xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 6ee73861)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 
30 #ifdef 	CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50 
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 	FWS_S,
55 #endif
56 	FWS_L,
57 	FWS_R,
58 	FWS_C,
59 	FWS_U
60 };
61 
62 struct fib6_cleaner_t
63 {
64 	struct fib6_walker_t w;
65 	struct net *net;
66 	int (*func)(struct rt6_info *, void *arg);
67 	void *arg;
68 };
69 
70 static DEFINE_RWLOCK(fib6_walker_lock);
71 
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77 
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 			      struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static void fib6_gc_timer_cb(unsigned long arg);
95 
96 static struct fib6_walker_t fib6_walker_list = {
97 	.prev	= &fib6_walker_list,
98 	.next	= &fib6_walker_list,
99 };
100 
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102 
103 static inline void fib6_walker_link(struct fib6_walker_t *w)
104 {
105 	write_lock_bh(&fib6_walker_lock);
106 	w->next = fib6_walker_list.next;
107 	w->prev = &fib6_walker_list;
108 	w->next->prev = w;
109 	w->prev->next = w;
110 	write_unlock_bh(&fib6_walker_lock);
111 }
112 
113 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
114 {
115 	write_lock_bh(&fib6_walker_lock);
116 	w->next->prev = w->prev;
117 	w->prev->next = w->next;
118 	w->prev = w->next = w;
119 	write_unlock_bh(&fib6_walker_lock);
120 }
121 static __inline__ u32 fib6_new_sernum(void)
122 {
123 	u32 n = ++rt_sernum;
124 	if ((__s32)n <= 0)
125 		rt_sernum = n = 1;
126 	return n;
127 }
128 
129 /*
130  *	Auxiliary address test functions for the radix tree.
131  *
132  *	These assume a 32bit processor (although it will work on
133  *	64bit processors)
134  */
135 
136 /*
137  *	test bit
138  */
139 
140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
141 {
142 	__be32 *addr = token;
143 
144 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
145 }
146 
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 	struct fib6_node *fn;
150 
151 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 
153 	return fn;
154 }
155 
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 	kmem_cache_free(fib6_node_kmem, fn);
159 }
160 
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 	if (atomic_dec_and_test(&rt->rt6i_ref))
164 		dst_free(&rt->u.dst);
165 }
166 
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169 	unsigned int h;
170 
171 	/*
172 	 * Initialize table lock at a single place to give lockdep a key,
173 	 * tables aren't visible prior to being linked to the list.
174 	 */
175 	rwlock_init(&tb->tb6_lock);
176 
177 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178 
179 	/*
180 	 * No protection necessary, this is the only list mutatation
181 	 * operation, tables never disappear once they exist.
182 	 */
183 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185 
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187 
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190 	struct fib6_table *table;
191 
192 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
193 	if (table != NULL) {
194 		table->tb6_id = id;
195 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197 	}
198 
199 	return table;
200 }
201 
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204 	struct fib6_table *tb;
205 
206 	if (id == 0)
207 		id = RT6_TABLE_MAIN;
208 	tb = fib6_get_table(net, id);
209 	if (tb)
210 		return tb;
211 
212 	tb = fib6_alloc_table(net, id);
213 	if (tb != NULL)
214 		fib6_link_table(net, tb);
215 
216 	return tb;
217 }
218 
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221 	struct fib6_table *tb;
222 	struct hlist_head *head;
223 	struct hlist_node *node;
224 	unsigned int h;
225 
226 	if (id == 0)
227 		id = RT6_TABLE_MAIN;
228 	h = id & (FIB6_TABLE_HASHSZ - 1);
229 	rcu_read_lock();
230 	head = &net->ipv6.fib_table_hash[h];
231 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232 		if (tb->tb6_id == id) {
233 			rcu_read_unlock();
234 			return tb;
235 		}
236 	}
237 	rcu_read_unlock();
238 
239 	return NULL;
240 }
241 
242 static void fib6_tables_init(struct net *net)
243 {
244 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
245 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248 
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251 	return fib6_get_table(net, id);
252 }
253 
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256 	  return net->ipv6.fib6_main_tbl;
257 }
258 
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
260 				   int flags, pol_lookup_t lookup)
261 {
262 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
263 }
264 
265 static void fib6_tables_init(struct net *net)
266 {
267 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269 
270 #endif
271 
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274 	int res;
275 	struct rt6_info *rt;
276 
