xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 54525552)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #ifdef 	CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34 
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 #define RT6_DEBUG 2
43 
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
49 
50 static struct kmem_cache * fib6_node_kmem __read_mostly;
51 
52 enum fib_walk_state_t
53 {
54 #ifdef CONFIG_IPV6_SUBTREES
55 	FWS_S,
56 #endif
57 	FWS_L,
58 	FWS_R,
59 	FWS_C,
60 	FWS_U
61 };
62 
63 struct fib6_cleaner_t
64 {
65 	struct fib6_walker_t w;
66 	struct net *net;
67 	int (*func)(struct rt6_info *, void *arg);
68 	void *arg;
69 };
70 
71 static DEFINE_RWLOCK(fib6_walker_lock);
72 
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
75 #else
76 #define FWS_INIT FWS_L
77 #endif
78 
79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80 			      struct rt6_info *rt);
81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83 static int fib6_walk(struct fib6_walker_t *w);
84 static int fib6_walk_continue(struct fib6_walker_t *w);
85 
86 /*
87  *	A routing update causes an increase of the serial number on the
88  *	affected subtree. This allows for cached routes to be asynchronously
89  *	tested when modifications are made to the destination cache as a
90  *	result of redirects, path MTU changes, etc.
91  */
92 
93 static __u32 rt_sernum;
94 
95 static void fib6_gc_timer_cb(unsigned long arg);
96 
97 static LIST_HEAD(fib6_walkers);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99 
100 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 {
102 	write_lock_bh(&fib6_walker_lock);
103 	list_add(&w->lh, &fib6_walkers);
104 	write_unlock_bh(&fib6_walker_lock);
105 }
106 
107 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 {
109 	write_lock_bh(&fib6_walker_lock);
110 	list_del(&w->lh);
111 	write_unlock_bh(&fib6_walker_lock);
112 }
113 static __inline__ u32 fib6_new_sernum(void)
114 {
115 	u32 n = ++rt_sernum;
116 	if ((__s32)n <= 0)
117 		rt_sernum = n = 1;
118 	return n;
119 }
120 
121 /*
122  *	Auxiliary address test functions for the radix tree.
123  *
124  *	These assume a 32bit processor (although it will work on
125  *	64bit processors)
126  */
127 
128 /*
129  *	test bit
130  */
131 #if defined(__LITTLE_ENDIAN)
132 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
133 #else
134 # define BITOP_BE32_SWIZZLE	0
135 #endif
136 
137 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138 {
139 	const __be32 *addr = token;
140 	/*
141 	 * Here,
142 	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143 	 * is optimized version of
144 	 *	htonl(1 << ((~fn_bit)&0x1F))
145 	 * See include/asm-generic/bitops/le.h.
146 	 */
147 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148 	       addr[fn_bit >> 5];
149 }
150 
151 static __inline__ struct fib6_node * node_alloc(void)
152 {
153 	struct fib6_node *fn;
154 
155 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156 
157 	return fn;
158 }
159 
160 static __inline__ void node_free(struct fib6_node * fn)
161 {
162 	kmem_cache_free(fib6_node_kmem, fn);
163 }
164 
165 static __inline__ void rt6_release(struct rt6_info *rt)
166 {
167 	if (atomic_dec_and_test(&rt->rt6i_ref))
168 		dst_free(&rt->dst);
169 }
170 
171 static void fib6_link_table(struct net *net, struct fib6_table *tb)
172 {
173 	unsigned int h;
174 
175 	/*
176 	 * Initialize table lock at a single place to give lockdep a key,
177 	 * tables aren't visible prior to being linked to the list.
178 	 */
179 	rwlock_init(&tb->tb6_lock);
180 
181 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182 
183 	/*
184 	 * No protection necessary, this is the only list mutatation
185 	 * operation, tables never disappear once they exist.
