xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 5b4fc395)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
109 {
110 	struct fib6_node *fn;
111 
112 	fn = rcu_dereference_protected(f6i->fib6_node,
113 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
114 	if (fn)
115 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
116 }
117 
118 /*
119  *	Auxiliary address test functions for the radix tree.
120  *
121  *	These assume a 32bit processor (although it will work on
122  *	64bit processors)
123  */
124 
125 /*
126  *	test bit
127  */
128 #if defined(__LITTLE_ENDIAN)
129 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
130 #else
131 # define BITOP_BE32_SWIZZLE	0
132 #endif
133 
134 static __be32 addr_bit_set(const void *token, int fn_bit)
135 {
136 	const __be32 *addr = token;
137 	/*
138 	 * Here,
139 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
140 	 * is optimized version of
141 	 *	htonl(1 << ((~fn_bit)&0x1F))
142 	 * See include/asm-generic/bitops/le.h.
143 	 */
144 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
145 	       addr[fn_bit >> 5];
146 }
147 
148 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
149 {
150 	struct fib6_info *f6i;
151 	size_t sz = sizeof(*f6i);
152 
153 	if (with_fib6_nh)
154 		sz += sizeof(struct fib6_nh);
155 
156 	f6i = kzalloc(sz, gfp_flags);
157 	if (!f6i)
158 		return NULL;
159 
160 	/* fib6_siblings is a union with nh_list, so this initializes both */
161 	INIT_LIST_HEAD(&f6i->fib6_siblings);
162 	refcount_set(&f6i->fib6_ref, 1);
163 
164 	return f6i;
165 }
166 
167 void fib6_info_destroy_rcu(struct rcu_head *head)
168 {
169 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
170 
171 	WARN_ON(f6i->fib6_node);
172 
173 	if (f6i->nh)
174 		nexthop_put(f6i->nh);
175 	else
176 		fib6_nh_release(f6i->fib6_nh);
177 
178 	ip_fib_metrics_put(f6i->fib6_metrics);
179 	kfree(f6i);
180 }
181 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
182 
183 static struct fib6_node *node_alloc(struct net *net)
184 {
185 	struct fib6_node *fn;
186 
187 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
188 	if (fn)
189 		net->ipv6.rt6_stats->fib_nodes++;
190 
191 	return fn;
192 }
193 
194 static void node_free_immediate(struct net *net, struct fib6_node *fn)
195 {
196 	kmem_cache_free(fib6_node_kmem, fn);
197 	net->ipv6.rt6_stats->fib_nodes--;
198 }
199 
200 static void node_free_rcu(struct rcu_head *head)
201 {
202 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
203 
204 	kmem_cache_free(fib6_node_kmem, fn);
205 }
206 
207 static void node_free(struct net *net, struct fib6_node *fn)
208 {
209 	call_rcu(&fn->rcu, node_free_rcu);
210 	net->ipv6.rt6_stats->fib_nodes--;
211 }
212 
213 static void fib6_free_table(struct fib6_table *table)
214 {
215 	inetpeer_invalidate_tree(&table->tb6_peers);
216 	kfree(table);
217 }
218 
219 static void fib6_link_table(struct net *net, struct fib6_table *tb)
220 {
221 	unsigned int h;
222 
223 	/*
224 	 * Initialize table lock at a single place to give lockdep a key,
225 	 * tables aren't visible prior to being linked to the list.
226 	 */
227 	spin_lock_init(&tb->tb6_lock);
228 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
229 
230 	/*
231 	 * No protection necessary, this is the only list mutatation
232 	 * operation, tables never disappear once they exist.
233 	 */
234 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
235 }
236 
237 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
238 
239 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
240 {
241 	struct fib6_table *table;
242 
243 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
244 	if (table) {
245 		table->tb6_id = id;
246 		rcu_assign_pointer(table->tb6_root.leaf,
247 				   net->ipv6.fib6_null_entry);
248 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
249 		inet_peer_base_init(&table->tb6_peers);
250 	}
251 
252 	return table;
253 }
254 
255 struct fib6_table *fib6_new_table(struct net *net, u32 id)
256 {
257 	struct fib6_table *tb;
258 
259 	if (id == 0)
260 		id = RT6_TABLE_MAIN;
261 	tb = fib6_get_table(net, id);
262 	if (tb)
263 		return tb;
264 
265 	tb = fib6_alloc_table(net, id);
266 	if (tb)
267 		fib6_link_table(net, tb);
268 
269 	return tb;
270 }
271 EXPORT_SYMBOL_GPL(fib6_new_table);
272 
273 struct fib6_table *fib6_get_table(struct net *net, u32 id)
274 {
275 	struct fib6_table *tb;
276 	struct hlist_head *head;
277 	unsigned int h;
278 
279 	if (id == 0)
280 		id = RT6_TABLE_MAIN;
281 	h = id & (FIB6_TABLE_HASHSZ - 1);
282 	rcu_read_lock();
283 	head = &net->ipv6.fib_table_hash[h];
284 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
285 		if (tb->tb6_id == id) {
286 			rcu_read_unlock();
287 			return tb;
288 		}
289 	}
290 	rcu_read_unlock();
291 
292 	return NULL;
293 }
294 EXPORT_SYMBOL_GPL(fib6_get_table);
295 
296 static void __net_init fib6_tables_init(struct net *net)
297 {
298 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
299 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
300 }
301 #else
302 
303 struct fib6_table *fib6_new_table(struct net *net, u32 id)
304 {
305 	return fib6_get_table(net, id);
306 }
307 
308 struct fib6_table *fib6_get_table(struct net *net, u32 id)
309 {
310 	  return net->ipv6.fib6_main_tbl;
311 }
312 
313 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
314 				   const struct sk_buff *skb,
315 				   int flags, pol_lookup_t lookup)
316 {
317 	struct rt6_info *rt;
318 
319 	rt = pol_lookup_func(lookup,
320 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
321 	if (rt->dst.error == -EAGAIN) {
322 		ip6_rt_put_flags(rt, flags);
323 		rt = net->ipv6.ip6_null_entry;
324 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
325 			dst_hold(&rt->dst);
326 	}
327 
328 	return &rt->dst;
329 }
330 
331 /* called with rcu lock held; no reference taken on fib6_info */
332 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
333 		struct fib6_result *res, int flags)
334 {
335 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
336 				 res, flags);
337 }
338 
339 static void __net_init fib6_tables_init(struct net *net)
340 {
341 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
342 }
343 
344 #endif
345 
346 unsigned int fib6_tables_seq_read(struct net *net)
347 {
348 	unsigned int h, fib_seq = 0;
349 
350 	rcu_read_lock();
351 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
352 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
353 		struct fib6_table *tb;
354 
355 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
356 			fib_seq += tb->fib_seq;
357 	}
358 	rcu_read_unlock();
359 
360 	return fib_seq;
361 }
362 
363 static int call_fib6_entry_notifier(struct notifier_block *nb,
364 				    enum fib_event_type event_type,
365 				    struct fib6_info *rt,
366 				    struct netlink_ext_ack *extack)
367 {
368 	struct fib6_entry_notifier_info info = {
369 		.info.extack = extack,
370 		.rt = rt,
371 	};
372 
373 	return call_fib6_notifier(nb, event_type, &info.info);
374 }
375 
376 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
377 					      enum fib_event_type event_type,
378 					      struct fib6_info *rt,
379 					      unsigned int nsiblings,
380 					      struct netlink_ext_ack *extack)
381 {
382 	struct fib6_entry_notifier_info info = {
383 		.info.extack = extack,
384 		.rt = rt,
385 		.nsiblings = nsiblings,
386 	};
387 
388 	return call_fib6_notifier(nb, event_type, &info.info);
389 }
390 
391 int call_fib6_entry_notifiers(struct net *net,
392 			      enum fib_event_type event_type,
393 			      struct fib6_info *rt,
394 			      struct netlink_ext_ack *extack)
395 {
396 	struct fib6_entry_notifier_info info = {
397 		.info.extack = extack,
398 		.rt = rt,
399 	};
400 
401 	rt->fib6_table->fib_seq++;
402 	return call_fib6_notifiers(net, event_type, &info.info);
403 }
404 
405 int call_fib6_multipath_entry_notifiers(struct net *net,
406 					enum fib_event_type event_type,
407 					struct fib6_info *rt,
408 					unsigned int nsiblings,
409 					struct netlink_ext_ack *extack)
410 {
411 	struct fib6_entry_notifier_info info = {
412 		.info.extack = extack,
413 		.rt = rt,
414 		.nsiblings = nsiblings,
415 	};
416 
417 	rt->fib6_table->fib_seq++;
418 	return call_fib6_notifiers(net, event_type, &info.info);
419 }
420 
421 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
422 {
423 	struct fib6_entry_notifier_info info = {
424 		.rt = rt,
425 		.nsiblings = rt->fib6_nsiblings,
426 	};
427 
428 	rt->fib6_table->fib_seq++;
429 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
430 }
431 
432 struct fib6_dump_arg {
433 	struct net *net;
434 	struct notifier_block *nb;
435 	struct netlink_ext_ack *extack;
436 };
437 
438 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
439 {
440 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
441 	int err;
442 
443 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
444 		return 0;
445 
446 	if (rt->fib6_nsiblings)
447 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
448 							 rt,
449 							 rt->fib6_nsiblings,
450 							 arg->extack);
451 	else
452 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
453 					       arg->extack);
454 
455 	return err;
456 }
457 
458 static int fib6_node_dump(struct fib6_walker *w)
459 {
460 	int err;
461 
462 	err = fib6_rt_dump(w->leaf, w->args);
463 	w->leaf = NULL;
464 	return err;
465 }
466 
467 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
468 			   struct fib6_walker *w)
469 {
470 	int err;
471 
472 	w->root = &tb->tb6_root;
473 	spin_lock_bh(&tb->tb6_lock);
474 	err = fib6_walk(net, w);
475 	spin_unlock_bh(&tb->tb6_lock);
476 	return err;
477 }
478 
479 /* Called with rcu_read_lock() */
480 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
481 		     struct netlink_ext_ack *extack)
482 {
483 	struct fib6_dump_arg arg;
484 	struct fib6_walker *w;
485 	unsigned int h;
486 	int err = 0;
487 
488 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
489 	if (!w)
490 		return -ENOMEM;
491 
492 	w->func = fib6_node_dump;
493 	arg.net = net;
494 	arg.nb = nb;
495 	arg.extack = extack;
496 	w->args = &arg;
497 
498 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
499 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
500 		struct fib6_table *tb;
501 
502 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
503 			err = fib6_table_dump(net, tb, w);
504 			if (err)
505 				goto out;
506 		}
507 	}
508 
509 out:
510 	kfree(w);
511 
512 	/* The tree traversal function should never return a positive value. */
513 	return err > 0 ? -EINVAL : err;
514 }
515 
516 static int fib6_dump_node(struct fib6_walker *w)
517 {
518 	int res;
519 	struct fib6_info *rt;
520 
521 	for_each_fib6_walker_rt(w) {
522 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
523 		if (res >= 0) {
524 			/* Frame is full, suspend walking */
525 			w->leaf = rt;
526 
527 			/* We'll restart from this node, so if some routes were
528 			 * already dumped, skip them next time.