277 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
278 		res = rt6_dump_route(rt, w->args);
279 		if (res < 0) {
280 			/* Frame is full, suspend walking */
281 			w->leaf = rt;
282 			return 1;
283 		}
284 		WARN_ON(res == 0);
285 	}
286 	w->leaf = NULL;
287 	return 0;
288 }
289 
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292 	struct fib6_walker_t *w = (void*)cb->args[2];
293 
294 	if (w) {
295 		if (cb->args[4]) {
296 			cb->args[4] = 0;
297 			fib6_walker_unlink(w);
298 		}
299 		cb->args[2] = 0;
300 		kfree(w);
301 	}
302 	cb->done = (void*)cb->args[3];
303 	cb->args[1] = 3;
304 }
305 
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308 	fib6_dump_end(cb);
309 	return cb->done ? cb->done(cb) : 0;
310 }
311 
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313 			   struct netlink_callback *cb)
314 {
315 	struct fib6_walker_t *w;
316 	int res;
317 
318 	w = (void *)cb->args[2];
319 	w->root = &table->tb6_root;
320 
321 	if (cb->args[4] == 0) {
322 		read_lock_bh(&table->tb6_lock);
323 		res = fib6_walk(w);
324 		read_unlock_bh(&table->tb6_lock);
325 		if (res > 0)
326 			cb->args[4] = 1;
327 	} else {
328 		read_lock_bh(&table->tb6_lock);
329 		res = fib6_walk_continue(w);
330 		read_unlock_bh(&table->tb6_lock);
331 		if (res <= 0) {
332 			fib6_walker_unlink(w);
333 			cb->args[4] = 0;
334 		}
335 	}
336 
337 	return res;
338 }
339 
340 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
341 {
342 	struct net *net = sock_net(skb->sk);
343 	unsigned int h, s_h;
344 	unsigned int e = 0, s_e;
345 	struct rt6_rtnl_dump_arg arg;
346 	struct fib6_walker_t *w;
347 	struct fib6_table *tb;
348 	struct hlist_node *node;
349 	struct hlist_head *head;
350 	int res = 0;
351 
352 	s_h = cb->args[0];
353 	s_e = cb->args[1];
354 
355 	w = (void *)cb->args[2];
356 	if (w == NULL) {
357 		/* New dump:
358 		 *
359 		 * 1. hook callback destructor.
360 		 */
361 		cb->args[3] = (long)cb->done;
362 		cb->done = fib6_dump_done;
363 
364 		/*
365 		 * 2. allocate and initialize walker.
366 		 */
367 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
368 		if (w == NULL)
369 			return -ENOMEM;
370 		w->func = fib6_dump_node;
371 		cb->args[2] = (long)w;
372 	}
373 
374 	arg.skb = skb;
375 	arg.cb = cb;
376 	arg.net = net;
377 	w->args = &arg;
378 
379 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
380 		e = 0;
381 		head = &net->ipv6.fib_table_hash[h];
382 		hlist_for_each_entry(tb, node, head, tb6_hlist) {
383 			if (e < s_e)
384 				goto next;
385 			res = fib6_dump_table(tb, skb, cb);
386 			if (res != 0)
387 				goto out;
388 next:
389 			e++;
390 		}
391 	}
392 out:
393 	cb->args[1] = e;
394 	cb->args[0] = h;
395 
396 	res = res < 0 ? res : skb->len;
397 	if (res <= 0)
398 		fib6_dump_end(cb);
399 	return res;
400 }
401 
402 /*
403  *	Routing Table
404  *
405  *	return the appropriate node for a routing tree "add" operation
406  *	by either creating and inserting or by returning an existing
407  *	node.
408  */
409 
410 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
411 				     int addrlen, int plen,
412 				     int offset)
413 {
414 	struct fib6_node *fn, *in, *ln;
415 	struct fib6_node *pn = NULL;
416 	struct rt6key *key;
417 	int	bit;
418 	__be32	dir = 0;
419 	__u32	sernum = fib6_new_sernum();
420 
421 	RT6_TRACE("fib6_add_1\n");
422 
423 	/* insert node in tree */
424 
425 	fn = root;
426 
427 	do {
428 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
429 
430 		/*
431 		 *	Prefix match
432 		 */
433 		if (plen < fn->fn_bit ||
434 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
435 			goto insert_above;
436 
437 		/*
438 		 *	Exact match ?
439 		 */
440 
441 		if (plen == fn->fn_bit) {
442 			/* clean up an intermediate node */
443 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
444 				rt6_release(fn->leaf);
445 				fn->leaf = NULL;
446 			}
447 
448 			fn->fn_sernum = sernum;
449 
450 			return fn;
451 		}
452 
453 		/*
454 		 *	We have more bits to go
455 		 */
456 
457 		/* Try to walk down on tree. */
458 		fn->fn_sernum = sernum;
459 		dir = addr_bit_set(addr, fn->fn_bit);
460 		pn = fn;
461 		fn = dir ? fn->right: fn->left;
462 	} while (fn);
463 
464 	/*
465 	 *	We walked to the bottom of tree.
466 	 *	Create new leaf node without children.
467 	 */
468 
469 	ln = node_alloc();
470 
471 	if (ln == NULL)
472 		return NULL;
473 	ln->fn_bit = plen;
474 
475 	ln->parent = pn;
476 	ln->fn_sernum = sernum;
477 
478 	if (dir)
479 		pn->right = ln;
480 	else
481 		pn->left  = ln;
482 
483 	return ln;
484 
485 
486 insert_above:
487 	/*
488 	 * split since we don't have a common prefix anymore or
489 	 * we have a less significant route.
490 	 * we've to insert an intermediate node on the list
491 	 * this new node will point to the one we need to create
492 	 * and the current
493 	 */
494 
495 	pn = fn->parent;
496 
497 	/* find 1st bit in difference between the 2 addrs.