186 	 */
187 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188 }
189 
190 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191 
192 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193 {
194 	struct fib6_table *table;
195 
196 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
197 	if (table != NULL) {
198 		table->tb6_id = id;
199 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201 	}
202 
203 	return table;
204 }
205 
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 	struct fib6_table *tb;
209 
210 	if (id == 0)
211 		id = RT6_TABLE_MAIN;
212 	tb = fib6_get_table(net, id);
213 	if (tb)
214 		return tb;
215 
216 	tb = fib6_alloc_table(net, id);
217 	if (tb != NULL)
218 		fib6_link_table(net, tb);
219 
220 	return tb;
221 }
222 
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 	struct fib6_table *tb;
226 	struct hlist_head *head;
227 	struct hlist_node *node;
228 	unsigned int h;
229 
230 	if (id == 0)
231 		id = RT6_TABLE_MAIN;
232 	h = id & (FIB6_TABLE_HASHSZ - 1);
233 	rcu_read_lock();
234 	head = &net->ipv6.fib_table_hash[h];
235 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 		if (tb->tb6_id == id) {
237 			rcu_read_unlock();
238 			return tb;
239 		}
240 	}
241 	rcu_read_unlock();
242 
243 	return NULL;
244 }
245 
246 static void __net_init fib6_tables_init(struct net *net)
247 {
248 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252 
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	return fib6_get_table(net, id);
256 }
257 
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260 	  return net->ipv6.fib6_main_tbl;
261 }
262 
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 				   int flags, pol_lookup_t lookup)
265 {
266 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273 
274 #endif
275 
276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278 	int res;
279 	struct rt6_info *rt;
280 
281 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 		res = rt6_dump_route(rt, w->args);
283 		if (res < 0) {
284 			/* Frame is full, suspend walking */
285 			w->leaf = rt;
286 			return 1;
287 		}
288 		WARN_ON(res == 0);
289 	}
290 	w->leaf = NULL;
291 	return 0;
292 }
293 
294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296 	struct fib6_walker_t *w = (void*)cb->args[2];
297 
298 	if (w) {
299 		if (cb->args[4]) {
300 			cb->args[4] = 0;
301 			fib6_walker_unlink(w);
302 		}
303 		cb->args[2] = 0;
304 		kfree(w);
305 	}
306 	cb->done = (void*)cb->args[3];
307 	cb->args[1] = 3;
308 }
309 
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 	fib6_dump_end(cb);
313 	return cb->done ? cb->done(cb) : 0;
314 }
315 
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 			   struct netlink_callback *cb)
318 {
319 	struct fib6_walker_t *w;
320 	int res;
321 
322 	w = (void *)cb->args[2];
323 	w->root = &table->tb6_root;
324 
325 	if (cb->args[4] == 0) {
326 		w->count = 0;
327 		w->skip = 0;
328 
329 		read_lock_bh(&table->tb6_lock);
330 		res = fib6_walk(w);
331 		read_unlock_bh(&table->tb6_lock);
332 		if (res > 0) {
333 			cb->args[4] = 1;
334 			cb->args[5] = w->root->fn_sernum;
335 		}
336 	} else {
337 		if (cb->args[5] != w->root->fn_sernum) {
338 			/* Begin at the root if the tree changed */
339 			cb->args[5] = w->root->fn_sernum;
340 			w->state = FWS_INIT;
341 			w->node = w->root;
342 			w->skip = w->count;
343 		} else
344 			w->skip = 0;
345 
346 		read_lock_bh(&table->tb6_lock);
347 		res = fib6_walk_continue(w);
348 		read_unlock_bh(&table->tb6_lock);
349 		if (res <= 0) {
350 			fib6_walker_unlink(w);
351 			cb->args[4] = 0;
352 		}
353 	}
354 
355 	return res;
356 }
357 
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360 	struct net *net = sock_net(skb->sk);
361 	unsigned int h, s_h;
362 	unsigned int e = 0, s_e;
363 	struct rt6_rtnl_dump_arg arg;
364 	struct fib6_walker_t *w;
365 	struct fib6_table *tb;
366 	struct hlist_node *node;
367 	struct hlist_head *head;
368 	int res = 0;
369 
370 	s_h = cb->args[0];
371 	s_e = cb->args[1];
372 
373 	w = (void *)cb->args[2];
374 	if (w == NULL) {
375 		/* New dump:
376 		 *
377 		 * 1. hook callback destructor.
378 		 */
379 		cb->args[3] = (long)cb->done;
380 		cb->done = fib6_dump_done;
381 
382 		/*
383 		 * 2. allocate and initialize walker.
384 		 */
385 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 		if (w == NULL)
387 			return -ENOMEM;
388 		w->func = fib6_dump_node;
389 		cb->args[2] = (long)w;
390 	}
391 
392 	arg.skb = skb;
393 	arg.cb = cb;
394 	arg.net = net;
395 	w->args = &arg;
396 
397 	rcu_read_lock();
398 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 		e = 0;
400 		head = &net->ipv6.fib_table_hash[h];
401 		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 			if (e < s_e)
403 				goto next;
404 			res = fib6_dump_table(tb, skb, cb);
405 			if (res != 0)
406 				goto out;
407 next:
408 			e++;
409 		}
410 	}
411 out:
412 	rcu_read_unlock();
413 	cb->args[1] = e;
414 	cb->args[0] = h;
415 
416 	res = res < 0 ? res : skb->len;
417 	if (res <= 0)
418 		fib6_dump_end(cb);
419 	return res;
420 }
421 
422 /*
423  *	Routing Table
424  *
425  *	return the appropriate node for a routing tree "add" operation
426  *	by either creating and inserting or by returning an existing
427  *	node.
428  */
429 
430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 				     int addrlen, int plen,
432 				     int offset)
433 {
434 	struct fib6_node *fn, *in, *ln;
435 	struct fib6_node *pn = NULL;
436 	struct rt6key *key;
437 	int	bit;
438 	__be32	dir = 0;
439 	__u32	sernum = fib6_new_sernum();
440 
441 	RT6_TRACE("fib6_add_1\n");
442 
443 	/* insert node in tree */
444 
445 	fn = root;
446 
447 	do {
448 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
449 
450 		/*
451 		 *	Prefix match
452 		 */
453 		if (plen < fn->fn_bit ||
454 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
455 			goto insert_above;
456 
457 		/*
458 		 *	Exact match ?
459 		 */
460 
461 		if (plen == fn->fn_bit) {
462 			/* clean up an intermediate node */
463 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
464 				rt6_release(fn->leaf);
465 				fn->leaf = NULL;
466 			}
467 
468 			fn->fn_sernum = sernum;
469 
470 			return fn;
471 		}
472 
473 		/*
474 		 *	We have more bits to go
475 		 */
476 
477 		/* Try to walk down on tree. */
478 		fn->fn_sernum = sernum;
479 		dir = addr_bit_set(addr, fn->fn_bit);
480 		pn = fn;
481 		fn = dir ? fn->right: fn->left;
482 	} while (fn);
483 
484 	/*
485 	 *	We walked to the bottom of tree.
