xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 52fb57e7)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38 
39 #define RT6_DEBUG 2
40 
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46 
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48 
49 struct fib6_cleaner {
50 	struct fib6_walker w;
51 	struct net *net;
52 	int (*func)(struct rt6_info *, void *arg);
53 	int sernum;
54 	void *arg;
55 };
56 
57 static DEFINE_RWLOCK(fib6_walker_lock);
58 
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
61 #else
62 #define FWS_INIT FWS_L
63 #endif
64 
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
70 
71 /*
72  *	A routing update causes an increase of the serial number on the
73  *	affected subtree. This allows for cached routes to be asynchronously
74  *	tested when modifications are made to the destination cache as a
75  *	result of redirects, path MTU changes, etc.
76  */
77 
78 static void fib6_gc_timer_cb(unsigned long arg);
79 
80 static LIST_HEAD(fib6_walkers);
81 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
82 
83 static void fib6_walker_link(struct fib6_walker *w)
84 {
85 	write_lock_bh(&fib6_walker_lock);
86 	list_add(&w->lh, &fib6_walkers);
87 	write_unlock_bh(&fib6_walker_lock);
88 }
89 
90 static void fib6_walker_unlink(struct fib6_walker *w)
91 {
92 	write_lock_bh(&fib6_walker_lock);
93 	list_del(&w->lh);
94 	write_unlock_bh(&fib6_walker_lock);
95 }
96 
97 static int fib6_new_sernum(struct net *net)
98 {
99 	int new, old;
100 
101 	do {
102 		old = atomic_read(&net->ipv6.fib6_sernum);
103 		new = old < INT_MAX ? old + 1 : 1;
104 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105 				old, new) != old);
106 	return new;
107 }
108 
109 enum {
110 	FIB6_NO_SERNUM_CHANGE = 0,
111 };
112 
113 /*
114  *	Auxiliary address test functions for the radix tree.
115  *
116  *	These assume a 32bit processor (although it will work on
117  *	64bit processors)
118  */
119 
120 /*
121  *	test bit
122  */
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
125 #else
126 # define BITOP_BE32_SWIZZLE	0
127 #endif
128 
129 static __be32 addr_bit_set(const void *token, int fn_bit)
130 {
131 	const __be32 *addr = token;
132 	/*
133 	 * Here,
134 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135 	 * is optimized version of
136 	 *	htonl(1 << ((~fn_bit)&0x1F))
137 	 * See include/asm-generic/bitops/le.h.
138 	 */
139 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140 	       addr[fn_bit >> 5];
141 }
142 
143 static struct fib6_node *node_alloc(void)
144 {
145 	struct fib6_node *fn;
146 
147 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148 
149 	return fn;
150 }
151 
152 static void node_free(struct fib6_node *fn)
153 {
154 	kmem_cache_free(fib6_node_kmem, fn);
155 }
156 
157 static void rt6_release(struct rt6_info *rt)
158 {
159 	if (atomic_dec_and_test(&rt->rt6i_ref))
160 		dst_free(&rt->dst);
161 }
162 
163 static void fib6_link_table(struct net *net, struct fib6_table *tb)
164 {
165 	unsigned int h;
166 
167 	/*
168 	 * Initialize table lock at a single place to give lockdep a key,
169 	 * tables aren't visible prior to being linked to the list.
170 	 */
171 	rwlock_init(&tb->tb6_lock);
172 
173 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
174 
175 	/*
176 	 * No protection necessary, this is the only list mutatation
177 	 * operation, tables never disappear once they exist.
