nb;
368 };
369 
370 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
371 {
372 	if (rt == arg->net->ipv6.ip6_null_entry)
373 		return;
374 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
375 }
376 
377 static int fib6_node_dump(struct fib6_walker *w)
378 {
379 	struct rt6_info *rt;
380 
381 	for_each_fib6_walker_rt(w)
382 		fib6_rt_dump(rt, w->args);
383 	w->leaf = NULL;
384 	return 0;
385 }
386 
387 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
388 			    struct fib6_walker *w)
389 {
390 	w->root = &tb->tb6_root;
391 	spin_lock_bh(&tb->tb6_lock);
392 	fib6_walk(net, w);
393 	spin_unlock_bh(&tb->tb6_lock);
394 }
395 
396 /* Called with rcu_read_lock() */
397 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
398 {
399 	struct fib6_dump_arg arg;
400 	struct fib6_walker *w;
401 	unsigned int h;
402 
403 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
404 	if (!w)
405 		return -ENOMEM;
406 
407 	w->func = fib6_node_dump;
408 	arg.net = net;
409 	arg.nb = nb;
410 	w->args = &arg;
411 
412 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
413 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
414 		struct fib6_table *tb;
415 
416 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
417 			fib6_table_dump(net, tb, w);
418 	}
419 
420 	kfree(w);
421 
422 	return 0;
423 }
424 
425 static int fib6_dump_node(struct fib6_walker *w)
426 {
427 	int res;
428 	struct rt6_info *rt;
429 
430 	for_each_fib6_walker_rt(w) {
431 		res = rt6_dump_route(rt, w->args);
432 		if (res < 0) {
433 			/* Frame is full, suspend walking */
434 			w->leaf = rt;
435 			return 1;
436 		}
437 
438 		/* Multipath routes are dumped in one route with the
439 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
440 		 * last sibling of this route (no need to dump the
441 		 * sibling routes again)
442 		 */
443 		if (rt->rt6i_nsiblings)
444 			rt = list_last_entry(&rt->rt6i_siblings,
445 					     struct rt6_info,
446 					     rt6i_siblings);
447 	}
448 	w->leaf = NULL;
449 	return 0;
450 }
451 
452 static void fib6_dump_end(struct netlink_callback *cb)
453 {
454 	struct net *net = sock_net(cb->skb->sk);
455 	struct fib6_walker *w = (void *)cb->args[2];
456 
457 	if (w) {
458 		if (cb->args[4]) {
459 			cb->args[4] = 0;
460 			fib6_walker_unlink(net, w);
461 		}
462 		cb->args[2] = 0;
463 		kfree(w);
464 	}
465 	cb->done = (void *)cb->args[3];
466 	cb->args[1] = 3;
467 }
468 
469 static int fib6_dump_done(struct netlink_callback *cb)
470 {
471 	fib6_dump_end(cb);
472 	return cb->done ? cb->done(cb) : 0;
473 }
474 
475 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
476 			   struct netlink_callback *cb)
477 {
478 	struct net *net = sock_net(skb->sk);
479 	struct fib6_walker *w;
480 	int res;
481 
482 	w = (void *)cb->args[2];
483 	w->root = &table->tb6_root;
484 
485 	if (cb->args[4] == 0) {
486 		w->count = 0;
487 		w->skip = 0;
488 
489 		spin_lock_bh(&table->tb6_lock);
490 		res = fib6_walk(net, w);
491 		spin_unlock_bh(&table->tb6_lock);
492 		if (res > 0) {
493 			cb->args[4] = 1;
494 			cb->args[5] = w->root->fn_sernum;
495 		}
496 	} else {
497 		if (cb->args[5] != w->root->fn_sernum) {
498 			/* Begin at the root if the tree changed */
499 			cb->args[5] = w->root->fn_sernum;
500 			w->state = FWS_INIT;
501 			w->node = w->root;
502 			w->skip = w->count;
503 		} else
504 			w->skip = 0;
505 
506 		spin_lock_bh(&table->tb6_lock);
507 		res = fib6_walk_continue(w);
508 		spin_unlock_bh(&table->tb6_lock);
509 		if (res <= 0) {
510 			fib6_walker_unlink(net, w);
511 			cb->args[4] = 0;
512 		}
513 	}
514 
515 	return res;
516 }
517 
518 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
519 {
520 	struct net *net = sock_net(skb->sk);
521 	unsigned int h, s_h;
522 	unsigned int e = 0, s_e;
523 	struct rt6_rtnl_dump_arg arg;
524 	struct fib6_walker *w;
525 	struct fib6_table *tb;
526 	struct hlist_head *head;
527 	int res = 0;
528 
529 	s_h = cb->args[0];
530 	s_e = cb->args[1];
531 
532 	w = (void *)cb->args[2];
533 	if (!w) {
534 		/* New dump:
535 		 *
536 		 * 1. hook callback destructor.
537 		 */
538 		cb->args[3] = (long)cb->done;
539 		cb->done = fib6_dump_done;
540 
541 		/*
542 		 * 2. allocate and initialize walker.
543 		 */
544 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
545 		if (!w)
546 			return -ENOMEM;
547 		w->func = fib6_dump_node;
548 		cb->args[2] = (long)w;
549 	}
550 
551 	arg.skb = skb;
552 	arg.cb = cb;
553 	arg.net = net;
554 	w->args = &arg;
555 
556 	rcu_read_lock();
557 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
558 		e = 0;
559 		head = &net->ipv6.fib_table_hash[h];
560 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
561 			if (e < s_e)
562 				goto next;
563 			res = fib6_dump_table(tb, skb, cb);
564 			if (res != 0)
565 				goto out;
566 next:
567 			e++;
568 		}
569 	}
570 out:
571 	rcu_read_unlock();
572 	cb->args[1] = e;
573 	cb->args[0] = h;
574 
575 	res = res < 0 ? res : skb->len;
576 	if (res <= 0)
577 		fib6_dump_end(cb);
578 	return res;
579 }
580 
581 /*
582  *	Routing Table
583  *
584  *	return the appropriate node for a routing tree "add" operation
585  *	by either creating and inserting or by returning an existing
586  *	node.
587  */
588 
589 static struct fib6_node *fib6_add_1(struct net *net,
590 				    struct fib6_table *table,
591 				    struct fib6_node *root,
592 				    struct in6_addr *addr, int plen,
593 				    int offset, int allow_create,
594 				    int replace_required,
595 				    struct netlink_ext_ack *extack)
596 {
597 	struct fib6_node *fn, *in, *ln;
598 	struct fib6_node *pn = NULL;
599 	struct rt6key *key;
600 	int	bit;
601 	__be32	dir = 0;
602 
603 	RT6_TRACE("fib6_add_1\n");
604 
605 	/* insert node in tree */
606 
607 	fn = root;
608 
609 	do {
610 		struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
611 					    lockdep_is_held(&table->tb6_lock));
612 		key = (struct rt6key *)((u8 *)leaf + offset);
613 
614 		/*
615 		 *	Prefix match
616 		 */
617 		if (plen < fn->fn_bit ||
618 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
619 			if (!allow_create) {
620 				if (replace_required) {
621 					NL_SET_ERR_MSG(extack,
622 						       "Can not replace route - no match found");
623 					pr_warn("Can't replace route, no match found\n");
624 					return ERR_PTR(-ENOENT);
625 				}
626 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
627 			}
628 			goto insert_above;
629 		}
630 
631 		/*
632 		 *	Exact match ?