529 			 */
530 			w->skip_in_node += res;
531 
532 			return 1;
533 		}
534 		w->skip_in_node = 0;
535 
536 		/* Multipath routes are dumped in one route with the
537 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
538 		 * last sibling of this route (no need to dump the
539 		 * sibling routes again)
540 		 */
541 		if (rt->fib6_nsiblings)
542 			rt = list_last_entry(&rt->fib6_siblings,
543 					     struct fib6_info,
544 					     fib6_siblings);
545 	}
546 	w->leaf = NULL;
547 	return 0;
548 }
549 
550 static void fib6_dump_end(struct netlink_callback *cb)
551 {
552 	struct net *net = sock_net(cb->skb->sk);
553 	struct fib6_walker *w = (void *)cb->args[2];
554 
555 	if (w) {
556 		if (cb->args[4]) {
557 			cb->args[4] = 0;
558 			fib6_walker_unlink(net, w);
559 		}
560 		cb->args[2] = 0;
561 		kfree(w);
562 	}
563 	cb->done = (void *)cb->args[3];
564 	cb->args[1] = 3;
565 }
566 
567 static int fib6_dump_done(struct netlink_callback *cb)
568 {
569 	fib6_dump_end(cb);
570 	return cb->done ? cb->done(cb) : 0;
571 }
572 
573 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
574 			   struct netlink_callback *cb)
575 {
576 	struct net *net = sock_net(skb->sk);
577 	struct fib6_walker *w;
578 	int res;
579 
580 	w = (void *)cb->args[2];
581 	w->root = &table->tb6_root;
582 
583 	if (cb->args[4] == 0) {
584 		w->count = 0;
585 		w->skip = 0;
586 		w->skip_in_node = 0;
587 
588 		spin_lock_bh(&table->tb6_lock);
589 		res = fib6_walk(net, w);
590 		spin_unlock_bh(&table->tb6_lock);
591 		if (res > 0) {
592 			cb->args[4] = 1;
593 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
594 		}
595 	} else {
596 		int sernum = READ_ONCE(w->root->fn_sernum);
597 		if (cb->args[5] != sernum) {
598 			/* Begin at the root if the tree changed */
599 			cb->args[5] = sernum;
600 			w->state = FWS_INIT;
601 			w->node = w->root;
602 			w->skip = w->count;
603 			w->skip_in_node = 0;
604 		} else
605 			w->skip = 0;
606 
607 		spin_lock_bh(&table->tb6_lock);
608 		res = fib6_walk_continue(w);
609 		spin_unlock_bh(&table->tb6_lock);
610 		if (res <= 0) {
611 			fib6_walker_unlink(net, w);
612 			cb->args[4] = 0;
613 		}
614 	}
615 
616 	return res;
617 }
618 
619 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
620 {
621 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
622 					 .filter.dump_routes = true };
623 	const struct nlmsghdr *nlh = cb->nlh;
624 	struct net *net = sock_net(skb->sk);
625 	unsigned int h, s_h;
626 	unsigned int e = 0, s_e;
627 	struct fib6_walker *w;
628 	struct fib6_table *tb;
629 	struct hlist_head *head;
630 	int res = 0;
631 
632 	if (cb->strict_check) {
633 		int err;
634 
635 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
636 		if (err < 0)
637 			return err;
638 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
639 		struct rtmsg *rtm = nlmsg_data(nlh);
640 
641 		if (rtm->rtm_flags & RTM_F_PREFIX)
642 			arg.filter.flags = RTM_F_PREFIX;
643 	}
644 
645 	w = (void *)cb->args[2];
646 	if (!w) {
647 		/* New dump:
648 		 *
649 		 * 1. hook callback destructor.
650 		 */
651 		cb->args[3] = (long)cb->done;
652 		cb->done = fib6_dump_done;
653 
654 		/*
655 		 * 2. allocate and initialize walker.
656 		 */
657 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
658 		if (!w)
659 			return -ENOMEM;
660 		w->func = fib6_dump_node;
661 		cb->args[2] = (long)w;
662 	}
663 
664 	arg.skb = skb;
665 	arg.cb = cb;
666 	arg.net = net;
667 	w->args = &arg;
668 
669 	if (arg.filter.table_id) {
670 		tb = fib6_get_table(net, arg.filter.table_id);
671 		if (!tb) {
672 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
673 				goto out;
674 
675 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
676 			return -ENOENT;
677 		}
678 
679 		if (!cb->args[0]) {
680 			res = fib6_dump_table(tb, skb, cb);
681 			if (!res)
682 				cb->args[0] = 1;
683 		}
684 		goto out;
685 	}
686 
687 	s_h = cb->args[0];
688 	s_e = cb->args[1];
689 
690 	rcu_read_lock();
691 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
692 		e = 0;
693 		head = &net->ipv6.fib_table_hash[h];
694 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
695 			if (e < s_e)
696 				goto next;
697 			res = fib6_dump_table(tb, skb, cb);
698 			if (res != 0)
699 				goto out_unlock;
700 next:
701 			e++;
702 		}
703 	}
704 out_unlock:
705 	rcu_read_unlock();
706 	cb->args[1] = e;
707 	cb->args[0] = h;
708 out:
709 	res = res < 0 ? res : skb->len;
710 	if (res <= 0)
711 		fib6_dump_end(cb);
712 	return res;
713 }
714 
715 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
716 {
717 	if (!f6i)
718 		return;
719 
720 	if (f6i->fib6_metrics == &dst_default_metrics) {
721 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
722 
723 		if (!p)
724 			return;
725 
726 		refcount_set(&p->refcnt, 1);
727 		f6i->fib6_metrics = p;
728 	}
729 
730 	f6i->fib6_metrics->metrics[metric - 1] = val;
731 }
732 
733 /*
734  *	Routing Table
735  *
736  *	return the appropriate node for a routing tree "add" operation
737  *	by either creating and inserting or by returning an existing
738  *	node.
739  */
740 
741 static struct fib6_node *fib6_add_1(struct net *net,
742 				    struct fib6_table *table,
743 				    struct fib6_node *root,
744 				    struct in6_addr *addr, int plen,
745 				    int offset, int allow_create,
746 				    int replace_required,
747 				    struct netlink_ext_ack *extack)
748 {
749 	struct fib6_node *fn, *in, *ln;
750 	struct fib6_node *pn = NULL;
751 	struct rt6key *key;
752 	int	bit;
753 	__be32	dir = 0;
754 
755 	RT6_TRACE("fib6_add_1\n");
756 
757 	/* insert node in tree */
758 
759 	fn = root;
760 
761 	do {
762 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
763 					    lockdep_is_held(&table->tb6_lock));
764 		key = (struct rt6key *)((u8 *)leaf + offset);
765 
766 		/*
767 		 *	Prefix match
768 		 */
769 		if (plen < fn->fn_bit ||
770 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
771 			if (!allow_create) {
772 				if (replace_required) {
773 					NL_SET_ERR_MSG(extack,
774 						       "Can not replace route - no match found");
775 					pr_warn("Can't replace route, no match found\n");
776 					return ERR_PTR(-ENOENT);
777 				}
778 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
779 			}
780 			goto insert_above;
781 		}
782 
783 		/*
784 		 *	Exact match ?
785 		 */
786 
787 		if (plen == fn->fn_bit) {
788 			/* clean up an intermediate node */
789 			if (!(fn->fn_flags & RTN_RTINFO)) {
790 				RCU_INIT_POINTER(fn->leaf, NULL);
791 				fib6_info_release(leaf);
792 			/* remove null_entry in the root node */
793 			} else if (fn->fn_flags & RTN_TL_ROOT &&
794 				   rcu_access_pointer(fn->leaf) ==
795 				   net->ipv6.fib6_null_entry) {
796 				RCU_INIT_POINTER(fn->leaf, NULL);
797 			}
798 
799 			return fn;
800 		}
801 
802 		/*
803 		 *	We have more bits to go
804 		 */
805 
806 		/* Try to walk down on tree. */
807 		dir = addr_bit_set(addr, fn->fn_bit);
808 		pn = fn;
809 		fn = dir ?
