1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* 15 * Changes: 16 * Yuji SEKIYA @USAGI: Support default route on router node; 17 * remove ip6_null_entry from the top of 18 * routing table. 19 * Ville Nuorvala: Fixed routing subtrees. 20 */ 21 #include <linux/errno.h> 22 #include <linux/types.h> 23 #include <linux/net.h> 24 #include <linux/route.h> 25 #include <linux/netdevice.h> 26 #include <linux/in6.h> 27 #include <linux/init.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #ifdef CONFIG_PROC_FS 32 #include <linux/proc_fs.h> 33 #endif 34 35 #include <net/ipv6.h> 36 #include <net/ndisc.h> 37 #include <net/addrconf.h> 38 39 #include <net/ip6_fib.h> 40 #include <net/ip6_route.h> 41 42 #define RT6_DEBUG 2 43 44 #if RT6_DEBUG >= 3 45 #define RT6_TRACE(x...) printk(KERN_DEBUG x) 46 #else 47 #define RT6_TRACE(x...) do { ; } while (0) 48 #endif 49 50 static struct kmem_cache * fib6_node_kmem __read_mostly; 51 52 enum fib_walk_state_t 53 { 54 #ifdef CONFIG_IPV6_SUBTREES 55 FWS_S, 56 #endif 57 FWS_L, 58 FWS_R, 59 FWS_C, 60 FWS_U 61 }; 62 63 struct fib6_cleaner_t 64 { 65 struct fib6_walker_t w; 66 struct net *net; 67 int (*func)(struct rt6_info *, void *arg); 68 void *arg; 69 }; 70 71 static DEFINE_RWLOCK(fib6_walker_lock); 72 73 #ifdef CONFIG_IPV6_SUBTREES 74 #define FWS_INIT FWS_S 75 #else 76 #define FWS_INIT FWS_L 77 #endif 78 79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 80 struct rt6_info *rt); 81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 83 static int fib6_walk(struct fib6_walker_t *w); 84 static int fib6_walk_continue(struct fib6_walker_t *w); 85 86 /* 87 * A routing update causes an increase of the serial number on the 88 * affected subtree. This allows for cached routes to be asynchronously 89 * tested when modifications are made to the destination cache as a 90 * result of redirects, path MTU changes, etc. 91 */ 92 93 static __u32 rt_sernum; 94 95 static void fib6_gc_timer_cb(unsigned long arg); 96 97 static LIST_HEAD(fib6_walkers); 98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh) 99 100 static inline void fib6_walker_link(struct fib6_walker_t *w) 101 { 102 write_lock_bh(&fib6_walker_lock); 103 list_add(&w->lh, &fib6_walkers); 104 write_unlock_bh(&fib6_walker_lock); 105 } 106 107 static inline void fib6_walker_unlink(struct fib6_walker_t *w) 108 { 109 write_lock_bh(&fib6_walker_lock); 110 list_del(&w->lh); 111 write_unlock_bh(&fib6_walker_lock); 112 } 113 static __inline__ u32 fib6_new_sernum(void) 114 { 115 u32 n = ++rt_sernum; 116 if ((__s32)n <= 0) 117 rt_sernum = n = 1; 118 return n; 119 } 120 121 /* 122 * Auxiliary address test functions for the radix tree. 123 * 124 * These assume a 32bit processor (although it will work on 125 * 64bit processors) 126 */ 127 128 /* 129 * test bit 130 */ 131 #if defined(__LITTLE_ENDIAN) 132 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 133 #else 134 # define BITOP_BE32_SWIZZLE 0 135 #endif 136 137 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit) 138 { 139 const __be32 *addr = token; 140 /* 141 * Here, 142 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 143 * is optimized version of 144 * htonl(1 << ((~fn_bit)&0x1F)) 145 * See include/asm-generic/bitops/le.h. 146 */ 147 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 148 addr[fn_bit >> 5]; 149 } 150 151 static __inline__ struct fib6_node * node_alloc(void) 152 { 153 struct fib6_node *fn; 154 155 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 156 157 return fn; 158 } 159 160 static __inline__ void node_free(struct fib6_node * fn) 161 { 162 kmem_cache_free(fib6_node_kmem, fn); 163 } 164 165 static __inline__ void rt6_release(struct rt6_info *rt) 166 { 167 if (atomic_dec_and_test(&rt->rt6i_ref)) 168 dst_free(&rt->dst); 169 } 170 171 static void fib6_link_table(struct net *net, struct fib6_table *tb) 172 { 173 unsigned int h; 174 175 /* 176 * Initialize table lock at a single place to give lockdep a key, 177 * tables aren't visible prior to being linked to the list. 178 */ 179 rwlock_init(&tb->tb6_lock); 180 181 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 182 183 /* 184 * No protection necessary, this is the only list mutatation 185 * operation, tables never disappear once they exist. 