1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 #include <net/lwtunnel.h> 36 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 #define RT6_DEBUG 2 41 42 #if RT6_DEBUG >= 3 43 #define RT6_TRACE(x...) pr_debug(x) 44 #else 45 #define RT6_TRACE(x...) do { ; } while (0) 46 #endif 47 48 static struct kmem_cache *fib6_node_kmem __read_mostly; 49 50 struct fib6_cleaner { 51 struct fib6_walker w; 52 struct net *net; 53 int (*func)(struct rt6_info *, void *arg); 54 int sernum; 55 void *arg; 56 }; 57 58 #ifdef CONFIG_IPV6_SUBTREES 59 #define FWS_INIT FWS_S 60 #else 61 #define FWS_INIT FWS_L 62 #endif 63 64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn); 65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 67 static int fib6_walk(struct net *net, struct fib6_walker *w); 68 static int fib6_walk_continue(struct fib6_walker *w); 69 70 /* 71 * A routing update causes an increase of the serial number on the 72 * affected subtree. This allows for cached routes to be asynchronously 73 * tested when modifications are made to the destination cache as a 74 * result of redirects, path MTU changes, etc. 75 */ 76 77 static void fib6_gc_timer_cb(unsigned long arg); 78 79 #define FOR_WALKERS(net, w) \ 80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 81 82 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 83 { 84 write_lock_bh(&net->ipv6.fib6_walker_lock); 85 list_add(&w->lh, &net->ipv6.fib6_walkers); 86 write_unlock_bh(&net->ipv6.fib6_walker_lock); 87 } 88 89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 90 { 91 write_lock_bh(&net->ipv6.fib6_walker_lock); 92 list_del(&w->lh); 93 write_unlock_bh(&net->ipv6.fib6_walker_lock); 94 } 95 96 static int fib6_new_sernum(struct net *net) 97 { 98 int new, old; 99 100 do { 101 old = atomic_read(&net->ipv6.fib6_sernum); 102 new = old < INT_MAX ? old + 1 : 1; 103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 104 old, new) != old); 105 return new; 106 } 107 108 enum { 109 FIB6_NO_SERNUM_CHANGE = 0, 110 }; 111 112 /* 113 * Auxiliary address test functions for the radix tree. 114 * 115 * These assume a 32bit processor (although it will work on 116 * 64bit processors) 117 */ 118 119 /* 120 * test bit 121 */ 122 #if defined(__LITTLE_ENDIAN) 123 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 124 #else 125 # define BITOP_BE32_SWIZZLE 0 126 #endif 127 128 static __be32 addr_bit_set(const void *token, int fn_bit) 129 { 130 const __be32 *addr = token; 131 /* 132 * Here, 133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 134 * is optimized version of 135 * htonl(1 << ((~fn_bit)&0x1F)) 136 * See include/asm-generic/bitops/le.h. 137 */ 138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 139 addr[fn_bit >> 5]; 140 } 141 142 static struct fib6_node *node_alloc(void) 143 { 144 struct fib6_node *fn; 145 146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 147 148 return fn; 149 } 150 151 static void node_free(struct fib6_node *fn) 152 { 153 kmem_cache_free(fib6_node_kmem, fn); 154 } 155 156 static void rt6_rcu_free(struct rt6_info *rt) 157 { 158 call_rcu(&rt->dst.rcu_head, dst_rcu_free); 159 } 160 161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt) 162 { 163 int cpu; 164 165 if (!non_pcpu_rt->rt6i_pcpu) 166 return; 167 168 for_each_possible_cpu(cpu) { 169 struct rt6_info **ppcpu_rt; 170 struct rt6_info *pcpu_rt; 171 172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu); 173 pcpu_rt = *ppcpu_rt; 174 if (pcpu_rt) { 175 rt6_rcu_free(pcpu_rt); 176 *ppcpu_rt = NULL; 177 } 178 } 179 180 free_percpu(non_pcpu_rt->rt6i_pcpu); 181 non_pcpu_rt->rt6i_pcpu = NULL; 182 } 183 184 static void rt6_release(struct rt6_info *rt) 185 { 186 if (atomic_dec_and_test(&rt->rt6i_ref)) { 187 rt6_free_pcpu(rt); 188 rt6_rcu_free(rt); 189 } 190 } 191 192 static void fib6_link_table(struct net *net, struct fib6_table *tb) 193 { 194 unsigned int h; 195 196 /* 197 * Initialize table lock at a single place to give lockdep a key, 198 * tables aren't visible prior to being linked to the list. 199 */ 200 rwlock_init(&tb->tb6_lock); 201 202 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 203 204 /* 205 * No protection necessary, this is the only list mutatation 206 * operation, tables never disappear once they exist. 207 */ 208 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 209 } 210 211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 212 213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 214 { 215 struct fib6_table *table; 216 217 table = kzalloc(sizeof(*table), GFP_ATOMIC); 218 if (table) { 219 table->tb6_id = id; 220 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 221 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 222 inet_peer_base_init(&table->tb6_peers); 223 } 224 225 return table; 226 } 227 228 struct fib6_table *fib6_new_table(struct net *net, u32 id) 229 { 230 struct fib6_table *tb; 231 232 if (id == 0) 233 id = RT6_TABLE_MAIN; 234 tb = fib6_get_table(net, id); 235 if (tb) 236 return tb; 237 238 tb = fib6_alloc_table(net, id); 239 if (tb) 240 fib6_link_table(net, tb); 241 242 return tb; 243 } 244 EXPORT_SYMBOL_GPL(fib6_new_table); 245 246 struct fib6_table *fib6_get_table(struct net *net, u32 id) 247 { 248 struct fib6_table *tb; 249 struct hlist_head *head; 250 unsigned int h; 251 252 if (id == 0) 253 id = RT6_TABLE_MAIN; 254 h = id & (FIB6_TABLE_HASHSZ - 1); 255 rcu_read_lock(); 256 head = &net->ipv6.fib_table_hash[h]; 257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 258 if (tb->tb6_id == id) { 259 rcu_read_unlock(); 260 return tb; 261 } 262 } 263 rcu_read_unlock(); 264 265 return NULL; 266 } 267 EXPORT_SYMBOL_GPL(fib6_get_table); 268 269 static void __net_init fib6_tables_init(struct net *net) 270 { 271 fib6_link_table(net, net->ipv6.fib6_main_tbl); 272 fib6_link_table(net, net->ipv6.fib6_local_tbl); 273 } 274 #else 275 276 struct fib6_table *fib6_new_table(struct net *net, u32 id) 277 { 278 return fib6_get_table(net, id); 279 } 280 281 struct fib6_table *fib6_get_table(struct net *net, u32 id) 282 { 283 return net->ipv6.fib6_main_tbl; 284 } 285 286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 287 int flags, pol_lookup_t lookup) 288 { 289 struct rt6_info *rt; 290 291 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 292 if (rt->rt6i_flags & RTF_REJECT && 293 rt->dst.error == -EAGAIN) { 294 ip6_rt_put(rt); 295 rt = net->ipv6.ip6_null_entry; 