486 	 *	Create new leaf node without children.
487 	 */
488 
489 	ln = node_alloc();
490 
491 	if (ln == NULL)
492 		return NULL;
493 	ln->fn_bit = plen;
494 
495 	ln->parent = pn;
496 	ln->fn_sernum = sernum;
497 
498 	if (dir)
499 		pn->right = ln;
500 	else
501 		pn->left  = ln;
502 
503 	return ln;
504 
505 
506 insert_above:
507 	/*
508 	 * split since we don't have a common prefix anymore or
509 	 * we have a less significant route.
510 	 * we've to insert an intermediate node on the list
511 	 * this new node will point to the one we need to create
512 	 * and the current
513 	 */
514 
515 	pn = fn->parent;
516 
517 	/* find 1st bit in difference between the 2 addrs.
518 
519 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
520 	   but if it is >= plen, the value is ignored in any case.
521 	 */
522 
523 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
524 
525 	/*
526 	 *		(intermediate)[in]
527 	 *	          /	   \
528 	 *	(new leaf node)[ln] (old node)[fn]
529 	 */
530 	if (plen > bit) {
531 		in = node_alloc();
532 		ln = node_alloc();
533 
534 		if (in == NULL || ln == NULL) {
535 			if (in)
536 				node_free(in);
537 			if (ln)
538 				node_free(ln);
539 			return NULL;
540 		}
541 
542 		/*
543 		 * new intermediate node.
544 		 * RTN_RTINFO will
545 		 * be off since that an address that chooses one of
546 		 * the branches would not match less specific routes
547 		 * in the other branch
548 		 */
549 
550 		in->fn_bit = bit;
551 
552 		in->parent = pn;
553 		in->leaf = fn->leaf;
554 		atomic_inc(&in->leaf->rt6i_ref);
555 
556 		in->fn_sernum = sernum;
557 
558 		/* update parent pointer */
559 		if (dir)
560 			pn->right = in;
561 		else
562 			pn->left  = in;
563 
564 		ln->fn_bit = plen;
565 
566 		ln->parent = in;
567 		fn->parent = in;
568 
569 		ln->fn_sernum = sernum;
570 
571 		if (addr_bit_set(addr, bit)) {
572 			in->right = ln;
573 			in->left  = fn;
574 		} else {
575 			in->left  = ln;
576 			in->right = fn;
577 		}
578 	} else { /* plen <= bit */
579 
580 		/*
581 		 *		(new leaf node)[ln]
582 		 *	          /	   \
583 		 *	     (old node)[fn] NULL
584 		 */
585 
586 		ln = node_alloc();
587 
588 		if (ln == NULL)
589 			return NULL;
590 
591 		ln->fn_bit = plen;
592 
593 		ln->parent = pn;
594 
595 		ln->fn_sernum = sernum;
596 
597 		if (dir)
598 			pn->right = ln;
599 		else
600 			pn->left  = ln;
601 
602 		if (addr_bit_set(&key->addr, plen))
603 			ln->right = fn;
604 		else
605 			ln->left  = fn;
606 
607 		fn->parent = ln;
608 	}
609 	return ln;
610 }
611 
612 /*
613  *	Insert routing information in a node.
614  */
615 
616 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
617 			    struct nl_info *info)
618 {
619 	struct rt6_info *iter = NULL;
620 	struct rt6_info **ins;
621 
622 	ins = &fn->leaf;
623 
624 	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
625 		/*
626 		 *	Search for duplicates
627 		 */
628 
629 		if (iter->rt6i_metric == rt->rt6i_metric) {
630 			/*
631 			 *	Same priority level
632 			 */
633 
634 			if (iter->rt6i_dev == rt->rt6i_dev &&
635 			    iter->rt6i_idev == rt->rt6i_idev &&
636 			    ipv6_addr_equal(&iter->rt6i_gateway,
637 					    &rt->rt6i_gateway)) {
638 				if (!(iter->rt6i_flags&RTF_EXPIRES))
639 					return -EEXIST;
640 				iter->rt6i_expires = rt->rt6i_expires;
641 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
642 					iter->rt6i_flags &= ~RTF_EXPIRES;
643 					iter->rt6i_expires = 0;
644 				}
645 				return -EEXIST;
646 			}
647 		}
648 
649 		if (iter->rt6i_metric > rt->rt6i_metric)
650 			break;
651 
652 		ins = &iter->dst.rt6_next;
653 	}
654 
655 	/* Reset round-robin state, if necessary */
656 	if (ins == &fn->leaf)
657 		fn->rr_ptr = NULL;
658 
659 	/*
660 	 *	insert node
661 	 */
662 
663 	rt->dst.rt6_next = iter;
664 	*ins = rt;
665 	rt->rt6i_node = fn;
666 	atomic_inc(&rt->rt6i_ref);
667 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
668 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
669 
670 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
671 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
672 		fn->fn_flags |= RTN_RTINFO;
673 	}
674 
675 	return 0;
676 }
677 
678 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
679 {
680 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
681 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
682 		mod_timer(&net->ipv6.ip6_fib_timer,
683 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
684 }
685 
686 void fib6_force_start_gc(struct net *net)
687 {
688 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
689 		mod_timer(&net->ipv6.ip6_fib_timer,
690 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
691 }
692 
693 /*
694  *	Add routing information to the routing tree.
