1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* 15 * Changes: 16 * Yuji SEKIYA @USAGI: Support default route on router node; 17 * remove ip6_null_entry from the top of 18 * routing table. 19 * Ville Nuorvala: Fixed routing subtrees. 20 */ 21 #include <linux/errno.h> 22 #include <linux/types.h> 23 #include <linux/net.h> 24 #include <linux/route.h> 25 #include <linux/netdevice.h> 26 #include <linux/in6.h> 27 #include <linux/init.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <net/ipv6.h> 32 #include <net/ndisc.h> 33 #include <net/addrconf.h> 34 35 #include <net/ip6_fib.h> 36 #include <net/ip6_route.h> 37 38 #define RT6_DEBUG 2 39 40 #if RT6_DEBUG >= 3 41 #define RT6_TRACE(x...) printk(KERN_DEBUG x) 42 #else 43 #define RT6_TRACE(x...) do { ; } while (0) 44 #endif 45 46 static struct kmem_cache * fib6_node_kmem __read_mostly; 47 48 enum fib_walk_state_t 49 { 50 #ifdef CONFIG_IPV6_SUBTREES 51 FWS_S, 52 #endif 53 FWS_L, 54 FWS_R, 55 FWS_C, 56 FWS_U 57 }; 58 59 struct fib6_cleaner_t 60 { 61 struct fib6_walker_t w; 62 struct net *net; 63 int (*func)(struct rt6_info *, void *arg); 64 void *arg; 65 }; 66 67 static DEFINE_RWLOCK(fib6_walker_lock); 68 69 #ifdef CONFIG_IPV6_SUBTREES 70 #define FWS_INIT FWS_S 71 #else 72 #define FWS_INIT FWS_L 73 #endif 74 75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 76 struct rt6_info *rt); 77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 79 static int fib6_walk(struct fib6_walker_t *w); 80 static int fib6_walk_continue(struct fib6_walker_t *w); 81 82 /* 83 * A routing update causes an increase of the serial number on the 84 * affected subtree. This allows for cached routes to be asynchronously 85 * tested when modifications are made to the destination cache as a 86 * result of redirects, path MTU changes, etc. 87 */ 88 89 static __u32 rt_sernum; 90 91 static void fib6_gc_timer_cb(unsigned long arg); 92 93 static LIST_HEAD(fib6_walkers); 94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh) 95 96 static inline void fib6_walker_link(struct fib6_walker_t *w) 97 { 98 write_lock_bh(&fib6_walker_lock); 99 list_add(&w->lh, &fib6_walkers); 100 write_unlock_bh(&fib6_walker_lock); 101 } 102 103 static inline void fib6_walker_unlink(struct fib6_walker_t *w) 104 { 105 write_lock_bh(&fib6_walker_lock); 106 list_del(&w->lh); 107 write_unlock_bh(&fib6_walker_lock); 108 } 109 static __inline__ u32 fib6_new_sernum(void) 110 { 111 u32 n = ++rt_sernum; 112 if ((__s32)n <= 0) 113 rt_sernum = n = 1; 114 return n; 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 static __inline__ struct fib6_node * node_alloc(void) 148 { 149 struct fib6_node *fn; 150 151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 152 153 return fn; 154 } 155 156 static __inline__ void node_free(struct fib6_node * fn) 157 { 158 kmem_cache_free(fib6_node_kmem, fn); 159 } 160 161 static __inline__ void rt6_release(struct rt6_info *rt) 162 { 163 if (atomic_dec_and_test(&rt->rt6i_ref)) 164 dst_free(&rt->dst); 165 } 166 167 static void fib6_link_table(struct net *net, struct fib6_table *tb) 168 { 169 unsigned int h; 170 171 /* 172 * Initialize table lock at a single place to give lockdep a key, 173 * tables aren't visible prior to being linked to the list. 174 */ 175 rwlock_init(&tb->tb6_lock); 176 177 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 178 179 /* 180 * No protection necessary, this is the only list mutatation 181 * operation, tables never disappear once they exist. 182 */ 183 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 184 } 185 186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 187 188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 189 { 190 struct fib6_table *table; 191 192 table = kzalloc(sizeof(*table), GFP_ATOMIC); 193 if (table) { 194 table->tb6_id = id; 195 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 196 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 197 } 198 199 return table; 200 } 201 202 struct fib6_table *fib6_new_table(struct net *net, u32 id) 203 { 204 struct fib6_table *tb; 205 206 if (id == 0) 207 id = RT6_TABLE_MAIN; 208 tb = fib6_get_table(net, id); 209 if (tb) 210 return tb; 211 212 tb = fib6_alloc_table(net, id); 213 if (tb) 214 fib6_link_table(net, tb); 215 216 return tb; 217 } 218 219 struct fib6_table *fib6_get_table(struct net *net, u32 id) 220 { 221 struct fib6_table *tb; 222 struct hlist_head *head; 223 struct hlist_node *node; 224 unsigned int h; 225 226 if (id == 0) 227 id = RT6_TABLE_MAIN; 228 h = id & (FIB6_TABLE_HASHSZ - 1); 229 rcu_read_lock(); 230 head = &net->ipv6.fib_table_hash[h]; 231 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 232 if (tb->tb6_id == id) { 233 rcu_read_unlock(); 234 return tb; 235 } 236 } 237 rcu_read_unlock(); 238 239 return NULL; 240 } 241 242 static void __net_init fib6_tables_init(struct net *net) 243 { 244 fib6_link_table(net, net->ipv6.fib6_main_tbl); 245 fib6_link_table(net, net->ipv6.fib6_local_tbl); 246 } 247 #else 