178 	 */
179 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
180 }
181 
182 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
183 
184 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
185 {
186 	struct fib6_table *table;
187 
188 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
189 	if (table) {
190 		table->tb6_id = id;
191 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193 		inet_peer_base_init(&table->tb6_peers);
194 	}
195 
196 	return table;
197 }
198 
199 struct fib6_table *fib6_new_table(struct net *net, u32 id)
200 {
201 	struct fib6_table *tb;
202 
203 	if (id == 0)
204 		id = RT6_TABLE_MAIN;
205 	tb = fib6_get_table(net, id);
206 	if (tb)
207 		return tb;
208 
209 	tb = fib6_alloc_table(net, id);
210 	if (tb)
211 		fib6_link_table(net, tb);
212 
213 	return tb;
214 }
215 
216 struct fib6_table *fib6_get_table(struct net *net, u32 id)
217 {
218 	struct fib6_table *tb;
219 	struct hlist_head *head;
220 	unsigned int h;
221 
222 	if (id == 0)
223 		id = RT6_TABLE_MAIN;
224 	h = id & (FIB6_TABLE_HASHSZ - 1);
225 	rcu_read_lock();
226 	head = &net->ipv6.fib_table_hash[h];
227 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228 		if (tb->tb6_id == id) {
229 			rcu_read_unlock();
230 			return tb;
231 		}
232 	}
233 	rcu_read_unlock();
234 
235 	return NULL;
236 }
237 
238 static void __net_init fib6_tables_init(struct net *net)
239 {
240 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
241 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
242 }
243 #else
244 
245 struct fib6_table *fib6_new_table(struct net *net, u32 id)
246 {
247 	return fib6_get_table(net, id);
248 }
249 
250 struct fib6_table *fib6_get_table(struct net *net, u32 id)
251 {
252 	  return net->ipv6.fib6_main_tbl;
253 }
254 
255 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256 				   int flags, pol_lookup_t lookup)
257 {
258 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
259 }
260 
261 static void __net_init fib6_tables_init(struct net *net)
262 {
263 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
264 }
265 
266 #endif
267 
268 static int fib6_dump_node(struct fib6_walker *w)
269 {
270 	int res;
271 	struct rt6_info *rt;
272 
273 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274 		res = rt6_dump_route(rt, w->args);
275 		if (res < 0) {
276 			/* Frame is full, suspend walking */
277 			w->leaf = rt;
278 			return 1;
279 		}
280 	}
281 	w->leaf = NULL;
282 	return 0;
283 }
284 
285 static void fib6_dump_end(struct netlink_callback *cb)
286 {
287 	struct fib6_walker *w = (void *)cb->args[2];
288 
289 	if (w) {
290 		if (cb->args[4]) {
291 			cb->args[4] = 0;
292 			fib6_walker_unlink(w);
293 		}
294 		cb->args[2] = 0;
295 		kfree(w);
296 	}
297 	cb->done = (void *)cb->args[3];
298 	cb->args[1] = 3;
299 }
300 
301 static int fib6_dump_done(struct netlink_callback *cb)
302 {
303 	fib6_dump_end(cb);
304 	return cb->done ? cb->done(cb) : 0;
305 }
306 
307 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
308 			   struct netlink_callback *cb)
309 {
310 	struct fib6_walker *w;
311 	int res;
312 
313 	w = (void *)cb->args[2];
314 	w->root = &table->tb6_root;
315 
316 	if (cb->args[4] == 0) {
317 		w->count = 0;
318 		w->skip = 0;
319 
320 		read_lock_bh(&table->tb6_lock);
321 		res = fib6_walk(w);
322 		read_unlock_bh(&table->tb6_lock);
323 		if (res > 0) {
324 			cb->args[4] = 1;
325 			cb->args[5] = w->root->fn_sernum;
326 		}
327 	} else {
328 		if (cb->args[5] != w->root->fn_sernum) {
329 			/* Begin at the root if the tree changed */
330 			cb->args[5] = w->root->fn_sernum;
331 			w->state = FWS_INIT;
332 			w->node = w->root;
333 			w->skip = w->count;
334 		} else
335 			w->skip = 0;
336 
337 		read_lock_bh(&table->tb6_lock);
338 		res = fib6_walk_continue(w);
339 		read_unlock_bh(&table->tb6_lock);
340 		if (res <= 0) {
341 			fib6_walker_unlink(w);
342 			cb->args[4] = 0;
343 		}
344 	}
345 
346 	return res;
347 }
348 
349 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
350 {
351 	struct net *net = sock_net(skb->sk);
352 	unsigned int h, s_h;
353 	unsigned int e = 0, s_e;
354 	struct rt6_rtnl_dump_arg arg;
355 	struct fib6_walker *w;
356 	struct fib6_table *tb;
357 	struct hlist_head *head;
358 	int res = 0;
359 
360 	s_h = cb->args[0];
361 	s_e = cb->args[1];
362 
363 	w = (void *)cb->args[2];
364 	if (!w) {
365 		/* New dump:
366 		 *
367 		 * 1. hook callback destructor.
368 		 */
369 		cb->args[3] = (long)cb->done;
370 		cb->done = fib6_dump_done;
371 
372 		/*
373 		 * 2. allocate and initialize walker.
374 		 */
375 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
376 		if (!w)
377 			return -ENOMEM;
378 		w->func = fib6_dump_node;
379 		cb->args[2] = (long)w;
380 	}
381 
382 	arg.skb = skb;
383 	arg.cb = cb;
384 	arg.net = net;
385 	w->args = &arg;
386 
387 	rcu_read_lock();
388 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
389 		e = 0;
390 		head = &net->ipv6.fib_table_hash[h];
391 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
392 			if (e < s_e)
393 				goto next;
394 			res = fib6_dump_table(tb, skb, cb);
395 			if (res != 0)
396 				goto out;
397 next:
398 			e++;
399 		}
400 	}
401 out:
402 	rcu_read_unlock();
403 	cb->args[1] = e;
404 	cb->args[0] = h;
405 
406 	res = res < 0 ? res : skb->len;
407 	if (res <= 0)
408 		fib6_dump_end(cb);
409 	return res;
410 }
411 
412 /*
413  *	Routing Table
414  *
415  *	return the appropriate node for a routing tree "add" operation
416  *	by either creating and inserting or by returning an existing
417  *	node.