810 		     rcu_dereference_protected(fn->right,
811 					lockdep_is_held(&table->tb6_lock)) :
812 		     rcu_dereference_protected(fn->left,
813 					lockdep_is_held(&table->tb6_lock));
814 	} while (fn);
815 
816 	if (!allow_create) {
817 		/* We should not create new node because
818 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
819 		 * I assume it is safe to require NLM_F_CREATE when
820 		 * REPLACE flag is used! Later we may want to remove the
821 		 * check for replace_required, because according
822 		 * to netlink specification, NLM_F_CREATE
823 		 * MUST be specified if new route is created.
824 		 * That would keep IPv6 consistent with IPv4
825 		 */
826 		if (replace_required) {
827 			NL_SET_ERR_MSG(extack,
828 				       "Can not replace route - no match found");
829 			pr_warn("Can't replace route, no match found\n");
830 			return ERR_PTR(-ENOENT);
831 		}
832 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
833 	}
834 	/*
835 	 *	We walked to the bottom of tree.
836 	 *	Create new leaf node without children.
837 	 */
838 
839 	ln = node_alloc(net);
840 
841 	if (!ln)
842 		return ERR_PTR(-ENOMEM);
843 	ln->fn_bit = plen;
844 	RCU_INIT_POINTER(ln->parent, pn);
845 
846 	if (dir)
847 		rcu_assign_pointer(pn->right, ln);
848 	else
849 		rcu_assign_pointer(pn->left, ln);
850 
851 	return ln;
852 
853 
854 insert_above:
855 	/*
856 	 * split since we don't have a common prefix anymore or
857 	 * we have a less significant route.
858 	 * we've to insert an intermediate node on the list
859 	 * this new node will point to the one we need to create
860 	 * and the current
861 	 */
862 
863 	pn = rcu_dereference_protected(fn->parent,
864 				       lockdep_is_held(&table->tb6_lock));
865 
866 	/* find 1st bit in difference between the 2 addrs.
867 
868 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
869 	   but if it is >= plen, the value is ignored in any case.
870 	 */
871 
872 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
873 
874 	/*
875 	 *		(intermediate)[in]
876 	 *	          /	   \
877 	 *	(new leaf node)[ln] (old node)[fn]
878 	 */
879 	if (plen > bit) {
880 		in = node_alloc(net);
881 		ln = node_alloc(net);
882 
883 		if (!in || !ln) {
884 			if (in)
885 				node_free_immediate(net, in);
886 			if (ln)
887 				node_free_immediate(net, ln);
888 			return ERR_PTR(-ENOMEM);
889 		}
890 
891 		/*
892 		 * new intermediate node.
893 		 * RTN_RTINFO will
894 		 * be off since that an address that chooses one of
895 		 * the branches would not match less specific routes
896 		 * in the other branch
897 		 */
898 
899 		in->fn_bit = bit;
900 
901 		RCU_INIT_POINTER(in->parent, pn);
902 		in->leaf = fn->leaf;
903 		fib6_info_hold(rcu_dereference_protected(in->leaf,
904 				lockdep_is_held(&table->tb6_lock)));
905 
906 		/* update parent pointer */
907 		if (dir)
908 			rcu_assign_pointer(pn->right, in);
909 		else
910 			rcu_assign_pointer(pn->left, in);
911 
912 		ln->fn_bit = plen;
913 
914 		RCU_INIT_POINTER(ln->parent, in);
915 		rcu_assign_pointer(fn->parent, in);
916 
917 		if (addr_bit_set(addr, bit)) {
918 			rcu_assign_pointer(in->right, ln);
919 			rcu_assign_pointer(in->left, fn);
920 		} else {
921 			rcu_assign_pointer(in->left, ln);
922 			rcu_assign_pointer(in->right, fn);
923 		}
924 	} else { /* plen <= bit */
925 
926 		/*
927 		 *		(new leaf node)[ln]
928 		 *	          /	   \
929 		 *	     (old node)[fn] NULL
930 		 */
931 
932 		ln = node_alloc(net);
933 
934 		if (!ln)
935 			return ERR_PTR(-ENOMEM);
936 
937 		ln->fn_bit = plen;
938 
939 		RCU_INIT_POINTER(ln->parent, pn);
940 
941 		if (addr_bit_set(&key->addr, plen))
942 			RCU_INIT_POINTER(ln->right, fn);
943 		else
944 			RCU_INIT_POINTER(ln->left, fn);
945 
946 		rcu_assign_pointer(fn->parent, ln);
947 
948 		if (dir)
949 			rcu_assign_pointer(pn->right, ln);
950 		else
951 			rcu_assign_pointer(pn->left, ln);
952 	}
953 	return ln;
954 }
955 
956 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
957 				  const struct fib6_info *match,
958 				  const struct fib6_table *table)
959 {
960 	int cpu;
961 
962 	if (!fib6_nh->rt6i_pcpu)
963 		return;
964 
965 	/* release the reference to this fib entry from
966 	 * all of its cached pcpu routes
967 	 */
968 	for_each_possible_cpu(cpu) {
969 		struct rt6_info **ppcpu_rt;
970 		struct rt6_info *pcpu_rt;
971 
972 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
973 		pcpu_rt = *ppcpu_rt;
974 
975 		/* only dropping the 'from' reference if the cached route
976 		 * is using 'match'. The cached pcpu_rt->from only changes
977 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
978 		 * change from one fib6_info reference to another
979 		 */
980 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
981 			struct fib6_info *from;
982 
983 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
984 			fib6_info_release(from);
985 		}
986 	}
987 }
988 
989 struct fib6_nh_pcpu_arg {
990 	struct fib6_info	*from;
991 	const struct fib6_table *table;
992 };
993 
994 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
995 {
996 	struct fib6_nh_pcpu_arg *arg = _arg;
997 
998 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
999 	return 0;
1000 }
1001 
1002 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1003 				const struct fib6_table *table)
1004 {
1005 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1006 	 * while we are cleaning them here.
1007 	 */
1008 	f6i->fib6_destroying = 1;
1009 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1010 
1011 	if (f6i->nh) {
1012 		struct fib6_nh_pcpu_arg arg = {
1013 			.from = f6i,
1014 			.table = table
1015 		};
1016 
1017 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1018 					 &arg);
1019 	} else {
1020 		struct fib6_nh *fib6_nh;
1021 
1022 		fib6_nh = f6i->fib6_nh;
1023 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1024 	}
1025 }
1026 
1027 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1028 			  struct net *net)
1029 {
1030 	struct fib6_table *table = rt->fib6_table;
1031 
1032 	/* Flush all cached dst in exception table */
1033 	rt6_flush_exceptions(rt);
1034 	fib6_drop_pcpu_from(rt, table);
1035 
1036 	if (rt->nh && !list_empty(&rt->nh_list))
1037 		list_del_init(&rt->nh_list);
1038 
1039 	if (refcount_read(&rt->fib6_ref) != 1) {
1040 		/* This route is used as dummy address holder in some split
1041 		 * nodes. It is not leaked, but it still holds other resources,
1042 		 * which must be released in time. So, scan ascendant nodes
1043 		 * and replace dummy references to this route with references
1044 		 * to still alive ones.
1045 		 */
1046 		while (fn) {
1047 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1048 					    lockdep_is_held(&table->tb6_lock));
1049 			struct fib6_info *new_leaf;
1050 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1051 				new_leaf = fib6_find_prefix(net, table, fn);
1052 				fib6_info_hold(new_leaf);
1053 
1054 				rcu_assign_pointer(fn->leaf, new_leaf);
1055 				fib6_info_release(rt);
1056 			}
1057 			fn = rcu_dereference_protected(fn->parent,
1058 				    lockdep_is_held(&table->tb6_lock));
1059 		}
1060 	}
1061 }
1062 
1063 /*
1064  *	Insert routing information in a node.
1065  */
1066 
1067 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1068 			    struct nl_info *info,
1069 			    struct netlink_ext_ack *extack)
1070 {
1071 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1072 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1073 	struct fib6_info *iter = NULL;
1074 	struct fib6_info __rcu **ins;
1075 	struct fib6_info __rcu **fallback_ins = NULL;
1076 	int replace = (info->nlh &&
1077 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1078 	int add = (!info->nlh ||
1079 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1080 	int found = 0;
1081 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1082 	bool notify_sibling_rt = false;
1083 	u16 nlflags = NLM_F_EXCL;
1084 	int err;
1085 
1086 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1087 		nlflags |= NLM_F_APPEND;
1088 
1089 	ins = &fn->leaf;
1090 
1091 	for (iter = leaf; iter;
1092 	     iter = rcu_dereference_protected(iter->fib6_next,
1093 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1094 		/*
1095 		 *	Search for duplicates
1096 		 */
1097 
1098 		if (iter->fib6_metric == rt->fib6_metric) {
1099 			/*
1100 			 *	Same priority level
1101 			 */
1102 			if (info->nlh &&
1103 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1104 				return -EEXIST;
1105 
1106 			nlflags &= ~NLM_F_EXCL;
1107 			if (replace) {
1108 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1109 					found++;
1110 					break;
1111 				}
1112 				fallback_ins = fallback_ins ?: ins;
1113 				goto next_iter;
1114 			}
1115 
1116 			if (rt6_duplicate_nexthop(iter, rt)) {
1117 				if (rt->fib6_nsiblings)
1118 					rt->fib6_nsiblings = 0;
1119 				if (!(iter->fib6_flags & RTF_EXPIRES))
1120 					return -EEXIST;
1121 				if (!(rt->fib6_flags & RTF_EXPIRES))
1122 					fib6_clean_expires(iter);
1123 				else
1124 					fib6_set_expires(iter, rt->expires);
1125 
1126 				if (rt->fib6_pmtu)
1127 					fib6_metric_set(iter, RTAX_MTU,
1128 							rt->fib6_pmtu);
1129 				return -EEXIST;
1130 			}
1131 			/* If we have the same destination and the same metric,
1132 			 * but not the same gateway, then the route we try to
1133 			 * add is sibling to this route, increment our counter
1134 			 * of siblings, and later we will add our route to the
1135 			 * list.