296 dst_hold(&rt->dst); 297 } 298 299 return &rt->dst; 300 } 301 302 static void __net_init fib6_tables_init(struct net *net) 303 { 304 fib6_link_table(net, net->ipv6.fib6_main_tbl); 305 } 306 307 #endif 308 309 static int fib6_dump_node(struct fib6_walker *w) 310 { 311 int res; 312 struct rt6_info *rt; 313 314 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 315 res = rt6_dump_route(rt, w->args); 316 if (res < 0) { 317 /* Frame is full, suspend walking */ 318 w->leaf = rt; 319 return 1; 320 } 321 } 322 w->leaf = NULL; 323 return 0; 324 } 325 326 static void fib6_dump_end(struct netlink_callback *cb) 327 { 328 struct net *net = sock_net(cb->skb->sk); 329 struct fib6_walker *w = (void *)cb->args[2]; 330 331 if (w) { 332 if (cb->args[4]) { 333 cb->args[4] = 0; 334 fib6_walker_unlink(net, w); 335 } 336 cb->args[2] = 0; 337 kfree(w); 338 } 339 cb->done = (void *)cb->args[3]; 340 cb->args[1] = 3; 341 } 342 343 static int fib6_dump_done(struct netlink_callback *cb) 344 { 345 fib6_dump_end(cb); 346 return cb->done ? cb->done(cb) : 0; 347 } 348 349 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 350 struct netlink_callback *cb) 351 { 352 struct net *net = sock_net(skb->sk); 353 struct fib6_walker *w; 354 int res; 355 356 w = (void *)cb->args[2]; 357 w->root = &table->tb6_root; 358 359 if (cb->args[4] == 0) { 360 w->count = 0; 361 w->skip = 0; 362 363 read_lock_bh(&table->tb6_lock); 364 res = fib6_walk(net, w); 365 read_unlock_bh(&table->tb6_lock); 366 if (res > 0) { 367 cb->args[4] = 1; 368 cb->args[5] = w->root->fn_sernum; 369 } 370 } else { 371 if (cb->args[5] != w->root->fn_sernum) { 372 /* Begin at the root if the tree changed */ 373 cb->args[5] = w->root->fn_sernum; 374 w->state = FWS_INIT; 375 w->node = w->root; 376 w->skip = w->count; 377 } else 378 w->skip = 0; 379 380 read_lock_bh(&table->tb6_lock); 381 res = fib6_walk_continue(w); 382 read_unlock_bh(&table->tb6_lock); 383 if (res <= 0) { 384 fib6_walker_unlink(net, w); 385 cb->args[4] = 0; 386 } 387 } 388 389 return res; 390 } 391 392 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 393 { 394 struct net *net = sock_net(skb->sk); 395 unsigned int h, s_h; 396 unsigned int e = 0, s_e; 397 struct rt6_rtnl_dump_arg arg; 398 struct fib6_walker *w; 399 struct fib6_table *tb; 400 struct hlist_head *head; 401 int res = 0; 402 403 s_h = cb->args[0]; 404 s_e = cb->args[1]; 405 406 w = (void *)cb->args[2]; 407 if (!w) { 408 /* New dump: 409 * 410 * 1. hook callback destructor. 411 */ 412 cb->args[3] = (long)cb->done; 413 cb->done = fib6_dump_done; 414 415 /* 416 * 2. allocate and initialize walker. 417 */ 418 w = kzalloc(sizeof(*w), GFP_ATOMIC); 419 if (!w) 420 return -ENOMEM; 421 w->func = fib6_dump_node; 422 cb->args[2] = (long)w; 423 } 424 425 arg.skb = skb; 426 arg.cb = cb; 427 arg.net = net; 428 w->args = &arg; 429 430 rcu_read_lock(); 431 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 432 e = 0; 433 head = &net->ipv6.fib_table_hash[h]; 434 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 435 if (e < s_e) 436 goto next; 437 res = fib6_dump_table(tb, skb, cb); 438 if (res != 0) 439 goto out; 440 next: 441 e++; 442 } 443 } 444 out: 445 rcu_read_unlock(); 446 cb->args[1] = e; 447 cb->args[0] = h; 448 449 res = res < 0 ? res : skb->len; 450 if (res <= 0) 451 fib6_dump_end(cb); 452 return res; 453 } 454 455 /* 456 * Routing Table 457 * 458 * return the appropriate node for a routing tree "add" operation 459 * by either creating and inserting or by returning an existing 460 * node. 461 */ 462 463 static struct fib6_node *fib6_add_1(struct fib6_node *root, 464 struct in6_addr *addr, int plen, 465 int offset, int allow_create, 466 int replace_required, int sernum) 467 { 468 struct fib6_node *fn, *in, *ln; 469 struct fib6_node *pn = NULL; 470 struct rt6key *key; 471 int bit; 472 __be32 dir = 0; 473 474 RT6_TRACE("fib6_add_1\n"); 475 476 /* insert node in tree */ 477 478 fn = root; 479 480 do { 481 key = (struct rt6key *)((u8 *)fn->leaf + offset); 482 483 /* 484 * Prefix match 485 */ 486 if (plen < fn->fn_bit || 487 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 488 if (!allow_create) { 489 if (replace_required) { 490 pr_warn("Can't replace route, no match found\n"); 491 return ERR_PTR(-ENOENT); 492 } 493 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 494 } 495 goto insert_above; 496 } 497 498 /* 499 * Exact match ? 500 */ 501 502 if (plen == fn->fn_bit) { 503 /* clean up an intermediate node */ 504 if (!(fn->fn_flags & RTN_RTINFO)) { 505 rt6_release(fn->leaf); 506 fn->leaf = NULL; 507 } 508 509 fn->fn_sernum = sernum; 510 511 return fn; 512 } 513 514 /* 515 * We have more bits to go 516 */ 517 518 /* Try to walk down on tree. */ 519 fn->fn_sernum = sernum; 520 dir = addr_bit_set(addr, fn->fn_bit); 521 pn = fn; 522 fn = dir ? fn->right : fn->left; 523 } while (fn); 524 525 if (!allow_create) { 526 /* We should not create new node because 527 * NLM_F_REPLACE was specified without NLM_F_CREATE 528 * I assume it is safe to require NLM_F_CREATE when 529 * REPLACE flag is used! Later we may want to remove the 530 * check for replace_required, because according 531 * to netlink specification, NLM_F_CREATE 532 * MUST be specified if new route is created. 533 * That would keep IPv6 consistent with IPv4 534 */ 535 if (replace_required) { 536 pr_warn("Can't replace route, no match found\n"); 537 return ERR_PTR(-ENOENT); 538 } 539 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 540 } 541 /* 542 * We walked to the bottom of tree. 543 * Create new leaf node without children. 544 */ 545 546 ln = node_alloc(); 547 548 if (!ln) 549 return ERR_PTR(-ENOMEM); 550 ln->fn_bit = plen; 551 552 ln->parent = pn; 553 ln->fn_sernum = sernum; 554 555 if (dir) 556 pn->right = ln; 557 else 558 pn->left = ln; 559 560 return ln; 561 562 563 insert_above: 564 /* 565 * split since we don't have a common prefix anymore or 566 * we have a less significant route. 567 * we've to insert an intermediate node on the list 568 * this new node will point to the one we need to create 569 * and the current 570 */ 571 572 pn = fn->parent; 573 574 /* find 1st bit in difference between the 2 addrs. 