695  *	<destination addr>/<source addr>
696  *	with source addr info in sub-trees
697  */
698 
699 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
700 {
701 	struct fib6_node *fn, *pn = NULL;
702 	int err = -ENOMEM;
703 
704 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
706 
707 	if (fn == NULL)
708 		goto out;
709 
710 	pn = fn;
711 
712 #ifdef CONFIG_IPV6_SUBTREES
713 	if (rt->rt6i_src.plen) {
714 		struct fib6_node *sn;
715 
716 		if (fn->subtree == NULL) {
717 			struct fib6_node *sfn;
718 
719 			/*
720 			 * Create subtree.
721 			 *
722 			 *		fn[main tree]
723 			 *		|
724 			 *		sfn[subtree root]
725 			 *		   \
726 			 *		    sn[new leaf node]
727 			 */
728 
729 			/* Create subtree root node */
730 			sfn = node_alloc();
731 			if (sfn == NULL)
732 				goto st_failure;
733 
734 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
735 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
736 			sfn->fn_flags = RTN_ROOT;
737 			sfn->fn_sernum = fib6_new_sernum();
738 
739 			/* Now add the first leaf node to new subtree */
740 
741 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
742 					sizeof(struct in6_addr), rt->rt6i_src.plen,
743 					offsetof(struct rt6_info, rt6i_src));
744 
745 			if (sn == NULL) {
746 				/* If it is failed, discard just allocated
747 				   root, and then (in st_failure) stale node
748 				   in main tree.
749 				 */
750 				node_free(sfn);
751 				goto st_failure;
752 			}
753 
754 			/* Now link new subtree to main tree */
755 			sfn->parent = fn;
756 			fn->subtree = sfn;
757 		} else {
758 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
759 					sizeof(struct in6_addr), rt->rt6i_src.plen,
760 					offsetof(struct rt6_info, rt6i_src));
761 
762 			if (sn == NULL)
763 				goto st_failure;
764 		}
765 
766 		if (fn->leaf == NULL) {
767 			fn->leaf = rt;
768 			atomic_inc(&rt->rt6i_ref);
769 		}
770 		fn = sn;
771 	}
772 #endif
773 
774 	err = fib6_add_rt2node(fn, rt, info);
775 
776 	if (err == 0) {
777 		fib6_start_gc(info->nl_net, rt);
778 		if (!(rt->rt6i_flags&RTF_CACHE))
779 			fib6_prune_clones(info->nl_net, pn, rt);
780 	}
781 
782 out:
783 	if (err) {
784 #ifdef CONFIG_IPV6_SUBTREES
785 		/*
786 		 * If fib6_add_1 has cleared the old leaf pointer in the
787 		 * super-tree leaf node we have to find a new one for it.
788 		 */
789 		if (pn != fn && pn->leaf == rt) {
790 			pn->leaf = NULL;
791 			atomic_dec(&rt->rt6i_ref);
792 		}
793 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
794 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
795 #if RT6_DEBUG >= 2
796 			if (!pn->leaf) {
797 				WARN_ON(pn->leaf == NULL);
798 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
799 			}
800 #endif
801 			atomic_inc(&pn->leaf->rt6i_ref);
802 		}
803 #endif
804 		dst_free(&rt->dst);
805 	}
806 	return err;
807 
808 #ifdef CONFIG_IPV6_SUBTREES
809 	/* Subtree creation failed, probably main tree node
810 	   is orphan. If it is, shoot it.