1136 			 * Only static routes (which don't have flag
1137 			 * RTF_EXPIRES) are used for ECMPv6.
1138 			 *
1139 			 * To avoid long list, we only had siblings if the
1140 			 * route have a gateway.
1141 			 */
1142 			if (rt_can_ecmp &&
1143 			    rt6_qualify_for_ecmp(iter))
1144 				rt->fib6_nsiblings++;
1145 		}
1146 
1147 		if (iter->fib6_metric > rt->fib6_metric)
1148 			break;
1149 
1150 next_iter:
1151 		ins = &iter->fib6_next;
1152 	}
1153 
1154 	if (fallback_ins && !found) {
1155 		/* No matching route with same ecmp-able-ness found, replace
1156 		 * first matching route
1157 		 */
1158 		ins = fallback_ins;
1159 		iter = rcu_dereference_protected(*ins,
1160 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1161 		found++;
1162 	}
1163 
1164 	/* Reset round-robin state, if necessary */
1165 	if (ins == &fn->leaf)
1166 		fn->rr_ptr = NULL;
1167 
1168 	/* Link this route to others same route. */
1169 	if (rt->fib6_nsiblings) {
1170 		unsigned int fib6_nsiblings;
1171 		struct fib6_info *sibling, *temp_sibling;
1172 
1173 		/* Find the first route that have the same metric */
1174 		sibling = leaf;
1175 		notify_sibling_rt = true;
1176 		while (sibling) {
1177 			if (sibling->fib6_metric == rt->fib6_metric &&
1178 			    rt6_qualify_for_ecmp(sibling)) {
1179 				list_add_tail(&rt->fib6_siblings,
1180 					      &sibling->fib6_siblings);
1181 				break;
1182 			}
1183 			sibling = rcu_dereference_protected(sibling->fib6_next,
1184 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1185 			notify_sibling_rt = false;
1186 		}
1187 		/* For each sibling in the list, increment the counter of
1188 		 * siblings. BUG() if counters does not match, list of siblings
1189 		 * is broken!
1190 		 */
1191 		fib6_nsiblings = 0;
1192 		list_for_each_entry_safe(sibling, temp_sibling,
1193 					 &rt->fib6_siblings, fib6_siblings) {
1194 			sibling->fib6_nsiblings++;
1195 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1196 			fib6_nsiblings++;
1197 		}
1198 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1199 		rt6_multipath_rebalance(temp_sibling);
1200 	}
1201 
1202 	/*
1203 	 *	insert node
1204 	 */
1205 	if (!replace) {
1206 		if (!add)
1207 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1208 
1209 add:
1210 		nlflags |= NLM_F_CREATE;
1211 
1212 		/* The route should only be notified if it is the first
1213 		 * route in the node or if it is added as a sibling
1214 		 * route to the first route in the node.
1215 		 */
1216 		if (!info->skip_notify_kernel &&
1217 		    (notify_sibling_rt || ins == &fn->leaf)) {
1218 			enum fib_event_type fib_event;
1219 
1220 			if (notify_sibling_rt)
1221 				fib_event = FIB_EVENT_ENTRY_APPEND;
1222 			else
1223 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1224 			err = call_fib6_entry_notifiers(info->nl_net,
1225 							fib_event, rt,
1226 							extack);
1227 			if (err) {
1228 				struct fib6_info *sibling, *next_sibling;
1229 
1230 				/* If the route has siblings, then it first
1231 				 * needs to be unlinked from them.
1232 				 */
1233 				if (!rt->fib6_nsiblings)
1234 					return err;
1235 
1236 				list_for_each_entry_safe(sibling, next_sibling,
1237 							 &rt->fib6_siblings,
1238 							 fib6_siblings)
1239 					sibling->fib6_nsiblings--;
1240 				rt->fib6_nsiblings = 0;
1241 				list_del_init(&rt->fib6_siblings);
1242 				rt6_multipath_rebalance(next_sibling);
1243 				return err;
1244 			}
1245 		}
1246 
1247 		rcu_assign_pointer(rt->fib6_next, iter);
1248 		fib6_info_hold(rt);
1249 		rcu_assign_pointer(rt->fib6_node, fn);
1250 		rcu_assign_pointer(*ins, rt);
1251 		if (!info->skip_notify)
1252 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1253 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1254 
1255 		if (!(fn->fn_flags & RTN_RTINFO)) {
1256 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1257 			fn->fn_flags |= RTN_RTINFO;
1258 		}
1259 
1260 	} else {
1261 		int nsiblings;
1262 
1263 		if (!found) {
1264 			if (add)
1265 				goto add;
1266 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1267 			return -ENOENT;
1268 		}
1269 
1270 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1271 			err = call_fib6_entry_notifiers(info->nl_net,
1272 							FIB_EVENT_ENTRY_REPLACE,
1273 							rt, extack);
1274 			if (err)
1275 				return err;
1276 		}
1277 
1278 		fib6_info_hold(rt);
1279 		rcu_assign_pointer(rt->fib6_node, fn);
1280 		rt->fib6_next = iter->fib6_next;
1281 		rcu_assign_pointer(*ins, rt);
1282 		if (!info->skip_notify)
1283 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1284 		if (!(fn->fn_flags & RTN_RTINFO)) {
1285 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1286 			fn->fn_flags |= RTN_RTINFO;
1287 		}
1288 		nsiblings = iter->fib6_nsiblings;
1289 		iter->fib6_node = NULL;
1290 		fib6_purge_rt(iter, fn, info->nl_net);
1291 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1292 			fn->rr_ptr = NULL;
1293 		fib6_info_release(iter);
1294 
1295 		if (nsiblings) {
1296 			/* Replacing an ECMP route, remove all siblings */
1297 			ins = &rt->fib6_next;
1298 			iter = rcu_dereference_protected(*ins,
1299 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1300 			while (iter) {
1301 				if (iter->fib6_metric > rt->fib6_metric)
1302 					break;
1303 				if (rt6_qualify_for_ecmp(iter)) {
1304 					*ins = iter->fib6_next;
1305 					iter->fib6_node = NULL;
1306 					fib6_purge_rt(iter, fn, info->nl_net);
1307 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1308 						fn->rr_ptr = NULL;
1309 					fib6_info_release(iter);
1310 					nsiblings--;
1311 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1312 				} else {
1313 					ins = &iter->fib6_next;
1314 				}
1315 				iter = rcu_dereference_protected(*ins,
1316 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1317 			}
1318 			WARN_ON(nsiblings != 0);
1319 		}
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1326 {
1327 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1328 	    (rt->fib6_flags & RTF_EXPIRES))
1329 		mod_timer(&net->ipv6.ip6_fib_timer,
1330 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1331 }
1332 
1333 void fib6_force_start_gc(struct net *net)
1334 {
1335 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1336 		mod_timer(&net->ipv6.ip6_fib_timer,
1337 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1338 }
1339 
1340 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1341 					   int sernum)
1342 {
1343 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1344 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1345 
1346 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1347 	smp_wmb();
1348 	while (fn) {
1349 		WRITE_ONCE(fn->fn_sernum, sernum);
1350 		fn = rcu_dereference_protected(fn->parent,
1351 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1352 	}
1353 }
1354 
1355 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1356 {
1357 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1358 }
1359 
1360 /* allow ipv4 to update sernum via ipv6_stub */
1361 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1362 {
1363 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1364 	fib6_update_sernum_upto_root(net, f6i);
1365 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1366 }
1367 
1368 /*
1369  *	Add routing information to the routing tree.
1370  *	<destination addr>/<source addr>
1371  *	with source addr info in sub-trees
1372  *	Need to own table->tb6_lock
1373  */
1374 
1375 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1376 	     struct nl_info *info, struct netlink_ext_ack *extack)
1377 {
1378 	struct fib6_table *table = rt->fib6_table;
1379 	struct fib6_node *fn, *pn = NULL;
1380 	int err = -ENOMEM;
1381 	int allow_create = 1;
1382 	int replace_required = 0;
1383 
1384 	if (info->nlh) {
1385 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1386 			allow_create = 0;
1387 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1388 			replace_required = 1;
1389 	}
1390 	if (!allow_create && !replace_required)
1391 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1392 
1393 	fn = fib6_add_1(info->nl_net, table, root,
1394 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1395 			offsetof(struct fib6_info, fib6_dst), allow_create,
1396 			replace_required, extack);
1397 	if (IS_ERR(fn)) {
1398 		err = PTR_ERR(fn);
1399 		fn = NULL;
1400 		goto out;
1401 	}
1402 
1403 	pn = fn;
1404 
1405 #ifdef CONFIG_IPV6_SUBTREES
1406 	if (rt->fib6_src.plen) {
1407 		struct fib6_node *sn;
1408 
1409 		if (!rcu_access_pointer(fn->subtree)) {
1410 			struct fib6_node *sfn;
1411 
1412 			/*
1413 			 * Create subtree.
1414 			 *
1415 			 *		fn[main tree]
1416 			 *		|
1417 			 *		sfn[subtree root]
1418 			 *		   \
1419 			 *		    sn[new leaf node]
1420 			 */
1421 
1422 			/* Create subtree root node */
1423 			sfn = node_alloc(info->nl_net);
1424 			if (!sfn)
1425 				goto failure;
1426 
1427 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1428 			rcu_assign_pointer(sfn->leaf,
1429 					   info->nl_net->ipv6.fib6_null_entry);
1430 			sfn->fn_flags = RTN_ROOT;
1431 
1432 			/* Now add the first leaf node to new subtree */
1433 
1434 			sn = fib6_add_1(info->nl_net, table, sfn,
1435 					&rt->fib6_src.addr, rt->fib6_src.plen,
1436 					offsetof(struct fib6_info, fib6_src),
1437 					allow_create, replace_required, extack);
1438 
1439 			if (IS_ERR(sn)) {
1440 				/* If it is failed, discard just allocated
1441 				   root, and then (in failure) stale node
1442 				   in main tree.