575 576 See comment in __ipv6_addr_diff: bit may be an invalid value, 577 but if it is >= plen, the value is ignored in any case. 578 */ 579 580 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 581 582 /* 583 * (intermediate)[in] 584 * / \ 585 * (new leaf node)[ln] (old node)[fn] 586 */ 587 if (plen > bit) { 588 in = node_alloc(); 589 ln = node_alloc(); 590 591 if (!in || !ln) { 592 if (in) 593 node_free(in); 594 if (ln) 595 node_free(ln); 596 return ERR_PTR(-ENOMEM); 597 } 598 599 /* 600 * new intermediate node. 601 * RTN_RTINFO will 602 * be off since that an address that chooses one of 603 * the branches would not match less specific routes 604 * in the other branch 605 */ 606 607 in->fn_bit = bit; 608 609 in->parent = pn; 610 in->leaf = fn->leaf; 611 atomic_inc(&in->leaf->rt6i_ref); 612 613 in->fn_sernum = sernum; 614 615 /* update parent pointer */ 616 if (dir) 617 pn->right = in; 618 else 619 pn->left = in; 620 621 ln->fn_bit = plen; 622 623 ln->parent = in; 624 fn->parent = in; 625 626 ln->fn_sernum = sernum; 627 628 if (addr_bit_set(addr, bit)) { 629 in->right = ln; 630 in->left = fn; 631 } else { 632 in->left = ln; 633 in->right = fn; 634 } 635 } else { /* plen <= bit */ 636 637 /* 638 * (new leaf node)[ln] 639 * / \ 640 * (old node)[fn] NULL 641 */ 642 643 ln = node_alloc(); 644 645 if (!ln) 646 return ERR_PTR(-ENOMEM); 647 648 ln->fn_bit = plen; 649 650 ln->parent = pn; 651 652 ln->fn_sernum = sernum; 653 654 if (dir) 655 pn->right = ln; 656 else 657 pn->left = ln; 658 659 if (addr_bit_set(&key->addr, plen)) 660 ln->right = fn; 661 else 662 ln->left = fn; 663 664 fn->parent = ln; 665 } 666 return ln; 667 } 668 669 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 670 { 671 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 672 RTF_GATEWAY; 673 } 674 675 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc) 676 { 677 int i; 678 679 for (i = 0; i < RTAX_MAX; i++) { 680 if (test_bit(i, mxc->mx_valid)) 681 mp[i] = mxc->mx[i]; 682 } 683 } 684 685 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc) 686 { 687 if (!mxc->mx) 688 return 0; 689 690 if (dst->flags & DST_HOST) { 691 u32 *mp = dst_metrics_write_ptr(dst); 692 693 if (unlikely(!mp)) 694 return -ENOMEM; 695 696 fib6_copy_metrics(mp, mxc); 697 } else { 698 dst_init_metrics(dst, mxc->mx, false); 699 700 /* We've stolen mx now. */ 701 mxc->mx = NULL; 702 } 703 704 return 0; 705 } 706 707 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 708 struct net *net) 709 { 710 if (atomic_read(&rt->rt6i_ref) != 1) { 711 /* This route is used as dummy address holder in some split 712 * nodes. It is not leaked, but it still holds other resources, 713 * which must be released in time. So, scan ascendant nodes 714 * and replace dummy references to this route with references 715 * to still alive ones. 716 */ 717 while (fn) { 718 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) { 719 fn->leaf = fib6_find_prefix(net, fn); 720 atomic_inc(&fn->leaf->rt6i_ref); 721 rt6_release(rt); 722 } 723 fn = fn->parent; 724 } 725 /* No more references are possible at this point. */ 726 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 727 } 728 } 729 730 /* 731 * Insert routing information in a node. 732 */ 733 734 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 735 struct nl_info *info, struct mx6_config *mxc) 736 { 737 struct rt6_info *iter = NULL; 738 struct rt6_info **ins; 739 struct rt6_info **fallback_ins = NULL; 740 int replace = (info->nlh && 741 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 742 int add = (!info->nlh || 743 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 744 int found = 0; 745 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 746 u16 nlflags = NLM_F_EXCL; 747 int err; 748 749 ins = &fn->leaf; 750 751 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) { 752 /* 753 * Search for duplicates 754 */ 755 756 if (iter->rt6i_metric == rt->rt6i_metric) { 757 /* 758 * Same priority level 759 */ 760 if (info->nlh && 761 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 762 return -EEXIST; 763 764 nlflags &= ~NLM_F_EXCL; 765 if (replace) { 766 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 767 found++; 768 break; 769 } 770 if (rt_can_ecmp) 771 fallback_ins = fallback_ins ?: ins; 772 goto next_iter; 773 } 774 775 if (iter->dst.dev == rt->dst.dev && 776 iter->rt6i_idev == rt->rt6i_idev && 777 ipv6_addr_equal(&iter->rt6i_gateway, 778 &rt->rt6i_gateway)) { 779 if (rt->rt6i_nsiblings) 780 rt->rt6i_nsiblings = 0; 781 if (!(iter->rt6i_flags & RTF_EXPIRES)) 782 return -EEXIST; 783 if (!(rt->rt6i_flags & RTF_EXPIRES)) 784 rt6_clean_expires(iter); 785 else 786 rt6_set_expires(iter, rt->dst.expires); 787 iter->rt6i_pmtu = rt->rt6i_pmtu; 788 return -EEXIST; 789 } 790 /* If we have the same destination and the same metric, 791 * but not the same gateway, then the route we try to 792 * add is sibling to this route, increment our counter 793 * of siblings, and later we will add our route to the 794 * list. 795 * Only static routes (which don't have flag 796 * RTF_EXPIRES) are used for ECMPv6. 797 * 798 * To avoid long list, we only had siblings if the 799 * route have a gateway. 800 */ 801 if (rt_can_ecmp && 802 rt6_qualify_for_ecmp(iter)) 803 rt->rt6i_nsiblings++; 804 } 805 806 if (iter->rt6i_metric > rt->rt6i_metric) 807 break; 808 809 next_iter: 810 ins = &iter->dst.rt6_next; 811 } 812 813 if (fallback_ins && !found) { 814 /* No ECMP-able route found, replace first non-ECMP one */ 815 ins = fallback_ins; 816 iter = *ins; 817 found++; 818 } 819 820 /* Reset round-robin state, if necessary */ 821 if (ins == &fn->leaf) 822 fn->rr_ptr = NULL; 823 824 /* Link this route to others same route. */ 825 if (rt->rt6i_nsiblings) { 826 unsigned int rt6i_nsiblings; 827 struct rt6_info *sibling, *temp_sibling; 828 829 /* Find the first route that have the same metric */ 830 sibling = fn->leaf; 831 while (sibling) { 832 if (sibling->rt6i_metric == rt->rt6i_metric && 833 rt6_qualify_for_ecmp(sibling)) { 834 list_add_tail(&rt->rt6i_siblings, 835 &sibling->rt6i_siblings); 836 break; 837 } 838 sibling = sibling->dst.rt6_next; 839 } 840 /* For each sibling in the list, increment the counter of 841 * siblings. BUG() if counters does not match, list of siblings 842 * is broken! 