186 */ 187 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 188 } 189 190 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 191 192 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 193 { 194 struct fib6_table *table; 195 196 table = kzalloc(sizeof(*table), GFP_ATOMIC); 197 if (table != NULL) { 198 table->tb6_id = id; 199 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 200 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 201 } 202 203 return table; 204 } 205 206 struct fib6_table *fib6_new_table(struct net *net, u32 id) 207 { 208 struct fib6_table *tb; 209 210 if (id == 0) 211 id = RT6_TABLE_MAIN; 212 tb = fib6_get_table(net, id); 213 if (tb) 214 return tb; 215 216 tb = fib6_alloc_table(net, id); 217 if (tb != NULL) 218 fib6_link_table(net, tb); 219 220 return tb; 221 } 222 223 struct fib6_table *fib6_get_table(struct net *net, u32 id) 224 { 225 struct fib6_table *tb; 226 struct hlist_head *head; 227 struct hlist_node *node; 228 unsigned int h; 229 230 if (id == 0) 231 id = RT6_TABLE_MAIN; 232 h = id & (FIB6_TABLE_HASHSZ - 1); 233 rcu_read_lock(); 234 head = &net->ipv6.fib_table_hash[h]; 235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 236 if (tb->tb6_id == id) { 237 rcu_read_unlock(); 238 return tb; 239 } 240 } 241 rcu_read_unlock(); 242 243 return NULL; 244 } 245 246 static void __net_init fib6_tables_init(struct net *net) 247 { 248 fib6_link_table(net, net->ipv6.fib6_main_tbl); 249 fib6_link_table(net, net->ipv6.fib6_local_tbl); 250 } 251 #else 252 253 struct fib6_table *fib6_new_table(struct net *net, u32 id) 254 { 255 return fib6_get_table(net, id); 256 } 257 258 struct fib6_table *fib6_get_table(struct net *net, u32 id) 259 { 260 return net->ipv6.fib6_main_tbl; 261 } 262 263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 264 int flags, pol_lookup_t lookup) 265 { 266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 267 } 268 269 static void __net_init fib6_tables_init(struct net *net) 270 { 271 fib6_link_table(net, net->ipv6.fib6_main_tbl); 272 } 273 274 #endif 275 276 static int fib6_dump_node(struct fib6_walker_t *w) 277 { 278 int res; 279 struct rt6_info *rt; 280 281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 282 res = rt6_dump_route(rt, w->args); 283 if (res < 0) { 284 /* Frame is full, suspend walking */ 285 w->leaf = rt; 286 return 1; 287 } 288 WARN_ON(res == 0); 289 } 290 w->leaf = NULL; 291 return 0; 292 } 293 294 static void fib6_dump_end(struct netlink_callback *cb) 295 { 296 struct fib6_walker_t *w = (void*)cb->args[2]; 297 298 if (w) { 299 if (cb->args[4]) { 300 cb->args[4] = 0; 301 fib6_walker_unlink(w); 302 } 303 cb->args[2] = 0; 304 kfree(w); 305 } 306 cb->done = (void*)cb->args[3]; 307 cb->args[1] = 3; 308 } 309 310 static int fib6_dump_done(struct netlink_callback *cb) 311 { 312 fib6_dump_end(cb); 313 return cb->done ? cb->done(cb) : 0; 314 } 315 316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 317 struct netlink_callback *cb) 318 { 319 struct fib6_walker_t *w; 320 int res; 321 322 w = (void *)cb->args[2]; 323 w->root = &table->tb6_root; 324 325 if (cb->args[4] == 0) { 326 w->count = 0; 327 w->skip = 0; 328 329 read_lock_bh(&table->tb6_lock); 330 res = fib6_walk(w); 331 read_unlock_bh(&table->tb6_lock); 332 if (res > 0) { 333 cb->args[4] = 1; 334 cb->args[5] = w->root->fn_sernum; 335 } 336 } else { 337 if (cb->args[5] != w->root->fn_sernum) { 338 /* Begin at the root if the tree changed */ 339 cb->args[5] = w->root->fn_sernum; 340 w->state = FWS_INIT; 341 w->node = w->root; 342 w->skip = w->count; 343 } else 344 w->skip = 0; 345 346 read_lock_bh(&table->tb6_lock); 347 res = fib6_walk_continue(w); 348 read_unlock_bh(&table->tb6_lock); 349 if (res <= 0) { 350 fib6_walker_unlink(w); 351 cb->args[4] = 0; 352 } 353 } 354 355 return res; 356 } 357 358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 359 { 360 struct net *net = sock_net(skb->sk); 361 unsigned int h, s_h; 362 unsigned int e = 0, s_e; 363 struct rt6_rtnl_dump_arg arg; 364 struct fib6_walker_t *w; 365 struct fib6_table *tb; 366 struct hlist_node *node; 367 struct hlist_head *head; 368 int res = 0; 369 370 s_h = cb->args[0]; 371 s_e = cb->args[1]; 372 373 w = (void *)cb->args[2]; 374 if (w == NULL) { 375 /* New dump: 376 * 377 * 1. hook callback destructor. 378 */ 379 cb->args[3] = (long)cb->done; 380 cb->done = fib6_dump_done; 381 382 /* 383 * 2. allocate and initialize walker. 