248 249 struct fib6_table *fib6_new_table(struct net *net, u32 id) 250 { 251 return fib6_get_table(net, id); 252 } 253 254 struct fib6_table *fib6_get_table(struct net *net, u32 id) 255 { 256 return net->ipv6.fib6_main_tbl; 257 } 258 259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 260 int flags, pol_lookup_t lookup) 261 { 262 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 263 } 264 265 static void __net_init fib6_tables_init(struct net *net) 266 { 267 fib6_link_table(net, net->ipv6.fib6_main_tbl); 268 } 269 270 #endif 271 272 static int fib6_dump_node(struct fib6_walker_t *w) 273 { 274 int res; 275 struct rt6_info *rt; 276 277 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 278 res = rt6_dump_route(rt, w->args); 279 if (res < 0) { 280 /* Frame is full, suspend walking */ 281 w->leaf = rt; 282 return 1; 283 } 284 WARN_ON(res == 0); 285 } 286 w->leaf = NULL; 287 return 0; 288 } 289 290 static void fib6_dump_end(struct netlink_callback *cb) 291 { 292 struct fib6_walker_t *w = (void*)cb->args[2]; 293 294 if (w) { 295 if (cb->args[4]) { 296 cb->args[4] = 0; 297 fib6_walker_unlink(w); 298 } 299 cb->args[2] = 0; 300 kfree(w); 301 } 302 cb->done = (void*)cb->args[3]; 303 cb->args[1] = 3; 304 } 305 306 static int fib6_dump_done(struct netlink_callback *cb) 307 { 308 fib6_dump_end(cb); 309 return cb->done ? cb->done(cb) : 0; 310 } 311 312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 313 struct netlink_callback *cb) 314 { 315 struct fib6_walker_t *w; 316 int res; 317 318 w = (void *)cb->args[2]; 319 w->root = &table->tb6_root; 320 321 if (cb->args[4] == 0) { 322 w->count = 0; 323 w->skip = 0; 324 325 read_lock_bh(&table->tb6_lock); 326 res = fib6_walk(w); 327 read_unlock_bh(&table->tb6_lock); 328 if (res > 0) { 329 cb->args[4] = 1; 330 cb->args[5] = w->root->fn_sernum; 331 } 332 } else { 333 if (cb->args[5] != w->root->fn_sernum) { 334 /* Begin at the root if the tree changed */ 335 cb->args[5] = w->root->fn_sernum; 336 w->state = FWS_INIT; 337 w->node = w->root; 338 w->skip = w->count; 339 } else 340 w->skip = 0; 341 342 read_lock_bh(&table->tb6_lock); 343 res = fib6_walk_continue(w); 344 read_unlock_bh(&table->tb6_lock); 345 if (res <= 0) { 346 fib6_walker_unlink(w); 347 cb->args[4] = 0; 348 } 349 } 350 351 return res; 352 } 353 354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 355 { 356 struct net *net = sock_net(skb->sk); 357 unsigned int h, s_h; 358 unsigned int e = 0, s_e; 359 struct rt6_rtnl_dump_arg arg; 360 struct fib6_walker_t *w; 361 struct fib6_table *tb; 362 struct hlist_node *node; 363 struct hlist_head *head; 364 int res = 0; 365 366 s_h = cb->args[0]; 367 s_e = cb->args[1]; 368 369 w = (void *)cb->args[2]; 370 if (!w) { 371 /* New dump: 372 * 373 * 1. hook callback destructor. 374 */ 375 cb->args[3] = (long)cb->done; 376 cb->done = fib6_dump_done; 377 378 /* 379 * 2. allocate and initialize walker. 380 */ 381 w = kzalloc(sizeof(*w), GFP_ATOMIC); 382 if (!w) 383 return -ENOMEM; 384 w->func = fib6_dump_node; 385 cb->args[2] = (long)w; 386 } 387 388 arg.skb = skb; 389 arg.cb = cb; 390 arg.net = net; 391 w->args = &arg; 392 393 rcu_read_lock(); 394 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 395 e = 0; 396 head = &net->ipv6.fib_table_hash[h]; 397 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 398 if (e < s_e) 399 goto next; 400 res = fib6_dump_table(tb, skb, cb); 401 if (res != 0) 402 goto out; 403 next: 404 e++; 405 } 406 } 407 out: 408 rcu_read_unlock(); 409 cb->args[1] = e; 410 cb->args[0] = h; 411 412 res = res < 0 ? res : skb->len; 413 if (res <= 0) 414 fib6_dump_end(cb); 415 return res; 416 } 417 418 /* 419 * Routing Table 420 * 421 * return the appropriate node for a routing tree "add" operation 422 * by either creating and inserting or by returning an existing 423 * node. 424 */ 425 426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, 427 int addrlen, int plen, 428 int offset, int allow_create, 429 int replace_required) 430 { 431 struct fib6_node *fn, *in, *ln; 432 struct fib6_node *pn = NULL; 433 struct rt6key *key; 434 int bit; 435 __be32 dir = 0; 436 __u32 sernum = fib6_new_sernum(); 437 438 RT6_TRACE("fib6_add_1\n"); 439 440 /* insert node in tree */ 441 442 fn = root; 443 444 do { 445 key = (struct rt6key *)((u8 *)fn->leaf + offset); 446 447 /* 448 * Prefix match 449 */ 450 if (plen < fn->fn_bit || 451 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 452 if (!allow_create) { 453 if (replace_required) { 454 pr_warn("IPv6: Can't replace route, " 455 "no match found\n"); 456 return ERR_PTR(-ENOENT); 457 } 458 pr_warn("IPv6: NLM_F_CREATE should be set " 459 "when creating new route\n"); 460 } 461 goto insert_above; 462 } 463 464 /* 465 * Exact match ? 466 */ 467 468 if (plen == fn->fn_bit) { 469 /* clean up an intermediate node */ 470 if (!