633 		 */
634 
635 		if (plen == fn->fn_bit) {
636 			/* clean up an intermediate node */
637 			if (!(fn->fn_flags & RTN_RTINFO)) {
638 				RCU_INIT_POINTER(fn->leaf, NULL);
639 				rt6_release(leaf);
640 			/* remove null_entry in the root node */
641 			} else if (fn->fn_flags & RTN_TL_ROOT &&
642 				   rcu_access_pointer(fn->leaf) ==
643 				   net->ipv6.ip6_null_entry) {
644 				RCU_INIT_POINTER(fn->leaf, NULL);
645 			}
646 
647 			return fn;
648 		}
649 
650 		/*
651 		 *	We have more bits to go
652 		 */
653 
654 		/* Try to walk down on tree. */
655 		dir = addr_bit_set(addr, fn->fn_bit);
656 		pn = fn;
657 		fn = dir ?
658 		     rcu_dereference_protected(fn->right,
659 					lockdep_is_held(&table->tb6_lock)) :
660 		     rcu_dereference_protected(fn->left,
661 					lockdep_is_held(&table->tb6_lock));
662 	} while (fn);
663 
664 	if (!allow_create) {
665 		/* We should not create new node because
666 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
667 		 * I assume it is safe to require NLM_F_CREATE when
668 		 * REPLACE flag is used! Later we may want to remove the
669 		 * check for replace_required, because according
670 		 * to netlink specification, NLM_F_CREATE
671 		 * MUST be specified if new route is created.
672 		 * That would keep IPv6 consistent with IPv4
673 		 */
674 		if (replace_required) {
675 			NL_SET_ERR_MSG(extack,
676 				       "Can not replace route - no match found");
677 			pr_warn("Can't replace route, no match found\n");
678 			return ERR_PTR(-ENOENT);
679 		}
680 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
681 	}
682 	/*
683 	 *	We walked to the bottom of tree.
684 	 *	Create new leaf node without children.
685 	 */
686 
687 	ln = node_alloc(net);
688 
689 	if (!ln)
690 		return ERR_PTR(-ENOMEM);
691 	ln->fn_bit = plen;
692 	RCU_INIT_POINTER(ln->parent, pn);
693 
694 	if (dir)
695 		rcu_assign_pointer(pn->right, ln);
696 	else
697 		rcu_assign_pointer(pn->left, ln);
698 
699 	return ln;
700 
701 
702 insert_above:
703 	/*
704 	 * split since we don't have a common prefix anymore or
705 	 * we have a less significant route.
706 	 * we've to insert an intermediate node on the list
707 	 * this new node will point to the one we need to create
708 	 * and the current
709 	 */
710 
711 	pn = rcu_dereference_protected(fn->parent,
712 				       lockdep_is_held(&table->tb6_lock));
713 
714 	/* find 1st bit in difference between the 2 addrs.
715 
716 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
717 	   but if it is >= plen, the value is ignored in any case.
718 	 */
719 
720 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
721 
722 	/*
723 	 *		(intermediate)[in]
724 	 *	          /	   \
725 	 *	(new leaf node)[ln] (old node)[fn]
726 	 */
727 	if (plen > bit) {
728 		in = node_alloc(net);
729 		ln = node_alloc(net);
730 
731 		if (!in || !ln) {
732 			if (in)
733 				node_free_immediate(net, in);
734 			if (ln)
735 				node_free_immediate(net, ln);
736 			return ERR_PTR(-ENOMEM);
737 		}
738 
739 		/*
740 		 * new intermediate node.
741 		 * RTN_RTINFO will
742 		 * be off since that an address that chooses one of
743 		 * the branches would not match less specific routes
744 		 * in the other branch
745 		 */
746 
747 		in->fn_bit = bit;
748 
749 		RCU_INIT_POINTER(in->parent, pn);
750 		in->leaf = fn->leaf;
751 		atomic_inc(&rcu_dereference_protected(in->leaf,
752 				lockdep_is_held(&table->tb6_lock))->rt6i_ref);
753 
754 		/* update parent pointer */
755 		if (dir)
756 			rcu_assign_pointer(pn->right, in);
757 		else
758 			rcu_assign_pointer(pn->left, in);
759 
760 		ln->fn_bit = plen;
761 
762 		RCU_INIT_POINTER(ln->parent, in);
763 		rcu_assign_pointer(fn->parent, in);
764 
765 		if (addr_bit_set(addr, bit)) {
766 			rcu_assign_pointer(in->right, ln);
767 			rcu_assign_pointer(in->left, fn);
768 		} else {
769 			rcu_assign_pointer(in->left, ln);
770 			rcu_assign_pointer(in->right, fn);
771 		}
772 	} else { /* plen <= bit */
773 
774 		/*
775 		 *		(new leaf node)[ln]
776 		 *	          /	   \
777 		 *	     (old node)[fn] NULL
778 		 */
779 
780 		ln = node_alloc(net);
781 
782 		if (!ln)
783 			return ERR_PTR(-ENOMEM);
784 
785 		ln->fn_bit = plen;
786 
787 		RCU_INIT_POINTER(ln->parent, pn);
788 
789 		if (addr_bit_set(&key->addr, plen))
790 			RCU_INIT_POINTER(ln->right, fn);
791 		else
792 			RCU_INIT_POINTER(ln->left, fn);
793 
794 		rcu_assign_pointer(fn->parent, ln);
795 
796 		if (dir)
797 			rcu_assign_pointer(pn->right, ln);
798 		else
799 			rcu_assign_pointer(pn->left, ln);
800 	}
801 	return ln;
802 }
803 
804 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
805 {
806 	int i;
807 
808 	for (i = 0; i < RTAX_MAX; i++) {
809 		if (test_bit(i, mxc->mx_valid))
810 			mp[i] = mxc->mx[i];
811 	}
812 }
813 
814 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
815 {
816 	if (!mxc->mx)
817 		return 0;
818 
819 	if (dst->flags & DST_HOST) {
820 		u32 *mp = dst_metrics_write_ptr(dst);
821 
822 		if (unlikely(!mp))
823 			return -ENOMEM;
824 
825 		fib6_copy_metrics(mp, mxc);
826 	} else {
827 		dst_init_metrics(dst, mxc->mx, false);
828 
829 		/* We've stolen mx now. */
830 		mxc->mx = NULL;
831 	}
832 
833 	return 0;
834 }
835 
836 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
837 			  struct net *net)
838 {
839 	struct fib6_table *table = rt->rt6i_table;
840 
841 	if (atomic_read(&rt->rt6i_ref) != 1) {
842 		/* This route is used as dummy address holder in some split
843 		 * nodes. It is not leaked, but it still holds other resources,
844 		 * which must be released in time. So, scan ascendant nodes
845 		 * and replace dummy references to this route with references
846 		 * to still alive ones.
847 		 */
848 		while (fn) {
849 			struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
850 					    lockdep_is_held(&table->tb6_lock));
851 			struct rt6_info *new_leaf;
852 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
853 				new_leaf = fib6_find_prefix(net, table, fn);
854 				atomic_inc(&new_leaf->rt6i_ref);
855 				rcu_assign_pointer(fn->leaf, new_leaf);
856 				rt6_release(rt);
857 			}
858 			fn = rcu_dereference_protected(fn->parent,
859 				    lockdep_is_held(&table->tb6_lock));
860 		}
861 	}
862 }
863 
864 /*
865  *	Insert routing information in a node.