811 	 */
812 st_failure:
813 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
814 		fib6_repair_tree(info->nl_net, fn);
815 	dst_free(&rt->dst);
816 	return err;
817 #endif
818 }
819 
820 /*
821  *	Routing tree lookup
822  *
823  */
824 
825 struct lookup_args {
826 	int		offset;		/* key offset on rt6_info	*/
827 	const struct in6_addr	*addr;		/* search key			*/
828 };
829 
830 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
831 					struct lookup_args *args)
832 {
833 	struct fib6_node *fn;
834 	__be32 dir;
835 
836 	if (unlikely(args->offset == 0))
837 		return NULL;
838 
839 	/*
840 	 *	Descend on a tree
841 	 */
842 
843 	fn = root;
844 
845 	for (;;) {
846 		struct fib6_node *next;
847 
848 		dir = addr_bit_set(args->addr, fn->fn_bit);
849 
850 		next = dir ? fn->right : fn->left;
851 
852 		if (next) {
853 			fn = next;
854 			continue;
855 		}
856 
857 		break;
858 	}
859 
860 	while(fn) {
861 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
862 			struct rt6key *key;
863 
864 			key = (struct rt6key *) ((u8 *) fn->leaf +
865 						 args->offset);
866 
867 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
868 #ifdef CONFIG_IPV6_SUBTREES
869 				if (fn->subtree)
870 					fn = fib6_lookup_1(fn->subtree, args + 1);
871 #endif
872 				if (!fn || fn->fn_flags & RTN_RTINFO)
873 					return fn;
874 			}
875 		}
876 
877 		if (fn->fn_flags & RTN_ROOT)
878 			break;
879 
880 		fn = fn->parent;
881 	}
882 
883 	return NULL;
884 }
885 
886 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
887 			       const struct in6_addr *saddr)
888 {
889 	struct fib6_node *fn;
890 	struct lookup_args args[] = {
891 		{
892 			.offset = offsetof(struct rt6_info, rt6i_dst),
893 			.addr = daddr,
894 		},
895 #ifdef CONFIG_IPV6_SUBTREES
896 		{
897 			.offset = offsetof(struct rt6_info, rt6i_src),
898 			.addr = saddr,
899 		},
900 #endif
901 		{
902 			.offset = 0,	/* sentinel */
903 		}
904 	};
905 
906 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
907 
908 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
909 		fn = root;
910 
911 	return fn;
912 }
913 
914 /*
915  *	Get node with specified destination prefix (and source prefix,
916  *	if subtrees are used)
917  */
918 
919 
920 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
921 					const struct in6_addr *addr,
922 					int plen, int offset)
923 {
924 	struct fib6_node *fn;
925 
926 	for (fn = root; fn ; ) {
927 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
928 
929 		/*
930 		 *	Prefix match
931 		 */
932 		if (plen < fn->fn_bit ||
933 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
934 			return NULL;
935 
936 		if (plen == fn->fn_bit)
937 			return fn;
938 
939 		/*
940 		 *	We have more bits to go
941 		 */
942 		if (addr_bit_set(addr, fn->fn_bit))
943 			fn = fn->right;
944 		else
945 			fn = fn->left;
946 	}
947 	return NULL;
948 }
949 
950 struct fib6_node * fib6_locate(struct fib6_node *root,
951 			       const struct in6_addr *daddr, int dst_len,
952 			       const struct in6_addr *saddr, int src_len)
953 {
954 	struct fib6_node *fn;
955 
956 	fn = fib6_locate_1(root, daddr, dst_len,
957 			   offsetof(struct rt6_info, rt6i_dst));
958 
959 #ifdef CONFIG_IPV6_SUBTREES
960 	if (src_len) {
961 		WARN_ON(saddr == NULL);
962 		if (fn && fn->subtree)
963 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
964 					   offsetof(struct rt6_info, rt6i_src));
965 	}
966 #endif
967 
968 	if (fn && fn->fn_flags&RTN_RTINFO)
969 		return fn;
970 
971 	return NULL;
972 }
973 
974 
975 /*
976  *	Deletion
977  *
978  */
979 
980 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
981 {
982 	if (fn->fn_flags&RTN_ROOT)
983 		return net->ipv6.ip6_null_entry;
984 
985 	while(fn) {
986 		if(fn->left)
987 			return fn->left->leaf;
988 
989 		if(fn->right)
990 			return fn->right->leaf;
991 
992 		fn = FIB6_SUBTREE(fn);
993 	}
994 	return NULL;
995 }
996 
997 /*
998  *	Called to trim the tree of intermediate nodes when possible. "fn"
999  *	is the node we want to try and remove.
1000  */
1001 
1002 static struct fib6_node *fib6_repair_tree(struct net *net,
1003 					   struct fib6_node *fn)
1004 {
1005 	int children;
1006 	int nstate;
1007 	struct fib6_node *child, *pn;
1008 	struct fib6_walker_t *w;
1009 	int iter = 0;
1010 
1011 	for (;;) {
1012 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013 		iter++;
1014 
1015 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1016 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017 		WARN_ON(fn->leaf != NULL);
1018 
1019 		children = 0;
1020 		child = NULL;
1021 		if (fn->right) child = fn->right, children |= 1;
1022 		if (fn->left) child = fn->left, children |= 2;
1023 
1024 		if (children == 3 || FIB6_SUBTREE(fn)
1025 #ifdef CONFIG_IPV6_SUBTREES
1026 		    /* Subtree root (i.e. fn) may have one child */
1027 		    || (children && fn->fn_flags&RTN_ROOT)
1028 #endif
1029 		    ) {
1030 			fn->leaf = fib6_find_prefix(net, fn);
1031 #if RT6_DEBUG >= 2
1032 			if (fn->leaf==NULL) {
1033 				WARN_ON(!fn->leaf);
1034 				fn->leaf = net->ipv6.ip6_null_entry;
1035 			}
1036 #endif
1037 			atomic_inc(&fn->leaf->rt6i_ref);
1038 			return fn->parent;
1039 		}
1040 
1041 		pn = fn->parent;
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 		if (FIB6_SUBTREE(pn) == fn) {
1044 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045 			FIB6_SUBTREE(pn) = NULL;