498 
499 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
500 	   but if it is >= plen, the value is ignored in any case.
501 	 */
502 
503 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
504 
505 	/*
506 	 *		(intermediate)[in]
507 	 *	          /	   \
508 	 *	(new leaf node)[ln] (old node)[fn]
509 	 */
510 	if (plen > bit) {
511 		in = node_alloc();
512 		ln = node_alloc();
513 
514 		if (in == NULL || ln == NULL) {
515 			if (in)
516 				node_free(in);
517 			if (ln)
518 				node_free(ln);
519 			return NULL;
520 		}
521 
522 		/*
523 		 * new intermediate node.
524 		 * RTN_RTINFO will
525 		 * be off since that an address that chooses one of
526 		 * the branches would not match less specific routes
527 		 * in the other branch
528 		 */
529 
530 		in->fn_bit = bit;
531 
532 		in->parent = pn;
533 		in->leaf = fn->leaf;
534 		atomic_inc(&in->leaf->rt6i_ref);
535 
536 		in->fn_sernum = sernum;
537 
538 		/* update parent pointer */
539 		if (dir)
540 			pn->right = in;
541 		else
542 			pn->left  = in;
543 
544 		ln->fn_bit = plen;
545 
546 		ln->parent = in;
547 		fn->parent = in;
548 
549 		ln->fn_sernum = sernum;
550 
551 		if (addr_bit_set(addr, bit)) {
552 			in->right = ln;
553 			in->left  = fn;
554 		} else {
555 			in->left  = ln;
556 			in->right = fn;
557 		}
558 	} else { /* plen <= bit */
559 
560 		/*
561 		 *		(new leaf node)[ln]
562 		 *	          /	   \
563 		 *	     (old node)[fn] NULL
564 		 */
565 
566 		ln = node_alloc();
567 
568 		if (ln == NULL)
569 			return NULL;
570 
571 		ln->fn_bit = plen;
572 
573 		ln->parent = pn;
574 
575 		ln->fn_sernum = sernum;
576 
577 		if (dir)
578 			pn->right = ln;
579 		else
580 			pn->left  = ln;
581 
582 		if (addr_bit_set(&key->addr, plen))
583 			ln->right = fn;
584 		else
585 			ln->left  = fn;
586 
587 		fn->parent = ln;
588 	}
589 	return ln;
590 }
591 
592 /*
593  *	Insert routing information in a node.
594  */
595 
596 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
597 			    struct nl_info *info)
598 {
599 	struct rt6_info *iter = NULL;
600 	struct rt6_info **ins;
601 
602 	ins = &fn->leaf;
603 
604 	for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
605 		/*
606 		 *	Search for duplicates
607 		 */
608 
609 		if (iter->rt6i_metric == rt->rt6i_metric) {
610 			/*
611 			 *	Same priority level
612 			 */
613 
614 			if (iter->rt6i_dev == rt->rt6i_dev &&
615 			    iter->rt6i_idev == rt->rt6i_idev &&
616 			    ipv6_addr_equal(&iter->rt6i_gateway,
617 					    &rt->rt6i_gateway)) {
618 				if (!(iter->rt6i_flags&RTF_EXPIRES))
619 					return -EEXIST;
620 				iter->rt6i_expires = rt->rt6i_expires;
621 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
622 					iter->rt6i_flags &= ~RTF_EXPIRES;
623 					iter->rt6i_expires = 0;
624 				}
625 				return -EEXIST;
626 			}
627 		}
628 
629 		if (iter->rt6i_metric > rt->rt6i_metric)
630 			break;
631 
632 		ins = &iter->u.dst.rt6_next;
633 	}
634 
635 	/* Reset round-robin state, if necessary */
636 	if (ins == &fn->leaf)
637 		fn->rr_ptr = NULL;
638 
639 	/*
640 	 *	insert node
641 	 */
642 
643 	rt->u.dst.rt6_next = iter;
644 	*ins = rt;
645 	rt->rt6i_node = fn;
646 	atomic_inc(&rt->rt6i_ref);
647 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
648 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
649 
650 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
651 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
652 		fn->fn_flags |= RTN_RTINFO;
653 	}
654 
655 	return 0;
656 }
657 
658 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
659 {
660 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
661 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
662 		mod_timer(&net->ipv6.ip6_fib_timer,
663 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
664 }
665 
666 void fib6_force_start_gc(struct net *net)
667 {
668 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
669 		mod_timer(&net->ipv6.ip6_fib_timer,
670 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
671 }
672 
673 /*
674  *	Add routing information to the routing tree.
675  *	<destination addr>/<source addr>
676  *	with source addr info in sub-trees
677  */
678 
679 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
680 {
681 	struct fib6_node *fn, *pn = NULL;
682 	int err = -ENOMEM;
683 
684 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
685 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
686 
687 	if (fn == NULL)
688 		goto out;
689 
690 	pn = fn;
691 
692 #ifdef CONFIG_IPV6_SUBTREES
693 	if (rt->rt6i_src.plen) {
694 		struct fib6_node *sn;
695 
696 		if (fn->subtree == NULL) {
697 			struct fib6_node *sfn;
698 
699 			/*
700 			 * Create subtree.