(fn->fn_flags & RTN_RTINFO)) { 471 rt6_release(fn->leaf); 472 fn->leaf = NULL; 473 } 474 475 fn->fn_sernum = sernum; 476 477 return fn; 478 } 479 480 /* 481 * We have more bits to go 482 */ 483 484 /* Try to walk down on tree. */ 485 fn->fn_sernum = sernum; 486 dir = addr_bit_set(addr, fn->fn_bit); 487 pn = fn; 488 fn = dir ? fn->right: fn->left; 489 } while (fn); 490 491 if (!allow_create) { 492 /* We should not create new node because 493 * NLM_F_REPLACE was specified without NLM_F_CREATE 494 * I assume it is safe to require NLM_F_CREATE when 495 * REPLACE flag is used! Later we may want to remove the 496 * check for replace_required, because according 497 * to netlink specification, NLM_F_CREATE 498 * MUST be specified if new route is created. 499 * That would keep IPv6 consistent with IPv4 500 */ 501 if (replace_required) { 502 pr_warn("IPv6: Can't replace route, no match found\n"); 503 return ERR_PTR(-ENOENT); 504 } 505 pr_warn("IPv6: NLM_F_CREATE should be set " 506 "when creating new route\n"); 507 } 508 /* 509 * We walked to the bottom of tree. 510 * Create new leaf node without children. 511 */ 512 513 ln = node_alloc(); 514 515 if (!ln) 516 return NULL; 517 ln->fn_bit = plen; 518 519 ln->parent = pn; 520 ln->fn_sernum = sernum; 521 522 if (dir) 523 pn->right = ln; 524 else 525 pn->left = ln; 526 527 return ln; 528 529 530 insert_above: 531 /* 532 * split since we don't have a common prefix anymore or 533 * we have a less significant route. 534 * we've to insert an intermediate node on the list 535 * this new node will point to the one we need to create 536 * and the current 537 */ 538 539 pn = fn->parent; 540 541 /* find 1st bit in difference between the 2 addrs. 542 543 See comment in __ipv6_addr_diff: bit may be an invalid value, 544 but if it is >= plen, the value is ignored in any case. 545 */ 546 547 bit = __ipv6_addr_diff(addr, &key->addr, addrlen); 548 549 /* 550 * (intermediate)[in] 551 * / \ 552 * (new leaf node)[ln] (old node)[fn] 553 */ 554 if (plen > bit) { 555 in = node_alloc(); 556 ln = node_alloc(); 557 558 if (!in || !ln) { 559 if (in) 560 node_free(in); 561 if (ln) 562 node_free(ln); 563 return NULL; 564 } 565 566 /* 567 * new intermediate node. 568 * RTN_RTINFO will 569 * be off since that an address that chooses one of 570 * the branches would not match less specific routes 571 * in the other branch 572 */ 573 574 in->fn_bit = bit; 575 576 in->parent = pn; 577 in->leaf = fn->leaf; 578 atomic_inc(&in->leaf->rt6i_ref); 579 580 in->fn_sernum = sernum; 581 582 /* update parent pointer */ 583 if (dir) 584 pn->right = in; 585 else 586 pn->left = in; 587 588 ln->fn_bit = plen; 589 590 ln->parent = in; 591 fn->parent = in; 592 593 ln->fn_sernum = sernum; 594 595 if (addr_bit_set(addr, bit)) { 596 in->right = ln; 597 in->left = fn; 598 } else { 599 in->left = ln; 600 in->right = fn; 601 } 602 } else { /* plen <= bit */ 603 604 /* 605 * (new leaf node)[ln] 606 * / \ 607 * (old node)[fn] NULL 608 */ 609 610 ln = node_alloc(); 611 612 if (!ln) 613 return NULL; 614 615 ln->fn_bit = plen; 616 617 ln->parent = pn; 618 619 ln->fn_sernum = sernum; 620 621 if (dir) 622 pn->right = ln; 623 else 624 pn->left = ln; 625 626 if (addr_bit_set(&key->addr, plen)) 627 ln->right = fn; 628 else 629 ln->left = fn; 630 631 fn->parent = ln; 632 } 633 return ln; 634 } 635 636 /* 637 * Insert routing information in a node. 638 */ 639 640 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 641 struct nl_info *info) 642 { 643 struct rt6_info *iter = NULL; 644 struct rt6_info **ins; 645 int replace = (info->nlh && 646 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 647 int add = (!info->nlh || 648 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 649 int found = 0; 650 651 ins = &fn->leaf; 652 653 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) { 654 /* 655 * Search for duplicates 656 */ 657 658 if (iter->rt6i_metric == rt->rt6i_metric) { 659 /* 660 * Same priority level 661 */ 662 if (info->nlh && 663 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 664 return -EEXIST; 665 if (replace) { 666 found++; 667 break; 668 } 669 670 if (iter->dst.dev == rt->dst.dev && 671 iter->rt6i_idev == rt->rt6i_idev && 672 ipv6_addr_equal(&iter->rt6i_gateway, 673 &rt->rt6i_gateway)) { 674 if (!(iter->rt6i_flags & RTF_EXPIRES)) 675 return -EEXIST; 676 if (!(rt->rt6i_flags & RTF_EXPIRES)) 677 rt6_clean_expires(iter); 678 else 679 rt6_set_expires(iter, rt->dst.expires); 680 return -EEXIST; 681 } 682 } 683 684 if (iter->rt6i_metric > rt->rt6i_metric) 685 break; 686 687 ins = &iter->dst.rt6_next; 688 } 689 690 /* Reset round-robin state, if necessary */ 691 if (ins == &fn->leaf) 692 fn->rr_ptr = NULL; 693 694 /* 695 * insert node 696 */ 697 if (!replace) { 698 if (!add) 699 pr_warn("IPv6: NLM_F_CREATE should be set when creating new route\n"); 700 701 add: 702 rt->dst.rt6_next = iter; 703 *ins = rt; 704 rt->rt6i_node = fn; 705 atomic_inc(&rt->rt6i_ref); 706 inet6_rt_notify(RTM_NEWROUTE, rt, info); 707 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 708 709 if (!