1046 			nstate = FWS_L;
1047 		} else {
1048 			WARN_ON(fn->fn_flags & RTN_ROOT);
1049 #endif
1050 			if (pn->right == fn) pn->right = child;
1051 			else if (pn->left == fn) pn->left = child;
1052 #if RT6_DEBUG >= 2
1053 			else
1054 				WARN_ON(1);
1055 #endif
1056 			if (child)
1057 				child->parent = pn;
1058 			nstate = FWS_R;
1059 #ifdef CONFIG_IPV6_SUBTREES
1060 		}
1061 #endif
1062 
1063 		read_lock(&fib6_walker_lock);
1064 		FOR_WALKERS(w) {
1065 			if (child == NULL) {
1066 				if (w->root == fn) {
1067 					w->root = w->node = NULL;
1068 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069 				} else if (w->node == fn) {
1070 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071 					w->node = pn;
1072 					w->state = nstate;
1073 				}
1074 			} else {
1075 				if (w->root == fn) {
1076 					w->root = child;
1077 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078 				}
1079 				if (w->node == fn) {
1080 					w->node = child;
1081 					if (children&2) {
1082 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084 					} else {
1085 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087 					}
1088 				}
1089 			}
1090 		}
1091 		read_unlock(&fib6_walker_lock);
1092 
1093 		node_free(fn);
1094 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095 			return pn;
1096 
1097 		rt6_release(pn->leaf);
1098 		pn->leaf = NULL;
1099 		fn = pn;
1100 	}
1101 }
1102 
1103 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104 			   struct nl_info *info)
1105 {
1106 	struct fib6_walker_t *w;
1107 	struct rt6_info *rt = *rtp;
1108 	struct net *net = info->nl_net;
1109 
1110 	RT6_TRACE("fib6_del_route\n");
1111 
1112 	/* Unlink it */
1113 	*rtp = rt->dst.rt6_next;
1114 	rt->rt6i_node = NULL;
1115 	net->ipv6.rt6_stats->fib_rt_entries--;
1116 	net->ipv6.rt6_stats->fib_discarded_routes++;
1117 
1118 	/* Reset round-robin state, if necessary */
1119 	if (fn->rr_ptr == rt)
1120 		fn->rr_ptr = NULL;
1121 
1122 	/* Adjust walkers */
1123 	read_lock(&fib6_walker_lock);
1124 	FOR_WALKERS(w) {
1125 		if (w->state == FWS_C && w->leaf == rt) {
1126 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1127 			w->leaf = rt->dst.rt6_next;
1128 			if (w->leaf == NULL)
1129 				w->state = FWS_U;
1130 		}
1131 	}
1132 	read_unlock(&fib6_walker_lock);
1133 
1134 	rt->dst.rt6_next = NULL;
1135 
1136 	/* If it was last route, expunge its radix tree node */
1137 	if (fn->leaf == NULL) {
1138 		fn->fn_flags &= ~RTN_RTINFO;
1139 		net->ipv6.rt6_stats->fib_route_nodes--;
1140 		fn = fib6_repair_tree(net, fn);
1141 	}
1142 
1143 	if (atomic_read(&rt->rt6i_ref) != 1) {
1144 		/* This route is used as dummy address holder in some split
1145 		 * nodes. It is not leaked, but it still holds other resources,
1146 		 * which must be released in time. So, scan ascendant nodes
1147 		 * and replace dummy references to this route with references
1148 		 * to still alive ones.
1149 		 */
1150 		while (fn) {
1151 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152 				fn->leaf = fib6_find_prefix(net, fn);
1153 				atomic_inc(&fn->leaf->rt6i_ref);
1154 				rt6_release(rt);
1155 			}
1156 			fn = fn->parent;
1157 		}
1158 		/* No more references are possible at this point. */
1159 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160 	}
1161 
1162 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1163 	rt6_release(rt);
1164 }
1165 
1166 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1167 {
1168 	struct net *net = info->nl_net;
1169 	struct fib6_node *fn = rt->rt6i_node;
1170 	struct rt6_info **rtp;
1171 
1172 #if RT6_DEBUG >= 2
1173 	if (rt->dst.obsolete>0) {
1174 		WARN_ON(fn != NULL);
1175 		return -ENOENT;
1176 	}
1177 #endif
1178 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179 		return -ENOENT;
1180 
1181 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182 
1183 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1184 		struct fib6_node *pn = fn;
1185 #ifdef CONFIG_IPV6_SUBTREES
1186 		/* clones of this route might be in another subtree */
1187 		if (rt->rt6i_src.plen) {
1188 			while (!(pn->fn_flags&RTN_ROOT))
1189 				pn = pn->parent;
1190 			pn = pn->parent;
1191 		}
1192 #endif
1193 		fib6_prune_clones(info->nl_net, pn, rt);
1194 	}
1195 
1196 	/*
1197 	 *	Walk the leaf entries looking for ourself
1198 	 */
1199 
1200 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201 		if (*rtp == rt) {
1202 			fib6_del_route(fn, rtp, info);
1203 			return 0;
1204 		}
1205 	}
1206 	return -ENOENT;
1207 }
1208 
1209 /*
1210  *	Tree traversal function.
1211  *
1212  *	Certainly, it is not interrupt safe.
1213  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214  *	It means, that we can modify tree during walking
1215  *	and use this function for garbage collection, clone pruning,
1216  *	cleaning tree when a device goes down etc. etc.
1217  *
1218  *	It guarantees that every node will be traversed,
1219  *	and that it will be traversed only once.
1220  *
1221  *	Callback function w->func may return:
1222  *	0 -> continue walking.
1223  *	positive value -> walking is suspended (used by tree dumps,
1224  *	and probably by gc, if it will be split to several slices)
1225  *	negative value -> terminate walking.
1226  *
1227  *	The function itself returns:
1228  *	0   -> walk is complete.
1229  *	>0  -> walk is incomplete (i.e. suspended)
1230  *	<0  -> walk is terminated by an error.