701 			 *
702 			 *		fn[main tree]
703 			 *		|
704 			 *		sfn[subtree root]
705 			 *		   \
706 			 *		    sn[new leaf node]
707 			 */
708 
709 			/* Create subtree root node */
710 			sfn = node_alloc();
711 			if (sfn == NULL)
712 				goto st_failure;
713 
714 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
715 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
716 			sfn->fn_flags = RTN_ROOT;
717 			sfn->fn_sernum = fib6_new_sernum();
718 
719 			/* Now add the first leaf node to new subtree */
720 
721 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
722 					sizeof(struct in6_addr), rt->rt6i_src.plen,
723 					offsetof(struct rt6_info, rt6i_src));
724 
725 			if (sn == NULL) {
726 				/* If it is failed, discard just allocated
727 				   root, and then (in st_failure) stale node
728 				   in main tree.
729 				 */
730 				node_free(sfn);
731 				goto st_failure;
732 			}
733 
734 			/* Now link new subtree to main tree */
735 			sfn->parent = fn;
736 			fn->subtree = sfn;
737 		} else {
738 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
739 					sizeof(struct in6_addr), rt->rt6i_src.plen,
740 					offsetof(struct rt6_info, rt6i_src));
741 
742 			if (sn == NULL)
743 				goto st_failure;
744 		}
745 
746 		if (fn->leaf == NULL) {
747 			fn->leaf = rt;
748 			atomic_inc(&rt->rt6i_ref);
749 		}
750 		fn = sn;
751 	}
752 #endif
753 
754 	err = fib6_add_rt2node(fn, rt, info);
755 
756 	if (err == 0) {
757 		fib6_start_gc(info->nl_net, rt);
758 		if (!(rt->rt6i_flags&RTF_CACHE))
759 			fib6_prune_clones(info->nl_net, pn, rt);
760 	}
761 
762 out:
763 	if (err) {
764 #ifdef CONFIG_IPV6_SUBTREES
765 		/*
766 		 * If fib6_add_1 has cleared the old leaf pointer in the
767 		 * super-tree leaf node we have to find a new one for it.
768 		 */
769 		if (pn != fn && pn->leaf == rt) {
770 			pn->leaf = NULL;
771 			atomic_dec(&rt->rt6i_ref);
772 		}
773 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
774 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
775 #if RT6_DEBUG >= 2
776 			if (!pn->leaf) {
777 				WARN_ON(pn->leaf == NULL);
778 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
779 			}
780 #endif
781 			atomic_inc(&pn->leaf->rt6i_ref);
782 		}
783 #endif
784 		dst_free(&rt->u.dst);
785 	}
786 	return err;
787 
788 #ifdef CONFIG_IPV6_SUBTREES
789 	/* Subtree creation failed, probably main tree node
790 	   is orphan. If it is, shoot it.
791 	 */
792 st_failure:
793 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
794 		fib6_repair_tree(info->nl_net, fn);
795 	dst_free(&rt->u.dst);
796 	return err;
797 #endif
798 }
799 
800 /*
801  *	Routing tree lookup
802  *
803  */
804 
805 struct lookup_args {
806 	int		offset;		/* key offset on rt6_info	*/
807 	struct in6_addr	*addr;		/* search key			*/
808 };
809 
810 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
811 					struct lookup_args *args)
812 {
813 	struct fib6_node *fn;
814 	__be32 dir;
815 
816 	if (unlikely(args->offset == 0))
817 		return NULL;
818 
819 	/*
820 	 *	Descend on a tree
821 	 */
822 
823 	fn = root;
824 
825 	for (;;) {
826 		struct fib6_node *next;
827 
828 		dir = addr_bit_set(args->addr, fn->fn_bit);
829 
830 		next = dir ? fn->right : fn->left;
831 
832 		if (next) {
833 			fn = next;
834 			continue;
835 		}
836 
837 		break;
838 	}
839 
840 	while(fn) {
841 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
842 			struct rt6key *key;
843 
844 			key = (struct rt6key *) ((u8 *) fn->leaf +
845 						 args->offset);
846 
847 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
848 #ifdef CONFIG_IPV6_SUBTREES
849 				if (fn->subtree)
850 					fn = fib6_lookup_1(fn->subtree, args + 1);
851 #endif
852 				if (!fn || fn->fn_flags & RTN_RTINFO)
853 					return fn;
854 			}
855 		}
856 
857 		if (fn->fn_flags & RTN_ROOT)
858 			break;
859 
860 		fn = fn->parent;
861 	}
862 
863 	return NULL;
864 }
865 
866 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
867 			       struct in6_addr *saddr)
868 {
869 	struct fib6_node *fn;
870 	struct lookup_args args[] = {
871 		{
872 			.offset = offsetof(struct rt6_info, rt6i_dst),
873 			.addr = daddr,
874 		},
875 #ifdef CONFIG_IPV6_SUBTREES
876 		{
877 			.offset = offsetof(struct rt6_info, rt6i_src),
878 			.addr = saddr,
879 		},
880 #endif
881 		{
882 			.offset = 0,	/* sentinel */
883 		}
884 	};
885 
886 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