418  */
419 
420 static struct fib6_node *fib6_add_1(struct fib6_node *root,
421 				     struct in6_addr *addr, int plen,
422 				     int offset, int allow_create,
423 				     int replace_required, int sernum)
424 {
425 	struct fib6_node *fn, *in, *ln;
426 	struct fib6_node *pn = NULL;
427 	struct rt6key *key;
428 	int	bit;
429 	__be32	dir = 0;
430 
431 	RT6_TRACE("fib6_add_1\n");
432 
433 	/* insert node in tree */
434 
435 	fn = root;
436 
437 	do {
438 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
439 
440 		/*
441 		 *	Prefix match
442 		 */
443 		if (plen < fn->fn_bit ||
444 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
445 			if (!allow_create) {
446 				if (replace_required) {
447 					pr_warn("Can't replace route, no match found\n");
448 					return ERR_PTR(-ENOENT);
449 				}
450 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
451 			}
452 			goto insert_above;
453 		}
454 
455 		/*
456 		 *	Exact match ?
457 		 */
458 
459 		if (plen == fn->fn_bit) {
460 			/* clean up an intermediate node */
461 			if (!(fn->fn_flags & RTN_RTINFO)) {
462 				rt6_release(fn->leaf);
463 				fn->leaf = NULL;
464 			}
465 
466 			fn->fn_sernum = sernum;
467 
468 			return fn;
469 		}
470 
471 		/*
472 		 *	We have more bits to go
473 		 */
474 
475 		/* Try to walk down on tree. */
476 		fn->fn_sernum = sernum;
477 		dir = addr_bit_set(addr, fn->fn_bit);
478 		pn = fn;
479 		fn = dir ? fn->right : fn->left;
480 	} while (fn);
481 
482 	if (!allow_create) {
483 		/* We should not create new node because
484 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
485 		 * I assume it is safe to require NLM_F_CREATE when
486 		 * REPLACE flag is used! Later we may want to remove the
487 		 * check for replace_required, because according
488 		 * to netlink specification, NLM_F_CREATE
489 		 * MUST be specified if new route is created.
490 		 * That would keep IPv6 consistent with IPv4
491 		 */
492 		if (replace_required) {
493 			pr_warn("Can't replace route, no match found\n");
494 			return ERR_PTR(-ENOENT);
495 		}
496 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
497 	}
498 	/*
499 	 *	We walked to the bottom of tree.
500 	 *	Create new leaf node without children.
501 	 */
502 
503 	ln = node_alloc();
504 
505 	if (!ln)
506 		return ERR_PTR(-ENOMEM);
507 	ln->fn_bit = plen;
508 
509 	ln->parent = pn;
510 	ln->fn_sernum = sernum;
511 
512 	if (dir)
513 		pn->right = ln;
514 	else
515 		pn->left  = ln;
516 
517 	return ln;
518 
519 
520 insert_above:
521 	/*
522 	 * split since we don't have a common prefix anymore or
523 	 * we have a less significant route.
524 	 * we've to insert an intermediate node on the list
525 	 * this new node will point to the one we need to create
526 	 * and the current
527 	 */
528 
529 	pn = fn->parent;
530 
531 	/* find 1st bit in difference between the 2 addrs.
532 
533 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
534 	   but if it is >= plen, the value is ignored in any case.
535 	 */
536 
537 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
538 
539 	/*
540 	 *		(intermediate)[in]
541 	 *	          /	   \
542 	 *	(new leaf node)[ln] (old node)[fn]
543 	 */
544 	if (plen > bit) {
545 		in = node_alloc();
546 		ln = node_alloc();
547 
548 		if (!in || !ln) {
549 			if (in)
550 				node_free(in);
551 			if (ln)
552 				node_free(ln);
553 			return ERR_PTR(-ENOMEM);
554 		}
555 
556 		/*
557 		 * new intermediate node.