843 */ 844 rt6i_nsiblings = 0; 845 list_for_each_entry_safe(sibling, temp_sibling, 846 &rt->rt6i_siblings, rt6i_siblings) { 847 sibling->rt6i_nsiblings++; 848 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 849 rt6i_nsiblings++; 850 } 851 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 852 } 853 854 /* 855 * insert node 856 */ 857 if (!replace) { 858 if (!add) 859 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 860 861 add: 862 nlflags |= NLM_F_CREATE; 863 err = fib6_commit_metrics(&rt->dst, mxc); 864 if (err) 865 return err; 866 867 rt->dst.rt6_next = iter; 868 *ins = rt; 869 rt->rt6i_node = fn; 870 atomic_inc(&rt->rt6i_ref); 871 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 872 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 873 874 if (!(fn->fn_flags & RTN_RTINFO)) { 875 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 876 fn->fn_flags |= RTN_RTINFO; 877 } 878 879 } else { 880 int nsiblings; 881 882 if (!found) { 883 if (add) 884 goto add; 885 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 886 return -ENOENT; 887 } 888 889 err = fib6_commit_metrics(&rt->dst, mxc); 890 if (err) 891 return err; 892 893 *ins = rt; 894 rt->rt6i_node = fn; 895 rt->dst.rt6_next = iter->dst.rt6_next; 896 atomic_inc(&rt->rt6i_ref); 897 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 898 if (!(fn->fn_flags & RTN_RTINFO)) { 899 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 900 fn->fn_flags |= RTN_RTINFO; 901 } 902 nsiblings = iter->rt6i_nsiblings; 903 fib6_purge_rt(iter, fn, info->nl_net); 904 rt6_release(iter); 905 906 if (nsiblings) { 907 /* Replacing an ECMP route, remove all siblings */ 908 ins = &rt->dst.rt6_next; 909 iter = *ins; 910 while (iter) { 911 if (rt6_qualify_for_ecmp(iter)) { 912 *ins = iter->dst.rt6_next; 913 fib6_purge_rt(iter, fn, info->nl_net); 914 rt6_release(iter); 915 nsiblings--; 916 } else { 917 ins = &iter->dst.rt6_next; 918 } 919 iter = *ins; 920 } 921 WARN_ON(nsiblings != 0); 922 } 923 } 924 925 return 0; 926 } 927 928 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 929 { 930 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 931 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 932 mod_timer(&net->ipv6.ip6_fib_timer, 933 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 934 } 935 936 void fib6_force_start_gc(struct net *net) 937 { 938 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 939 mod_timer(&net->ipv6.ip6_fib_timer, 940 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 941 } 942 943 /* 944 * Add routing information to the routing tree. 945 * <destination addr>/<source addr> 946 * with source addr info in sub-trees 947 */ 948 949 int fib6_add(struct fib6_node *root, struct rt6_info *rt, 950 struct nl_info *info, struct mx6_config *mxc) 951 { 952 struct fib6_node *fn, *pn = NULL; 953 int err = -ENOMEM; 954 int allow_create = 1; 955 int replace_required = 0; 956 int sernum = fib6_new_sernum(info->nl_net); 957 958 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) && 959 !atomic_read(&rt->dst.__refcnt))) 960 return -EINVAL; 961 962 if (info->nlh) { 963 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 964 allow_create = 0; 965 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 966 replace_required = 1; 967 } 968 if (!allow_create && !replace_required) 969 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 970 971 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 972 offsetof(struct rt6_info, rt6i_dst), allow_create, 973 replace_required, sernum); 974 if (IS_ERR(fn)) { 975 err = PTR_ERR(fn); 976 fn = NULL; 977 goto out; 978 } 979 980 pn = fn; 981 982 #ifdef CONFIG_IPV6_SUBTREES 983 if (rt->rt6i_src.plen) { 984 struct fib6_node *sn; 985 986 if (!fn->subtree) { 987 struct fib6_node *sfn; 988 989 /* 990 * Create subtree. 991 * 992 * fn[main tree] 993 * | 994 * sfn[subtree root] 995 * \ 996 * sn[new leaf node] 997 */ 998 999 /* Create subtree root node */ 1000 sfn = node_alloc(); 1001 if (!sfn) 1002 goto st_failure; 1003 1004 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 1005 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 1006 sfn->fn_flags = RTN_ROOT; 1007 sfn->fn_sernum = sernum; 1008 1009 /* Now add the first leaf node to new subtree */ 1010 1011 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 1012 rt->rt6i_src.plen, 1013 offsetof(struct rt6_info, rt6i_src), 1014 allow_create, replace_required, sernum); 1015 1016 if (IS_ERR(sn)) { 1017 /* If it is failed, discard just allocated 1018 root, and then (in st_failure) stale node 1019 in main tree. 1020 */ 1021 node_free(sfn); 1022 err = PTR_ERR(sn); 1023 goto st_failure; 1024 } 1025 1026 /* Now link new subtree to main tree */ 1027 sfn->parent = fn; 1028 fn->subtree = sfn; 1029 } else { 1030 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 1031 rt->rt6i_src.plen, 1032 offsetof(struct rt6_info, rt6i_src), 1033 allow_create, replace_required, sernum); 1034 1035 if (IS_ERR(sn)) { 1036 err = PTR_ERR(sn); 1037 goto st_failure; 1038 } 1039 } 1040 1041 if (!fn->leaf) { 1042 fn->leaf = rt; 1043 atomic_inc(&rt->rt6i_ref); 1044 } 1045 fn = sn; 1046 } 1047 #endif 1048 1049 err = fib6_add_rt2node(fn, rt, info, mxc); 1050 if (!err) { 1051 fib6_start_gc(info->nl_net, rt); 1052 if (!(rt->rt6i_flags & RTF_CACHE)) 1053 fib6_prune_clones(info->nl_net, pn); 1054 rt->dst.flags &= ~DST_NOCACHE; 1055 } 1056 1057 out: 1058 if (err) { 1059 #ifdef CONFIG_IPV6_SUBTREES 1060 /* 1061 * If fib6_add_1 has cleared the old leaf pointer in the 1062 * super-tree leaf node we have to find a new one for it. 1063 */ 1064 if (pn != fn && pn->leaf == rt) { 1065 pn->leaf = NULL; 1066 atomic_dec(&rt->rt6i_ref); 1067 } 1068 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 1069 pn->leaf = fib6_find_prefix(info->nl_net, pn); 1070 #if RT6_DEBUG >= 2 1071 if (!pn->leaf) { 1072 WARN_ON(pn->leaf == NULL); 1073 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 1074 } 1075 #endif 1076 atomic_inc(&pn->leaf->rt6i_ref); 1077 } 1078 #endif 1079 if (!(rt->dst.flags & DST_NOCACHE)) 1080 dst_free(&rt->dst); 1081 } 1082 return err; 1083 1084 #ifdef CONFIG_IPV6_SUBTREES 1085 /* Subtree creation failed, probably main tree node 1086 is orphan. If it is, shoot it. 1087 */ 1088 st_failure: 1089 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 1090 fib6_repair_tree(info->nl_net, fn); 1091 if (!