(fn->fn_flags & RTN_RTINFO)) { 710 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 711 fn->fn_flags |= RTN_RTINFO; 712 } 713 714 } else { 715 if (!found) { 716 if (add) 717 goto add; 718 pr_warn("IPv6: NLM_F_REPLACE set, but no existing node found!\n"); 719 return -ENOENT; 720 } 721 *ins = rt; 722 rt->rt6i_node = fn; 723 rt->dst.rt6_next = iter->dst.rt6_next; 724 atomic_inc(&rt->rt6i_ref); 725 inet6_rt_notify(RTM_NEWROUTE, rt, info); 726 rt6_release(iter); 727 if (!(fn->fn_flags & RTN_RTINFO)) { 728 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 729 fn->fn_flags |= RTN_RTINFO; 730 } 731 } 732 733 return 0; 734 } 735 736 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt) 737 { 738 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 739 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 740 mod_timer(&net->ipv6.ip6_fib_timer, 741 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 742 } 743 744 void fib6_force_start_gc(struct net *net) 745 { 746 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 747 mod_timer(&net->ipv6.ip6_fib_timer, 748 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 749 } 750 751 /* 752 * Add routing information to the routing tree. 753 * <destination addr>/<source addr> 754 * with source addr info in sub-trees 755 */ 756 757 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info) 758 { 759 struct fib6_node *fn, *pn = NULL; 760 int err = -ENOMEM; 761 int allow_create = 1; 762 int replace_required = 0; 763 764 if (info->nlh) { 765 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 766 allow_create = 0; 767 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 768 replace_required = 1; 769 } 770 if (!allow_create && !replace_required) 771 pr_warn("IPv6: RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 772 773 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), 774 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst), 775 allow_create, replace_required); 776 777 if (IS_ERR(fn)) { 778 err = PTR_ERR(fn); 779 fn = NULL; 780 } 781 782 if (!fn) 783 goto out; 784 785 pn = fn; 786 787 #ifdef CONFIG_IPV6_SUBTREES 788 if (rt->rt6i_src.plen) { 789 struct fib6_node *sn; 790 791 if (!fn->subtree) { 792 struct fib6_node *sfn; 793 794 /* 795 * Create subtree. 796 * 797 * fn[main tree] 798 * | 799 * sfn[subtree root] 800 * \ 801 * sn[new leaf node] 802 */ 803 804 /* Create subtree root node */ 805 sfn = node_alloc(); 806 if (!sfn) 807 goto st_failure; 808 809 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 810 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 811 sfn->fn_flags = RTN_ROOT; 812 sfn->fn_sernum = fib6_new_sernum(); 813 814 /* Now add the first leaf node to new subtree */ 815 816 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 817 sizeof(struct in6_addr), rt->rt6i_src.plen, 818 offsetof(struct rt6_info, rt6i_src), 819 allow_create, replace_required); 820 821 if (!sn) { 822 /* If it is failed, discard just allocated 823 root, and then (in st_failure) stale node 824 in main tree. 825 */ 826 node_free(sfn); 827 goto st_failure; 828 } 829 830 /* Now link new subtree to main tree */ 831 sfn->parent = fn; 832 fn->subtree = sfn; 833 } else { 834 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 835 sizeof(struct in6_addr), rt->rt6i_src.plen, 836 offsetof(struct rt6_info, rt6i_src), 837 allow_create, replace_required); 838 839 if (IS_ERR(sn)) { 840 err = PTR_ERR(sn); 841 sn = NULL; 842 } 843 if (!sn) 844 goto st_failure; 845 } 846 847 if (!fn->leaf) { 848 fn->leaf = rt; 849 atomic_inc(&rt->rt6i_ref); 850 } 851 fn = sn; 852 } 853 #endif 854 855 err = fib6_add_rt2node(fn, rt, info); 856 if (!err) { 857 fib6_start_gc(info->nl_net, rt); 858 if (!(rt->rt6i_flags & RTF_CACHE)) 859 fib6_prune_clones(info->nl_net, pn, rt); 860 } 861 862 out: 863 if (err) { 864 #ifdef CONFIG_IPV6_SUBTREES 865 /* 866 * If fib6_add_1 has cleared the old leaf pointer in the 867 * super-tree leaf node we have to find a new one for it. 868 */ 869 if (pn != fn && pn->leaf == rt) { 870 pn->leaf = NULL; 871 atomic_dec(&rt->rt6i_ref); 872 } 873 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 874 pn->leaf = fib6_find_prefix(info->nl_net, pn); 875 #if RT6_DEBUG >= 2 876 if (!pn->leaf) { 877 WARN_ON(pn->leaf == NULL); 878 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 879 } 880 #endif 881 atomic_inc(&pn->leaf->rt6i_ref); 882 } 883 #endif 884 dst_free(&rt->dst); 885 } 886 return err; 887 888 #ifdef CONFIG_IPV6_SUBTREES 889 /* Subtree creation failed, probably main tree node 890 is orphan. If it is, shoot it. 891 */ 892 st_failure: 893 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 894 fib6_repair_tree(info->nl_net, fn); 895 dst_free(&rt->dst); 896 return err; 897 #endif 898 } 899 900 /* 901 * Routing tree lookup 902 * 903 */ 904 905 struct lookup_args { 906 int offset; /* key offset on rt6_info */ 907 const struct in6_addr *addr; /* search key */ 908 }; 909 910 static struct fib6_node * fib6_lookup_1(struct fib6_node *root, 911 struct lookup_args *args) 912 { 913 struct fib6_node *fn; 914 __be32 dir; 915 916 if (unlikely(args->offset == 0)) 917 return NULL; 918 919 /* 920 * Descend on a tree 921 */ 922 923 fn = root; 924 925 for (;;) { 926 struct fib6_node *next; 927 928 dir = addr_bit_set(args->addr, fn->fn_bit); 929 930 next = dir ? fn->right : fn->left; 931 932 if (next) { 933 fn = next; 934 continue; 935 } 936 break; 937 } 938 939 while (fn) { 940 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 941 struct rt6key *key; 942 943 key = (struct rt6key *) ((u8 *) fn->leaf + 944 args->offset); 945 946 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 947 #ifdef CONFIG_IPV6_SUBTREES 948 if (fn->subtree) 949 fn = fib6_lookup_1(fn->subtree, args + 1); 950 #endif 951 if (!fn || fn->fn_flags & RTN_RTINFO) 952 return fn; 953 } 954 } 955 956 if (fn->fn_flags & RTN_ROOT) 957 break; 958 959 fn = fn->parent; 960 } 961 962 return NULL; 963 } 964 965 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 966 const struct in6_addr *saddr) 967 { 968 struct fib6_node *fn; 969 struct lookup_args args[] = { 970 { 971 .offset = offsetof(struct rt6_info, rt6i_dst), 972 .addr = daddr, 973 }, 974 #ifdef CONFIG_IPV6_SUBTREES 975 { 976 .offset = offsetof(struct rt6_info, rt6i_src), 977 .addr = saddr, 978 }, 979 #endif 980 { 981 .offset = 0, /* sentinel */ 982 } 983 }; 984 985 fn = fib6_lookup_1(root, daddr ? args : args + 1); 986 if (!fn || fn->fn_flags & RTN_TL_ROOT) 987 fn = root; 988 989 return fn; 990 } 991 992 /* 993 * Get node with specified destination prefix (and source prefix, 994 * if subtrees are used) 995 */ 996 997 998 static struct fib6_node * fib6_locate_1(struct fib6_node *root, 999 const struct in6_addr *addr, 1000 int plen, int offset) 1001 { 1002 struct fib6_node *fn; 1003 1004 for (fn = root; fn ; ) { 1005 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 1006 1007 /* 1008 * Prefix match 1009 */ 1010 if (plen < fn->fn_bit || 1011 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1012 return NULL; 1013 1014 if (plen == fn->fn_bit) 1015 return fn; 1016 1017 /* 1018 * We have more bits to go 1019 */ 1020 if (addr_bit_set(addr, fn->fn_bit)) 1021 fn = fn->right; 1022 else 1023 fn = fn->left; 1024 } 1025 return NULL; 1026 } 1027 1028 struct fib6_node * fib6_locate(struct fib6_node *root, 1029 const struct in6_addr *daddr, int dst_len, 1030 const struct in6_addr *saddr, int src_len) 1031 { 1032 struct fib6_node *fn; 1033 1034 fn = fib6_locate_1(root, daddr, dst_len, 1035 offsetof(struct rt6_info, rt6i_dst)); 1036 1037 #ifdef CONFIG_IPV6_SUBTREES 1038 if (src_len) { 1039 WARN_ON(saddr == NULL); 1040 if (fn && fn->subtree) 1041 fn = fib6_locate_1(fn->subtree, saddr, src_len, 1042 offsetof(struct rt6_info, rt6i_src)); 1043 } 1044 #endif 1045 1046 if (fn && fn->fn_flags & RTN_RTINFO) 1047 return fn; 1048 1049 return NULL; 1050 } 1051 1052 1053 /* 1054 * Deletion 1055 * 1056 */ 1057 1058 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 1059 { 1060 if (fn->fn_flags & RTN_ROOT) 1061 return net->ipv6.ip6_null_entry; 1062 1063 while (fn) { 1064 if (fn->left) 1065 return fn->left->leaf; 1066 if (fn->right) 1067 return fn->right->leaf; 1068 1069 fn = FIB6_SUBTREE(fn); 1070 } 1071 return NULL; 1072 } 1073 1074 /* 1075 * Called to trim the tree of intermediate nodes when possible. "fn" 1076 * is the node we want to try and remove. 1077 */ 1078 1079 static struct fib6_node *fib6_repair_tree(struct net *net, 1080 struct fib6_node *fn) 1081 { 1082 int children; 1083 int nstate; 1084 struct fib6_node *child, *pn; 1085 struct fib6_walker_t *w; 1086 int iter = 0; 1087 1088 for (;;) { 1089 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1090 iter++; 1091 1092 WARN_ON(fn->fn_flags & RTN_RTINFO); 1093 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1094 WARN_ON(fn->leaf != NULL); 1095 1096 children = 0; 1097 child = NULL; 1098 if (fn->right) child = fn->right, children |= 1; 1099 if (fn->left) child = fn->left, children |= 2; 1100 1101 if (children == 3 || FIB6_SUBTREE(fn) 1102 #ifdef CONFIG_IPV6_SUBTREES 1103 /* Subtree root (i.e. fn) may have one child */ 1104 || (children && fn->fn_flags & RTN_ROOT) 1105 #endif 1106 ) { 1107 fn->leaf = fib6_find_prefix(net, fn); 1108 #if RT6_DEBUG >= 2 1109 if (!fn->leaf) { 1110 WARN_ON(!fn->leaf); 1111 fn->leaf = net->ipv6.ip6_null_entry; 1112 } 1113 #endif 1114 atomic_inc(&fn->leaf->rt6i_ref); 1115 return fn->parent; 1116 } 1117 1118 pn = fn->parent; 1119 #ifdef CONFIG_IPV6_SUBTREES 1120 if (FIB6_SUBTREE(pn) == fn) { 1121 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1122 FIB6_SUBTREE(pn) = NULL; 1123 nstate = FWS_L; 1124 } else { 1125 WARN_ON(fn->fn_flags & RTN_ROOT); 1126 #endif 1127 if (pn->right == fn) pn->right = child; 1128 else if (pn->left == fn) pn->left = child; 1129 #if RT6_DEBUG >= 2 1130 else 1131 WARN_ON(1); 1132 #endif 1133 if (child) 1134 child->parent = pn; 1135 nstate = FWS_R; 1136 #ifdef CONFIG_IPV6_SUBTREES 