384 */ 385 w = kzalloc(sizeof(*w), GFP_ATOMIC); 386 if (w == NULL) 387 return -ENOMEM; 388 w->func = fib6_dump_node; 389 cb->args[2] = (long)w; 390 } 391 392 arg.skb = skb; 393 arg.cb = cb; 394 arg.net = net; 395 w->args = &arg; 396 397 rcu_read_lock(); 398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 399 e = 0; 400 head = &net->ipv6.fib_table_hash[h]; 401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 402 if (e < s_e) 403 goto next; 404 res = fib6_dump_table(tb, skb, cb); 405 if (res != 0) 406 goto out; 407 next: 408 e++; 409 } 410 } 411 out: 412 rcu_read_unlock(); 413 cb->args[1] = e; 414 cb->args[0] = h; 415 416 res = res < 0 ? res : skb->len; 417 if (res <= 0) 418 fib6_dump_end(cb); 419 return res; 420 } 421 422 /* 423 * Routing Table 424 * 425 * return the appropriate node for a routing tree "add" operation 426 * by either creating and inserting or by returning an existing 427 * node. 428 */ 429 430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, 431 int addrlen, int plen, 432 int offset) 433 { 434 struct fib6_node *fn, *in, *ln; 435 struct fib6_node *pn = NULL; 436 struct rt6key *key; 437 int bit; 438 __be32 dir = 0; 439 __u32 sernum = fib6_new_sernum(); 440 441 RT6_TRACE("fib6_add_1\n"); 442 443 /* insert node in tree */ 444 445 fn = root; 446 447 do { 448 key = (struct rt6key *)((u8 *)fn->leaf + offset); 449 450 /* 451 * Prefix match 452 */ 453 if (plen < fn->fn_bit || 454 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 455 goto insert_above; 456 457 /* 458 * Exact match ? 459 */ 460 461 if (plen == fn->fn_bit) { 462 /* clean up an intermediate node */ 463 if ((fn->fn_flags & RTN_RTINFO) == 0) { 464 rt6_release(fn->leaf); 465 fn->leaf = NULL; 466 } 467 468 fn->fn_sernum = sernum; 469 470 return fn; 471 } 472 473 /* 474 * We have more bits to go 475 */ 476 477 /* Try to walk down on tree. */ 478 fn->fn_sernum = sernum; 479 dir = addr_bit_set(addr, fn->fn_bit); 480 pn = fn; 481 fn = dir ? fn->right: fn->left; 482 } while (fn); 483 484 /* 485 * We walked to the bottom of tree. 486 * Create new leaf node without children. 487 */ 488 489 ln = node_alloc(); 490 491 if (ln == NULL) 492 return NULL; 493 ln->fn_bit = plen; 494 495 ln->parent = pn; 496 ln->fn_sernum = sernum; 497 498 if (dir) 499 pn->right = ln; 500 else 501 pn->left = ln; 502 503 return ln; 504 505 506 insert_above: 507 /* 508 * split since we don't have a common prefix anymore or 509 * we have a less significant route. 510 * we've to insert an intermediate node on the list 511 * this new node will point to the one we need to create 512 * and the current 513 */ 514 515 pn = fn->parent; 516 517 /* find 1st bit in difference between the 2 addrs. 518 519 See comment in __ipv6_addr_diff: bit may be an invalid value, 520 but if it is >= plen, the value is ignored in any case. 521 */ 522 523 bit = __ipv6_addr_diff(addr, &key->addr, addrlen); 524 525 /* 526 * (intermediate)[in] 527 * / \ 528 * (new leaf node)[ln] (old node)[fn] 529 */ 530 if (plen > bit) { 531 in = node_alloc(); 532 ln = node_alloc(); 533 534 if (in == NULL || ln == NULL) { 535 if (in) 536 node_free(in); 537 if (ln) 538 node_free(ln); 539 return NULL; 540 } 541 542 /* 543 * new intermediate node. 544 * RTN_RTINFO will 545 * be off since that an address that chooses one of 546 * the branches would not match less specific routes 547 * in the other branch 548 */ 549 550 in->fn_bit = bit; 551 552 in->parent = pn; 553 in->leaf = fn->leaf; 554 atomic_inc(&in->leaf->rt6i_ref); 555 556 in->fn_sernum = sernum; 557 558 /* update parent pointer */ 559 if (dir) 560 pn->right = in; 561 else 562 pn->left = in; 563 564 ln->fn_bit = plen; 565 566 ln->parent = in; 567 fn->parent = in; 568 569 ln->fn_sernum = sernum; 570 571 if (addr_bit_set(addr, bit)) { 572 in->right = ln; 573 in->left = fn; 574 } else { 575 in->left = ln; 576 in->right = fn; 577 } 578 } else { /* plen <= bit */ 579 580 /* 581 * (new leaf node)[ln] 582 * / \ 583 * (old node)[fn] NULL 584 */ 585 586 ln = node_alloc(); 587 588 if (ln == NULL) 589 return NULL; 590 591 ln->fn_bit = plen; 592 593 ln->parent = pn; 594 595 ln->fn_sernum = sernum; 596 597 if (dir) 598 pn->right = ln; 599 else 600 pn->left = ln; 601 602 if (addr_bit_set(&key->addr, plen)) 603 ln->right = fn; 604 else 605 ln->left = fn; 606 607 fn->parent = ln; 608 } 609 return ln; 610 } 611 612 /* 613 * Insert routing information in a node. 614 */ 615 616 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 617 struct nl_info *info) 618 { 619 struct rt6_info *iter = NULL; 620 struct rt6_info **ins; 621 622 ins = &fn->leaf; 623 624 for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) { 625 /* 626 * Search for duplicates 627 */ 628 629 if (iter->rt6i_metric == rt->rt6i_metric) { 630 /* 631 * Same priority level 632 */ 633 634 if (iter->rt6i_dev == rt->rt6i_dev && 635 iter->rt6i_idev == rt->rt6i_idev && 636 ipv6_addr_equal(&iter->rt6i_gateway, 637 &rt->rt6i_gateway)) { 638 if (!(iter->rt6i_flags&RTF_EXPIRES)) 639 return -EEXIST; 640 iter->rt6i_expires = rt->rt6i_expires; 641 if (!