866  */
867 
868 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
869 			    struct nl_info *info, struct mx6_config *mxc,
870 			    struct netlink_ext_ack *extack)
871 {
872 	struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
873 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
874 	struct rt6_info *iter = NULL;
875 	struct rt6_info __rcu **ins;
876 	struct rt6_info __rcu **fallback_ins = NULL;
877 	int replace = (info->nlh &&
878 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
879 	int add = (!info->nlh ||
880 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
881 	int found = 0;
882 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
883 	u16 nlflags = NLM_F_EXCL;
884 	int err;
885 
886 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
887 		nlflags |= NLM_F_APPEND;
888 
889 	ins = &fn->leaf;
890 
891 	for (iter = leaf; iter;
892 	     iter = rcu_dereference_protected(iter->rt6_next,
893 				lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
894 		/*
895 		 *	Search for duplicates
896 		 */
897 
898 		if (iter->rt6i_metric == rt->rt6i_metric) {
899 			/*
900 			 *	Same priority level
901 			 */
902 			if (info->nlh &&
903 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
904 				return -EEXIST;
905 
906 			nlflags &= ~NLM_F_EXCL;
907 			if (replace) {
908 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
909 					found++;
910 					break;
911 				}
912 				if (rt_can_ecmp)
913 					fallback_ins = fallback_ins ?: ins;
914 				goto next_iter;
915 			}
916 
917 			if (rt6_duplicate_nexthop(iter, rt)) {
918 				if (rt->rt6i_nsiblings)
919 					rt->rt6i_nsiblings = 0;
920 				if (!(iter->rt6i_flags & RTF_EXPIRES))
921 					return -EEXIST;
922 				if (!(rt->rt6i_flags & RTF_EXPIRES))
923 					rt6_clean_expires(iter);
924 				else
925 					rt6_set_expires(iter, rt->dst.expires);
926 				iter->rt6i_pmtu = rt->rt6i_pmtu;
927 				return -EEXIST;
928 			}
929 			/* If we have the same destination and the same metric,
930 			 * but not the same gateway, then the route we try to
931 			 * add is sibling to this route, increment our counter
932 			 * of siblings, and later we will add our route to the
933 			 * list.
934 			 * Only static routes (which don't have flag
935 			 * RTF_EXPIRES) are used for ECMPv6.
936 			 *
937 			 * To avoid long list, we only had siblings if the
938 			 * route have a gateway.
939 			 */
940 			if (rt_can_ecmp &&
941 			    rt6_qualify_for_ecmp(iter))
942 				rt->rt6i_nsiblings++;
943 		}
944 
945 		if (iter->rt6i_metric > rt->rt6i_metric)
946 			break;
947 
948 next_iter:
949 		ins = &iter->rt6_next;
950 	}
951 
952 	if (fallback_ins && !found) {
953 		/* No ECMP-able route found, replace first non-ECMP one */
954 		ins = fallback_ins;
955 		iter = rcu_dereference_protected(*ins,
956 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
957 		found++;
958 	}
959 
960 	/* Reset round-robin state, if necessary */
961 	if (ins == &fn->leaf)
962 		fn->rr_ptr = NULL;
963 
964 	/* Link this route to others same route. */
965 	if (rt->rt6i_nsiblings) {
966 		unsigned int rt6i_nsiblings;
967 		struct rt6_info *sibling, *temp_sibling;
968 
969 		/* Find the first route that have the same metric */
970 		sibling = leaf;
971 		while (sibling) {
972 			if (sibling->rt6i_metric == rt->rt6i_metric &&
973 			    rt6_qualify_for_ecmp(sibling)) {
974 				list_add_tail(&rt->rt6i_siblings,
975 					      &sibling->rt6i_siblings);
976 				break;
977 			}
978 			sibling = rcu_dereference_protected(sibling->rt6_next,
979 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
980 		}
981 		/* For each sibling in the list, increment the counter of
982 		 * siblings. BUG() if counters does not match, list of siblings
983 		 * is broken!
984 		 */
985 		rt6i_nsiblings = 0;
986 		list_for_each_entry_safe(sibling, temp_sibling,
987 					 &rt->rt6i_siblings, rt6i_siblings) {
988 			sibling->rt6i_nsiblings++;
989 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
990 			rt6i_nsiblings++;
991 		}
992 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
993 		rt6_multipath_rebalance(temp_sibling);
994 	}
995 
996 	/*
997 	 *	insert node
998 	 */
999 	if (!replace) {
1000 		if (!add)
1001 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1002 
1003 add:
1004 		nlflags |= NLM_F_CREATE;
1005 		err = fib6_commit_metrics(&rt->dst, mxc);
1006 		if (err)
1007 			return err;
1008 
1009 		rcu_assign_pointer(rt->rt6_next, iter);
1010 		atomic_inc(&rt->rt6i_ref);
1011 		rcu_assign_pointer(rt->rt6i_node, fn);
1012 		rcu_assign_pointer(*ins, rt);
1013 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1014 					  rt, extack);
1015 		if (!info->skip_notify)
1016 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1017 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1018 
1019 		if (!(fn->fn_flags & RTN_RTINFO)) {
1020 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1021 			fn->fn_flags |= RTN_RTINFO;
1022 		}
1023 
1024 	} else {
1025 		int nsiblings;
1026 
1027 		if (!found) {
1028 			if (add)
1029 				goto add;
1030 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1031 			return -ENOENT;
1032 		}
1033 
1034 		err = fib6_commit_metrics(&rt->dst, mxc);
1035 		if (err)
1036 			return err;
1037 
1038 		atomic_inc(&rt->rt6i_ref);
1039 		rcu_assign_pointer(rt->rt6i_node, fn);
1040 		rt->rt6_next = iter->rt6_next;
1041 		rcu_assign_pointer(*ins, rt);
1042 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1043 					  rt, extack);
1044 		if (!info->skip_notify)
1045 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1046 		if (!(fn->fn_flags & RTN_RTINFO)) {
1047 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1048 			fn->fn_flags |= RTN_RTINFO;
1049 		}
1050 		nsiblings = iter->rt6i_nsiblings;
1051 		iter->rt6i_node = NULL;
1052 		fib6_purge_rt(iter, fn, info->nl_net);
1053 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1054 			fn->rr_ptr = NULL;
1055 		rt6_release(iter);
1056 
1057 		if (nsiblings) {
1058 			/* Replacing an ECMP route, remove all siblings */
1059 			ins = &rt->rt6_next;
1060 			iter = rcu_dereference_protected(*ins,
1061 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1062 			while (iter) {
1063 				if (iter->rt6i_metric > rt->rt6i_metric)
1064 					break;
1065 				if (rt6_qualify_for_ecmp(iter)) {
1066 					*ins = iter->rt6_next;
1067 					iter->rt6i_node = NULL;
1068 					fib6_purge_rt(iter, fn, info->nl_net);
1069 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1070 						fn->rr_ptr = NULL;
1071 					rt6_release(iter);
1072 					nsiblings--;
1073 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1074 				} else {
1075 					ins = &iter->rt6_next;
1076 				}
1077 				iter = rcu_dereference_protected(*ins,
1078 					lockdep_is_held(&rt->rt6i_table->tb6_lock));
1079 			}
1080 			WARN_ON(nsiblings != 0);
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1088 {
1089 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1090 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1091 		mod_timer(&net->ipv6.ip6_fib_timer,
1092 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1093 }
1094 
1095 void fib6_force_start_gc(struct net *net)
1096 {
1097 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1098 		mod_timer(&net->ipv6.ip6_fib_timer,
1099 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1100 }
1101 
1102 static void __fib6_update_sernum_upto_root(struct rt6_info *rt,
1103 					   int sernum)
1104 {
1105 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1106 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1107 
1108 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1109 	smp_wmb();
1110 	while (fn) {
1111 		fn->fn_sernum = sernum;
1112 		fn = rcu_dereference_protected(fn->parent,
1113 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1114 	}
1115 }
1116 
1117 void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt)
1118 {
1119 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1120 }
1121 
1122 /*
1123  *	Add routing information to the routing tree.