887 
888 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
889 		fn = root;
890 
891 	return fn;
892 }
893 
894 /*
895  *	Get node with specified destination prefix (and source prefix,
896  *	if subtrees are used)
897  */
898 
899 
900 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
901 					struct in6_addr *addr,
902 					int plen, int offset)
903 {
904 	struct fib6_node *fn;
905 
906 	for (fn = root; fn ; ) {
907 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
908 
909 		/*
910 		 *	Prefix match
911 		 */
912 		if (plen < fn->fn_bit ||
913 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
914 			return NULL;
915 
916 		if (plen == fn->fn_bit)
917 			return fn;
918 
919 		/*
920 		 *	We have more bits to go
921 		 */
922 		if (addr_bit_set(addr, fn->fn_bit))
923 			fn = fn->right;
924 		else
925 			fn = fn->left;
926 	}
927 	return NULL;
928 }
929 
930 struct fib6_node * fib6_locate(struct fib6_node *root,
931 			       struct in6_addr *daddr, int dst_len,
932 			       struct in6_addr *saddr, int src_len)
933 {
934 	struct fib6_node *fn;
935 
936 	fn = fib6_locate_1(root, daddr, dst_len,
937 			   offsetof(struct rt6_info, rt6i_dst));
938 
939 #ifdef CONFIG_IPV6_SUBTREES
940 	if (src_len) {
941 		WARN_ON(saddr == NULL);
942 		if (fn && fn->subtree)
943 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
944 					   offsetof(struct rt6_info, rt6i_src));
945 	}
946 #endif
947 
948 	if (fn && fn->fn_flags&RTN_RTINFO)
949 		return fn;
950 
951 	return NULL;
952 }
953 
954 
955 /*
956  *	Deletion
957  *
958  */
959 
960 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
961 {
962 	if (fn->fn_flags&RTN_ROOT)
963 		return net->ipv6.ip6_null_entry;
964 
965 	while(fn) {
966 		if(fn->left)
967 			return fn->left->leaf;
968 
969 		if(fn->right)
970 			return fn->right->leaf;
971 
972 		fn = FIB6_SUBTREE(fn);
973 	}
974 	return NULL;
975 }
976 
977 /*
978  *	Called to trim the tree of intermediate nodes when possible. "fn"
979  *	is the node we want to try and remove.
980  */
981 
982 static struct fib6_node *fib6_repair_tree(struct net *net,
983 					   struct fib6_node *fn)
984 {
985 	int children;
986 	int nstate;
987 	struct fib6_node *child, *pn;
988 	struct fib6_walker_t *w;
989 	int iter = 0;
990 
991 	for (;;) {
992 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
993 		iter++;
994 
995 		WARN_ON(fn->fn_flags & RTN_RTINFO);
996 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
997 		WARN_ON(fn->leaf != NULL);
998 
999 		children = 0;
1000 		child = NULL;
1001 		if (fn->right) child = fn->right, children |= 1;
1002 		if (fn->left) child = fn->left, children |= 2;
1003 
1004 		if (children == 3 || FIB6_SUBTREE(fn)
1005 #ifdef CONFIG_IPV6_SUBTREES
1006 		    /* Subtree root (i.e. fn) may have one child */
1007 		    || (children && fn->fn_flags&RTN_ROOT)
1008 #endif
1009 		    ) {
1010 			fn->leaf = fib6_find_prefix(net, fn);
1011 #if RT6_DEBUG >= 2
1012 			if (fn->leaf==NULL) {
1013 				WARN_ON(!fn->leaf);
1014 				fn->leaf = net->ipv6.ip6_null_entry;
1015 			}
1016 #endif
1017 			atomic_inc(&fn->leaf->rt6i_ref);
1018 			return fn->parent;
1019 		}
1020 
1021 		pn = fn->parent;
1022 #ifdef CONFIG_IPV6_SUBTREES
1023 		if (FIB6_SUBTREE(pn) == fn) {
1024 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1025 			FIB6_SUBTREE(pn) = NULL;
1026 			nstate = FWS_L;
1027 		} else {
1028 			WARN_ON(fn->fn_flags & RTN_ROOT);
1029 #endif
1030 			if (pn->right == fn) pn->right = child;
1031 			else if (pn->left == fn) pn->left = child;
1032 #if RT6_DEBUG >= 2
1033 			else
1034 				WARN_ON(1);
1035 #endif
1036 			if (child)
1037 				child->parent = pn;
1038 			nstate = FWS_R;
1039 #ifdef CONFIG_IPV6_SUBTREES
1040 		}
1041 #endif
1042 
1043 		read_lock(&fib6_walker_lock);
1044 		FOR_WALKERS(w) {
1045 			if (child == NULL) {
1046 				if (w->root == fn) {
1047 					w->root = w->node = NULL;
1048 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1049 				} else if (w->node == fn) {
1050 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1051 					w->node = pn;
1052 					w->state = nstate;
1053 				}
1054 			} else {
1055 				if (w->root == fn) {
1056 					w->root = child;
1057 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1058 				}
1059 				if (w->node == fn) {
1060 					w->node = child;
1061 					if (children&2) {
1062 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1063 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1064 					} else {