1443 				 */
1444 				node_free_immediate(info->nl_net, sfn);
1445 				err = PTR_ERR(sn);
1446 				goto failure;
1447 			}
1448 
1449 			/* Now link new subtree to main tree */
1450 			rcu_assign_pointer(sfn->parent, fn);
1451 			rcu_assign_pointer(fn->subtree, sfn);
1452 		} else {
1453 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1454 					&rt->fib6_src.addr, rt->fib6_src.plen,
1455 					offsetof(struct fib6_info, fib6_src),
1456 					allow_create, replace_required, extack);
1457 
1458 			if (IS_ERR(sn)) {
1459 				err = PTR_ERR(sn);
1460 				goto failure;
1461 			}
1462 		}
1463 
1464 		if (!rcu_access_pointer(fn->leaf)) {
1465 			if (fn->fn_flags & RTN_TL_ROOT) {
1466 				/* put back null_entry for root node */
1467 				rcu_assign_pointer(fn->leaf,
1468 					    info->nl_net->ipv6.fib6_null_entry);
1469 			} else {
1470 				fib6_info_hold(rt);
1471 				rcu_assign_pointer(fn->leaf, rt);
1472 			}
1473 		}
1474 		fn = sn;
1475 	}
1476 #endif
1477 
1478 	err = fib6_add_rt2node(fn, rt, info, extack);
1479 	if (!err) {
1480 		if (rt->nh)
1481 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1482 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1483 		fib6_start_gc(info->nl_net, rt);
1484 	}
1485 
1486 out:
1487 	if (err) {
1488 #ifdef CONFIG_IPV6_SUBTREES
1489 		/*
1490 		 * If fib6_add_1 has cleared the old leaf pointer in the
1491 		 * super-tree leaf node we have to find a new one for it.
1492 		 */
1493 		if (pn != fn) {
1494 			struct fib6_info *pn_leaf =
1495 				rcu_dereference_protected(pn->leaf,
1496 				    lockdep_is_held(&table->tb6_lock));
1497 			if (pn_leaf == rt) {
1498 				pn_leaf = NULL;
1499 				RCU_INIT_POINTER(pn->leaf, NULL);
1500 				fib6_info_release(rt);
1501 			}
1502 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1503 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1504 							   pn);
1505 #if RT6_DEBUG >= 2
1506 				if (!pn_leaf) {
1507 					WARN_ON(!pn_leaf);
1508 					pn_leaf =
1509 					    info->nl_net->ipv6.fib6_null_entry;
1510 				}
1511 #endif
1512 				fib6_info_hold(pn_leaf);
1513 				rcu_assign_pointer(pn->leaf, pn_leaf);
1514 			}
1515 		}
1516 #endif
1517 		goto failure;
1518 	} else if (fib6_requires_src(rt)) {
1519 		fib6_routes_require_src_inc(info->nl_net);
1520 	}
1521 	return err;
1522 
1523 failure:
1524 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1525 	 * 1. fn is an intermediate node and we failed to add the new
1526 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1527 	 * failure case.
1528 	 * 2. fn is the root node in the table and we fail to add the first
1529 	 * default route to it.
1530 	 */
1531 	if (fn &&
1532 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1533 	     (fn->fn_flags & RTN_TL_ROOT &&
1534 	      !rcu_access_pointer(fn->leaf))))
1535 		fib6_repair_tree(info->nl_net, table, fn);
1536 	return err;
1537 }
1538 
1539 /*
1540  *	Routing tree lookup
1541  *
1542  */
1543 
1544 struct lookup_args {
1545 	int			offset;		/* key offset on fib6_info */
1546 	const struct in6_addr	*addr;		/* search key			*/
1547 };
1548 
1549 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1550 					    struct lookup_args *args)
1551 {
1552 	struct fib6_node *fn;
1553 	__be32 dir;
1554 
1555 	if (unlikely(args->offset == 0))
1556 		return NULL;
1557 
1558 	/*
1559 	 *	Descend on a tree
1560 	 */
1561 
1562 	fn = root;
1563 
1564 	for (;;) {
1565 		struct fib6_node *next;
1566 
1567 		dir = addr_bit_set(args->addr, fn->fn_bit);
1568 
1569 		next = dir ? rcu_dereference(fn->right) :
1570 			     rcu_dereference(fn->left);
1571 
1572 		if (next) {
1573 			fn = next;
1574 			continue;
1575 		}
1576 		break;
1577 	}
1578 
1579 	while (fn) {
1580 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1581 
1582 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1583 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1584 			struct rt6key *key;
1585 
1586 			if (!leaf)
1587 				goto backtrack;
1588 
1589 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1590 
1591 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1592 #ifdef CONFIG_IPV6_SUBTREES
1593 				if (subtree) {
1594 					struct fib6_node *sfn;
1595 					sfn = fib6_node_lookup_1(subtree,
1596 								 args + 1);
1597 					if (!sfn)
1598 						goto backtrack;
1599 					fn = sfn;
1600 				}
1601 #endif
1602 				if (fn->fn_flags & RTN_RTINFO)
1603 					return fn;
1604 			}
1605 		}
1606 backtrack:
1607 		if (fn->fn_flags & RTN_ROOT)
1608 			break;
1609 
1610 		fn = rcu_dereference(fn->parent);
1611 	}
1612 
1613 	return NULL;
1614 }
1615 
1616 /* called with rcu_read_lock() held
1617  */
1618 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1619 				   const struct in6_addr *daddr,
1620 				   const struct in6_addr *saddr)
1621 {
1622 	struct fib6_node *fn;
1623 	struct lookup_args args[] = {
1624 		{
1625 			.offset = offsetof(struct fib6_info, fib6_dst),
1626 			.addr = daddr,
1627 		},
1628 #ifdef CONFIG_IPV6_SUBTREES
1629 		{
1630 			.offset = offsetof(struct fib6_info, fib6_src),
1631 			.addr = saddr,
1632 		},
1633 #endif
1634 		{
1635 			.offset = 0,	/* sentinel */
1636 		}
1637 	};
1638 
1639 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1640 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1641 		fn = root;
1642 
1643 	return fn;
1644 }
1645 
1646 /*
1647  *	Get node with specified destination prefix (and source prefix,
1648  *	if subtrees are used)
1649  *	exact_match == true means we try to find fn with exact match of
1650  *	the passed in prefix addr
1651  *	exact_match == false means we try to find fn with longest prefix
1652  *	match of the passed in prefix addr. This is useful for finding fn
1653  *	for cached route as it will be stored in the exception table under
1654  *	the node with longest prefix length.
1655  */
1656 
1657 
1658 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1659 				       const struct in6_addr *addr,
1660 				       int plen, int offset,
1661 				       bool exact_match)
1662 {
1663 	struct fib6_node *fn, *prev = NULL;
1664 
1665 	for (fn = root; fn ; ) {
1666 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1667 		struct rt6key *key;
1668 
1669 		/* This node is being deleted */
1670 		if (!leaf) {
1671 			if (plen <= fn->fn_bit)
1672 				goto out;
1673 			else
1674 				goto next;
1675 		}
1676 
1677 		key = (struct rt6key *)((u8 *)leaf + offset);
1678 
1679 		/*
1680 		 *	Prefix match
1681 		 */
1682 		if (plen < fn->fn_bit ||
1683 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1684 			goto out;
1685 
1686 		if (plen == fn->fn_bit)
1687 			return fn;
1688 
1689 		if (fn->fn_flags & RTN_RTINFO)
1690 			prev = fn;
1691 
1692 next:
1693 		/*
1694 		 *	We have more bits to go
1695 		 */
1696 		if (addr_bit_set(addr, fn->fn_bit))
1697 			fn = rcu_dereference(fn->right);
1698 		else
1699 			fn = rcu_dereference(fn->left);
1700 	}
1701 out:
1702 	if (exact_match)
1703 		return NULL;
1704 	else
1705 		return prev;
1706 }
1707 
1708 struct fib6_node *fib6_locate(struct fib6_node *root,
1709 			      const struct in6_addr *daddr, int dst_len,
1710 			      const struct in6_addr *saddr, int src_len,
1711 			      bool exact_match)
1712 {
1713 	struct fib6_node *fn;
1714 
1715 	fn = fib6_locate_1(root, daddr, dst_len,
1716 			   offsetof(struct fib6_info, fib6_dst),
1717 			   exact_match);
1718 
1719 #ifdef CONFIG_IPV6_SUBTREES
1720 	if (src_len) {
1721 		WARN_ON(saddr == NULL);
1722 		if (fn) {
1723 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1724 
1725 			if (subtree) {
1726 				fn = fib6_locate_1(subtree, saddr, src_len,
1727 					   offsetof(struct fib6_info, fib6_src),
1728 					   exact_match);
1729 			}
1730 		}
1731 	}
1732 #endif
1733 
1734 	if (fn && fn->fn_flags & RTN_RTINFO)
1735 		return fn;
1736 
1737 	return NULL;
1738 }
1739 
1740 
1741 /*
1742  *	Deletion
1743  *
1744  */
1745 
1746 static struct fib6_info *fib6_find_prefix(struct net *net,
1747 					 struct fib6_table *table,
1748 					 struct fib6_node *fn)
1749 {
1750 	struct fib6_node *child_left, *child_right;
1751 
1752 	if (fn->fn_flags & RTN_ROOT)
1753 		return net->ipv6.fib6_null_entry;
1754 
1755 	while (fn) {
1756 		child_left = rcu_dereference_protected(fn->left,
1757 				    lockdep_is_held(&table->tb6_lock));
1758 		child_right = rcu_dereference_protected(fn->right,
1759 				    lockdep_is_held(&table->tb6_lock));
1760 		if (child_left)
1761 			return rcu_dereference_protected(child_left->leaf,
1762 					lockdep_is_held(&table->tb6_lock));
1763 		if (child_right)
1764 			return rcu_dereference_protected(child_right->leaf,
1765 					lockdep_is_held(&table->tb6_lock));
1766 
1767 		fn = FIB6_SUBTREE(fn);
1768 	}
1769 	return NULL;
1770 }
1771 
1772 /*
1773  *	Called to trim the tree of intermediate nodes when possible. "fn"
1774  *	is the node we want to try and remove.