1124  *	<destination addr>/<source addr>
1125  *	with source addr info in sub-trees
1126  *	Need to own table->tb6_lock
1127  */
1128 
1129 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1130 	     struct nl_info *info, struct mx6_config *mxc,
1131 	     struct netlink_ext_ack *extack)
1132 {
1133 	struct fib6_table *table = rt->rt6i_table;
1134 	struct fib6_node *fn, *pn = NULL;
1135 	int err = -ENOMEM;
1136 	int allow_create = 1;
1137 	int replace_required = 0;
1138 	int sernum = fib6_new_sernum(info->nl_net);
1139 
1140 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1141 		return -EINVAL;
1142 	if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1143 		return -EINVAL;
1144 
1145 	if (info->nlh) {
1146 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1147 			allow_create = 0;
1148 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1149 			replace_required = 1;
1150 	}
1151 	if (!allow_create && !replace_required)
1152 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1153 
1154 	fn = fib6_add_1(info->nl_net, table, root,
1155 			&rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1156 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1157 			replace_required, extack);
1158 	if (IS_ERR(fn)) {
1159 		err = PTR_ERR(fn);
1160 		fn = NULL;
1161 		goto out;
1162 	}
1163 
1164 	pn = fn;
1165 
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 	if (rt->rt6i_src.plen) {
1168 		struct fib6_node *sn;
1169 
1170 		if (!rcu_access_pointer(fn->subtree)) {
1171 			struct fib6_node *sfn;
1172 
1173 			/*
1174 			 * Create subtree.
1175 			 *
1176 			 *		fn[main tree]
1177 			 *		|
1178 			 *		sfn[subtree root]
1179 			 *		   \
1180 			 *		    sn[new leaf node]
1181 			 */
1182 
1183 			/* Create subtree root node */
1184 			sfn = node_alloc(info->nl_net);
1185 			if (!sfn)
1186 				goto failure;
1187 
1188 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1189 			rcu_assign_pointer(sfn->leaf,
1190 					   info->nl_net->ipv6.ip6_null_entry);
1191 			sfn->fn_flags = RTN_ROOT;
1192 
1193 			/* Now add the first leaf node to new subtree */
1194 
1195 			sn = fib6_add_1(info->nl_net, table, sfn,
1196 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1197 					offsetof(struct rt6_info, rt6i_src),
1198 					allow_create, replace_required, extack);
1199 
1200 			if (IS_ERR(sn)) {
1201 				/* If it is failed, discard just allocated
1202 				   root, and then (in failure) stale node
1203 				   in main tree.
1204 				 */
1205 				node_free_immediate(info->nl_net, sfn);
1206 				err = PTR_ERR(sn);
1207 				goto failure;
1208 			}
1209 
1210 			/* Now link new subtree to main tree */
1211 			rcu_assign_pointer(sfn->parent, fn);
1212 			rcu_assign_pointer(fn->subtree, sfn);
1213 		} else {
1214 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1215 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1216 					offsetof(struct rt6_info, rt6i_src),
1217 					allow_create, replace_required, extack);
1218 
1219 			if (IS_ERR(sn)) {
1220 				err = PTR_ERR(sn);
1221 				goto failure;
1222 			}
1223 		}
1224 
1225 		if (!rcu_access_pointer(fn->leaf)) {
1226 			if (fn->fn_flags & RTN_TL_ROOT) {
1227 				/* put back null_entry for root node */
1228 				rcu_assign_pointer(fn->leaf,
1229 					    info->nl_net->ipv6.ip6_null_entry);
1230 			} else {
1231 				atomic_inc(&rt->rt6i_ref);
1232 				rcu_assign_pointer(fn->leaf, rt);
1233 			}
1234 		}
1235 		fn = sn;
1236 	}
1237 #endif
1238 
1239 	err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1240 	if (!err) {
1241 		__fib6_update_sernum_upto_root(rt, sernum);
1242 		fib6_start_gc(info->nl_net, rt);
1243 	}
1244 
1245 out:
1246 	if (err) {
1247 #ifdef CONFIG_IPV6_SUBTREES
1248 		/*
1249 		 * If fib6_add_1 has cleared the old leaf pointer in the
1250 		 * super-tree leaf node we have to find a new one for it.
1251 		 */
1252 		if (pn != fn) {
1253 			struct rt6_info *pn_leaf =
1254 				rcu_dereference_protected(pn->leaf,
1255 				    lockdep_is_held(&table->tb6_lock));
1256 			if (pn_leaf == rt) {
1257 				pn_leaf = NULL;
1258 				RCU_INIT_POINTER(pn->leaf, NULL);
1259 				atomic_dec(&rt->rt6i_ref);
1260 			}
1261 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1262 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1263 							   pn);
1264 #if RT6_DEBUG >= 2
1265 				if (!pn_leaf) {
1266 					WARN_ON(!pn_leaf);
1267 					pn_leaf =
1268 					    info->nl_net->ipv6.ip6_null_entry;
1269 				}
1270 #endif
1271 				atomic_inc(&pn_leaf->rt6i_ref);
1272 				rcu_assign_pointer(pn->leaf, pn_leaf);
1273 			}
1274 		}
1275 #endif
1276 		goto failure;
1277 	}
1278 	return err;
1279 
1280 failure:
1281 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1282 	 * 1. fn is an intermediate node and we failed to add the new
1283 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1284 	 * failure case.
1285 	 * 2. fn is the root node in the table and we fail to add the first
1286 	 * default route to it.
1287 	 */
1288 	if (fn &&
1289 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1290 	     (fn->fn_flags & RTN_TL_ROOT &&
1291 	      !rcu_access_pointer(fn->leaf))))
1292 		fib6_repair_tree(info->nl_net, table, fn);
1293 	/* Always release dst as dst->__refcnt is guaranteed
1294 	 * to be taken before entering this function
1295 	 */
1296 	dst_release_immediate(&rt->dst);
1297 	return err;
1298 }
1299 
1300 /*
1301  *	Routing tree lookup
1302  *
1303  */
1304 
1305 struct lookup_args {
1306 	int			offset;		/* key offset on rt6_info	*/
1307 	const struct in6_addr	*addr;		/* search key			*/
1308 };
1309 
1310 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1311 				       struct lookup_args *args)
1312 {
1313 	struct fib6_node *fn;
1314 	__be32 dir;
1315 
1316 	if (unlikely(args->offset == 0))
1317 		return NULL;
1318 
1319 	/*
1320 	 *	Descend on a tree
1321 	 */
1322 
1323 	fn = root;
1324 
1325 	for (;;) {
1326 		struct fib6_node *next;
1327 
1328 		dir = addr_bit_set(args->addr, fn->fn_bit);
1329 
1330 		next = dir ? rcu_dereference(fn->right) :
1331 			     rcu_dereference(fn->left);
1332 
1333 		if (next) {
1334 			fn = next;
1335 			continue;
1336 		}
1337 		break;
1338 	}
1339 
1340 	while (fn) {
1341 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1342 
1343 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1344 			struct rt6_info *leaf = rcu_dereference(fn->leaf);
1345 			struct rt6key *key;
1346 
1347 			if (!leaf)
1348 				goto backtrack;
1349 
1350 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1351 
1352 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1353 #ifdef CONFIG_IPV6_SUBTREES
1354 				if (subtree) {
1355 					struct fib6_node *sfn;
1356 					sfn = fib6_lookup_1(subtree, args + 1);
1357 					if (!sfn)
1358 						goto backtrack;
1359 					fn = sfn;
1360 				}
1361 #endif
1362 				if (fn->fn_flags & RTN_RTINFO)
1363 					return fn;
1364 			}
1365 		}
1366 backtrack:
1367 		if (fn->fn_flags & RTN_ROOT)
1368 			break;
1369 
1370 		fn = rcu_dereference(fn->parent);
1371 	}
1372 
1373 	return NULL;
1374 }
1375 
1376 /* called with rcu_read_lock() held
1377  */
1378 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1379 			      const struct in6_addr *saddr)
1380 {
1381 	struct fib6_node *fn;
1382 	struct lookup_args args[] = {
1383 		{
1384 			.offset = offsetof(struct rt6_info, rt6i_dst),
1385 			.addr = daddr,
1386 		},
1387 #ifdef CONFIG_IPV6_SUBTREES
1388 		{
1389 			.offset = offsetof(struct rt6_info, rt6i_src),
1390 			.addr = saddr,
1391 		},
1392 #endif
1393 		{
1394 			.offset = 0,	/* sentinel */
1395 		}
1396 	};
1397 
1398 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1399 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1400 		fn = root;
1401 
1402 	return fn;
1403 }
1404 
1405 /*
1406  *	Get node with specified destination prefix (and source prefix,
1407  *	if subtrees are used)
1408  *	exact_match == true means we try to find fn with exact match of
1409  *	the passed in prefix addr
1410  *	exact_match == false means we try to find fn with longest prefix
1411  *	match of the passed in prefix addr. This is useful for finding fn
1412  *	for cached route as it will be stored in the exception table under
1413  *	the node with longest prefix length.