558 		 * RTN_RTINFO will
559 		 * be off since that an address that chooses one of
560 		 * the branches would not match less specific routes
561 		 * in the other branch
562 		 */
563 
564 		in->fn_bit = bit;
565 
566 		in->parent = pn;
567 		in->leaf = fn->leaf;
568 		atomic_inc(&in->leaf->rt6i_ref);
569 
570 		in->fn_sernum = sernum;
571 
572 		/* update parent pointer */
573 		if (dir)
574 			pn->right = in;
575 		else
576 			pn->left  = in;
577 
578 		ln->fn_bit = plen;
579 
580 		ln->parent = in;
581 		fn->parent = in;
582 
583 		ln->fn_sernum = sernum;
584 
585 		if (addr_bit_set(addr, bit)) {
586 			in->right = ln;
587 			in->left  = fn;
588 		} else {
589 			in->left  = ln;
590 			in->right = fn;
591 		}
592 	} else { /* plen <= bit */
593 
594 		/*
595 		 *		(new leaf node)[ln]
596 		 *	          /	   \
597 		 *	     (old node)[fn] NULL
598 		 */
599 
600 		ln = node_alloc();
601 
602 		if (!ln)
603 			return ERR_PTR(-ENOMEM);
604 
605 		ln->fn_bit = plen;
606 
607 		ln->parent = pn;
608 
609 		ln->fn_sernum = sernum;
610 
611 		if (dir)
612 			pn->right = ln;
613 		else
614 			pn->left  = ln;
615 
616 		if (addr_bit_set(&key->addr, plen))
617 			ln->right = fn;
618 		else
619 			ln->left  = fn;
620 
621 		fn->parent = ln;
622 	}
623 	return ln;
624 }
625 
626 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
627 {
628 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
629 	       RTF_GATEWAY;
630 }
631 
632 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
633 {
634 	int i;
635 
636 	for (i = 0; i < RTAX_MAX; i++) {
637 		if (test_bit(i, mxc->mx_valid))
638 			mp[i] = mxc->mx[i];
639 	}
640 }
641 
642 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
643 {
644 	if (!mxc->mx)
645 		return 0;
646 
647 	if (dst->flags & DST_HOST) {
648 		u32 *mp = dst_metrics_write_ptr(dst);
649 
650 		if (unlikely(!mp))
651 			return -ENOMEM;
652 
653 		fib6_copy_metrics(mp, mxc);
654 	} else {
655 		dst_init_metrics(dst, mxc->mx, false);
656 
657 		/* We've stolen mx now. */
658 		mxc->mx = NULL;
659 	}
660 
661 	return 0;
662 }
663 
664 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
665 			  struct net *net)
666 {
667 	if (atomic_read(&rt->rt6i_ref) != 1) {
668 		/* This route is used as dummy address holder in some split
669 		 * nodes. It is not leaked, but it still holds other resources,
670 		 * which must be released in time. So, scan ascendant nodes
671 		 * and replace dummy references to this route with references
672 		 * to still alive ones.
673 		 */
674 		while (fn) {
675 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
676 				fn->leaf = fib6_find_prefix(net, fn);
677 				atomic_inc(&fn->leaf->rt6i_ref);
678 				rt6_release(rt);
679 			}
680 			fn = fn->parent;
681 		}
682 		/* No more references are possible at this point. */
683 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
684 	}
685 }
686 
687 /*
688  *	Insert routing information in a node.
689  */
690 
691 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
692 			    struct nl_info *info, struct mx6_config *mxc)
693 {
694 	struct rt6_info *iter = NULL;
695 	struct rt6_info **ins;
696 	struct rt6_info **fallback_ins = NULL;
697 	int replace = (info->nlh &&
698 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
699 	int add = (!info->nlh ||
700 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
701 	int found = 0;
702 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
703 	int err;
704 
705 	ins = &fn->leaf;
706 
707 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
708 		/*
709 		 *	Search for duplicates
710 		 */
711 
712 		if (iter->rt6i_metric == rt->rt6i_metric) {
713 			/*
714 			 *	Same priority level
715 			 */
716 			if (info->nlh &&
717 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
718 				return -EEXIST;
719 			if (replace) {
720 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
721 					found++;
722 					break;
723 				}
724 				if (rt_can_ecmp)
725 					fallback_ins = fallback_ins ?: ins;
726 				goto next_iter;
727 			}
728 
729 			if (iter->dst.dev == rt->dst.dev &&
730 			    iter->rt6i_idev == rt->rt6i_idev &&
731 			    ipv6_addr_equal(&iter->rt6i_gateway,
732 					    &rt->rt6i_gateway)) {
733 				if (rt->rt6i_nsiblings)
734 					rt->rt6i_nsiblings = 0;
735 				if (!(iter->rt6i_flags & RTF_EXPIRES))
736 					return -EEXIST;
737 				if (!(rt->rt6i_flags & RTF_EXPIRES))
738 					rt6_clean_expires(iter);
739 				else
740 					rt6_set_expires(iter, rt->dst.expires);
741 				return -EEXIST;
742 			}
743 			/* If we have the same destination and the same metric,
744 			 * but not the same gateway, then the route we try to
745 			 * add is sibling to this route, increment our counter
746 			 * of siblings, and later we will add our route to the
747 			 * list.
748 			 * Only static routes (which don't have flag
749 			 * RTF_EXPIRES) are used for ECMPv6.
750 			 *
751 			 * To avoid long list, we only had siblings if the
752 			 * route have a gateway.
753 			 */
754 			if (rt_can_ecmp &&
755 			    rt6_qualify_for_ecmp(iter))
756 				rt->rt6i_nsiblings++;
757 		}
758 
759 		if (iter->rt6i_metric > rt->rt6i_metric)
760 			break;
761 
762 next_iter:
763 		ins = &iter->dst.rt6_next;
764 	}
765 
766 	if (fallback_ins && !found) {
767 		/* No ECMP-able route found, replace first non-ECMP one */
768 		ins = fallback_ins;
769 		iter = *ins;
770 		found++;
771 	}
772 
773 	/* Reset round-robin state, if necessary */
774 	if (ins == &fn->leaf)
775 		fn->rr_ptr = NULL;
776 
777 	/* Link this route to others same route. */
778 	if (rt->rt6i_nsiblings) {
779 		unsigned int rt6i_nsiblings;
780 		struct rt6_info *sibling, *temp_sibling;
781 
782 		/* Find the first route that have the same metric */
783 		sibling = fn->leaf;
784 		while (sibling) {
785 			if (sibling->rt6i_metric == rt->rt6i_metric &&
786 			    rt6_qualify_for_ecmp(sibling)) {
787 				list_add_tail(&rt->rt6i_siblings,
788 					      &sibling->rt6i_siblings);
789 				break;
790 			}
791 			sibling = sibling->dst.rt6_next;
792 		}
793 		/* For each sibling in the list, increment the counter of
794 		 * siblings. BUG() if counters does not match, list of siblings
795 		 * is broken!