1231  */
1232 
1233 static int fib6_walk_continue(struct fib6_walker_t *w)
1234 {
1235 	struct fib6_node *fn, *pn;
1236 
1237 	for (;;) {
1238 		fn = w->node;
1239 		if (fn == NULL)
1240 			return 0;
1241 
1242 		if (w->prune && fn != w->root &&
1243 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244 			w->state = FWS_C;
1245 			w->leaf = fn->leaf;
1246 		}
1247 		switch (w->state) {
1248 #ifdef CONFIG_IPV6_SUBTREES
1249 		case FWS_S:
1250 			if (FIB6_SUBTREE(fn)) {
1251 				w->node = FIB6_SUBTREE(fn);
1252 				continue;
1253 			}
1254 			w->state = FWS_L;
1255 #endif
1256 		case FWS_L:
1257 			if (fn->left) {
1258 				w->node = fn->left;
1259 				w->state = FWS_INIT;
1260 				continue;
1261 			}
1262 			w->state = FWS_R;
1263 		case FWS_R:
1264 			if (fn->right) {
1265 				w->node = fn->right;
1266 				w->state = FWS_INIT;
1267 				continue;
1268 			}
1269 			w->state = FWS_C;
1270 			w->leaf = fn->leaf;
1271 		case FWS_C:
1272 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273 				int err;
1274 
1275 				if (w->count < w->skip) {
1276 					w->count++;
1277 					continue;
1278 				}
1279 
1280 				err = w->func(w);
1281 				if (err)
1282 					return err;
1283 
1284 				w->count++;
1285 				continue;
1286 			}
1287 			w->state = FWS_U;
1288 		case FWS_U:
1289 			if (fn == w->root)
1290 				return 0;
1291 			pn = fn->parent;
1292 			w->node = pn;
1293 #ifdef CONFIG_IPV6_SUBTREES
1294 			if (FIB6_SUBTREE(pn) == fn) {
1295 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296 				w->state = FWS_L;
1297 				continue;
1298 			}
1299 #endif
1300 			if (pn->left == fn) {
1301 				w->state = FWS_R;
1302 				continue;
1303 			}
1304 			if (pn->right == fn) {
1305 				w->state = FWS_C;
1306 				w->leaf = w->node->leaf;
1307 				continue;
1308 			}
1309 #if RT6_DEBUG >= 2
1310 			WARN_ON(1);
1311 #endif
1312 		}
1313 	}
1314 }
1315 
1316 static int fib6_walk(struct fib6_walker_t *w)
1317 {
1318 	int res;
1319 
1320 	w->state = FWS_INIT;
1321 	w->node = w->root;
1322 
1323 	fib6_walker_link(w);
1324 	res = fib6_walk_continue(w);
1325 	if (res <= 0)
1326 		fib6_walker_unlink(w);
1327 	return res;
1328 }
1329 
1330 static int fib6_clean_node(struct fib6_walker_t *w)
1331 {
1332 	int res;
1333 	struct rt6_info *rt;
1334 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335 	struct nl_info info = {
1336 		.nl_net = c->net,
1337 	};
1338 
1339 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1340 		res = c->func(rt, c->arg);
1341 		if (res < 0) {
1342 			w->leaf = rt;
1343 			res = fib6_del(rt, &info);
1344 			if (res) {
1345 #if RT6_DEBUG >= 2
1346 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1347 #endif
1348 				continue;
1349 			}
1350 			return 0;
1351 		}
1352 		WARN_ON(res != 0);
1353 	}
1354 	w->leaf = rt;
1355 	return 0;
1356 }
1357 
1358 /*
1359  *	Convenient frontend to tree walker.
1360  *
1361  *	func is called on each route.
1362  *		It may return -1 -> delete this route.
1363  *		              0  -> continue walking
1364  *
1365  *	prune==1 -> only immediate children of node (certainly,
1366  *	ignoring pure split nodes) will be scanned.
1367  */
1368 
1369 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370 			    int (*func)(struct rt6_info *, void *arg),
1371 			    int prune, void *arg)
1372 {
1373 	struct fib6_cleaner_t c;
1374 
1375 	c.w.root = root;
1376 	c.w.func = fib6_clean_node;
1377 	c.w.prune = prune;
1378 	c.w.count = 0;
1379 	c.w.skip = 0;
1380 	c.func = func;
1381 	c.arg = arg;
1382 	c.net = net;
1383 
1384 	fib6_walk(&c.w);
1385 }
1386 
1387 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388 		    int prune, void *arg)
1389 {
1390 	struct fib6_table *table;
1391 	struct hlist_node *node;
1392 	struct hlist_head *head;
1393 	unsigned int h;
1394 
1395 	rcu_read_lock();
1396 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397 		head = &net->ipv6.fib_table_hash[h];
1398 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399 			write_lock_bh(&table->tb6_lock);
1400 			fib6_clean_tree(net, &table->tb6_root,
1401 					func, prune, arg);
1402 			write_unlock_bh(&table->tb6_lock);
1403 		}
1404 	}
1405 	rcu_read_unlock();
1406 }
1407 
1408 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1409 {
1410 	if (rt->rt6i_flags & RTF_CACHE) {
1411 		RT6_TRACE("pruning clone %p\n", rt);
1412 		return -1;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419 			      struct rt6_info *rt)
1420 {
1421 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1422 }
1423 
1424 /*
1425  *	Garbage collection
1426  */
1427 
1428 static struct fib6_gc_args
1429 {
1430 	int			timeout;
1431 	int			more;
1432 } gc_args;
1433 
1434 static int fib6_age(struct rt6_info *rt, void *arg)
1435 {
1436 	unsigned long now = jiffies;
1437 
1438 	/*
1439 	 *	check addrconf expiration here.