1414  */
1415 
1416 
1417 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1418 				       const struct in6_addr *addr,
1419 				       int plen, int offset,
1420 				       bool exact_match)
1421 {
1422 	struct fib6_node *fn, *prev = NULL;
1423 
1424 	for (fn = root; fn ; ) {
1425 		struct rt6_info *leaf = rcu_dereference(fn->leaf);
1426 		struct rt6key *key;
1427 
1428 		/* This node is being deleted */
1429 		if (!leaf) {
1430 			if (plen <= fn->fn_bit)
1431 				goto out;
1432 			else
1433 				goto next;
1434 		}
1435 
1436 		key = (struct rt6key *)((u8 *)leaf + offset);
1437 
1438 		/*
1439 		 *	Prefix match
1440 		 */
1441 		if (plen < fn->fn_bit ||
1442 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1443 			goto out;
1444 
1445 		if (plen == fn->fn_bit)
1446 			return fn;
1447 
1448 		prev = fn;
1449 
1450 next:
1451 		/*
1452 		 *	We have more bits to go
1453 		 */
1454 		if (addr_bit_set(addr, fn->fn_bit))
1455 			fn = rcu_dereference(fn->right);
1456 		else
1457 			fn = rcu_dereference(fn->left);
1458 	}
1459 out:
1460 	if (exact_match)
1461 		return NULL;
1462 	else
1463 		return prev;
1464 }
1465 
1466 struct fib6_node *fib6_locate(struct fib6_node *root,
1467 			      const struct in6_addr *daddr, int dst_len,
1468 			      const struct in6_addr *saddr, int src_len,
1469 			      bool exact_match)
1470 {
1471 	struct fib6_node *fn;
1472 
1473 	fn = fib6_locate_1(root, daddr, dst_len,
1474 			   offsetof(struct rt6_info, rt6i_dst),
1475 			   exact_match);
1476 
1477 #ifdef CONFIG_IPV6_SUBTREES
1478 	if (src_len) {
1479 		WARN_ON(saddr == NULL);
1480 		if (fn) {
1481 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1482 
1483 			if (subtree) {
1484 				fn = fib6_locate_1(subtree, saddr, src_len,
1485 					   offsetof(struct rt6_info, rt6i_src),
1486 					   exact_match);
1487 			}
1488 		}
1489 	}
1490 #endif
1491 
1492 	if (fn && fn->fn_flags & RTN_RTINFO)
1493 		return fn;
1494 
1495 	return NULL;
1496 }
1497 
1498 
1499 /*
1500  *	Deletion
1501  *
1502  */
1503 
1504 static struct rt6_info *fib6_find_prefix(struct net *net,
1505 					 struct fib6_table *table,
1506 					 struct fib6_node *fn)
1507 {
1508 	struct fib6_node *child_left, *child_right;
1509 
1510 	if (fn->fn_flags & RTN_ROOT)
1511 		return net->ipv6.ip6_null_entry;
1512 
1513 	while (fn) {
1514 		child_left = rcu_dereference_protected(fn->left,
1515 				    lockdep_is_held(&table->tb6_lock));
1516 		child_right = rcu_dereference_protected(fn->right,
1517 				    lockdep_is_held(&table->tb6_lock));
1518 		if (child_left)
1519 			return rcu_dereference_protected(child_left->leaf,
1520 					lockdep_is_held(&table->tb6_lock));
1521 		if (child_right)
1522 			return rcu_dereference_protected(child_right->leaf,
1523 					lockdep_is_held(&table->tb6_lock));
1524 
1525 		fn = FIB6_SUBTREE(fn);
1526 	}
1527 	return NULL;
1528 }
1529 
1530 /*
1531  *	Called to trim the tree of intermediate nodes when possible. "fn"
1532  *	is the node we want to try and remove.
1533  *	Need to own table->tb6_lock
1534  */
1535 
1536 static struct fib6_node *fib6_repair_tree(struct net *net,
1537 					  struct fib6_table *table,
1538 					  struct fib6_node *fn)
1539 {
1540 	int children;
1541 	int nstate;
1542 	struct fib6_node *child;
1543 	struct fib6_walker *w;
1544 	int iter = 0;
1545 
1546 	/* Set fn->leaf to null_entry for root node. */
1547 	if (fn->fn_flags & RTN_TL_ROOT) {
1548 		rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry);
1549 		return fn;
1550 	}
1551 
1552 	for (;;) {
1553 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1554 					    lockdep_is_held(&table->tb6_lock));
1555 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1556 					    lockdep_is_held(&table->tb6_lock));
1557 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1558 					    lockdep_is_held(&table->tb6_lock));
1559 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1560 					    lockdep_is_held(&table->tb6_lock));
1561 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1562 					    lockdep_is_held(&table->tb6_lock));
1563 		struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1564 					    lockdep_is_held(&table->tb6_lock));
1565 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1566 					    lockdep_is_held(&table->tb6_lock));
1567 		struct rt6_info *new_fn_leaf;
1568 
1569 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1570 		iter++;
1571 
1572 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1573 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1574 		WARN_ON(fn_leaf);
1575 
1576 		children = 0;
1577 		child = NULL;
1578 		if (fn_r)
1579 			child = fn_r, children |= 1;
1580 		if (fn_l)
1581 			child = fn_l, children |= 2;
1582 
1583 		if (children == 3 || FIB6_SUBTREE(fn)
1584 #ifdef CONFIG_IPV6_SUBTREES
1585 		    /* Subtree root (i.e. fn) may have one child */
1586 		    || (children && fn->fn_flags & RTN_ROOT)
1587 #endif
1588 		    ) {
1589 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1590 #if RT6_DEBUG >= 2
1591 			if (!new_fn_leaf) {
1592 				WARN_ON(!new_fn_leaf);
1593 				new_fn_leaf = net->ipv6.ip6_null_entry;
1594 			}
1595 #endif
1596 			atomic_inc(&new_fn_leaf->rt6i_ref);
1597 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1598 			return pn;
1599 		}
1600 
1601 #ifdef CONFIG_IPV6_SUBTREES
1602 		if (FIB6_SUBTREE(pn) == fn) {
1603 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1604 			RCU_INIT_POINTER(pn->subtree, NULL);
1605 			nstate = FWS_L;
1606 		} else {
1607 			WARN_ON(fn->fn_flags & RTN_ROOT);
1608 #endif
1609 			if (pn_r == fn)
1610 				rcu_assign_pointer(pn->right, child);
1611 			else if (pn_l == fn)