(rt->rt6i_flags&RTF_EXPIRES)) { 642 iter->rt6i_flags &= ~RTF_EXPIRES; 643 iter->rt6i_expires = 0; 644 } 645 return -EEXIST; 646 } 647 } 648 649 if (iter->rt6i_metric > rt->rt6i_metric) 650 break; 651 652 ins = &iter->dst.rt6_next; 653 } 654 655 /* Reset round-robin state, if necessary */ 656 if (ins == &fn->leaf) 657 fn->rr_ptr = NULL; 658 659 /* 660 * insert node 661 */ 662 663 rt->dst.rt6_next = iter; 664 *ins = rt; 665 rt->rt6i_node = fn; 666 atomic_inc(&rt->rt6i_ref); 667 inet6_rt_notify(RTM_NEWROUTE, rt, info); 668 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 669 670 if ((fn->fn_flags & RTN_RTINFO) == 0) { 671 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 672 fn->fn_flags |= RTN_RTINFO; 673 } 674 675 return 0; 676 } 677 678 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt) 679 { 680 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 681 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE))) 682 mod_timer(&net->ipv6.ip6_fib_timer, 683 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 684 } 685 686 void fib6_force_start_gc(struct net *net) 687 { 688 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 689 mod_timer(&net->ipv6.ip6_fib_timer, 690 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 691 } 692 693 /* 694 * Add routing information to the routing tree. 695 * <destination addr>/<source addr> 696 * with source addr info in sub-trees 697 */ 698 699 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info) 700 { 701 struct fib6_node *fn, *pn = NULL; 702 int err = -ENOMEM; 703 704 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), 705 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst)); 706 707 if (fn == NULL) 708 goto out; 709 710 pn = fn; 711 712 #ifdef CONFIG_IPV6_SUBTREES 713 if (rt->rt6i_src.plen) { 714 struct fib6_node *sn; 715 716 if (fn->subtree == NULL) { 717 struct fib6_node *sfn; 718 719 /* 720 * Create subtree. 721 * 722 * fn[main tree] 723 * | 724 * sfn[subtree root] 725 * \ 726 * sn[new leaf node] 727 */ 728 729 /* Create subtree root node */ 730 sfn = node_alloc(); 731 if (sfn == NULL) 732 goto st_failure; 733 734 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 735 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 736 sfn->fn_flags = RTN_ROOT; 737 sfn->fn_sernum = fib6_new_sernum(); 738 739 /* Now add the first leaf node to new subtree */ 740 741 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 742 sizeof(struct in6_addr), rt->rt6i_src.plen, 743 offsetof(struct rt6_info, rt6i_src)); 744 745 if (sn == NULL) { 746 /* If it is failed, discard just allocated 747 root, and then (in st_failure) stale node 748 in main tree. 749 */ 750 node_free(sfn); 751 goto st_failure; 752 } 753 754 /* Now link new subtree to main tree */ 755 sfn->parent = fn; 756 fn->subtree = sfn; 757 } else { 758 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 759 sizeof(struct in6_addr), rt->rt6i_src.plen, 760 offsetof(struct rt6_info, rt6i_src)); 761 762 if (sn == NULL) 763 goto st_failure; 764 } 765 766 if (fn->leaf == NULL) { 767 fn->leaf = rt; 768 atomic_inc(&rt->rt6i_ref); 769 } 770 fn = sn; 771 } 772 #endif 773 774 err = fib6_add_rt2node(fn, rt, info); 775 776 if (err == 0) { 777 fib6_start_gc(info->nl_net, rt); 778 if (!(rt->rt6i_flags&RTF_CACHE)) 779 fib6_prune_clones(info->nl_net, pn, rt); 780 } 781 782 out: 783 if (err) { 784 #ifdef CONFIG_IPV6_SUBTREES 785 /* 786 * If fib6_add_1 has cleared the old leaf pointer in the 787 * super-tree leaf node we have to find a new one for it. 788 */ 789 if (pn != fn && pn->leaf == rt) { 790 pn->leaf = NULL; 791 atomic_dec(&rt->rt6i_ref); 792 } 793 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 794 pn->leaf = fib6_find_prefix(info->nl_net, pn); 795 #if RT6_DEBUG >= 2 796 if (!pn->leaf) { 797 WARN_ON(pn->leaf == NULL); 798 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 799 } 800 #endif 801 atomic_inc(&pn->leaf->rt6i_ref); 802 } 803 #endif 804 dst_free(&rt->dst); 805 } 806 return err; 807 808 #ifdef CONFIG_IPV6_SUBTREES 809 /* Subtree creation failed, probably main tree node 810 is orphan. If it is, shoot it. 811 */ 812 st_failure: 813 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 814 fib6_repair_tree(info->nl_net, fn); 815 dst_free(&rt->dst); 816 return err; 817 #endif 818 } 819 820 /* 821 * Routing tree lookup 822 * 823 */ 824 825 struct lookup_args { 826 int offset; /* key offset on rt6_info */ 827 const struct in6_addr *addr; /* search key */ 828 }; 829 830 static struct fib6_node * fib6_lookup_1(struct fib6_node *root, 831 struct lookup_args *args) 832 { 833 struct fib6_node *fn; 834 __be32 dir; 835 836 if (unlikely(args->offset == 0)) 837 return NULL; 838 839 /* 840 * Descend on a tree 841 */ 842 843 fn = root; 844 845 for (;;) { 846 struct fib6_node *next; 847 848 dir = addr_bit_set(args->addr, fn->fn_bit); 849 850 next = dir ? fn->right : fn->left; 851 852 if (next) { 853 fn = next; 854 continue; 855 } 856 