796 		 */
797 		rt6i_nsiblings = 0;
798 		list_for_each_entry_safe(sibling, temp_sibling,
799 					 &rt->rt6i_siblings, rt6i_siblings) {
800 			sibling->rt6i_nsiblings++;
801 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
802 			rt6i_nsiblings++;
803 		}
804 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
805 	}
806 
807 	/*
808 	 *	insert node
809 	 */
810 	if (!replace) {
811 		if (!add)
812 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
813 
814 add:
815 		err = fib6_commit_metrics(&rt->dst, mxc);
816 		if (err)
817 			return err;
818 
819 		rt->dst.rt6_next = iter;
820 		*ins = rt;
821 		rt->rt6i_node = fn;
822 		atomic_inc(&rt->rt6i_ref);
823 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
824 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
825 
826 		if (!(fn->fn_flags & RTN_RTINFO)) {
827 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
828 			fn->fn_flags |= RTN_RTINFO;
829 		}
830 
831 	} else {
832 		int nsiblings;
833 
834 		if (!found) {
835 			if (add)
836 				goto add;
837 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
838 			return -ENOENT;
839 		}
840 
841 		err = fib6_commit_metrics(&rt->dst, mxc);
842 		if (err)
843 			return err;
844 
845 		*ins = rt;
846 		rt->rt6i_node = fn;
847 		rt->dst.rt6_next = iter->dst.rt6_next;
848 		atomic_inc(&rt->rt6i_ref);
849 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
850 		if (!(fn->fn_flags & RTN_RTINFO)) {
851 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
852 			fn->fn_flags |= RTN_RTINFO;
853 		}
854 		nsiblings = iter->rt6i_nsiblings;
855 		fib6_purge_rt(iter, fn, info->nl_net);
856 		rt6_release(iter);
857 
858 		if (nsiblings) {
859 			/* Replacing an ECMP route, remove all siblings */
860 			ins = &rt->dst.rt6_next;
861 			iter = *ins;
862 			while (iter) {
863 				if (rt6_qualify_for_ecmp(iter)) {
864 					*ins = iter->dst.rt6_next;
865 					fib6_purge_rt(iter, fn, info->nl_net);
866 					rt6_release(iter);
867 					nsiblings--;
868 				} else {
869 					ins = &iter->dst.rt6_next;
870 				}
871 				iter = *ins;
872 			}
873 			WARN_ON(nsiblings != 0);
874 		}
875 	}
876 
877 	return 0;
878 }
879 
880 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
881 {
882 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
883 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
884 		mod_timer(&net->ipv6.ip6_fib_timer,
885 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
886 }
887 
888 void fib6_force_start_gc(struct net *net)
889 {
890 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
891 		mod_timer(&net->ipv6.ip6_fib_timer,
892 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
893 }
894 
895 /*
896  *	Add routing information to the routing tree.
897  *	<destination addr>/<source addr>
898  *	with source addr info in sub-trees
899  */
900 
901 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
902 	     struct nl_info *info, struct mx6_config *mxc)
903 {
904 	struct fib6_node *fn, *pn = NULL;
905 	int err = -ENOMEM;
906 	int allow_create = 1;
907 	int replace_required = 0;
908 	int sernum = fib6_new_sernum(info->nl_net);
909 
910 	if (info->nlh) {
911 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
912 			allow_create = 0;
913 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
914 			replace_required = 1;
915 	}
916 	if (!allow_create && !replace_required)
917 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
918 
919 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
920 			offsetof(struct rt6_info, rt6i_dst), allow_create,
921 			replace_required, sernum);
922 	if (IS_ERR(fn)) {
923 		err = PTR_ERR(fn);
924 		fn = NULL;
925 		goto out;
926 	}
927 
928 	pn = fn;
929 
930 #ifdef CONFIG_IPV6_SUBTREES
931 	if (rt->rt6i_src.plen) {
932 		struct fib6_node *sn;
933 
934 		if (!fn->subtree) {
935 			struct fib6_node *sfn;
936 
937 			/*
938 			 * Create subtree.