1612 				rcu_assign_pointer(pn->left, child);
1613 #if RT6_DEBUG >= 2
1614 			else
1615 				WARN_ON(1);
1616 #endif
1617 			if (child)
1618 				rcu_assign_pointer(child->parent, pn);
1619 			nstate = FWS_R;
1620 #ifdef CONFIG_IPV6_SUBTREES
1621 		}
1622 #endif
1623 
1624 		read_lock(&net->ipv6.fib6_walker_lock);
1625 		FOR_WALKERS(net, w) {
1626 			if (!child) {
1627 				if (w->node == fn) {
1628 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1629 					w->node = pn;
1630 					w->state = nstate;
1631 				}
1632 			} else {
1633 				if (w->node == fn) {
1634 					w->node = child;
1635 					if (children&2) {
1636 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1637 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1638 					} else {
1639 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1640 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1641 					}
1642 				}
1643 			}
1644 		}
1645 		read_unlock(&net->ipv6.fib6_walker_lock);
1646 
1647 		node_free(net, fn);
1648 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1649 			return pn;
1650 
1651 		RCU_INIT_POINTER(pn->leaf, NULL);
1652 		rt6_release(pn_leaf);
1653 		fn = pn;
1654 	}
1655 }
1656 
1657 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1658 			   struct rt6_info __rcu **rtp, struct nl_info *info)
1659 {
1660 	struct fib6_walker *w;
1661 	struct rt6_info *rt = rcu_dereference_protected(*rtp,
1662 				    lockdep_is_held(&table->tb6_lock));
1663 	struct net *net = info->nl_net;
1664 
1665 	RT6_TRACE("fib6_del_route\n");
1666 
1667 	WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1668 
1669 	/* Unlink it */
1670 	*rtp = rt->rt6_next;
1671 	rt->rt6i_node = NULL;
1672 	net->ipv6.rt6_stats->fib_rt_entries--;
1673 	net->ipv6.rt6_stats->fib_discarded_routes++;
1674 
1675 	/* Flush all cached dst in exception table */
1676 	rt6_flush_exceptions(rt);
1677 
1678 	/* Reset round-robin state, if necessary */
1679 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1680 		fn->rr_ptr = NULL;
1681 
1682 	/* Remove this entry from other siblings */
1683 	if (rt->rt6i_nsiblings) {
1684 		struct rt6_info *sibling, *next_sibling;
1685 
1686 		list_for_each_entry_safe(sibling, next_sibling,
1687 					 &rt->rt6i_siblings, rt6i_siblings)
1688 			sibling->rt6i_nsiblings--;
1689 		rt->rt6i_nsiblings = 0;
1690 		list_del_init(&rt->rt6i_siblings);
1691 		rt6_multipath_rebalance(next_sibling);
1692 	}
1693 
1694 	/* Adjust walkers */
1695 	read_lock(&net->ipv6.fib6_walker_lock);
1696 	FOR_WALKERS(net, w) {
1697 		if (w->state == FWS_C && w->leaf == rt) {
1698 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1699 			w->leaf = rcu_dereference_protected(rt->rt6_next,
1700 					    lockdep_is_held(&table->tb6_lock));
1701 			if (!w->leaf)
1702 				w->state = FWS_U;
1703 		}
1704 	}
1705 	read_unlock(&net->ipv6.fib6_walker_lock);
1706 
1707 	/* If it was last route, call fib6_repair_tree() to:
1708 	 * 1. For root node, put back null_entry as how the table was created.
1709 	 * 2. For other nodes, expunge its radix tree node.
1710 	 */
1711 	if (!rcu_access_pointer(fn->leaf)) {
1712 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1713 			fn->fn_flags &= ~RTN_RTINFO;
1714 			net->ipv6.rt6_stats->fib_route_nodes--;
1715 		}
1716 		fn = fib6_repair_tree(net, table, fn);
1717 	}
1718 
1719 	fib6_purge_rt(rt, fn, net);
1720 
1721 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1722 	if (!info->skip_notify)
1723 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1724 	rt6_release(rt);
1725 }
1726 
1727 /* Need to own table->tb6_lock */
1728 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1729 {
1730 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1731 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1732 	struct fib6_table *table = rt->rt6i_table;
1733 	struct net *net = info->nl_net;
1734 	struct rt6_info __rcu **rtp;
1735 	struct rt6_info __rcu **rtp_next;
1736 
1737 #if RT6_DEBUG >= 2
1738 	if (rt->dst.obsolete > 0) {
1739 		WARN_ON(fn);
1740 		return -ENOENT;
1741 	}
1742 #endif
1743 	if (!fn || rt == net->ipv6.ip6_null_entry)
1744 		return -ENOENT;
1745 
1746 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1747 
1748 	/* remove cached dst from exception table */
1749 	if (rt->rt6i_flags & RTF_CACHE)
1750 		return rt6_remove_exception_rt(rt);
1751 
1752 	/*
1753 	 *	Walk the leaf entries looking for ourself
1754 	 */
1755 
1756 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1757 		struct rt6_info *cur = rcu_dereference_protected(*rtp,
1758 					lockdep_is_held(&table->tb6_lock));
1759 		if (rt == cur) {
1760 			fib6_del_route(table, fn, rtp, info);
1761 			return 0;
1762 		}
1763 		rtp_next = &cur->rt6_next;
1764 	}
1765 	return -ENOENT;
1766 }
1767 
1768 /*
1769  *	Tree traversal function.
1770  *
1771  *	Certainly, it is not interrupt safe.
1772  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1773  *	It means, that we can modify tree during walking
1774  *	and use this function for garbage collection, clone pruning,
1775  *	cleaning tree when a device goes down etc. etc.
1776  *
1777  *	It guarantees that every node will be traversed,
1778  *	and that it will be traversed only once.
1779  *
1780  *	Callback function w->func may return:
1781  *	0 -> continue walking.
1782  *	positive value -> walking is suspended (used by tree dumps,
1783  *	and probably by gc, if it will be split to several slices)
1784  *	negative value -> terminate walking.
1785  *
1786  *	The function itself returns:
1787  *	0   -> walk is complete.
1788  *	>0  -> walk is incomplete (i.e. suspended)
1789  *	<0  -> walk is terminated by an error.
1790  *
1791  *	This function is called with tb6_lock held.