(rt->dst.flags & DST_NOCACHE)) 1092 dst_free(&rt->dst); 1093 return err; 1094 #endif 1095 } 1096 1097 /* 1098 * Routing tree lookup 1099 * 1100 */ 1101 1102 struct lookup_args { 1103 int offset; /* key offset on rt6_info */ 1104 const struct in6_addr *addr; /* search key */ 1105 }; 1106 1107 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1108 struct lookup_args *args) 1109 { 1110 struct fib6_node *fn; 1111 __be32 dir; 1112 1113 if (unlikely(args->offset == 0)) 1114 return NULL; 1115 1116 /* 1117 * Descend on a tree 1118 */ 1119 1120 fn = root; 1121 1122 for (;;) { 1123 struct fib6_node *next; 1124 1125 dir = addr_bit_set(args->addr, fn->fn_bit); 1126 1127 next = dir ? fn->right : fn->left; 1128 1129 if (next) { 1130 fn = next; 1131 continue; 1132 } 1133 break; 1134 } 1135 1136 while (fn) { 1137 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 1138 struct rt6key *key; 1139 1140 key = (struct rt6key *) ((u8 *) fn->leaf + 1141 args->offset); 1142 1143 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1144 #ifdef CONFIG_IPV6_SUBTREES 1145 if (fn->subtree) { 1146 struct fib6_node *sfn; 1147 sfn = fib6_lookup_1(fn->subtree, 1148 args + 1); 1149 if (!sfn) 1150 goto backtrack; 1151 fn = sfn; 1152 } 1153 #endif 1154 if (fn->fn_flags & RTN_RTINFO) 1155 return fn; 1156 } 1157 } 1158 #ifdef CONFIG_IPV6_SUBTREES 1159 backtrack: 1160 #endif 1161 if (fn->fn_flags & RTN_ROOT) 1162 break; 1163 1164 fn = fn->parent; 1165 } 1166 1167 return NULL; 1168 } 1169 1170 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1171 const struct in6_addr *saddr) 1172 { 1173 struct fib6_node *fn; 1174 struct lookup_args args[] = { 1175 { 1176 .offset = offsetof(struct rt6_info, rt6i_dst), 1177 .addr = daddr, 1178 }, 1179 #ifdef CONFIG_IPV6_SUBTREES 1180 { 1181 .offset = offsetof(struct rt6_info, rt6i_src), 1182 .addr = saddr, 1183 }, 1184 #endif 1185 { 1186 .offset = 0, /* sentinel */ 1187 } 1188 }; 1189 1190 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1191 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1192 fn = root; 1193 1194 return fn; 1195 } 1196 1197 /* 1198 * Get node with specified destination prefix (and source prefix, 1199 * if subtrees are used) 1200 */ 1201 1202 1203 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1204 const struct in6_addr *addr, 1205 int plen, int offset) 1206 { 1207 struct fib6_node *fn; 1208 1209 for (fn = root; fn ; ) { 1210 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 1211 1212 /* 1213 * Prefix match 1214 */ 1215 if (plen < fn->fn_bit || 1216 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1217 return NULL; 1218 1219 if (plen == fn->fn_bit) 1220 return fn; 1221 1222 /* 1223 * We have more bits to go 1224 */ 1225 if (addr_bit_set(addr, fn->fn_bit)) 1226 fn = fn->right; 1227 else 1228 fn = fn->left; 1229 } 1230 return NULL; 1231 } 1232 1233 struct fib6_node *fib6_locate(struct fib6_node *root, 1234 const struct in6_addr *daddr, int dst_len, 1235 const struct in6_addr *saddr, int src_len) 1236 { 1237 struct fib6_node *fn; 1238 1239 fn = fib6_locate_1(root, daddr, dst_len, 1240 offsetof(struct rt6_info, rt6i_dst)); 1241 1242 #ifdef CONFIG_IPV6_SUBTREES 1243 if (src_len) { 1244 WARN_ON(saddr == NULL); 1245 if (fn && fn->subtree) 1246 fn = fib6_locate_1(fn->subtree, saddr, src_len, 1247 offsetof(struct rt6_info, rt6i_src)); 1248 } 1249 #endif 1250 1251 if (fn && fn->fn_flags & RTN_RTINFO) 1252 return fn; 1253 1254 return NULL; 1255 } 1256 1257 1258 /* 1259 * Deletion 1260 * 1261 */ 1262 1263 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 1264 { 1265 if (fn->fn_flags & RTN_ROOT) 1266 return net->ipv6.ip6_null_entry; 1267 1268 while (fn) { 1269 if (fn->left) 1270 return fn->left->leaf; 1271 if (fn->right) 1272 return fn->right->leaf; 1273 1274 fn = FIB6_SUBTREE(fn); 1275 } 1276 return NULL; 1277 } 1278 1279 /* 1280 * Called to trim the tree of intermediate nodes when possible. "fn" 1281 * is the node we want to try and remove. 1282 */ 1283 1284 static struct fib6_node *fib6_repair_tree(struct net *net, 1285 struct fib6_node *fn) 1286 { 1287 int children; 1288 int nstate; 1289 struct fib6_node *child, *pn; 1290 struct fib6_walker *w; 1291 int iter = 0; 1292 1293 for (;;) { 1294 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1295 iter++; 1296 1297 WARN_ON(fn->fn_flags & RTN_RTINFO); 1298 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1299 WARN_ON(fn->leaf); 1300 1301 children = 0; 1302 child = NULL; 1303 if (fn->right) 1304 child = fn->right, children |= 1; 1305 if (fn->left) 1306 child = fn->left, children |= 2; 1307 1308 if (children == 3 || FIB6_SUBTREE(fn) 1309 #ifdef CONFIG_IPV6_SUBTREES 1310 /* Subtree root (i.e. fn) may have one child */ 1311 || (children && fn->fn_flags & RTN_ROOT) 1312 #endif 1313 ) { 1314 fn->leaf = fib6_find_prefix(net, fn); 1315 #if RT6_DEBUG >= 2 1316 if (!fn->leaf) { 1317 WARN_ON(!fn->leaf); 1318 fn->leaf = net->ipv6.ip6_null_entry; 1319 } 1320 #endif 1321 atomic_inc(&fn->leaf->rt6i_ref); 1322 return fn->parent; 1323 } 1324 1325 pn = fn->parent; 1326 #ifdef CONFIG_IPV6_SUBTREES 1327 if (FIB6_SUBTREE(pn) == fn) { 1328 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1329 FIB6_SUBTREE(pn) = NULL; 1330 nstate = FWS_L; 1331 } else { 1332 WARN_ON(fn->fn_flags & RTN_ROOT); 1333 #endif 1334 if (pn->right == fn) 1335 pn->right = child; 1336 else if (pn->left == fn) 1337 pn->left = child; 1338 #if RT6_DEBUG >= 2 1339 else 1340 WARN_ON(1); 1341 #endif 1342 if (child) 1343 child->parent = pn; 1344 nstate = FWS_R; 1345 #ifdef CONFIG_IPV6_SUBTREES 1346 } 1347 #endif 1348 1349 read_lock(&net->ipv6.fib6_walker_lock); 1350 FOR_WALKERS(net, w) { 1351 if (!child) { 1352 if (w->root == fn) { 1353 w->root = w->node = NULL; 1354 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1355 } else if (w->node == fn) { 1356 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1357 w->node = pn; 1358 w->state = nstate; 1359 } 1360 } else { 1361 if (w->root == fn) { 1362 w->root = child; 1363 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1364 } 1365 if (w->node == fn) { 1366 w->node = child; 1367 if (children&2) { 1368 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1369 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1370 } else { 1371 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1372 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1373 } 1374 } 1375 } 1376 } 1377 read_unlock(&net->ipv6.fib6_walker_lock); 1378 1379 node_free(fn); 1380 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1381 return pn; 1382 1383 rt6_release(pn->leaf); 1384 pn->leaf = NULL; 1385 fn = pn; 1386 } 1387 } 1388 1389 