1065 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1067 					}
1068 				}
1069 			}
1070 		}
1071 		read_unlock(&fib6_walker_lock);
1072 
1073 		node_free(fn);
1074 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1075 			return pn;
1076 
1077 		rt6_release(pn->leaf);
1078 		pn->leaf = NULL;
1079 		fn = pn;
1080 	}
1081 }
1082 
1083 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1084 			   struct nl_info *info)
1085 {
1086 	struct fib6_walker_t *w;
1087 	struct rt6_info *rt = *rtp;
1088 	struct net *net = info->nl_net;
1089 
1090 	RT6_TRACE("fib6_del_route\n");
1091 
1092 	/* Unlink it */
1093 	*rtp = rt->u.dst.rt6_next;
1094 	rt->rt6i_node = NULL;
1095 	net->ipv6.rt6_stats->fib_rt_entries--;
1096 	net->ipv6.rt6_stats->fib_discarded_routes++;
1097 
1098 	/* Reset round-robin state, if necessary */
1099 	if (fn->rr_ptr == rt)
1100 		fn->rr_ptr = NULL;
1101 
1102 	/* Adjust walkers */
1103 	read_lock(&fib6_walker_lock);
1104 	FOR_WALKERS(w) {
1105 		if (w->state == FWS_C && w->leaf == rt) {
1106 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1107 			w->leaf = rt->u.dst.rt6_next;
1108 			if (w->leaf == NULL)
1109 				w->state = FWS_U;
1110 		}
1111 	}
1112 	read_unlock(&fib6_walker_lock);
1113 
1114 	rt->u.dst.rt6_next = NULL;
1115 
1116 	/* If it was last route, expunge its radix tree node */
1117 	if (fn->leaf == NULL) {
1118 		fn->fn_flags &= ~RTN_RTINFO;
1119 		net->ipv6.rt6_stats->fib_route_nodes--;
1120 		fn = fib6_repair_tree(net, fn);
1121 	}
1122 
1123 	if (atomic_read(&rt->rt6i_ref) != 1) {
1124 		/* This route is used as dummy address holder in some split
1125 		 * nodes. It is not leaked, but it still holds other resources,
1126 		 * which must be released in time. So, scan ascendant nodes
1127 		 * and replace dummy references to this route with references
1128 		 * to still alive ones.
1129 		 */
1130 		while (fn) {
1131 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1132 				fn->leaf = fib6_find_prefix(net, fn);
1133 				atomic_inc(&fn->leaf->rt6i_ref);
1134 				rt6_release(rt);
1135 			}
1136 			fn = fn->parent;
1137 		}
1138 		/* No more references are possible at this point. */
1139 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1140 	}
1141 
1142 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1143 	rt6_release(rt);
1144 }
1145 
1146 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1147 {
1148 	struct net *net = info->nl_net;
1149 	struct fib6_node *fn = rt->rt6i_node;
1150 	struct rt6_info **rtp;
1151 
1152 #if RT6_DEBUG >= 2
1153 	if (rt->u.dst.obsolete>0) {
1154 		WARN_ON(fn != NULL);
1155 		return -ENOENT;
1156 	}
1157 #endif
1158 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1159 		return -ENOENT;
1160 
1161 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1162 
1163 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1164 		struct fib6_node *pn = fn;
1165 #ifdef CONFIG_IPV6_SUBTREES
1166 		/* clones of this route might be in another subtree */
1167 		if (rt->rt6i_src.plen) {
1168 			while (!(pn->fn_flags&RTN_ROOT))
1169 				pn = pn->parent;
1170 			pn = pn->parent;
1171 		}
1172 #endif
1173 		fib6_prune_clones(info->nl_net, pn, rt);
1174 	}
1175 
1176 	/*
1177 	 *	Walk the leaf entries looking for ourself
1178 	 */
1179 
1180 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1181 		if (*rtp == rt) {
1182 			fib6_del_route(fn, rtp, info);
1183 			return 0;
1184 		}
1185 	}
1186 	return -ENOENT;
1187 }
1188 
1189 /*
1190  *	Tree traversal function.
1191  *
1192  *	Certainly, it is not interrupt safe.
1193  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1194  *	It means, that we can modify tree during walking
1195  *	and use this function for garbage collection, clone pruning,
1196  *	cleaning tree when a device goes down etc. etc.
1197  *
1198  *	It guarantees that every node will be traversed,
1199  *	and that it will be traversed only once.
1200  *
1201  *	Callback function w->func may return:
1202  *	0 -> continue walking.
1203  *	positive value -> walking is suspended (used by tree dumps,
1204  *	and probably by gc, if it will be split to several slices)
1205  *	negative value -> terminate walking.
1206  *
1207  *	The function itself returns:
1208  *	0   -> walk is complete.
1209  *	>0  -> walk is incomplete (i.e. suspended)
1210  *	<0  -> walk is terminated by an error.