939 			 *
940 			 *		fn[main tree]
941 			 *		|
942 			 *		sfn[subtree root]
943 			 *		   \
944 			 *		    sn[new leaf node]
945 			 */
946 
947 			/* Create subtree root node */
948 			sfn = node_alloc();
949 			if (!sfn)
950 				goto st_failure;
951 
952 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
953 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
954 			sfn->fn_flags = RTN_ROOT;
955 			sfn->fn_sernum = sernum;
956 
957 			/* Now add the first leaf node to new subtree */
958 
959 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
960 					rt->rt6i_src.plen,
961 					offsetof(struct rt6_info, rt6i_src),
962 					allow_create, replace_required, sernum);
963 
964 			if (IS_ERR(sn)) {
965 				/* If it is failed, discard just allocated
966 				   root, and then (in st_failure) stale node
967 				   in main tree.
968 				 */
969 				node_free(sfn);
970 				err = PTR_ERR(sn);
971 				goto st_failure;
972 			}
973 
974 			/* Now link new subtree to main tree */
975 			sfn->parent = fn;
976 			fn->subtree = sfn;
977 		} else {
978 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
979 					rt->rt6i_src.plen,
980 					offsetof(struct rt6_info, rt6i_src),
981 					allow_create, replace_required, sernum);
982 
983 			if (IS_ERR(sn)) {
984 				err = PTR_ERR(sn);
985 				goto st_failure;
986 			}
987 		}
988 
989 		if (!fn->leaf) {
990 			fn->leaf = rt;
991 			atomic_inc(&rt->rt6i_ref);
992 		}
993 		fn = sn;
994 	}
995 #endif
996 
997 	err = fib6_add_rt2node(fn, rt, info, mxc);
998 	if (!err) {
999 		fib6_start_gc(info->nl_net, rt);
1000 		if (!(rt->rt6i_flags & RTF_CACHE))
1001 			fib6_prune_clones(info->nl_net, pn);
1002 	}
1003 
1004 out:
1005 	if (err) {
1006 #ifdef CONFIG_IPV6_SUBTREES
1007 		/*
1008 		 * If fib6_add_1 has cleared the old leaf pointer in the
1009 		 * super-tree leaf node we have to find a new one for it.
1010 		 */
1011 		if (pn != fn && pn->leaf == rt) {
1012 			pn->leaf = NULL;
1013 			atomic_dec(&rt->rt6i_ref);
1014 		}
1015 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1016 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1017 #if RT6_DEBUG >= 2
1018 			if (!pn->leaf) {
1019 				WARN_ON(pn->leaf == NULL);
1020 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1021 			}
1022 #endif
1023 			atomic_inc(&pn->leaf->rt6i_ref);
1024 		}
1025 #endif
1026 		dst_free(&rt->dst);
1027 	}
1028 	return err;
1029 
1030 #ifdef CONFIG_IPV6_SUBTREES
1031 	/* Subtree creation failed, probably main tree node
1032 	   is orphan. If it is, shoot it.
1033 	 */
1034 st_failure:
1035 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1036 		fib6_repair_tree(info->nl_net, fn);
1037 	dst_free(&rt->dst);
1038 	return err;
1039 #endif
1040 }
1041 
1042 /*
1043  *	Routing tree lookup
1044  *
1045  */
1046 
1047 struct lookup_args {
1048 	int			offset;		/* key offset on rt6_info	*/
1049 	const struct in6_addr	*addr;		/* search key			*/
1050 };
1051 
1052 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1053 				       struct lookup_args *args)
1054 {
1055 	struct fib6_node *fn;
1056 	__be32 dir;
1057 
1058 	if (unlikely(args->offset == 0))
1059 		return NULL;
1060 
1061 	/*
1062 	 *	Descend on a tree
1063 	 */
1064 
1065 	fn = root;
1066 
1067 	for (;;) {
1068 		struct fib6_node *next;
1069 
1070 		dir = addr_bit_set(args->addr, fn->fn_bit);
1071 
1072 		next = dir ? fn->right : fn->left;
1073 
1074 		if (next) {
1075 			fn = next;
1076 			continue;
1077 		}
1078 		break;
1079 	}
1080 
1081 	while (fn) {
1082 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1083 			struct rt6key *key;
1084 
1085 			key = (struct rt6key *) ((u8 *) fn->leaf +
1086 						 args->offset);
1087 
1088 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1089 #ifdef CONFIG_IPV6_SUBTREES
1090 				if (fn->subtree) {
1091 					struct fib6_node *sfn;
1092 					sfn = fib6_lookup_1(fn->subtree,
1093 							    args + 1);
1094 					if (!sfn)
1095 						goto backtrack;
1096 					fn = sfn;
1097 				}
1098 #endif
1099 				if (fn->fn_flags & RTN_RTINFO)
1100 					return fn;
1101 			}
1102 		}
1103 #ifdef CONFIG_IPV6_SUBTREES
1104 backtrack:
1105 #endif
1106 		if (fn->fn_flags & RTN_ROOT)
1107 			break;
1108 
1109 		fn = fn->parent;
1110 	}
1111 
1112 	return NULL;
1113 }
1114 