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1390 struct nl_info *info) 1391 { 1392 struct fib6_walker *w; 1393 struct rt6_info *rt = *rtp; 1394 struct net *net = info->nl_net; 1395 1396 RT6_TRACE("fib6_del_route\n"); 1397 1398 /* Unlink it */ 1399 *rtp = rt->dst.rt6_next; 1400 rt->rt6i_node = NULL; 1401 net->ipv6.rt6_stats->fib_rt_entries--; 1402 net->ipv6.rt6_stats->fib_discarded_routes++; 1403 1404 /* Reset round-robin state, if necessary */ 1405 if (fn->rr_ptr == rt) 1406 fn->rr_ptr = NULL; 1407 1408 /* Remove this entry from other siblings */ 1409 if (rt->rt6i_nsiblings) { 1410 struct rt6_info *sibling, *next_sibling; 1411 1412 list_for_each_entry_safe(sibling, next_sibling, 1413 &rt->rt6i_siblings, rt6i_siblings) 1414 sibling->rt6i_nsiblings--; 1415 rt->rt6i_nsiblings = 0; 1416 list_del_init(&rt->rt6i_siblings); 1417 } 1418 1419 /* Adjust walkers */ 1420 read_lock(&net->ipv6.fib6_walker_lock); 1421 FOR_WALKERS(net, w) { 1422 if (w->state == FWS_C && w->leaf == rt) { 1423 RT6_TRACE("walker %p adjusted by delroute\n", w); 1424 w->leaf = rt->dst.rt6_next; 1425 if (!w->leaf) 1426 w->state = FWS_U; 1427 } 1428 } 1429 read_unlock(&net->ipv6.fib6_walker_lock); 1430 1431 rt->dst.rt6_next = NULL; 1432 1433 /* If it was last route, expunge its radix tree node */ 1434 if (!fn->leaf) { 1435 fn->fn_flags &= ~RTN_RTINFO; 1436 net->ipv6.rt6_stats->fib_route_nodes--; 1437 fn = fib6_repair_tree(net, fn); 1438 } 1439 1440 fib6_purge_rt(rt, fn, net); 1441 1442 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1443 rt6_release(rt); 1444 } 1445 1446 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1447 { 1448 struct net *net = info->nl_net; 1449 struct fib6_node *fn = rt->rt6i_node; 1450 struct rt6_info **rtp; 1451 1452 #if RT6_DEBUG >= 2 1453 if (rt->dst.obsolete > 0) { 1454 WARN_ON(fn); 1455 return -ENOENT; 1456 } 1457 #endif 1458 if (!fn || rt == net->ipv6.ip6_null_entry) 1459 return -ENOENT; 1460 1461 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1462 1463 if (!(rt->rt6i_flags & RTF_CACHE)) { 1464 struct fib6_node *pn = fn; 1465 #ifdef CONFIG_IPV6_SUBTREES 1466 /* clones of this route might be in another subtree */ 1467 if (rt->rt6i_src.plen) { 1468 while (!(pn->fn_flags & RTN_ROOT)) 1469 pn = pn->parent; 1470 pn = pn->parent; 1471 } 1472 #endif 1473 fib6_prune_clones(info->nl_net, pn); 1474 } 1475 1476 /* 1477 * Walk the leaf entries looking for ourself 1478 */ 1479 1480 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) { 1481 if (*rtp == rt) { 1482 fib6_del_route(fn, rtp, info); 1483 return 0; 1484 } 1485 } 1486 return -ENOENT; 1487 } 1488 1489 /* 1490 * Tree traversal function. 1491 * 1492 * Certainly, it is not interrupt safe. 1493 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1494 * It means, that we can modify tree during walking 1495 * and use this function for garbage collection, clone pruning, 1496 * cleaning tree when a device goes down etc. etc. 1497 * 1498 * It guarantees that every node will be traversed, 1499 * and that it will be traversed only once. 1500 * 1501 * Callback function w->func may return: 1502 * 0 -> continue walking. 1503 * positive value -> walking is suspended (used by tree dumps, 1504 * and probably by gc, if it will be split to several slices) 1505 * negative value -> terminate walking. 1506 * 1507 * The function itself returns: 1508 * 0 -> walk is complete. 1509 * >0 -> walk is incomplete (i.e. suspended) 1510 * <0 -> walk is terminated by an error. 1511 */ 1512 1513 static int fib6_walk_continue(struct fib6_walker *w) 1514 { 1515 struct fib6_node *fn, *pn; 1516 1517 for (;;) { 1518 fn = w->node; 1519 if (!fn) 1520 return 0; 1521 1522 if (w->prune && fn != w->root && 1523 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) { 1524 w->state = FWS_C; 1525 w->leaf = fn->leaf; 1526 } 1527 switch (w->state) { 1528 #ifdef CONFIG_IPV6_SUBTREES 1529 case FWS_S: 1530 if (FIB6_SUBTREE(fn)) { 1531 w->node = FIB6_SUBTREE(fn); 1532 continue; 1533 } 1534 w->state = FWS_L; 1535 #endif 1536 case FWS_L: 1537 if (fn->left) { 1538 w->node = fn->left; 1539 w->state = FWS_INIT; 1540 continue; 1541 } 1542 w->state = FWS_R; 1543 case FWS_R: 1544 if (fn->right) { 1545 w->node = fn->right; 1546 w->state = FWS_INIT; 1547 continue; 1548 } 1549 w->state = FWS_C; 1550 w->leaf = fn->leaf; 1551 case FWS_C: 1552 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1553 int err; 1554 1555 if (w->skip) { 1556 w->skip--; 1557 goto skip; 1558 } 1559 1560 err = w->func(w); 1561 if (err) 1562 return err; 1563 1564 w->count++; 1565 continue; 1566 } 1567 skip: 1568 w->state = FWS_U; 1569 case FWS_U: 1570 if (fn == w->root) 1571 return 0; 1572 pn = fn->parent; 1573 w->node = pn; 1574 #ifdef CONFIG_IPV6_SUBTREES 1575 if (FIB6_SUBTREE(pn) == fn) { 1576 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1577 w->state = FWS_L; 1578 continue; 1579 } 1580 #endif 1581 if (pn->left == fn) { 1582 w->state = FWS_R; 1583 continue; 1584 } 1585 if (pn->right == fn) { 1586 w->state = FWS_C; 1587 w->leaf = w->node->leaf; 1588 continue; 1589 } 1590 #if RT6_DEBUG >= 2 1591 WARN_ON(1); 1592 #endif 1593 } 1594 } 1595 } 1596 1597 static int fib6_walk(struct net *net, struct fib6_walker *w) 1598 { 1599 int res; 1600 1601 w->state = FWS_INIT; 1602 w->node = w->root; 1603 1604 fib6_walker_link(net, w); 1605 res = fib6_walk_continue(w); 1606 if (res <= 0) 1607 fib6_walker_unlink(net, w); 1608 return res; 1609 } 1610 1611 static int fib6_clean_node(struct fib6_walker *w) 1612 { 1613 int res; 1614 struct rt6_info *rt; 1615 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1616 struct nl_info info = { 1617 .nl_net = c->net, 1618 }; 1619 1620 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1621 w->node->fn_sernum != c->sernum) 1622 w->node->fn_sernum = c->sernum; 1623 1624 if (!c->func) { 1625 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1626 w->leaf = NULL; 1627 return 0; 1628 } 1629 1630 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 1631 res = c->func(rt, c->arg); 1632 if (res < 0) { 1633 w->leaf = rt; 1634 res = fib6_del(rt, &info); 1635 if (res) { 1636 #if RT6_DEBUG >= 2 1637 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1638 __func__, rt, rt->rt6i_node, res); 1639 #endif 1640 continue; 1641 } 1642 return 0; 1643 } 1644 WARN_ON(res != 0); 1645 } 1646 w->leaf = rt; 1647 return 0; 1648 } 1649 1650 /* 1651 * Convenient frontend to tree walker. 