857 break; 858 } 859 860 while(fn) { 861 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 862 struct rt6key *key; 863 864 key = (struct rt6key *) ((u8 *) fn->leaf + 865 args->offset); 866 867 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 868 #ifdef CONFIG_IPV6_SUBTREES 869 if (fn->subtree) 870 fn = fib6_lookup_1(fn->subtree, args + 1); 871 #endif 872 if (!fn || fn->fn_flags & RTN_RTINFO) 873 return fn; 874 } 875 } 876 877 if (fn->fn_flags & RTN_ROOT) 878 break; 879 880 fn = fn->parent; 881 } 882 883 return NULL; 884 } 885 886 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 887 const struct in6_addr *saddr) 888 { 889 struct fib6_node *fn; 890 struct lookup_args args[] = { 891 { 892 .offset = offsetof(struct rt6_info, rt6i_dst), 893 .addr = daddr, 894 }, 895 #ifdef CONFIG_IPV6_SUBTREES 896 { 897 .offset = offsetof(struct rt6_info, rt6i_src), 898 .addr = saddr, 899 }, 900 #endif 901 { 902 .offset = 0, /* sentinel */ 903 } 904 }; 905 906 fn = fib6_lookup_1(root, daddr ? args : args + 1); 907 908 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT) 909 fn = root; 910 911 return fn; 912 } 913 914 /* 915 * Get node with specified destination prefix (and source prefix, 916 * if subtrees are used) 917 */ 918 919 920 static struct fib6_node * fib6_locate_1(struct fib6_node *root, 921 const struct in6_addr *addr, 922 int plen, int offset) 923 { 924 struct fib6_node *fn; 925 926 for (fn = root; fn ; ) { 927 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 928 929 /* 930 * Prefix match 931 */ 932 if (plen < fn->fn_bit || 933 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 934 return NULL; 935 936 if (plen == fn->fn_bit) 937 return fn; 938 939 /* 940 * We have more bits to go 941 */ 942 if (addr_bit_set(addr, fn->fn_bit)) 943 fn = fn->right; 944 else 945 fn = fn->left; 946 } 947 return NULL; 948 } 949 950 struct fib6_node * fib6_locate(struct fib6_node *root, 951 const struct in6_addr *daddr, int dst_len, 952 const struct in6_addr *saddr, int src_len) 953 { 954 struct fib6_node *fn; 955 956 fn = fib6_locate_1(root, daddr, dst_len, 957 offsetof(struct rt6_info, rt6i_dst)); 958 959 #ifdef CONFIG_IPV6_SUBTREES 960 if (src_len) { 961 WARN_ON(saddr == NULL); 962 if (fn && fn->subtree) 963 fn = fib6_locate_1(fn->subtree, saddr, src_len, 964 offsetof(struct rt6_info, rt6i_src)); 965 } 966 #endif 967 968 if (fn && fn->fn_flags&RTN_RTINFO) 969 return fn; 970 971 return NULL; 972 } 973 974 975 /* 976 * Deletion 977 * 978 */ 979 980 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 981 { 982 if (fn->fn_flags&RTN_ROOT) 983 return net->ipv6.ip6_null_entry; 984 985 while(fn) { 986 if(fn->left) 987 return fn->left->leaf; 988 989 if(fn->right) 990 return fn->right->leaf; 991 992 fn = FIB6_SUBTREE(fn); 993 } 994 return NULL; 995 } 996 997 /* 998 * Called to trim the tree of intermediate nodes when possible. "fn" 999 * is the node we want to try and remove. 1000 */ 1001 1002 static struct fib6_node *fib6_repair_tree(struct net *net, 1003 struct fib6_node *fn) 1004 { 1005 int children; 1006 int nstate; 1007 struct fib6_node *child, *pn; 1008 struct fib6_walker_t *w; 1009 int iter = 0; 1010 1011 for (;;) { 1012 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1013 iter++; 1014 1015 WARN_ON(fn->fn_flags & RTN_RTINFO); 1016 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1017 WARN_ON(fn->leaf != NULL); 1018 1019 children = 0; 1020 child = NULL; 1021 if (fn->right) child = fn->right, children |= 1; 1022 if (fn->left) child = fn->left, children |= 2; 1023 1024 if (children == 3 || FIB6_SUBTREE(fn) 1025 #ifdef CONFIG_IPV6_SUBTREES 1026 /* Subtree root (i.e. fn) may have one child */ 1027 || (children && fn->fn_flags&RTN_ROOT) 1028 #endif 1029 ) { 1030 fn->leaf = fib6_find_prefix(net, fn); 1031 #if RT6_DEBUG >= 2 1032 if (fn->leaf==NULL) { 1033 WARN_ON(!fn->leaf); 1034 fn->leaf = net->ipv6.ip6_null_entry; 1035 } 1036 #endif 1037 atomic_inc(&fn->leaf->rt6i_ref); 1038 return fn->parent; 1039 } 1040 1041 pn = fn->parent; 1042 #ifdef CONFIG_IPV6_SUBTREES 1043 if (FIB6_SUBTREE(pn) == fn) { 1044 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1045 FIB6_SUBTREE(pn) = NULL; 1046 nstate = FWS_L; 1047 } else { 1048 WARN_ON(fn->fn_flags & RTN_ROOT); 1049 #endif 1050 if (pn->right == fn) pn->right = child; 1051 else if (pn->left == fn) pn->left = child; 1052 #if RT6_DEBUG >= 2 1053 else 1054 WARN_ON(1); 1055 #endif 1056 if (child) 1057 child->parent = pn; 1058 nstate = FWS_R; 1059 #ifdef CONFIG_IPV6_SUBTREES 1060 } 1061 #endif 1062 1063 read_lock(&fib6_walker_lock); 1064 FOR_WALKERS(w) { 1065 if (child == NULL) { 1066 if (w->root == fn) { 1067 w->root = w->node = NULL; 