1775  *	Need to own table->tb6_lock
1776  */
1777 
1778 static struct fib6_node *fib6_repair_tree(struct net *net,
1779 					  struct fib6_table *table,
1780 					  struct fib6_node *fn)
1781 {
1782 	int children;
1783 	int nstate;
1784 	struct fib6_node *child;
1785 	struct fib6_walker *w;
1786 	int iter = 0;
1787 
1788 	/* Set fn->leaf to null_entry for root node. */
1789 	if (fn->fn_flags & RTN_TL_ROOT) {
1790 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1791 		return fn;
1792 	}
1793 
1794 	for (;;) {
1795 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1796 					    lockdep_is_held(&table->tb6_lock));
1797 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1798 					    lockdep_is_held(&table->tb6_lock));
1799 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1800 					    lockdep_is_held(&table->tb6_lock));
1801 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1802 					    lockdep_is_held(&table->tb6_lock));
1803 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1804 					    lockdep_is_held(&table->tb6_lock));
1805 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1806 					    lockdep_is_held(&table->tb6_lock));
1807 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1808 					    lockdep_is_held(&table->tb6_lock));
1809 		struct fib6_info *new_fn_leaf;
1810 
1811 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1812 		iter++;
1813 
1814 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1815 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1816 		WARN_ON(fn_leaf);
1817 
1818 		children = 0;
1819 		child = NULL;
1820 		if (fn_r) {
1821 			child = fn_r;
1822 			children |= 1;
1823 		}
1824 		if (fn_l) {
1825 			child = fn_l;
1826 			children |= 2;
1827 		}
1828 
1829 		if (children == 3 || FIB6_SUBTREE(fn)
1830 #ifdef CONFIG_IPV6_SUBTREES
1831 		    /* Subtree root (i.e. fn) may have one child */
1832 		    || (children && fn->fn_flags & RTN_ROOT)
1833 #endif
1834 		    ) {
1835 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1836 #if RT6_DEBUG >= 2
1837 			if (!new_fn_leaf) {
1838 				WARN_ON(!new_fn_leaf);
1839 				new_fn_leaf = net->ipv6.fib6_null_entry;
1840 			}
1841 #endif
1842 			fib6_info_hold(new_fn_leaf);
1843 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1844 			return pn;
1845 		}
1846 
1847 #ifdef CONFIG_IPV6_SUBTREES
1848 		if (FIB6_SUBTREE(pn) == fn) {
1849 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1850 			RCU_INIT_POINTER(pn->subtree, NULL);
1851 			nstate = FWS_L;
1852 		} else {
1853 			WARN_ON(fn->fn_flags & RTN_ROOT);
1854 #endif
1855 			if (pn_r == fn)
1856 				rcu_assign_pointer(pn->right, child);
1857 			else if (pn_l == fn)
1858 				rcu_assign_pointer(pn->left, child);
1859 #if RT6_DEBUG >= 2
1860 			else
1861 				WARN_ON(1);
1862 #endif
1863 			if (child)
1864 				rcu_assign_pointer(child->parent, pn);
1865 			nstate = FWS_R;
1866 #ifdef CONFIG_IPV6_SUBTREES
1867 		}
1868 #endif
1869 
1870 		read_lock(&net->ipv6.fib6_walker_lock);
1871 		FOR_WALKERS(net, w) {
1872 			if (!child) {
1873 				if (w->node == fn) {
1874 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1875 					w->node = pn;
1876 					w->state = nstate;
1877 				}
1878 			} else {
1879 				if (w->node == fn) {
1880 					w->node = child;
1881 					if (children&2) {
1882 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1883 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1884 					} else {
1885 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1886 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1887 					}
1888 				}
1889 			}
1890 		}
1891 		read_unlock(&net->ipv6.fib6_walker_lock);
1892 
1893 		node_free(net, fn);
1894 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1895 			return pn;
1896 
1897 		RCU_INIT_POINTER(pn->leaf, NULL);
1898 		fib6_info_release(pn_leaf);
1899 		fn = pn;
1900 	}
1901 }
1902 
1903 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1904 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1905 {
1906 	struct fib6_info *leaf, *replace_rt = NULL;
1907 	struct fib6_walker *w;
1908 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1909 				    lockdep_is_held(&table->tb6_lock));
1910 	struct net *net = info->nl_net;
1911 	bool notify_del = false;
1912 
1913 	RT6_TRACE("fib6_del_route\n");
1914 
1915 	/* If the deleted route is the first in the node and it is not part of
1916 	 * a multipath route, then we need to replace it with the next route
1917 	 * in the node, if exists.
1918 	 */
1919 	leaf = rcu_dereference_protected(fn->leaf,
1920 					 lockdep_is_held(&table->tb6_lock));
1921 	if (leaf == rt && !rt->fib6_nsiblings) {
1922 		if (rcu_access_pointer(rt->fib6_next))
1923 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1924 					    lockdep_is_held(&table->tb6_lock));
1925 		else
1926 			notify_del = true;
1927 	}
1928 
1929 	/* Unlink it */
1930 	*rtp = rt->fib6_next;
1931 	rt->fib6_node = NULL;
1932 	net->ipv6.rt6_stats->fib_rt_entries--;
1933 	net->ipv6.rt6_stats->fib_discarded_routes++;
1934 
1935 	/* Reset round-robin state, if necessary */
1936 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1937 		fn->rr_ptr = NULL;
1938 
1939 	/* Remove this entry from other siblings */
1940 	if (rt->fib6_nsiblings) {
1941 		struct fib6_info *sibling, *next_sibling;
1942 
1943 		/* The route is deleted from a multipath route. If this
1944 		 * multipath route is the first route in the node, then we need
1945 		 * to emit a delete notification. Otherwise, we need to skip
1946 		 * the notification.
1947 		 */
1948 		if (rt->fib6_metric == leaf->fib6_metric &&
1949 		    rt6_qualify_for_ecmp(leaf))
1950 			notify_del = true;
1951 		list_for_each_entry_safe(sibling, next_sibling,
1952 					 &rt->fib6_siblings, fib6_siblings)
1953 			sibling->fib6_nsiblings--;
1954 		rt->fib6_nsiblings = 0;
1955 		list_del_init(&rt->fib6_siblings);
1956 		rt6_multipath_rebalance(next_sibling);
1957 	}
1958 
1959 	/* Adjust walkers */
1960 	read_lock(&net->ipv6.fib6_walker_lock);
1961 	FOR_WALKERS(net, w) {
1962 		if (w->state == FWS_C && w->leaf == rt) {
1963 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1964 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1965 					    lockdep_is_held(&table->tb6_lock));
1966 			if (!w->leaf)
1967 				w->state = FWS_U;
1968 		}
1969 	}
1970 	read_unlock(&net->ipv6.fib6_walker_lock);
1971 
1972 	/* If it was last route, call fib6_repair_tree() to:
1973 	 * 1. For root node, put back null_entry as how the table was created.
1974 	 * 2. For other nodes, expunge its radix tree node.
1975 	 */
1976 	if (!rcu_access_pointer(fn->leaf)) {
1977 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1978 			fn->fn_flags &= ~RTN_RTINFO;
1979 			net->ipv6.rt6_stats->fib_route_nodes--;
1980 		}
1981 		fn = fib6_repair_tree(net, table, fn);
1982 	}
1983 
1984 	fib6_purge_rt(rt, fn, net);
1985 
1986 	if (!info->skip_notify_kernel) {
1987 		if (notify_del)
1988 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1989 						  rt, NULL);
1990 		else if (replace_rt)
1991 			call_fib6_entry_notifiers_replace(net, replace_rt);
1992 	}
1993 	if (!info->skip_notify)
1994 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1995 
1996 	fib6_info_release(rt);
1997 }
1998 
1999 /* Need to own table->tb6_lock */
2000 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2001 {
2002 	struct net *net = info->nl_net;
2003 	struct fib6_info __rcu **rtp;
2004 	struct fib6_info __rcu **rtp_next;
2005 	struct fib6_table *table;
2006 	struct fib6_node *fn;
2007 
2008 	if (rt == net->ipv6.fib6_null_entry)
2009 		return -ENOENT;
2010 
2011 	table = rt->fib6_table;
2012 	fn = rcu_dereference_protected(rt->fib6_node,
2013 				       lockdep_is_held(&table->tb6_lock));
2014 	if (!fn)
2015 		return -ENOENT;
2016 
2017 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2018 
2019 	/*
2020 	 *	Walk the leaf entries looking for ourself
2021 	 */
2022 
2023 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2024 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2025 					lockdep_is_held(&table->tb6_lock));
2026 		if (rt == cur) {
2027 			if (fib6_requires_src(cur))
2028 				fib6_routes_require_src_dec(info->nl_net);
2029 			fib6_del_route(table, fn, rtp, info);
2030 			return 0;
2031 		}
2032 		rtp_next = &cur->fib6_next;
2033 	}
2034 	return -ENOENT;
2035 }
2036 
2037 /*
2038  *	Tree traversal function.
2039  *
2040  *	Certainly, it is not interrupt safe.
2041  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2042  *	It means, that we can modify tree during walking
2043  *	and use this function for garbage collection, clone pruning,
2044  *	cleaning tree when a device goes down etc. etc.