1211  */
1212 
1213 static int fib6_walk_continue(struct fib6_walker_t *w)
1214 {
1215 	struct fib6_node *fn, *pn;
1216 
1217 	for (;;) {
1218 		fn = w->node;
1219 		if (fn == NULL)
1220 			return 0;
1221 
1222 		if (w->prune && fn != w->root &&
1223 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1224 			w->state = FWS_C;
1225 			w->leaf = fn->leaf;
1226 		}
1227 		switch (w->state) {
1228 #ifdef CONFIG_IPV6_SUBTREES
1229 		case FWS_S:
1230 			if (FIB6_SUBTREE(fn)) {
1231 				w->node = FIB6_SUBTREE(fn);
1232 				continue;
1233 			}
1234 			w->state = FWS_L;
1235 #endif
1236 		case FWS_L:
1237 			if (fn->left) {
1238 				w->node = fn->left;
1239 				w->state = FWS_INIT;
1240 				continue;
1241 			}
1242 			w->state = FWS_R;
1243 		case FWS_R:
1244 			if (fn->right) {
1245 				w->node = fn->right;
1246 				w->state = FWS_INIT;
1247 				continue;
1248 			}
1249 			w->state = FWS_C;
1250 			w->leaf = fn->leaf;
1251 		case FWS_C:
1252 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1253 				int err = w->func(w);
1254 				if (err)
1255 					return err;
1256 				continue;
1257 			}
1258 			w->state = FWS_U;
1259 		case FWS_U:
1260 			if (fn == w->root)
1261 				return 0;
1262 			pn = fn->parent;
1263 			w->node = pn;
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 			if (FIB6_SUBTREE(pn) == fn) {
1266 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1267 				w->state = FWS_L;
1268 				continue;
1269 			}
1270 #endif
1271 			if (pn->left == fn) {
1272 				w->state = FWS_R;
1273 				continue;
1274 			}
1275 			if (pn->right == fn) {
1276 				w->state = FWS_C;
1277 				w->leaf = w->node->leaf;
1278 				continue;
1279 			}
1280 #if RT6_DEBUG >= 2
1281 			WARN_ON(1);
1282 #endif
1283 		}
1284 	}
1285 }
1286 
1287 static int fib6_walk(struct fib6_walker_t *w)
1288 {
1289 	int res;
1290 
1291 	w->state = FWS_INIT;
1292 	w->node = w->root;
1293 
1294 	fib6_walker_link(w);
1295 	res = fib6_walk_continue(w);
1296 	if (res <= 0)
1297 		fib6_walker_unlink(w);
1298 	return res;
1299 }
1300 
1301 static int fib6_clean_node(struct fib6_walker_t *w)
1302 {
1303 	int res;
1304 	struct rt6_info *rt;
1305 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1306 	struct nl_info info = {
1307 		.nl_net = c->net,
1308 	};
1309 
1310 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1311 		res = c->func(rt, c->arg);
1312 		if (res < 0) {
1313 			w->leaf = rt;
1314 			res = fib6_del(rt, &info);
1315 			if (res) {
1316 #if RT6_DEBUG >= 2
1317 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1318 #endif
1319 				continue;
1320 			}
1321 			return 0;
1322 		}
1323 		WARN_ON(res != 0);
1324 	}
1325 	w->leaf = rt;
1326 	return 0;
1327 }
1328 
1329 /*
1330  *	Convenient frontend to tree walker.
1331  *
1332  *	func is called on each route.
1333  *		It may return -1 -> delete this route.
1334  *		              0  -> continue walking
1335  *
1336  *	prune==1 -> only immediate children of node (certainly,
1337  *	ignoring pure split nodes) will be scanned.
1338  */
1339 
1340 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1341 			    int (*func)(struct rt6_info *, void *arg),
1342 			    int prune, void *arg)
1343 {
1344 	struct fib6_cleaner_t c;
1345 
1346 	c.w.root = root;
1347 	c.w.func = fib6_clean_node;
1348 	c.w.prune = prune;
1349 	c.func = func;
1350 	c.arg = arg;
1351 	c.net = net;
1352 
1353 	fib6_walk(&c.w);
1354 }
1355 
1356 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1357 		    int prune, void *arg)
1358 {
1359 	struct fib6_table *table;
1360 	struct hlist_node *node;
1361 	struct hlist_head *head;
1362 	unsigned int h;
1363 
1364 	rcu_read_lock();
1365 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1366 		head = &net->ipv6.fib_table_hash[h];
1367 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1368 			write_lock_bh(&table->tb6_lock);
1369 			fib6_clean_tree(net, &table->tb6_root,
1370 					func, prune, arg);
1371 			write_unlock_bh(&table->tb6_lock);
1372 		}
1373 	}
1374 	rcu_read_unlock();
1375 }
1376 
1377 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1378 {
1379 	if (rt->rt6i_flags & RTF_CACHE) {
1380 		RT6_TRACE("pruning clone %p\n", rt);
1381 		return -1;
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1388 			      struct rt6_info *rt)
1389 {
1390 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1391 }
1392 
1393 /*
1394  *	Garbage collection
1395  */
1396 
1397 static struct fib6_gc_args
1398 {
1399 	int			timeout;
1400 	int			more;
1401 } gc_args;
1402 
1403 static int fib6_age(struct rt6_info *rt, void *arg)
1404 {
1405 	unsigned long now = jiffies;
1406 
1407 	/*
1408 	 *	check addrconf expiration here.