1068 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1069 } else if (w->node == fn) { 1070 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1071 w->node = pn; 1072 w->state = nstate; 1073 } 1074 } else { 1075 if (w->root == fn) { 1076 w->root = child; 1077 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1078 } 1079 if (w->node == fn) { 1080 w->node = child; 1081 if (children&2) { 1082 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1083 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; 1084 } else { 1085 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1086 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; 1087 } 1088 } 1089 } 1090 } 1091 read_unlock(&fib6_walker_lock); 1092 1093 node_free(fn); 1094 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn)) 1095 return pn; 1096 1097 rt6_release(pn->leaf); 1098 pn->leaf = NULL; 1099 fn = pn; 1100 } 1101 } 1102 1103 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1104 struct nl_info *info) 1105 { 1106 struct fib6_walker_t *w; 1107 struct rt6_info *rt = *rtp; 1108 struct net *net = info->nl_net; 1109 1110 RT6_TRACE("fib6_del_route\n"); 1111 1112 /* Unlink it */ 1113 *rtp = rt->dst.rt6_next; 1114 rt->rt6i_node = NULL; 1115 net->ipv6.rt6_stats->fib_rt_entries--; 1116 net->ipv6.rt6_stats->fib_discarded_routes++; 1117 1118 /* Reset round-robin state, if necessary */ 1119 if (fn->rr_ptr == rt) 1120 fn->rr_ptr = NULL; 1121 1122 /* Adjust walkers */ 1123 read_lock(&fib6_walker_lock); 1124 FOR_WALKERS(w) { 1125 if (w->state == FWS_C && w->leaf == rt) { 1126 RT6_TRACE("walker %p adjusted by delroute\n", w); 1127 w->leaf = rt->dst.rt6_next; 1128 if (w->leaf == NULL) 1129 w->state = FWS_U; 1130 } 1131 } 1132 read_unlock(&fib6_walker_lock); 1133 1134 rt->dst.rt6_next = NULL; 1135 1136 /* If it was last route, expunge its radix tree node */ 1137 if (fn->leaf == NULL) { 1138 fn->fn_flags &= ~RTN_RTINFO; 1139 net->ipv6.rt6_stats->fib_route_nodes--; 1140 fn = fib6_repair_tree(net, fn); 1141 } 1142 1143 if (atomic_read(&rt->rt6i_ref) != 1) { 1144 /* This route is used as dummy address holder in some split 1145 * nodes. It is not leaked, but it still holds other resources, 1146 * which must be released in time. So, scan ascendant nodes 1147 * and replace dummy references to this route with references 1148 * to still alive ones. 1149 */ 1150 while (fn) { 1151 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) { 1152 fn->leaf = fib6_find_prefix(net, fn); 1153 atomic_inc(&fn->leaf->rt6i_ref); 1154 rt6_release(rt); 1155 } 1156 fn = fn->parent; 1157 } 1158 /* No more references are possible at this point. */ 1159 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 1160 } 1161 1162 inet6_rt_notify(RTM_DELROUTE, rt, info); 1163 rt6_release(rt); 1164 } 1165 1166 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1167 { 1168 struct net *net = info->nl_net; 1169 struct fib6_node *fn = rt->rt6i_node; 1170 struct rt6_info **rtp; 1171 1172 #if RT6_DEBUG >= 2 1173 if (rt->dst.obsolete>0) { 1174 WARN_ON(fn != NULL); 1175 return -ENOENT; 1176 } 1177 #endif 1178 if (fn == NULL || rt == net->ipv6.ip6_null_entry) 1179 return -ENOENT; 1180 1181 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1182 1183 if (!(rt->rt6i_flags&RTF_CACHE)) { 1184 struct fib6_node *pn = fn; 1185 #ifdef CONFIG_IPV6_SUBTREES 1186 /* clones of this route might be in another subtree */ 1187 if (rt->rt6i_src.plen) { 1188 while (!(pn->fn_flags&RTN_ROOT)) 1189 pn = pn->parent; 1190 pn = pn->parent; 1191 } 1192 #endif 1193 fib6_prune_clones(info->nl_net, pn, rt); 1194 } 1195 1196 /* 1197 * Walk the leaf entries looking for ourself 1198 */ 1199 1200 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) { 1201 if (*rtp == rt) { 1202 fib6_del_route(fn, rtp, info); 1203 return 0; 1204 } 1205 } 1206 return -ENOENT; 1207 } 1208 1209 /* 1210 * Tree traversal function. 1211 * 1212 * Certainly, it is not interrupt safe. 1213 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1214 * It means, that we can modify tree during walking 1215 * and use this function for garbage collection, clone pruning, 1216 * cleaning tree when a device goes down etc. etc. 1217 * 1218 * It guarantees that every node will be traversed, 1219 * and that it will be traversed only once. 1220 * 1221 * Callback function w->func may return: 1222 * 0 -> continue walking. 1223 * positive value -> walking is suspended (used by tree dumps, 1224 * and probably by gc, if it will be split to several slices) 1225 * negative value -> terminate walking. 1226 * 1227 * The function itself returns: 1228 * 0 -> walk is complete. 1229 * >0 -> walk is incomplete (i.e. suspended) 1230 * <0 -> walk is terminated by an error. 