1115 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1116 			      const struct in6_addr *saddr)
1117 {
1118 	struct fib6_node *fn;
1119 	struct lookup_args args[] = {
1120 		{
1121 			.offset = offsetof(struct rt6_info, rt6i_dst),
1122 			.addr = daddr,
1123 		},
1124 #ifdef CONFIG_IPV6_SUBTREES
1125 		{
1126 			.offset = offsetof(struct rt6_info, rt6i_src),
1127 			.addr = saddr,
1128 		},
1129 #endif
1130 		{
1131 			.offset = 0,	/* sentinel */
1132 		}
1133 	};
1134 
1135 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1136 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1137 		fn = root;
1138 
1139 	return fn;
1140 }
1141 
1142 /*
1143  *	Get node with specified destination prefix (and source prefix,
1144  *	if subtrees are used)
1145  */
1146 
1147 
1148 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1149 				       const struct in6_addr *addr,
1150 				       int plen, int offset)
1151 {
1152 	struct fib6_node *fn;
1153 
1154 	for (fn = root; fn ; ) {
1155 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1156 
1157 		/*
1158 		 *	Prefix match
1159 		 */
1160 		if (plen < fn->fn_bit ||
1161 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1162 			return NULL;
1163 
1164 		if (plen == fn->fn_bit)
1165 			return fn;
1166 
1167 		/*
1168 		 *	We have more bits to go
1169 		 */
1170 		if (addr_bit_set(addr, fn->fn_bit))
1171 			fn = fn->right;
1172 		else
1173 			fn = fn->left;
1174 	}
1175 	return NULL;
1176 }
1177 
1178 struct fib6_node *fib6_locate(struct fib6_node *root,
1179 			      const struct in6_addr *daddr, int dst_len,
1180 			      const struct in6_addr *saddr, int src_len)
1181 {
1182 	struct fib6_node *fn;
1183 
1184 	fn = fib6_locate_1(root, daddr, dst_len,
1185 			   offsetof(struct rt6_info, rt6i_dst));
1186 
1187 #ifdef CONFIG_IPV6_SUBTREES
1188 	if (src_len) {
1189 		WARN_ON(saddr == NULL);
1190 		if (fn && fn->subtree)
1191 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1192 					   offsetof(struct rt6_info, rt6i_src));
1193 	}
1194 #endif
1195 
1196 	if (fn && fn->fn_flags & RTN_RTINFO)
1197 		return fn;
1198 
1199 	return NULL;
1200 }
1201 
1202 
1203 /*
1204  *	Deletion
1205  *
1206  */
1207 
1208 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1209 {
1210 	if (fn->fn_flags & RTN_ROOT)
1211 		return net->ipv6.ip6_null_entry;
1212 
1213 	while (fn) {
1214 		if (fn->left)
1215 			return fn->left->leaf;
1216 		if (fn->right)
1217 			return fn->right->leaf;
1218 
1219 		fn = FIB6_SUBTREE(fn);
1220 	}
1221 	return NULL;
1222 }
1223 
1224 /*
1225  *	Called to trim the tree of intermediate nodes when possible. "fn"
1226  *	is the node we want to try and remove.
1227  */
1228 
1229 static struct fib6_node *fib6_repair_tree(struct net *net,
1230 					   struct fib6_node *fn)
1231 {
1232 	int children;
1233 	int nstate;
1234 	struct fib6_node *child, *pn;
1235 	struct fib6_walker *w;
1236 	int iter = 0;
1237 
1238 	for (;;) {
1239 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1240 		iter++;
1241 
1242 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1243 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1244 		WARN_ON(fn->leaf);
1245 
1246 		children = 0;
1247 		child = NULL;
1248 		if (fn->right)
1249 			child = fn->right, children |= 1;
1250 		if (fn->left)
1251 			child = fn->left, children |= 2;
1252 
1253 		if (children == 3 || FIB6_SUBTREE(fn)
1254 #ifdef CONFIG_IPV6_SUBTREES
1255 		    /* Subtree root (i.e. fn) may have one child */
1256 		    || (children && fn->fn_flags & RTN_ROOT)
1257 #endif
1258 		    ) {
1259 			fn->leaf = fib6_find_prefix(net, fn);
1260 #if RT6_DEBUG >= 2
1261 			if (!fn->leaf) {
1262 				WARN_ON(!fn->leaf);
1263 				fn->leaf = net->ipv6.ip6_null_entry;
1264 			}
1265 #endif
1266 			atomic_inc(&fn->leaf->rt6i_ref);
1267 			return fn->parent;
1268 		}
1269 
1270 		pn = fn->parent;
1271 #ifdef CONFIG_IPV6_SUBTREES
1272 		if (FIB6_SUBTREE(pn) == fn) {
1273 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1274 			FIB6_SUBTREE(pn) = NULL;
1275 			nstate = FWS_L;
1276 		} else {
1277 			WARN_ON(fn->fn_flags & RTN_ROOT);
1278 #endif
1279 			if (pn->right == fn)
1280 				pn->right = child;
1281 			else if (pn->left == fn)
1282 				pn->left = child;
1283 #if RT6_DEBUG >= 2
1284 			else
1285 				WARN_ON(1);
1286 #endif
1287 			if (child)