1409 	 *	Routes are expired even if they are in use.
1410 	 *
1411 	 *	Also age clones. Note, that clones are aged out
1412 	 *	only if they are not in use now.
1413 	 */
1414 
1415 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1416 		if (time_after(now, rt->rt6i_expires)) {
1417 			RT6_TRACE("expiring %p\n", rt);
1418 			return -1;
1419 		}
1420 		gc_args.more++;
1421 	} else if (rt->rt6i_flags & RTF_CACHE) {
1422 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1423 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1424 			RT6_TRACE("aging clone %p\n", rt);
1425 			return -1;
1426 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1427 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1428 			RT6_TRACE("purging route %p via non-router but gateway\n",
1429 				  rt);
1430 			return -1;
1431 		}
1432 		gc_args.more++;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static DEFINE_SPINLOCK(fib6_gc_lock);
1439 
1440 void fib6_run_gc(unsigned long expires, struct net *net)
1441 {
1442 	if (expires != ~0UL) {
1443 		spin_lock_bh(&fib6_gc_lock);
1444 		gc_args.timeout = expires ? (int)expires :
1445 			net->ipv6.sysctl.ip6_rt_gc_interval;
1446 	} else {
1447 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1448 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1449 			return;
1450 		}
1451 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1452 	}
1453 
1454 	gc_args.more = icmp6_dst_gc();
1455 
1456 	fib6_clean_all(net, fib6_age, 0, NULL);
1457 
1458 	if (gc_args.more)
1459 		mod_timer(&net->ipv6.ip6_fib_timer,
1460 			  round_jiffies(jiffies
1461 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1462 	else
1463 		del_timer(&net->ipv6.ip6_fib_timer);
1464 	spin_unlock_bh(&fib6_gc_lock);
1465 }
1466 
1467 static void fib6_gc_timer_cb(unsigned long arg)
1468 {
1469 	fib6_run_gc(0, (struct net *)arg);
1470 }
1471 
1472 static int fib6_net_init(struct net *net)
1473 {
1474 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1475 
1476 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1477 	if (!net->ipv6.rt6_stats)
1478 		goto out_timer;
1479 
1480 	net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1481 					   sizeof(*net->ipv6.fib_table_hash),
1482 					   GFP_KERNEL);
1483 	if (!net->ipv6.fib_table_hash)
1484 		goto out_rt6_stats;
1485 
1486 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1487 					  GFP_KERNEL);
1488 	if (!net->ipv6.fib6_main_tbl)
1489 		goto out_fib_table_hash;
1490 
1491 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1492 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1493 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1494 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1495 
1496 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1497 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1498 					   GFP_KERNEL);
1499 	if (!net->ipv6.fib6_local_tbl)
1500 		goto out_fib6_main_tbl;
1501 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1502 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1503 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1504 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1505 #endif
1506 	fib6_tables_init(net);
1507 
1508 	return 0;
1509 
1510 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1511 out_fib6_main_tbl:
1512 	kfree(net->ipv6.fib6_main_tbl);
1513 #endif
1514 out_fib_table_hash:
1515 	kfree(net->ipv6.fib_table_hash);
1516 out_rt6_stats:
1517 	kfree(net->ipv6.rt6_stats);
1518 out_timer:
1519 	return -ENOMEM;
1520  }
1521 
1522 static void fib6_net_exit(struct net *net)
1523 {
1524 	rt6_ifdown(net, NULL);
1525 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1526 
1527 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1528 	kfree(net->ipv6.fib6_local_tbl);
1529 #endif
1530 	kfree(net->ipv6.fib6_main_tbl);
1531 	kfree(net->ipv6.fib_table_hash);
1532 	kfree(net->ipv6.rt6_stats);
1533 }
1534 
1535 static struct pernet_operations fib6_net_ops = {
1536 	.init = fib6_net_init,
1537 	.exit = fib6_net_exit,
1538 };
1539 
1540 int __init fib6_init(void)
1541 {
1542 	int ret = -ENOMEM;
1543 
1544 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1545 					   sizeof(struct fib6_node),
1546 					   0, SLAB_HWCACHE_ALIGN,
1547 					   NULL);
1548 	if (!fib6_node_kmem)
1549 		goto out;
1550 
1551 	ret = register_pernet_subsys(&fib6_net_ops);
1552 	if (ret)
1553 		goto out_kmem_cache_create;
1554 
1555 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1556 	if (ret)
1557 		goto out_unregister_subsys;
1558 out:
1559 	return ret;
1560 
1561 out_unregister_subsys:
1562 	unregister_pernet_subsys(&fib6_net_ops);
1563 out_kmem_cache_create:
1564 	kmem_cache_destroy(fib6_node_kmem);
1565 	goto out;
1566 }
1567 
1568 void fib6_gc_cleanup(void)
1569 {
1570 	unregister_pernet_subsys(&fib6_net_ops);
1571 	kmem_cache_destroy(fib6_node_kmem);
1572 }
1573