1137 } 1138 #endif 1139 1140 read_lock(&fib6_walker_lock); 1141 FOR_WALKERS(w) { 1142 if (!child) { 1143 if (w->root == fn) { 1144 w->root = w->node = NULL; 1145 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1146 } else if (w->node == fn) { 1147 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1148 w->node = pn; 1149 w->state = nstate; 1150 } 1151 } else { 1152 if (w->root == fn) { 1153 w->root = child; 1154 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1155 } 1156 if (w->node == fn) { 1157 w->node = child; 1158 if (children&2) { 1159 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1160 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; 1161 } else { 1162 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1163 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; 1164 } 1165 } 1166 } 1167 } 1168 read_unlock(&fib6_walker_lock); 1169 1170 node_free(fn); 1171 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1172 return pn; 1173 1174 rt6_release(pn->leaf); 1175 pn->leaf = NULL; 1176 fn = pn; 1177 } 1178 } 1179 1180 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1181 struct nl_info *info) 1182 { 1183 struct fib6_walker_t *w; 1184 struct rt6_info *rt = *rtp; 1185 struct net *net = info->nl_net; 1186 1187 RT6_TRACE("fib6_del_route\n"); 1188 1189 /* Unlink it */ 1190 *rtp = rt->dst.rt6_next; 1191 rt->rt6i_node = NULL; 1192 net->ipv6.rt6_stats->fib_rt_entries--; 1193 net->ipv6.rt6_stats->fib_discarded_routes++; 1194 1195 /* Reset round-robin state, if necessary */ 1196 if (fn->rr_ptr == rt) 1197 fn->rr_ptr = NULL; 1198 1199 /* Adjust walkers */ 1200 read_lock(&fib6_walker_lock); 1201 FOR_WALKERS(w) { 1202 if (w->state == FWS_C && w->leaf == rt) { 1203 RT6_TRACE("walker %p adjusted by delroute\n", w); 1204 w->leaf = rt->dst.rt6_next; 1205 if (!w->leaf) 1206 w->state = FWS_U; 1207 } 1208 } 1209 read_unlock(&fib6_walker_lock); 1210 1211 rt->dst.rt6_next = NULL; 1212 1213 /* If it was last route, expunge its radix tree node */ 1214 if (!fn->leaf) { 1215 fn->fn_flags &= ~RTN_RTINFO; 1216 net->ipv6.rt6_stats->fib_route_nodes--; 1217 fn = fib6_repair_tree(net, fn); 1218 } 1219 1220 if (atomic_read(&rt->rt6i_ref) != 1) { 1221 /* This route is used as dummy address holder in some split 1222 * nodes. It is not leaked, but it still holds other resources, 1223 * which must be released in time. So, scan ascendant nodes 1224 * and replace dummy references to this route with references 1225 * to still alive ones. 1226 */ 1227 while (fn) { 1228 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) { 1229 fn->leaf = fib6_find_prefix(net, fn); 1230 atomic_inc(&fn->leaf->rt6i_ref); 1231 rt6_release(rt); 1232 } 1233 fn = fn->parent; 1234 } 1235 /* No more references are possible at this point. */ 1236 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 1237 } 1238 1239 inet6_rt_notify(RTM_DELROUTE, rt, info); 1240 rt6_release(rt); 1241 } 1242 1243 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1244 { 1245 struct net *net = info->nl_net; 1246 struct fib6_node *fn = rt->rt6i_node; 1247 struct rt6_info **rtp; 1248 1249 #if RT6_DEBUG >= 2 1250 if (rt->dst.obsolete>0) { 1251 WARN_ON(fn != NULL); 1252 return -ENOENT; 1253 } 1254 #endif 1255 if (!fn || rt == net->ipv6.ip6_null_entry) 1256 return -ENOENT; 1257 1258 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1259 1260 if (!(rt->rt6i_flags & RTF_CACHE)) { 1261 struct fib6_node *pn = fn; 1262 #ifdef CONFIG_IPV6_SUBTREES 1263 /* clones of this route might be in another subtree */ 1264 if (rt->rt6i_src.plen) { 1265 while (!(pn->fn_flags & RTN_ROOT)) 1266 pn = pn->parent; 1267 pn = pn->parent; 1268 } 1269 #endif 1270 fib6_prune_clones(info->nl_net, pn, rt); 1271 } 1272 1273 /* 1274 * Walk the leaf entries looking for ourself 1275 */ 1276 1277 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) { 1278 if (*rtp == rt) { 1279 fib6_del_route(fn, rtp, info); 1280 return 0; 1281 } 1282 } 1283 return -ENOENT; 1284 } 1285 1286 /* 1287 * Tree traversal function. 1288 * 1289 * Certainly, it is not interrupt safe. 1290 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1291 * It means, that we can modify tree during walking 1292 * and use this function for garbage collection, clone pruning, 1293 * cleaning tree when a device goes down etc. etc. 1294 * 1295 * It guarantees that every node will be traversed, 1296 * and that it will be traversed only once. 1297 * 1298 * Callback function w->func may return: 1299 * 0 -> continue walking. 1300 * positive value -> walking is suspended (used by tree dumps, 1301 * and probably by gc, if it will be split to several slices) 1302 * negative value -> terminate walking. 1303 * 1304 * The function itself returns: 1305 * 0 -> walk is complete. 1306 * >0 -> walk is incomplete (i.e. suspended) 1307 * <0 -> walk is terminated by an error. 