1652 * 1653 * func is called on each route. 1654 * It may return -1 -> delete this route. 1655 * 0 -> continue walking 1656 * 1657 * prune==1 -> only immediate children of node (certainly, 1658 * ignoring pure split nodes) will be scanned. 1659 */ 1660 1661 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1662 int (*func)(struct rt6_info *, void *arg), 1663 bool prune, int sernum, void *arg) 1664 { 1665 struct fib6_cleaner c; 1666 1667 c.w.root = root; 1668 c.w.func = fib6_clean_node; 1669 c.w.prune = prune; 1670 c.w.count = 0; 1671 c.w.skip = 0; 1672 c.func = func; 1673 c.sernum = sernum; 1674 c.arg = arg; 1675 c.net = net; 1676 1677 fib6_walk(net, &c.w); 1678 } 1679 1680 static void __fib6_clean_all(struct net *net, 1681 int (*func)(struct rt6_info *, void *), 1682 int sernum, void *arg) 1683 { 1684 struct fib6_table *table; 1685 struct hlist_head *head; 1686 unsigned int h; 1687 1688 rcu_read_lock(); 1689 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1690 head = &net->ipv6.fib_table_hash[h]; 1691 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1692 write_lock_bh(&table->tb6_lock); 1693 fib6_clean_tree(net, &table->tb6_root, 1694 func, false, sernum, arg); 1695 write_unlock_bh(&table->tb6_lock); 1696 } 1697 } 1698 rcu_read_unlock(); 1699 } 1700 1701 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1702 void *arg) 1703 { 1704 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1705 } 1706 1707 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1708 { 1709 if (rt->rt6i_flags & RTF_CACHE) { 1710 RT6_TRACE("pruning clone %p\n", rt); 1711 return -1; 1712 } 1713 1714 return 0; 1715 } 1716 1717 static void fib6_prune_clones(struct net *net, struct fib6_node *fn) 1718 { 1719 fib6_clean_tree(net, fn, fib6_prune_clone, true, 1720 FIB6_NO_SERNUM_CHANGE, NULL); 1721 } 1722 1723 static void fib6_flush_trees(struct net *net) 1724 { 1725 int new_sernum = fib6_new_sernum(net); 1726 1727 __fib6_clean_all(net, NULL, new_sernum, NULL); 1728 } 1729 1730 /* 1731 * Garbage collection 1732 */ 1733 1734 struct fib6_gc_args 1735 { 1736 int timeout; 1737 int more; 1738 }; 1739 1740 static int fib6_age(struct rt6_info *rt, void *arg) 1741 { 1742 struct fib6_gc_args *gc_args = arg; 1743 unsigned long now = jiffies; 1744 1745 /* 1746 * check addrconf expiration here. 1747 * Routes are expired even if they are in use. 1748 * 1749 * Also age clones. Note, that clones are aged out 1750 * only if they are not in use now. 1751 */ 1752 1753 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1754 if (time_after(now, rt->dst.expires)) { 1755 RT6_TRACE("expiring %p\n", rt); 1756 return -1; 1757 } 1758 gc_args->more++; 1759 } else if (rt->rt6i_flags & RTF_CACHE) { 1760 if (atomic_read(&rt->dst.__refcnt) == 0 && 1761 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 1762 RT6_TRACE("aging clone %p\n", rt); 1763 return -1; 1764 } else if (rt->rt6i_flags & RTF_GATEWAY) { 1765 struct neighbour *neigh; 1766 __u8 neigh_flags = 0; 1767 1768 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway); 1769 if (neigh) { 1770 neigh_flags = neigh->flags; 1771 neigh_release(neigh); 1772 } 1773 if (!(neigh_flags & NTF_ROUTER)) { 1774 RT6_TRACE("purging route %p via non-router but gateway\n", 1775 rt); 1776 return -1; 1777 } 1778 } 1779 gc_args->more++; 1780 } 1781 1782 return 0; 1783 } 1784 1785 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 1786 { 1787 struct fib6_gc_args gc_args; 1788 unsigned long now; 1789 1790 if (force) { 1791 spin_lock_bh(&net->ipv6.fib6_gc_lock); 1792 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 1793 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1794 return; 1795 } 1796 gc_args.timeout = expires ? (int)expires : 1797 net->ipv6.sysctl.ip6_rt_gc_interval; 1798 1799 gc_args.more = icmp6_dst_gc(); 1800 1801 fib6_clean_all(net, fib6_age, &gc_args); 1802 now = jiffies; 1803 net->ipv6.ip6_rt_last_gc = now; 1804 1805 if (gc_args.more) 1806 mod_timer(&net->ipv6.ip6_fib_timer, 1807 round_jiffies(now 1808 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1809 else 1810 del_timer(&net->ipv6.ip6_fib_timer); 1811 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 1812 } 1813 1814 static void fib6_gc_timer_cb(unsigned long arg) 1815 { 1816 fib6_run_gc(0, (struct net *)arg, true); 1817 } 1818 1819 static int __net_init fib6_net_init(struct net *net) 1820 { 1821 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 1822 1823 spin_lock_init(&net->ipv6.fib6_gc_lock); 1824 rwlock_init(&net->ipv6.fib6_walker_lock); 1825 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 1826 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1827 1828 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1829 if (!net->ipv6.rt6_stats) 1830 goto out_timer; 1831 1832 /* Avoid false sharing : Use at least a full cache line */ 1833 size = max_t(size_t, size, L1_CACHE_BYTES); 1834 1835 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 1836 if (!net->ipv6.fib_table_hash) 1837 goto out_rt6_stats; 1838 1839 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1840 GFP_KERNEL); 1841 if (!net->ipv6.fib6_main_tbl) 1842 goto out_fib_table_hash; 1843 1844 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1845 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1846 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1847 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1848 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 1849 1850 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1851 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1852 GFP_KERNEL); 1853 if (!net->ipv6.fib6_local_tbl) 1854 goto out_fib6_main_tbl; 1855 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1856 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1857 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1858 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1859 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 1860 #endif 1861 fib6_tables_init(net); 1862 1863 return 0; 1864 1865 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1866 out_fib6_main_tbl: 1867 kfree(net->ipv6.fib6_main_tbl); 1868 #endif 1869 out_fib_table_hash: 1870 kfree(net->ipv6.fib_table_hash); 1871 out_rt6_stats: 1872 kfree(net->ipv6.rt6_stats); 1873 out_timer: 1874 return -ENOMEM; 1875 } 1876 1877 static void fib6_net_exit(struct