1231 */ 1232 1233 static int fib6_walk_continue(struct fib6_walker_t *w) 1234 { 1235 struct fib6_node *fn, *pn; 1236 1237 for (;;) { 1238 fn = w->node; 1239 if (fn == NULL) 1240 return 0; 1241 1242 if (w->prune && fn != w->root && 1243 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) { 1244 w->state = FWS_C; 1245 w->leaf = fn->leaf; 1246 } 1247 switch (w->state) { 1248 #ifdef CONFIG_IPV6_SUBTREES 1249 case FWS_S: 1250 if (FIB6_SUBTREE(fn)) { 1251 w->node = FIB6_SUBTREE(fn); 1252 continue; 1253 } 1254 w->state = FWS_L; 1255 #endif 1256 case FWS_L: 1257 if (fn->left) { 1258 w->node = fn->left; 1259 w->state = FWS_INIT; 1260 continue; 1261 } 1262 w->state = FWS_R; 1263 case FWS_R: 1264 if (fn->right) { 1265 w->node = fn->right; 1266 w->state = FWS_INIT; 1267 continue; 1268 } 1269 w->state = FWS_C; 1270 w->leaf = fn->leaf; 1271 case FWS_C: 1272 if (w->leaf && fn->fn_flags&RTN_RTINFO) { 1273 int err; 1274 1275 if (w->count < w->skip) { 1276 w->count++; 1277 continue; 1278 } 1279 1280 err = w->func(w); 1281 if (err) 1282 return err; 1283 1284 w->count++; 1285 continue; 1286 } 1287 w->state = FWS_U; 1288 case FWS_U: 1289 if (fn == w->root) 1290 return 0; 1291 pn = fn->parent; 1292 w->node = pn; 1293 #ifdef CONFIG_IPV6_SUBTREES 1294 if (FIB6_SUBTREE(pn) == fn) { 1295 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1296 w->state = FWS_L; 1297 continue; 1298 } 1299 #endif 1300 if (pn->left == fn) { 1301 w->state = FWS_R; 1302 continue; 1303 } 1304 if (pn->right == fn) { 1305 w->state = FWS_C; 1306 w->leaf = w->node->leaf; 1307 continue; 1308 } 1309 #if RT6_DEBUG >= 2 1310 WARN_ON(1); 1311 #endif 1312 } 1313 } 1314 } 1315 1316 static int fib6_walk(struct fib6_walker_t *w) 1317 { 1318 int res; 1319 1320 w->state = FWS_INIT; 1321 w->node = w->root; 1322 1323 fib6_walker_link(w); 1324 res = fib6_walk_continue(w); 1325 if (res <= 0) 1326 fib6_walker_unlink(w); 1327 return res; 1328 } 1329 1330 static int fib6_clean_node(struct fib6_walker_t *w) 1331 { 1332 int res; 1333 struct rt6_info *rt; 1334 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w); 1335 struct nl_info info = { 1336 .nl_net = c->net, 1337 }; 1338 1339 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 1340 res = c->func(rt, c->arg); 1341 if (res < 0) { 1342 w->leaf = rt; 1343 res = fib6_del(rt, &info); 1344 if (res) { 1345 #if RT6_DEBUG >= 2 1346 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); 1347 #endif 1348 continue; 1349 } 1350 return 0; 1351 } 1352 WARN_ON(res != 0); 1353 } 1354 w->leaf = rt; 1355 return 0; 1356 } 1357 1358 /* 1359 * Convenient frontend to tree walker. 1360 * 1361 * func is called on each route. 1362 * It may return -1 -> delete this route. 1363 * 0 -> continue walking 1364 * 1365 * prune==1 -> only immediate children of node (certainly, 1366 * ignoring pure split nodes) will be scanned. 1367 */ 1368 1369 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1370 int (*func)(struct rt6_info *, void *arg), 1371 int prune, void *arg) 1372 { 1373 struct fib6_cleaner_t c; 1374 1375 c.w.root = root; 1376 c.w.func = fib6_clean_node; 1377 c.w.prune = prune; 1378 c.w.count = 0; 1379 c.w.skip = 0; 1380 c.func = func; 1381 c.arg = arg; 1382 c.net = net; 1383 1384 fib6_walk(&c.w); 1385 } 1386 1387 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg), 1388 int prune, void *arg) 1389 { 1390 struct fib6_table *table; 1391 struct hlist_node *node; 1392 struct hlist_head *head; 1393 unsigned int h; 1394 1395 rcu_read_lock(); 1396 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1397 head = &net->ipv6.fib_table_hash[h]; 1398 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) { 1399 write_lock_bh(&table->tb6_lock); 1400 fib6_clean_tree(net, &table->tb6_root, 1401 func, prune, arg); 1402 write_unlock_bh(&table->tb6_lock); 1403 } 1404 } 1405 rcu_read_unlock(); 1406 } 1407 1408 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1409 { 1410 if (rt->rt6i_flags & RTF_CACHE) { 1411 RT6_TRACE("pruning clone %p\n", rt); 1412 return -1; 1413 } 1414 1415 return 0; 1416 } 1417 1418 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 1419 struct rt6_info *rt) 1420 { 1421 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt); 1422 } 1423 1424 /* 1425 * Garbage collection 1426 */ 1427 1428 static struct fib6_gc_args 1429 { 1430 int timeout; 1431 int more; 1432 } gc_args; 1433 1434 static int fib6_age(struct rt6_info *rt, void *arg) 1435 { 1436 unsigned long now = jiffies; 1437 1438 /* 1439 * check addrconf expiration here. 1440 * Routes are expired even if they are in use. 1441 * 1442 * Also age clones. Note, that clones are aged out 1443 * only if they are not in use now. 1444 */ 1445 1446 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) { 1447 if (time_after(now, rt->rt6i_expires)) { 1448 RT6_TRACE("expiring %p\n", rt); 1449 return -1; 1450 } 1451 gc_args.more++; 1452 } else if (rt->rt6i_flags & RTF_CACHE) { 1453 if (atomic_read(&rt->dst.