1308 */ 1309 1310 static int fib6_walk_continue(struct fib6_walker_t *w) 1311 { 1312 struct fib6_node *fn, *pn; 1313 1314 for (;;) { 1315 fn = w->node; 1316 if (!fn) 1317 return 0; 1318 1319 if (w->prune && fn != w->root && 1320 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) { 1321 w->state = FWS_C; 1322 w->leaf = fn->leaf; 1323 } 1324 switch (w->state) { 1325 #ifdef CONFIG_IPV6_SUBTREES 1326 case FWS_S: 1327 if (FIB6_SUBTREE(fn)) { 1328 w->node = FIB6_SUBTREE(fn); 1329 continue; 1330 } 1331 w->state = FWS_L; 1332 #endif 1333 case FWS_L: 1334 if (fn->left) { 1335 w->node = fn->left; 1336 w->state = FWS_INIT; 1337 continue; 1338 } 1339 w->state = FWS_R; 1340 case FWS_R: 1341 if (fn->right) { 1342 w->node = fn->right; 1343 w->state = FWS_INIT; 1344 continue; 1345 } 1346 w->state = FWS_C; 1347 w->leaf = fn->leaf; 1348 case FWS_C: 1349 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1350 int err; 1351 1352 if (w->count < w->skip) { 1353 w->count++; 1354 continue; 1355 } 1356 1357 err = w->func(w); 1358 if (err) 1359 return err; 1360 1361 w->count++; 1362 continue; 1363 } 1364 w->state = FWS_U; 1365 case FWS_U: 1366 if (fn == w->root) 1367 return 0; 1368 pn = fn->parent; 1369 w->node = pn; 1370 #ifdef CONFIG_IPV6_SUBTREES 1371 if (FIB6_SUBTREE(pn) == fn) { 1372 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1373 w->state = FWS_L; 1374 continue; 1375 } 1376 #endif 1377 if (pn->left == fn) { 1378 w->state = FWS_R; 1379 continue; 1380 } 1381 if (pn->right == fn) { 1382 w->state = FWS_C; 1383 w->leaf = w->node->leaf; 1384 continue; 1385 } 1386 #if RT6_DEBUG >= 2 1387 WARN_ON(1); 1388 #endif 1389 } 1390 } 1391 } 1392 1393 static int fib6_walk(struct fib6_walker_t *w) 1394 { 1395 int res; 1396 1397 w->state = FWS_INIT; 1398 w->node = w->root; 1399 1400 fib6_walker_link(w); 1401 res = fib6_walk_continue(w); 1402 if (res <= 0) 1403 fib6_walker_unlink(w); 1404 return res; 1405 } 1406 1407 static int fib6_clean_node(struct fib6_walker_t *w) 1408 { 1409 int res; 1410 struct rt6_info *rt; 1411 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w); 1412 struct nl_info info = { 1413 .nl_net = c->net, 1414 }; 1415 1416 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 1417 res = c->func(rt, c->arg); 1418 if (res < 0) { 1419 w->leaf = rt; 1420 res = fib6_del(rt, &info); 1421 if (res) { 1422 #if RT6_DEBUG >= 2 1423 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); 1424 #endif 1425 continue; 1426 } 1427 return 0; 1428 } 1429 WARN_ON(res != 0); 1430 } 1431 w->leaf = rt; 1432 return 0; 1433 } 1434 1435 /* 1436 * Convenient frontend to tree walker. 1437 * 1438 * func is called on each route. 1439 * It may return -1 -> delete this route. 1440 * 0 -> continue walking 1441 * 1442 * prune==1 -> only immediate children of node (certainly, 1443 * ignoring pure split nodes) will be scanned. 1444 */ 1445 1446 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1447 int (*func)(struct rt6_info *, void *arg), 1448 int prune, void *arg) 1449 { 1450 struct fib6_cleaner_t c; 1451 1452 c.w.root = root; 1453 c.w.func = fib6_clean_node; 1454 c.w.prune = prune; 1455 c.w.count = 0; 1456 c.w.skip = 0; 1457 c.func = func; 1458 c.arg = arg; 1459 c.net = net; 1460 1461 fib6_walk(&c.w); 1462 } 1463 1464 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg), 1465 int prune, void *arg) 1466 { 1467 struct fib6_table *table; 1468 struct hlist_node *node; 1469 struct hlist_head *head; 1470 unsigned int h; 1471 1472 rcu_read_lock(); 1473 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1474 head = &net->ipv6.fib_table_hash[h]; 1475 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) { 1476 read_lock_bh(&table->tb6_lock); 1477 fib6_clean_tree(net, &table->tb6_root, 1478 func, prune, arg); 1479 read_unlock_bh(&table->tb6_lock); 1480 } 1481 } 1482 rcu_read_unlock(); 1483 } 1484 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg), 1485 int prune, void *arg) 1486 { 1487 struct fib6_table *table; 1488 struct hlist_node *node; 1489 struct hlist_head *head; 1490 unsigned int h; 1491 1492 rcu_read_lock(); 1493 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1494 head = &net->ipv6.fib_table_hash[h]; 1495 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) { 1496 write_lock_bh(&table->tb6_lock); 1497 fib6_clean_tree(net, &table->tb6_root, 1498 func, prune, arg); 1499 write_unlock_bh(&table->tb6_lock); 1500 } 1501 } 1502 rcu_read_unlock(); 1503 } 1504 1505 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1506 { 1507 if (rt->rt6i_flags & RTF_CACHE) { 1508 RT6_TRACE("pruning clone %p\n", rt); 1509 return -1; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 1516 struct rt6_info *rt) 1517 { 1518 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt); 1519 } 1520 1521 /* 1522 * Garbage collection 1523 */ 1524 1525 static struct fib6_gc_args 1526 { 1527 int timeout; 1528 int more; 1529 } gc_args; 1530 1531 static int fib6_age(struct rt6_info *rt, void *arg) 1532 { 1533 unsigned long now = jiffies; 1534 1535 /* 1536 * check addrconf expiration here. 1537 * Routes are expired even if they are in use. 1538 * 1539 * Also age clones. Note, that clones are aged out 1540 * only if they are not in use now. 1541 */ 1542 1543 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1544 if (time_after(now, rt->dst.expires)) { 1545 RT6_TRACE("expiring %p\n", rt); 1546 return -1; 1547 } 1548 gc_args.more++; 1549 } else if (rt->rt6i_flags & RTF_CACHE) { 1550 if (atomic_read(&rt->dst.