2045  *
2046  *	It guarantees that every node will be traversed,
2047  *	and that it will be traversed only once.
2048  *
2049  *	Callback function w->func may return:
2050  *	0 -> continue walking.
2051  *	positive value -> walking is suspended (used by tree dumps,
2052  *	and probably by gc, if it will be split to several slices)
2053  *	negative value -> terminate walking.
2054  *
2055  *	The function itself returns:
2056  *	0   -> walk is complete.
2057  *	>0  -> walk is incomplete (i.e. suspended)
2058  *	<0  -> walk is terminated by an error.
2059  *
2060  *	This function is called with tb6_lock held.
2061  */
2062 
2063 static int fib6_walk_continue(struct fib6_walker *w)
2064 {
2065 	struct fib6_node *fn, *pn, *left, *right;
2066 
2067 	/* w->root should always be table->tb6_root */
2068 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2069 
2070 	for (;;) {
2071 		fn = w->node;
2072 		if (!fn)
2073 			return 0;
2074 
2075 		switch (w->state) {
2076 #ifdef CONFIG_IPV6_SUBTREES
2077 		case FWS_S:
2078 			if (FIB6_SUBTREE(fn)) {
2079 				w->node = FIB6_SUBTREE(fn);
2080 				continue;
2081 			}
2082 			w->state = FWS_L;
2083 			fallthrough;
2084 #endif
2085 		case FWS_L:
2086 			left = rcu_dereference_protected(fn->left, 1);
2087 			if (left) {
2088 				w->node = left;
2089 				w->state = FWS_INIT;
2090 				continue;
2091 			}
2092 			w->state = FWS_R;
2093 			fallthrough;
2094 		case FWS_R:
2095 			right = rcu_dereference_protected(fn->right, 1);
2096 			if (right) {
2097 				w->node = right;
2098 				w->state = FWS_INIT;
2099 				continue;
2100 			}
2101 			w->state = FWS_C;
2102 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2103 			fallthrough;
2104 		case FWS_C:
2105 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2106 				int err;
2107 
2108 				if (w->skip) {
2109 					w->skip--;
2110 					goto skip;
2111 				}
2112 
2113 				err = w->func(w);
2114 				if (err)
2115 					return err;
2116 
2117 				w->count++;
2118 				continue;
2119 			}
2120 skip:
2121 			w->state = FWS_U;
2122 			fallthrough;
2123 		case FWS_U:
2124 			if (fn == w->root)
2125 				return 0;
2126 			pn = rcu_dereference_protected(fn->parent, 1);
2127 			left = rcu_dereference_protected(pn->left, 1);
2128 			right = rcu_dereference_protected(pn->right, 1);
2129 			w->node = pn;
2130 #ifdef CONFIG_IPV6_SUBTREES
2131 			if (FIB6_SUBTREE(pn) == fn) {
2132 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2133 				w->state = FWS_L;
2134 				continue;
2135 			}
2136 #endif
2137 			if (left == fn) {
2138 				w->state = FWS_R;
2139 				continue;
2140 			}
2141 			if (right == fn) {
2142 				w->state = FWS_C;
2143 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2144 				continue;
2145 			}
2146 #if RT6_DEBUG >= 2
2147 			WARN_ON(1);
2148 #endif
2149 		}
2150 	}
2151 }
2152 
2153 static int fib6_walk(struct net *net, struct fib6_walker *w)
2154 {
2155 	int res;
2156 
2157 	w->state = FWS_INIT;
2158 	w->node = w->root;
2159 
2160 	fib6_walker_link(net, w);
2161 	res = fib6_walk_continue(w);
2162 	if (res <= 0)
2163 		fib6_walker_unlink(net, w);
2164 	return res;
2165 }
2166 
2167 static int fib6_clean_node(struct fib6_walker *w)
2168 {
2169 	int res;
2170 	struct fib6_info *rt;
2171 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2172 	struct nl_info info = {
2173 		.nl_net = c->net,
2174 		.skip_notify = c->skip_notify,
2175 	};
2176 
2177 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2178 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2179 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2180 
2181 	if (!c->func) {
2182 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2183 		w->leaf = NULL;
2184 		return 0;
2185 	}
2186 
2187 	for_each_fib6_walker_rt(w) {
2188 		res = c->func(rt, c->arg);
2189 		if (res == -1) {
2190 			w->leaf = rt;
2191 			res = fib6_del(rt, &info);
2192 			if (res) {
2193 #if RT6_DEBUG >= 2
2194 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2195 					 __func__, rt,
2196 					 rcu_access_pointer(rt->fib6_node),
2197 					 res);
2198 #endif
2199 				continue;
2200 			}
2201 			return 0;
2202 		} else if (res == -2) {
2203 			if (WARN_ON(!rt->fib6_nsiblings))
2204 				continue;
2205 			rt = list_last_entry(&rt->fib6_siblings,
2206 					     struct fib6_info, fib6_siblings);
2207 			continue;
2208 		}
2209 		WARN_ON(res != 0);
2210 	}
2211 	w->leaf = rt;
2212 	return 0;
2213 }
2214 
2215 /*
2216  *	Convenient frontend to tree walker.
2217  *
2218  *	func is called on each route.
2219  *		It may return -2 -> skip multipath route.
2220  *			      -1 -> delete this route.
2221  *		              0  -> continue walking
2222  */
2223 
2224 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2225 			    int (*func)(struct fib6_info *, void *arg),
2226 			    int sernum, void *arg, bool skip_notify)
2227 {
2228 	struct fib6_cleaner c;
2229 
2230 	c.w.root = root;
2231 	c.w.func = fib6_clean_node;
2232 	c.w.count = 0;
2233 	c.w.skip = 0;
2234 	c.w.skip_in_node = 0;
2235 	c.func = func;
2236 	c.sernum = sernum;
2237 	c.arg = arg;
2238 	c.net = net;
2239 	c.skip_notify = skip_notify;
2240 
2241 	fib6_walk(net, &c.w);
2242 }
2243 
2244 static void __fib6_clean_all(struct net *net,
2245 			     int (*func)(struct fib6_info *, void *),
2246 			     int sernum, void *arg, bool skip_notify)
2247 {
2248 	struct fib6_table *table;
2249 	struct hlist_head *head;
2250 	unsigned int h;
2251 
2252 	rcu_read_lock();
2253 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2254 		head = &net->ipv6.fib_table_hash[h];
2255 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2256 			spin_lock_bh(&table->tb6_lock);
2257 			fib6_clean_tree(net, &table->tb6_root,
2258 					func, sernum, arg, skip_notify);
2259 			spin_unlock_bh(&table->tb6_lock);
2260 		}
2261 	}
2262 	rcu_read_unlock();
2263 }
2264 
2265 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2266 		    void *arg)
2267 {
2268 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2269 }
2270 
2271 void fib6_clean_all_skip_notify(struct net *net,
2272 				int (*func)(struct fib6_info *, void *),
2273 				void *arg)
2274 {
2275 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2276 }
2277 
2278 static void fib6_flush_trees(struct net *net)
2279 {
2280 	int new_sernum = fib6_new_sernum(net);
2281 
2282 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2283 }
2284 
2285 /*
2286  *	Garbage collection
2287  */
2288 
2289 static int fib6_age(struct fib6_info *rt, void *arg)
2290 {
2291 	struct fib6_gc_args *gc_args = arg;
2292 	unsigned long now = jiffies;
2293 
2294 	/*
2295 	 *	check addrconf expiration here.
2296 	 *	Routes are expired even if they are in use.
2297 	 */
2298 
2299 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2300 		if (time_after(now, rt->expires)) {
2301 			RT6_TRACE("expiring %p\n", rt);
2302 			return -1;
2303 		}
2304 		gc_args->more++;
2305 	}
2306 
2307 	/*	Also age clones in the exception table.
2308 	 *	Note, that clones are aged out
2309 	 *	only if they are not in use now.