net *net) 1878 { 1879 rt6_ifdown(net, NULL); 1880 del_timer_sync(&net->ipv6.ip6_fib_timer); 1881 1882 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1883 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers); 1884 kfree(net->ipv6.fib6_local_tbl); 1885 #endif 1886 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers); 1887 kfree(net->ipv6.fib6_main_tbl); 1888 kfree(net->ipv6.fib_table_hash); 1889 kfree(net->ipv6.rt6_stats); 1890 } 1891 1892 static struct pernet_operations fib6_net_ops = { 1893 .init = fib6_net_init, 1894 .exit = fib6_net_exit, 1895 }; 1896 1897 int __init fib6_init(void) 1898 { 1899 int ret = -ENOMEM; 1900 1901 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1902 sizeof(struct fib6_node), 1903 0, SLAB_HWCACHE_ALIGN, 1904 NULL); 1905 if (!fib6_node_kmem) 1906 goto out; 1907 1908 ret = register_pernet_subsys(&fib6_net_ops); 1909 if (ret) 1910 goto out_kmem_cache_create; 1911 1912 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 1913 NULL); 1914 if (ret) 1915 goto out_unregister_subsys; 1916 1917 __fib6_flush_trees = fib6_flush_trees; 1918 out: 1919 return ret; 1920 1921 out_unregister_subsys: 1922 unregister_pernet_subsys(&fib6_net_ops); 1923 out_kmem_cache_create: 1924 kmem_cache_destroy(fib6_node_kmem); 1925 goto out; 1926 } 1927 1928 void fib6_gc_cleanup(void) 1929 { 1930 unregister_pernet_subsys(&fib6_net_ops); 1931 kmem_cache_destroy(fib6_node_kmem); 1932 } 1933 1934 #ifdef CONFIG_PROC_FS 1935 1936 struct ipv6_route_iter { 1937 struct seq_net_private p; 1938 struct fib6_walker w; 1939 loff_t skip; 1940 struct fib6_table *tbl; 1941 int sernum; 1942 }; 1943 1944 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 1945 { 1946 struct rt6_info *rt = v; 1947 struct ipv6_route_iter *iter = seq->private; 1948 1949 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 1950 1951 #ifdef CONFIG_IPV6_SUBTREES 1952 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 1953 #else 1954 seq_puts(seq, "00000000000000000000000000000000 00 "); 1955 #endif 1956 if (rt->rt6i_flags & RTF_GATEWAY) 1957 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 1958 else 1959 seq_puts(seq, "00000000000000000000000000000000"); 1960 1961 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 1962 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 1963 rt->dst.__use, rt->rt6i_flags, 1964 rt->dst.dev ? rt->dst.dev->name : ""); 1965 iter->w.leaf = NULL; 1966 return 0; 1967 } 1968 1969 static int ipv6_route_yield(struct fib6_walker *w) 1970 { 1971 struct ipv6_route_iter *iter = w->args; 1972 1973 if (!iter->skip) 1974 return 1; 1975 1976 do { 1977 iter->w.leaf = iter->w.leaf->dst.rt6_next; 1978 iter->skip--; 1979 if (!iter->skip && iter->w.leaf) 1980 return 1; 1981 } while (iter->w.leaf); 1982 1983 return 0; 1984 } 1985 1986 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 1987 struct net *net) 1988 { 1989 memset(&iter->w, 0, sizeof(iter->w)); 1990 iter->w.func = ipv6_route_yield; 1991 iter->w.root = &iter->tbl->tb6_root; 1992 iter->w.state = FWS_INIT; 1993 iter->w.node = iter->w.root; 1994 iter->w.args = iter; 1995 iter->sernum = iter->w.root->fn_sernum; 1996 INIT_LIST_HEAD(&iter->w.lh); 1997 fib6_walker_link(net, &iter->w); 1998 } 1999 2000 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2001 struct net *net) 2002 { 2003 unsigned int h; 2004 struct hlist_node *node; 2005 2006 if (tbl) { 2007 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2008 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2009 } else { 2010 h = 0; 2011 node = NULL; 2012 } 2013 2014 while (!node && h < FIB6_TABLE_HASHSZ) { 2015 node = rcu_dereference_bh( 2016 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2017 } 2018 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2019 } 2020 2021 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2022 { 2023 if (iter->sernum != iter->w.root->fn_sernum) { 2024 iter->sernum = iter->w.root->fn_sernum; 2025 iter->w.state = FWS_INIT; 2026 iter->w.node = iter->w.root; 2027 WARN_ON(iter->w.skip); 2028 iter->w.skip = iter->w.count; 2029 } 2030 } 2031 2032 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2033 { 2034 int r; 2035 struct rt6_info *n; 2036 struct net *net = seq_file_net(seq); 2037 struct ipv6_route_iter *iter = seq->private; 2038 2039 if (!v) 2040 goto iter_table; 2041 2042 n = ((struct rt6_info *)v)->dst.rt6_next; 2043 if (n) { 2044 ++*pos; 2045 return n; 2046 } 2047 2048 iter_table: 2049 ipv6_route_check_sernum(iter); 2050 read_lock(&iter->tbl->tb6_lock); 2051 r = fib6_walk_continue(&iter->w); 2052 read_unlock(&iter->tbl->tb6_lock); 2053 if (r > 0) { 2054 if (v) 2055 ++*pos; 2056 return iter->w.leaf; 2057 } else if (r < 0) { 2058 fib6_walker_unlink(net, &iter->w); 2059 return NULL; 2060 } 2061 fib6_walker_unlink(net, &iter->w); 2062 2063 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2064 if (!iter->tbl) 2065 return NULL; 2066 2067 ipv6_route_seq_setup_walk(iter, net); 2068 goto iter_table; 2069 } 2070 2071 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2072 __acquires(RCU_BH) 2073 { 2074 struct net *net = seq_file_net(seq); 2075 struct ipv6_route_iter *iter = seq->private; 2076 2077 rcu_read_lock_bh(); 2078 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2079 iter->skip = *pos; 2080 2081 if (iter->tbl) { 2082 ipv6_route_seq_setup_walk(iter, net); 2083 return ipv6_route_seq_next(seq, NULL, pos); 2084 } else { 2085 return NULL; 2086 } 2087 } 2088 2089 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2090 { 2091 struct fib6_walker *w = &iter->w; 2092 return w->node && !(w->state == FWS_U && w->node == w->root); 2093 } 2094 2095 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2096 __releases(RCU_BH) 2097 { 2098 struct net *net = seq_file_net(seq); 2099 struct ipv6_route_iter *iter = seq->private; 2100 2101 if (ipv6_route_iter_active(iter)) 2102 fib6_walker_unlink(net, &iter->w); 2103 2104 rcu_read_unlock_bh(); 2105 } 2106 2107 static const struct seq_operations ipv6_route_seq_ops = { 2108 .start = ipv6_route_seq_start, 2109 .next = ipv6_route_seq_next, 2110 .stop = ipv6_route_seq_stop, 2111 .show = ipv6_route_seq_show 2112 }; 2113 2114 int ipv6_route_open(struct inode *inode, struct file *file) 2115 { 2116 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2117 sizeof(struct ipv6_route_iter)); 2118 } 2119 2120 #endif /* CONFIG_PROC_FS */ 2121