__refcnt) == 0 && 1551 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) { 1552 RT6_TRACE("aging clone %p\n", rt); 1553 return -1; 1554 } else if (rt->rt6i_flags & RTF_GATEWAY) { 1555 struct neighbour *neigh; 1556 __u8 neigh_flags = 0; 1557 1558 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway); 1559 if (neigh) { 1560 neigh_flags = neigh->flags; 1561 neigh_release(neigh); 1562 } 1563 if (neigh_flags & NTF_ROUTER) { 1564 RT6_TRACE("purging route %p via non-router but gateway\n", 1565 rt); 1566 return -1; 1567 } 1568 } 1569 gc_args.more++; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static DEFINE_SPINLOCK(fib6_gc_lock); 1576 1577 void fib6_run_gc(unsigned long expires, struct net *net) 1578 { 1579 if (expires != ~0UL) { 1580 spin_lock_bh(&fib6_gc_lock); 1581 gc_args.timeout = expires ? (int)expires : 1582 net->ipv6.sysctl.ip6_rt_gc_interval; 1583 } else { 1584 if (!spin_trylock_bh(&fib6_gc_lock)) { 1585 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1586 return; 1587 } 1588 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval; 1589 } 1590 1591 gc_args.more = icmp6_dst_gc(); 1592 1593 fib6_clean_all(net, fib6_age, 0, NULL); 1594 1595 if (gc_args.more) 1596 mod_timer(&net->ipv6.ip6_fib_timer, 1597 round_jiffies(jiffies 1598 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1599 else 1600 del_timer(&net->ipv6.ip6_fib_timer); 1601 spin_unlock_bh(&fib6_gc_lock); 1602 } 1603 1604 static void fib6_gc_timer_cb(unsigned long arg) 1605 { 1606 fib6_run_gc(0, (struct net *)arg); 1607 } 1608 1609 static int __net_init fib6_net_init(struct net *net) 1610 { 1611 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 1612 1613 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1614 1615 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1616 if (!net->ipv6.rt6_stats) 1617 goto out_timer; 1618 1619 /* Avoid false sharing : Use at least a full cache line */ 1620 size = max_t(size_t, size, L1_CACHE_BYTES); 1621 1622 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 1623 if (!net->ipv6.fib_table_hash) 1624 goto out_rt6_stats; 1625 1626 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1627 GFP_KERNEL); 1628 if (!net->ipv6.fib6_main_tbl) 1629 goto out_fib_table_hash; 1630 1631 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1632 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1633 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1634 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1635 1636 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1637 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1638 GFP_KERNEL); 1639 if (!net->ipv6.fib6_local_tbl) 1640 goto out_fib6_main_tbl; 1641 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1642 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1643 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1644 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1645 #endif 1646 fib6_tables_init(net); 1647 1648 return 0; 1649 1650 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1651 out_fib6_main_tbl: 1652 kfree(net->ipv6.fib6_main_tbl); 1653 #endif 1654 out_fib_table_hash: 1655 kfree(net->ipv6.fib_table_hash); 1656 out_rt6_stats: 1657 kfree(net->ipv6.rt6_stats); 1658 out_timer: 1659 return -ENOMEM; 1660 } 1661 1662 static void fib6_net_exit(struct net *net) 1663 { 1664 rt6_ifdown(net, NULL); 1665 del_timer_sync(&net->ipv6.ip6_fib_timer); 1666 1667 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1668 kfree(net->ipv6.fib6_local_tbl); 1669 #endif 1670 kfree(net->ipv6.fib6_main_tbl); 1671 kfree(net->ipv6.fib_table_hash); 1672 kfree(net->ipv6.rt6_stats); 1673 } 1674 1675 static struct pernet_operations fib6_net_ops = { 1676 .init = fib6_net_init, 1677 .exit = fib6_net_exit, 1678 }; 1679 1680 int __init fib6_init(void) 1681 { 1682 int ret = -ENOMEM; 1683 1684 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1685 sizeof(struct fib6_node), 1686 0, SLAB_HWCACHE_ALIGN, 1687 NULL); 1688 if (!fib6_node_kmem) 1689 goto out; 1690 1691 ret = register_pernet_subsys(&fib6_net_ops); 1692 if (ret) 1693 goto out_kmem_cache_create; 1694 1695 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 1696 NULL); 1697 if (ret) 1698 goto out_unregister_subsys; 1699 out: 1700 return ret; 1701 1702 out_unregister_subsys: 1703 unregister_pernet_subsys(&fib6_net_ops); 1704 out_kmem_cache_create: 1705 kmem_cache_destroy(fib6_node_kmem); 1706 goto out; 1707 } 1708 1709 void fib6_gc_cleanup(void) 1710 { 1711 unregister_pernet_subsys(&fib6_net_ops); 1712 kmem_cache_destroy(fib6_node_kmem); 1713 } 1714