2310 	 */
2311 	rt6_age_exceptions(rt, gc_args, now);
2312 
2313 	return 0;
2314 }
2315 
2316 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2317 {
2318 	struct fib6_gc_args gc_args;
2319 	unsigned long now;
2320 
2321 	if (force) {
2322 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2323 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2324 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2325 		return;
2326 	}
2327 	gc_args.timeout = expires ? (int)expires :
2328 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2329 	gc_args.more = 0;
2330 
2331 	fib6_clean_all(net, fib6_age, &gc_args);
2332 	now = jiffies;
2333 	net->ipv6.ip6_rt_last_gc = now;
2334 
2335 	if (gc_args.more)
2336 		mod_timer(&net->ipv6.ip6_fib_timer,
2337 			  round_jiffies(now
2338 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2339 	else
2340 		del_timer(&net->ipv6.ip6_fib_timer);
2341 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2342 }
2343 
2344 static void fib6_gc_timer_cb(struct timer_list *t)
2345 {
2346 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2347 
2348 	fib6_run_gc(0, arg, true);
2349 }
2350 
2351 static int __net_init fib6_net_init(struct net *net)
2352 {
2353 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2354 	int err;
2355 
2356 	err = fib6_notifier_init(net);
2357 	if (err)
2358 		return err;
2359 
2360 	/* Default to 3-tuple */
2361 	net->ipv6.sysctl.multipath_hash_fields =
2362 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2363 
2364 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2365 	rwlock_init(&net->ipv6.fib6_walker_lock);
2366 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2367 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2368 
2369 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2370 	if (!net->ipv6.rt6_stats)
2371 		goto out_notifier;
2372 
2373 	/* Avoid false sharing : Use at least a full cache line */
2374 	size = max_t(size_t, size, L1_CACHE_BYTES);
2375 
2376 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2377 	if (!net->ipv6.fib_table_hash)
2378 		goto out_rt6_stats;
2379 
2380 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2381 					  GFP_KERNEL);
2382 	if (!net->ipv6.fib6_main_tbl)
2383 		goto out_fib_table_hash;
2384 
2385 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2386 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2387 			   net->ipv6.fib6_null_entry);
2388 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2389 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2390 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2391 
2392 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2393 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2394 					   GFP_KERNEL);
2395 	if (!net->ipv6.fib6_local_tbl)
2396 		goto out_fib6_main_tbl;
2397 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2398 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2399 			   net->ipv6.fib6_null_entry);
2400 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2401 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2402 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2403 #endif
2404 	fib6_tables_init(net);
2405 
2406 	return 0;
2407 
2408 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2409 out_fib6_main_tbl:
2410 	kfree(net->ipv6.fib6_main_tbl);
2411 #endif
2412 out_fib_table_hash:
2413 	kfree(net->ipv6.fib_table_hash);
2414 out_rt6_stats:
2415 	kfree(net->ipv6.rt6_stats);
2416 out_notifier:
2417 	fib6_notifier_exit(net);
2418 	return -ENOMEM;
2419 }
2420 
2421 static void fib6_net_exit(struct net *net)
2422 {
2423 	unsigned int i;
2424 
2425 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2426 
2427 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2428 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2429 		struct hlist_node *tmp;
2430 		struct fib6_table *tb;
2431 
2432 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2433 			hlist_del(&tb->tb6_hlist);
2434 			fib6_free_table(tb);
2435 		}
2436 	}
2437 
2438 	kfree(net->ipv6.fib_table_hash);
2439 	kfree(net->ipv6.rt6_stats);
2440 	fib6_notifier_exit(net);
2441 }
2442 
2443 static struct pernet_operations fib6_net_ops = {
2444 	.init = fib6_net_init,
2445 	.exit = fib6_net_exit,
2446 };
2447 
2448 int __init fib6_init(void)
2449 {
2450 	int ret = -ENOMEM;
2451 
2452 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2453 					   sizeof(struct fib6_node), 0,
2454 					   SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2455 					   NULL);
2456 	if (!fib6_node_kmem)
2457 		goto out;
2458 
2459 	ret = register_pernet_subsys(&fib6_net_ops);
2460 	if (ret)
2461 		goto out_kmem_cache_create;
2462 
2463 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2464 				   inet6_dump_fib, 0);
2465 	if (ret)
2466 		goto out_unregister_subsys;
2467 
2468 	__fib6_flush_trees = fib6_flush_trees;
2469 out:
2470 	return ret;
2471 
2472 out_unregister_subsys:
2473 	unregister_pernet_subsys(&fib6_net_ops);
2474 out_kmem_cache_create:
2475 	kmem_cache_destroy(fib6_node_kmem);
2476 	goto out;
2477 }
2478 
2479 void fib6_gc_cleanup(void)
2480 {
2481 	unregister_pernet_subsys(&fib6_net_ops);
2482 	kmem_cache_destroy(fib6_node_kmem);
2483 }
2484 
2485 #ifdef CONFIG_PROC_FS
2486 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2487 {
2488 	struct fib6_info *rt = v;
2489 	struct ipv6_route_iter *iter = seq->private;
2490 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2491 	unsigned int flags = rt->fib6_flags;
2492 	const struct net_device *dev;
2493 
2494 	if (rt->nh)
2495 		fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2496 
2497 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2498 
2499 #ifdef CONFIG_IPV6_SUBTREES
2500 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2501 #else
2502 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2503 #endif
2504 	if (fib6_nh->fib_nh_gw_family) {
2505 		flags |= RTF_GATEWAY;
2506 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2507 	} else {
2508 		seq_puts(seq, "00000000000000000000000000000000");
2509 	}
2510 
2511 	dev = fib6_nh->fib_nh_dev;
2512 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2513 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2514 		   flags, dev ? dev->name : "");
2515 	iter->w.leaf = NULL;
2516 	return 0;
2517 }
2518 
2519 static int ipv6_route_yield(struct fib6_walker *w)
2520 {
2521 	struct ipv6_route_iter *iter = w->args;
2522 
2523 	if (!iter->skip)
2524 		return 1;
2525 
2526 	do {
2527 		iter->w.leaf = rcu_dereference_protected(
2528 				iter->w.leaf->fib6_next,
2529 				lockdep_is_held(&iter->tbl->tb6_lock));
2530 		iter->skip--;
2531 		if (!iter->skip && iter->w.leaf)
2532 			return 1;
2533 	} while (iter->w.leaf);
2534 
2535 	return 0;
2536 }
2537 
2538 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2539 				      struct net *net)
2540 {
2541 	memset(&iter->w, 0, sizeof(iter->w));
2542 	iter->w.func = ipv6_route_yield;
2543 	iter->w.root = &iter->tbl->tb6_root;
2544 	iter->w.state = FWS_INIT;
2545 	iter->w.node = iter->w.root;
2546 	iter->w.args = iter;
2547 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2548 	INIT_LIST_HEAD(&iter->w.lh);
2549 	fib6_walker_link(net, &iter->w);
2550 }
2551 
2552 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2553 						    struct net *net)
2554 {
2555 	unsigned int h;
2556 	struct hlist_node *node;
2557 
2558 	if (tbl) {
2559 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2560 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2561 	} else {
2562 		h = 0;
2563 		node = NULL;
2564 	}
2565 
2566 	while (!node && h < FIB6_TABLE_HASHSZ) {
2567 		node = rcu_dereference_bh(
2568 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2569 	}
2570 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2571 }
2572 
2573 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2574 {
2575 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2576 
2577 	if (iter->sernum != sernum) {
2578 		iter->sernum = sernum;
2579 		iter->w.state = FWS_INIT;
2580 		iter->w.node = iter->w.root;
2581 		WARN_ON(iter->w.skip);
2582 		iter->w.skip = iter->w.count;
2583 	}
2584 }
2585 
2586 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2587 {
2588 	int r;
2589 	struct fib6_info *n;
2590 	struct net *net = seq_file_net(seq);
2591 	struct ipv6_route_iter *iter = seq->private;
2592 
2593 	++(*pos);
2594 	if (!v)
2595 		goto iter_table;
2596 
2597 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2598 	if (n)
2599 		return n;
2600 
2601 iter_table:
2602 	ipv6_route_check_sernum(iter);
2603 	spin_lock_bh(&iter->tbl->tb6_lock);
2604 	r = fib6_walk_continue(&iter->w);
2605 	spin_unlock_bh(&iter->tbl->tb6_lock);
2606 	if (r > 0) {
2607 		return iter->w.leaf;
2608 	} else if (r < 0) {
2609 		fib6_walker_unlink(net, &iter->w);
2610 		return NULL;
2611 	}
2612 	fib6_walker_unlink(net, &iter->w);
2613 
2614 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2615 	if (!iter->tbl)
2616 		return NULL;
2617 
2618 	ipv6_route_seq_setup_walk(iter, net);
2619 	goto iter_table;
2620 }
2621 
2622 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2623 	__acquires(RCU_BH)
2624 {
2625 	struct net *net = seq_file_net(seq);
2626 	struct ipv6_route_iter *iter = seq->private;
2627 
2628 	rcu_read_lock_bh();
2629 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2630 	iter->skip = *pos;
2631 
2632 	if (iter->tbl) {
2633 		loff_t p = 0;
2634 
2635 		ipv6_route_seq_setup_walk(iter, net);
2636 		return ipv6_route_seq_next(seq, NULL, &p);
2637 	} else {
2638 		return NULL;
2639 	}
2640 }
2641 
2642 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2643 {
2644 	struct fib6_walker *w = &iter->w;
2645 	return w->node && !(w->state == FWS_U && w->node == w->root);
2646 }
2647 
2648 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2649 	__releases(RCU_BH)
2650 {
2651 	struct net *net = seq_file_net(seq);
2652 	struct ipv6_route_iter *iter = seq->private;
2653 
2654 	if (ipv6_route_iter_active(iter))
2655 		fib6_walker_unlink(net, &iter->w);
2656 
2657 	rcu_read_unlock_bh();
2658 }
2659 
2660 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2661 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2662 				    struct bpf_iter_meta *meta,
2663 				    void *v)
2664 {
2665 	struct bpf_iter__ipv6_route ctx;
2666 
2667 	ctx.meta = meta;
2668 	ctx.rt = v;
2669 	return bpf_iter_run_prog(prog, &ctx);
2670 }
2671 
2672 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2673 {
2674 	struct ipv6_route_iter *iter = seq->private;
2675 	struct bpf_iter_meta meta;
2676 	struct bpf_prog *prog;
2677 	int ret;
2678 
2679 	meta.seq = seq;
2680 	prog = bpf_iter_get_info(&meta, false);
2681 	if (!prog)
2682 		return ipv6_route_native_seq_show(seq, v);
2683 
2684 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2685 	iter->w.leaf = NULL;
2686 
2687 	return ret;
2688 }
2689 
2690 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2691 {
2692 	struct bpf_iter_meta meta;
2693 	struct bpf_prog *prog;
2694 
2695 	if (!v) {
2696 		meta.seq = seq;
2697 		prog = bpf_iter_get_info(&meta, true);
2698 		if (prog)
2699 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2700 	}
2701 
2702 	ipv6_route_native_seq_stop(seq, v);
2703 }
2704 #else
2705 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2706 {
2707 	return ipv6_route_native_seq_show(seq, v);
2708 }
2709 
2710 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2711 {
2712 	ipv6_route_native_seq_stop(seq, v);
2713 }
2714 #endif
2715 
2716 const struct seq_operations ipv6_route_seq_ops = {
2717 	.start	= ipv6_route_seq_start,
2718 	.next	= ipv6_route_seq_next,
2719 	.stop	= ipv6_route_seq_stop,
2720 	.show	= ipv6_route_seq_show
2721 };
2722 #endif /* CONFIG_PROC_FS */
2723