1440 	 *	Routes are expired even if they are in use.
1441 	 *
1442 	 *	Also age clones. Note, that clones are aged out
1443 	 *	only if they are not in use now.
1444 	 */
1445 
1446 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447 		if (time_after(now, rt->rt6i_expires)) {
1448 			RT6_TRACE("expiring %p\n", rt);
1449 			return -1;
1450 		}
1451 		gc_args.more++;
1452 	} else if (rt->rt6i_flags & RTF_CACHE) {
1453 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455 			RT6_TRACE("aging clone %p\n", rt);
1456 			return -1;
1457 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1459 			RT6_TRACE("purging route %p via non-router but gateway\n",
1460 				  rt);
1461 			return -1;
1462 		}
1463 		gc_args.more++;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static DEFINE_SPINLOCK(fib6_gc_lock);
1470 
1471 void fib6_run_gc(unsigned long expires, struct net *net)
1472 {
1473 	if (expires != ~0UL) {
1474 		spin_lock_bh(&fib6_gc_lock);
1475 		gc_args.timeout = expires ? (int)expires :
1476 			net->ipv6.sysctl.ip6_rt_gc_interval;
1477 	} else {
1478 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1479 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480 			return;
1481 		}
1482 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483 	}
1484 
1485 	gc_args.more = icmp6_dst_gc();
1486 
1487 	fib6_clean_all(net, fib6_age, 0, NULL);
1488 
1489 	if (gc_args.more)
1490 		mod_timer(&net->ipv6.ip6_fib_timer,
1491 			  round_jiffies(jiffies
1492 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493 	else
1494 		del_timer(&net->ipv6.ip6_fib_timer);
1495 	spin_unlock_bh(&fib6_gc_lock);
1496 }
1497 
1498 static void fib6_gc_timer_cb(unsigned long arg)
1499 {
1500 	fib6_run_gc(0, (struct net *)arg);
1501 }
1502 
1503 static int __net_init fib6_net_init(struct net *net)
1504 {
1505 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1506 
1507 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1508 
1509 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510 	if (!net->ipv6.rt6_stats)
1511 		goto out_timer;
1512 
1513 	/* Avoid false sharing : Use at least a full cache line */
1514 	size = max_t(size_t, size, L1_CACHE_BYTES);
1515 
1516 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517 	if (!net->ipv6.fib_table_hash)
1518 		goto out_rt6_stats;
1519 
1520 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521 					  GFP_KERNEL);
1522 	if (!net->ipv6.fib6_main_tbl)
1523 		goto out_fib_table_hash;
1524 
1525 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1527 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1529 
1530 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532 					   GFP_KERNEL);
1533 	if (!net->ipv6.fib6_local_tbl)
1534 		goto out_fib6_main_tbl;
1535 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1537 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1539 #endif
1540 	fib6_tables_init(net);
1541 
1542 	return 0;
1543 
1544 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545 out_fib6_main_tbl:
1546 	kfree(net->ipv6.fib6_main_tbl);
1547 #endif
1548 out_fib_table_hash:
1549 	kfree(net->ipv6.fib_table_hash);
1550 out_rt6_stats:
1551 	kfree(net->ipv6.rt6_stats);
1552 out_timer:
1553 	return -ENOMEM;
1554  }
1555 
1556 static void fib6_net_exit(struct net *net)
1557 {
1558 	rt6_ifdown(net, NULL);
1559 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1560 
1561 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562 	kfree(net->ipv6.fib6_local_tbl);
1563 #endif
1564 	kfree(net->ipv6.fib6_main_tbl);
1565 	kfree(net->ipv6.fib_table_hash);
1566 	kfree(net->ipv6.rt6_stats);
1567 }
1568 
1569 static struct pernet_operations fib6_net_ops = {
1570 	.init = fib6_net_init,
1571 	.exit = fib6_net_exit,
1572 };
1573 
1574 int __init fib6_init(void)
1575 {
1576 	int ret = -ENOMEM;
1577 
1578 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579 					   sizeof(struct fib6_node),
1580 					   0, SLAB_HWCACHE_ALIGN,
1581 					   NULL);
1582 	if (!fib6_node_kmem)
1583 		goto out;
1584 
1585 	ret = register_pernet_subsys(&fib6_net_ops);
1586 	if (ret)
1587 		goto out_kmem_cache_create;
1588 
1589 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1590 	if (ret)
1591 		goto out_unregister_subsys;
1592 out:
1593 	return ret;
1594 
1595 out_unregister_subsys:
1596 	unregister_pernet_subsys(&fib6_net_ops);
1597 out_kmem_cache_create:
1598 	kmem_cache_destroy(fib6_node_kmem);
1599 	goto out;
1600 }
1601 
1602 void fib6_gc_cleanup(void)
1603 {
1604 	unregister_pernet_subsys(&fib6_net_ops);
1605 	kmem_cache_destroy(fib6_node_kmem);
1606 }
1607