1792  */
1793 
1794 static int fib6_walk_continue(struct fib6_walker *w)
1795 {
1796 	struct fib6_node *fn, *pn, *left, *right;
1797 
1798 	/* w->root should always be table->tb6_root */
1799 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1800 
1801 	for (;;) {
1802 		fn = w->node;
1803 		if (!fn)
1804 			return 0;
1805 
1806 		switch (w->state) {
1807 #ifdef CONFIG_IPV6_SUBTREES
1808 		case FWS_S:
1809 			if (FIB6_SUBTREE(fn)) {
1810 				w->node = FIB6_SUBTREE(fn);
1811 				continue;
1812 			}
1813 			w->state = FWS_L;
1814 #endif
1815 			/* fall through */
1816 		case FWS_L:
1817 			left = rcu_dereference_protected(fn->left, 1);
1818 			if (left) {
1819 				w->node = left;
1820 				w->state = FWS_INIT;
1821 				continue;
1822 			}
1823 			w->state = FWS_R;
1824 			/* fall through */
1825 		case FWS_R:
1826 			right = rcu_dereference_protected(fn->right, 1);
1827 			if (right) {
1828 				w->node = right;
1829 				w->state = FWS_INIT;
1830 				continue;
1831 			}
1832 			w->state = FWS_C;
1833 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1834 			/* fall through */
1835 		case FWS_C:
1836 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1837 				int err;
1838 
1839 				if (w->skip) {
1840 					w->skip--;
1841 					goto skip;
1842 				}
1843 
1844 				err = w->func(w);
1845 				if (err)
1846 					return err;
1847 
1848 				w->count++;
1849 				continue;
1850 			}
1851 skip:
1852 			w->state = FWS_U;
1853 			/* fall through */
1854 		case FWS_U:
1855 			if (fn == w->root)
1856 				return 0;
1857 			pn = rcu_dereference_protected(fn->parent, 1);
1858 			left = rcu_dereference_protected(pn->left, 1);
1859 			right = rcu_dereference_protected(pn->right, 1);
1860 			w->node = pn;
1861 #ifdef CONFIG_IPV6_SUBTREES
1862 			if (FIB6_SUBTREE(pn) == fn) {
1863 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1864 				w->state = FWS_L;
1865 				continue;
1866 			}
1867 #endif
1868 			if (left == fn) {
1869 				w->state = FWS_R;
1870 				continue;
1871 			}
1872 			if (right == fn) {
1873 				w->state = FWS_C;
1874 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1875 				continue;
1876 			}
1877 #if RT6_DEBUG >= 2
1878 			WARN_ON(1);
1879 #endif
1880 		}
1881 	}
1882 }
1883 
1884 static int fib6_walk(struct net *net, struct fib6_walker *w)
1885 {
1886 	int res;
1887 
1888 	w->state = FWS_INIT;
1889 	w->node = w->root;
1890 
1891 	fib6_walker_link(net, w);
1892 	res = fib6_walk_continue(w);
1893 	if (res <= 0)
1894 		fib6_walker_unlink(net, w);
1895 	return res;
1896 }
1897 
1898 static int fib6_clean_node(struct fib6_walker *w)
1899 {
1900 	int res;
1901 	struct rt6_info *rt;
1902 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1903 	struct nl_info info = {
1904 		.nl_net = c->net,
1905 	};
1906 
1907 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1908 	    w->node->fn_sernum != c->sernum)
1909 		w->node->fn_sernum = c->sernum;
1910 
1911 	if (!c->func) {
1912 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1913 		w->leaf = NULL;
1914 		return 0;
1915 	}
1916 
1917 	for_each_fib6_walker_rt(w) {
1918 		res = c->func(rt, c->arg);
1919 		if (res == -1) {
1920 			w->leaf = rt;
1921 			res = fib6_del(rt, &info);
1922 			if (res) {
1923 #if RT6_DEBUG >= 2
1924 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1925 					 __func__, rt,
1926 					 rcu_access_pointer(rt->rt6i_node),
1927 					 res);
1928 #endif
1929 				continue;
1930 			}
1931 			return 0;
1932 		} else if (res == -2) {
1933 			if (WARN_ON(!rt->rt6i_nsiblings))
1934 				continue;
1935 			rt = list_last_entry(&rt->rt6i_siblings,
1936 					     struct rt6_info, rt6i_siblings);
1937 			continue;
1938 		}
1939 		WARN_ON(res != 0);
1940 	}
1941 	w->leaf = rt;
1942 	return 0;
1943 }
1944 
1945 /*
1946  *	Convenient frontend to tree walker.
1947  *
1948  *	func is called on each route.
1949  *		It may return -2 -> skip multipath route.
1950  *			      -1 -> delete this route.
1951  *		              0  -> continue walking
1952  */
1953 
1954 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1955 			    int (*func)(struct rt6_info *, void *arg),
1956 			    int sernum, void *arg)
1957 {
1958 	struct fib6_cleaner c;
1959 
1960 	c.w.root = root;
1961 	c.w.func = fib6_clean_node;
1962 	c.w.count = 0;
1963 	c.w.skip = 0;
1964 	c.func = func;
1965 	c.sernum = sernum;
1966 	c.arg = arg;
1967 	c.net = net;
1968 
1969 	fib6_walk(net, &c.w);
1970 }
1971 
1972 static void __fib6_clean_all(struct net *net,
1973 			     int (*func)(struct rt6_info *, void *),
1974 			     int sernum, void *arg)
1975 {
1976 	struct fib6_table *table;
1977 	struct hlist_head *head;
1978 	unsigned int h;
1979 
1980 	rcu_read_lock();
1981 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1982 		head = &net->ipv6.fib_table_hash[h];
1983 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1984 			spin_lock_bh(&table->tb6_lock);
1985 			fib6_clean_tree(net, &table->tb6_root,
1986 					func, sernum, arg);
1987 			spin_unlock_bh(&table->tb6_lock);
1988 		}
1989 	}
1990 	rcu_read_unlock();
1991 }
1992 
1993 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1994 		    void *arg)
1995 {
1996 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1997 }
1998 
1999 static void fib6_flush_trees(struct net *net)
2000 {
2001 	int new_sernum = fib6_new_sernum(net);
2002 
2003 	__fib6_clean_all(net, NULL, new_sernum, NULL);
2004 }
2005 
2006 /*
2007  *	Garbage collection
2008  */
2009 
2010 static int fib6_age(struct rt6_info *rt, void *arg)
2011 {
2012 	struct fib6_gc_args *gc_args = arg;
2013 	unsigned long now = jiffies;
2014 
2015 	/*
2016 	 *	check addrconf expiration here.
2017 	 *	Routes are expired even if they are in use.
2018 	 */
2019 
2020 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
2021 		if (time_after(now, rt->dst.expires)) {
2022 			RT6_TRACE("expiring %p\n", rt);
2023 			return -1;
2024 		}
2025 		gc_args->more++;
2026 	}
2027 
2028 	/*	Also age clones in the exception table.
2029 	 *	Note, that clones are aged out
2030 	 *	only if they are not in use now.
2031 	 */
2032 	rt6_age_exceptions(rt, gc_args, now);
2033 
2034 	return 0;
2035 }
2036 
2037 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2038 {
2039 	struct fib6_gc_args gc_args;
2040 	unsigned long now;
2041 
2042 	if (force) {
2043 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2044 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2045 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2046 		return;
2047 	}
2048 	gc_args.timeout = expires ? (int)expires :
2049 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2050 	gc_args.more = 0;
2051 
2052 	fib6_clean_all(net, fib6_age, &gc_args);
2053 	now = jiffies;
2054 	net->ipv6.ip6_rt_last_gc = now;
2055 
2056 	if (gc_args.more)
2057 		mod_timer(&net->ipv6.ip6_fib_timer,
2058 			  round_jiffies(now
2059 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2060 	else
2061 		del_timer(&net->ipv6.ip6_fib_timer);
2062 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2063 }
2064 
2065 static void fib6_gc_timer_cb(struct timer_list *t)
2066 {
2067 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2068 
2069 	fib6_run_gc(0, arg, true);
2070 }
2071 
2072 static int __net_init fib6_net_init(struct net *net)
2073 {
2074 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2075 	int err;
2076 
2077 	err = fib6_notifier_init(net);
2078 	if (err)
2079 		return err;
2080 
2081 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2082 	rwlock_init(&net->ipv6.fib6_walker_lock);
2083 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2084 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2085 
2086 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2087 	if (!net->ipv6.rt6_stats)
2088 		goto out_timer;
2089 
2090 	/* Avoid false sharing : Use at least a full cache line */
2091 	size = max_t(size_t, size, L1_CACHE_BYTES);
2092 
2093 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2094 	if (!net->ipv6.fib_table_hash)
2095 		goto out_rt6_stats;
2096 
2097 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2098 					  GFP_KERNEL);
2099 	if (!net->ipv6.fib6_main_tbl)
2100 		goto out_fib_table_hash;