__refcnt) == 0 && 1454 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) { 1455 RT6_TRACE("aging clone %p\n", rt); 1456 return -1; 1457 } else if ((rt->rt6i_flags & RTF_GATEWAY) && 1458 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) { 1459 RT6_TRACE("purging route %p via non-router but gateway\n", 1460 rt); 1461 return -1; 1462 } 1463 gc_args.more++; 1464 } 1465 1466 return 0; 1467 } 1468 1469 static DEFINE_SPINLOCK(fib6_gc_lock); 1470 1471 void fib6_run_gc(unsigned long expires, struct net *net) 1472 { 1473 if (expires != ~0UL) { 1474 spin_lock_bh(&fib6_gc_lock); 1475 gc_args.timeout = expires ? (int)expires : 1476 net->ipv6.sysctl.ip6_rt_gc_interval; 1477 } else { 1478 if (!spin_trylock_bh(&fib6_gc_lock)) { 1479 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1480 return; 1481 } 1482 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval; 1483 } 1484 1485 gc_args.more = icmp6_dst_gc(); 1486 1487 fib6_clean_all(net, fib6_age, 0, NULL); 1488 1489 if (gc_args.more) 1490 mod_timer(&net->ipv6.ip6_fib_timer, 1491 round_jiffies(jiffies 1492 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1493 else 1494 del_timer(&net->ipv6.ip6_fib_timer); 1495 spin_unlock_bh(&fib6_gc_lock); 1496 } 1497 1498 static void fib6_gc_timer_cb(unsigned long arg) 1499 { 1500 fib6_run_gc(0, (struct net *)arg); 1501 } 1502 1503 static int __net_init fib6_net_init(struct net *net) 1504 { 1505 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 1506 1507 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1508 1509 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1510 if (!net->ipv6.rt6_stats) 1511 goto out_timer; 1512 1513 /* Avoid false sharing : Use at least a full cache line */ 1514 size = max_t(size_t, size, L1_CACHE_BYTES); 1515 1516 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 1517 if (!net->ipv6.fib_table_hash) 1518 goto out_rt6_stats; 1519 1520 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1521 GFP_KERNEL); 1522 if (!net->ipv6.fib6_main_tbl) 1523 goto out_fib_table_hash; 1524 1525 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1526 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1527 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1528 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1529 1530 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1531 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1532 GFP_KERNEL); 1533 if (!net->ipv6.fib6_local_tbl) 1534 goto out_fib6_main_tbl; 1535 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1536 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1537 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1538 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1539 #endif 1540 fib6_tables_init(net); 1541 1542 return 0; 1543 1544 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1545 out_fib6_main_tbl: 1546 kfree(net->ipv6.fib6_main_tbl); 1547 #endif 1548 out_fib_table_hash: 1549 kfree(net->ipv6.fib_table_hash); 1550 out_rt6_stats: 1551 kfree(net->ipv6.rt6_stats); 1552 out_timer: 1553 return -ENOMEM; 1554 } 1555 1556 static void fib6_net_exit(struct net *net) 1557 { 1558 rt6_ifdown(net, NULL); 1559 del_timer_sync(&net->ipv6.ip6_fib_timer); 1560 1561 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1562 kfree(net->ipv6.fib6_local_tbl); 1563 #endif 1564 kfree(net->ipv6.fib6_main_tbl); 1565 kfree(net->ipv6.fib_table_hash); 1566 kfree(net->ipv6.rt6_stats); 1567 } 1568 1569 static struct pernet_operations fib6_net_ops = { 1570 .init = fib6_net_init, 1571 .exit = fib6_net_exit, 1572 }; 1573 1574 int __init fib6_init(void) 1575 { 1576 int ret = -ENOMEM; 1577 1578 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1579 sizeof(struct fib6_node), 1580 0, SLAB_HWCACHE_ALIGN, 1581 NULL); 1582 if (!fib6_node_kmem) 1583 goto out; 1584 1585 ret = register_pernet_subsys(&fib6_net_ops); 1586 if (ret) 1587 goto out_kmem_cache_create; 1588 1589 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib); 1590 if (ret) 1591 goto out_unregister_subsys; 1592 out: 1593 return ret; 1594 1595 out_unregister_subsys: 1596 unregister_pernet_subsys(&fib6_net_ops); 1597 out_kmem_cache_create: 1598 kmem_cache_destroy(fib6_node_kmem); 1599 goto out; 1600 } 1601 1602 void fib6_gc_cleanup(void) 1603 { 1604 unregister_pernet_subsys(&fib6_net_ops); 1605 kmem_cache_destroy(fib6_node_kmem); 1606 } 1607