2101 
2102 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2103 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2104 			   net->ipv6.ip6_null_entry);
2105 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2106 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2107 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2108 
2109 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2110 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2111 					   GFP_KERNEL);
2112 	if (!net->ipv6.fib6_local_tbl)
2113 		goto out_fib6_main_tbl;
2114 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2115 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2116 			   net->ipv6.ip6_null_entry);
2117 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2118 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2119 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2120 #endif
2121 	fib6_tables_init(net);
2122 
2123 	return 0;
2124 
2125 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2126 out_fib6_main_tbl:
2127 	kfree(net->ipv6.fib6_main_tbl);
2128 #endif
2129 out_fib_table_hash:
2130 	kfree(net->ipv6.fib_table_hash);
2131 out_rt6_stats:
2132 	kfree(net->ipv6.rt6_stats);
2133 out_timer:
2134 	fib6_notifier_exit(net);
2135 	return -ENOMEM;
2136 }
2137 
2138 static void fib6_net_exit(struct net *net)
2139 {
2140 	unsigned int i;
2141 
2142 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2143 
2144 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2145 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2146 		struct hlist_node *tmp;
2147 		struct fib6_table *tb;
2148 
2149 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2150 			hlist_del(&tb->tb6_hlist);
2151 			fib6_free_table(tb);
2152 		}
2153 	}
2154 
2155 	kfree(net->ipv6.fib_table_hash);
2156 	kfree(net->ipv6.rt6_stats);
2157 	fib6_notifier_exit(net);
2158 }
2159 
2160 static struct pernet_operations fib6_net_ops = {
2161 	.init = fib6_net_init,
2162 	.exit = fib6_net_exit,
2163 };
2164 
2165 int __init fib6_init(void)
2166 {
2167 	int ret = -ENOMEM;
2168 
2169 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2170 					   sizeof(struct fib6_node),
2171 					   0, SLAB_HWCACHE_ALIGN,
2172 					   NULL);
2173 	if (!fib6_node_kmem)
2174 		goto out;
2175 
2176 	ret = register_pernet_subsys(&fib6_net_ops);
2177 	if (ret)
2178 		goto out_kmem_cache_create;
2179 
2180 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2181 				   inet6_dump_fib, 0);
2182 	if (ret)
2183 		goto out_unregister_subsys;
2184 
2185 	__fib6_flush_trees = fib6_flush_trees;
2186 out:
2187 	return ret;
2188 
2189 out_unregister_subsys:
2190 	unregister_pernet_subsys(&fib6_net_ops);
2191 out_kmem_cache_create:
2192 	kmem_cache_destroy(fib6_node_kmem);
2193 	goto out;
2194 }
2195 
2196 void fib6_gc_cleanup(void)
2197 {
2198 	unregister_pernet_subsys(&fib6_net_ops);
2199 	kmem_cache_destroy(fib6_node_kmem);
2200 }
2201 
2202 #ifdef CONFIG_PROC_FS
2203 
2204 struct ipv6_route_iter {
2205 	struct seq_net_private p;
2206 	struct fib6_walker w;
2207 	loff_t skip;
2208 	struct fib6_table *tbl;
2209 	int sernum;
2210 };
2211 
2212 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2213 {
2214 	struct rt6_info *rt = v;
2215 	struct ipv6_route_iter *iter = seq->private;
2216 
2217 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2218 
2219 #ifdef CONFIG_IPV6_SUBTREES
2220 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2221 #else
2222 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2223 #endif
2224 	if (rt->rt6i_flags & RTF_GATEWAY)
2225 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2226 	else
2227 		seq_puts(seq, "00000000000000000000000000000000");
2228 
2229 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2230 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2231 		   rt->dst.__use, rt->rt6i_flags,
2232 		   rt->dst.dev ? rt->dst.dev->name : "");
2233 	iter->w.leaf = NULL;
2234 	return 0;
2235 }
2236 
2237 static int ipv6_route_yield(struct fib6_walker *w)
2238 {
2239 	struct ipv6_route_iter *iter = w->args;
2240 
2241 	if (!iter->skip)
2242 		return 1;
2243 
2244 	do {
2245 		iter->w.leaf = rcu_dereference_protected(
2246 				iter->w.leaf->rt6_next,
2247 				lockdep_is_held(&iter->tbl->tb6_lock));
2248 		iter->skip--;
2249 		if (!iter->skip && iter->w.leaf)
2250 			return 1;
2251 	} while (iter->w.leaf);
2252 
2253 	return 0;
2254 }
2255 
2256 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2257 				      struct net *net)
2258 {
2259 	memset(&iter->w, 0, sizeof(iter->w));
2260 	iter->w.func = ipv6_route_yield;
2261 	iter->w.root = &iter->tbl->tb6_root;
2262 	iter->w.state = FWS_INIT;
2263 	iter->w.node = iter->w.root;
2264 	iter->w.args = iter;
2265 	iter->sernum = iter->w.root->fn_sernum;
2266 	INIT_LIST_HEAD(&iter->w.lh);
2267 	fib6_walker_link(net, &iter->w);
2268 }
2269 
2270 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2271 						    struct net *net)
2272 {
2273 	unsigned int h;
2274 	struct hlist_node *node;
2275 
2276 	if (tbl) {
2277 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2278 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2279 	} else {
2280 		h = 0;
2281 		node = NULL;
2282 	}
2283 
2284 	while (!node && h < FIB6_TABLE_HASHSZ) {
2285 		node = rcu_dereference_bh(
2286 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2287 	}
2288 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2289 }
2290 
2291 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2292 {
2293 	if (iter->sernum != iter->w.root->fn_sernum) {
2294 		iter->sernum = iter->w.root->fn_sernum;
2295 		iter->w.state = FWS_INIT;
2296 		iter->w.node = iter->w.root;
2297 		WARN_ON(iter->w.skip);
2298 		iter->w.skip = iter->w.count;
2299 	}
2300 }
2301 
2302 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2303 {
2304 	int r;
2305 	struct rt6_info *n;
2306 	struct net *net = seq_file_net(seq);
2307 	struct ipv6_route_iter *iter = seq->private;
2308 
2309 	if (!v)
2310 		goto iter_table;
2311 
2312 	n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next);
2313 	if (n) {
2314 		++*pos;
2315 		return n;
2316 	}
2317 
2318 iter_table:
2319 	ipv6_route_check_sernum(iter);
2320 	spin_lock_bh(&iter->tbl->tb6_lock);
2321 	r = fib6_walk_continue(&iter->w);
2322 	spin_unlock_bh(&iter->tbl->tb6_lock);
2323 	if (r > 0) {
2324 		if (v)
2325 			++*pos;
2326 		return iter->w.leaf;
2327 	} else if (r < 0) {
2328 		fib6_walker_unlink(net, &iter->w);
2329 		return NULL;
2330 	}
2331 	fib6_walker_unlink(net, &iter->w);
2332 
2333 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2334 	if (!iter->tbl)
2335 		return NULL;
2336 
2337 	ipv6_route_seq_setup_walk(iter, net);
2338 	goto iter_table;
2339 }
2340 
2341 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2342 	__acquires(RCU_BH)
2343 {
2344 	struct net *net = seq_file_net(seq);
2345 	struct ipv6_route_iter *iter = seq->private;
2346 
2347 	rcu_read_lock_bh();
2348 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2349 	iter->skip = *pos;
2350 
2351 	if (iter->tbl) {
2352 		ipv6_route_seq_setup_walk(iter, net);
2353 		return ipv6_route_seq_next(seq, NULL, pos);
2354 	} else {
2355 		return NULL;
2356 	}
2357 }
2358 
2359 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2360 {
2361 	struct fib6_walker *w = &iter->w;
2362 	return w->node && !(w->state == FWS_U && w->node == w->root);
2363 }
2364 
2365 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2366 	__releases(RCU_BH)
2367 {
2368 	struct net *net = seq_file_net(seq);
2369 	struct ipv6_route_iter *iter = seq->private;
2370 
2371 	if (ipv6_route_iter_active(iter))
2372 		fib6_walker_unlink(net, &iter->w);
2373 
2374 	rcu_read_unlock_bh();
2375 }
2376 
2377 static const struct seq_operations ipv6_route_seq_ops = {
2378 	.start	= ipv6_route_seq_start,
2379 	.next	= ipv6_route_seq_next,
2380 	.stop	= ipv6_route_seq_stop,
2381 	.show	= ipv6_route_seq_show
2382 };
2383 
2384 int ipv6_route_open(struct inode *inode, struct file *file)
2385 {
2386 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2387 			    sizeof(struct ipv6_route_iter));
2388 }
2389 
2390 #endif /* CONFIG_PROC_FS */
2391