1288 				child->parent = pn;
1289 			nstate = FWS_R;
1290 #ifdef CONFIG_IPV6_SUBTREES
1291 		}
1292 #endif
1293 
1294 		read_lock(&fib6_walker_lock);
1295 		FOR_WALKERS(w) {
1296 			if (!child) {
1297 				if (w->root == fn) {
1298 					w->root = w->node = NULL;
1299 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1300 				} else if (w->node == fn) {
1301 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1302 					w->node = pn;
1303 					w->state = nstate;
1304 				}
1305 			} else {
1306 				if (w->root == fn) {
1307 					w->root = child;
1308 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1309 				}
1310 				if (w->node == fn) {
1311 					w->node = child;
1312 					if (children&2) {
1313 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1314 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1315 					} else {
1316 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1317 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1318 					}
1319 				}
1320 			}
1321 		}
1322 		read_unlock(&fib6_walker_lock);
1323 
1324 		node_free(fn);
1325 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1326 			return pn;
1327 
1328 		rt6_release(pn->leaf);
1329 		pn->leaf = NULL;
1330 		fn = pn;
1331 	}
1332 }
1333 
1334 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1335 			   struct nl_info *info)
1336 {
1337 	struct fib6_walker *w;
1338 	struct rt6_info *rt = *rtp;
1339 	struct net *net = info->nl_net;
1340 
1341 	RT6_TRACE("fib6_del_route\n");
1342 
1343 	/* Unlink it */
1344 	*rtp = rt->dst.rt6_next;
1345 	rt->rt6i_node = NULL;
1346 	net->ipv6.rt6_stats->fib_rt_entries--;
1347 	net->ipv6.rt6_stats->fib_discarded_routes++;
1348 
1349 	/* Reset round-robin state, if necessary */
1350 	if (fn->rr_ptr == rt)
1351 		fn->rr_ptr = NULL;
1352 
1353 	/* Remove this entry from other siblings */
1354 	if (rt->rt6i_nsiblings) {
1355 		struct rt6_info *sibling, *next_sibling;
1356 
1357 		list_for_each_entry_safe(sibling, next_sibling,
1358 					 &rt->rt6i_siblings, rt6i_siblings)
1359 			sibling->rt6i_nsiblings--;
1360 		rt->rt6i_nsiblings = 0;
1361 		list_del_init(&rt->rt6i_siblings);
1362 	}
1363 
1364 	/* Adjust walkers */
1365 	read_lock(&fib6_walker_lock);
1366 	FOR_WALKERS(w) {
1367 		if (w->state == FWS_C && w->leaf == rt) {
1368 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1369 			w->leaf = rt->dst.rt6_next;
1370 			if (!w->leaf)
1371 				w->state = FWS_U;
1372 		}
1373 	}
1374 	read_unlock(&fib6_walker_lock);
1375 
1376 	rt->dst.rt6_next = NULL;
1377 
1378 	/* If it was last route, expunge its radix tree node */
1379 	if (!fn->leaf) {
1380 		fn->fn_flags &= ~RTN_RTINFO;
1381 		net->ipv6.rt6_stats->fib_route_nodes--;
1382 		fn = fib6_repair_tree(net, fn);
1383 	}
1384 
1385 	fib6_purge_rt(rt, fn, net);
1386 
1387 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1388 	rt6_release(rt);
1389 }
1390 
1391 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1392 {
1393 	struct net *net = info->nl_net;
1394 	struct fib6_node *fn = rt->rt6i_node;
1395 	struct rt6_info **rtp;
1396 
1397 #if RT6_DEBUG >= 2
1398 	if (rt->dst.obsolete > 0) {
1399 		WARN_ON(fn);
1400 		return -ENOENT;
1401 	}
1402 #endif
1403 	if (!fn || rt == net->ipv6.ip6_null_entry)
1404 		return -ENOENT;
1405 
1406 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1407 
1408 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1409 		struct fib6_node *pn = fn;
1410 #ifdef CONFIG_IPV6_SUBTREES
1411 		/* clones of this route might be in another subtree */
1412 		if (rt->rt6i_src.plen) {
1413 			while (!(pn->fn_flags & RTN_ROOT))
1414 				pn = pn->parent;
1415 			pn = pn->parent;
1416 		}
1417 #endif
1418 		fib6_prune_clones(info->nl_net, pn);
1419 	}
1420 
1421 	/*
1422 	 *	Walk the leaf entries looking for ourself
1423 	 */
1424 
1425 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1426 		if (*rtp == rt) {
1427 			fib6_del_route(fn, rtp, info);
1428 			return 0;
1429 		}
1430 	}
1431 	return -ENOENT;
1432 }
1433 
1434 /*
1435  *	Tree traversal function.
1436  *
1437  *	Certainly, it is not interrupt safe.
1438  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1439  *	It means, that we can modify tree during walking
1440  *	and use this function for garbage collection, clone pruning,
1441  *	cleaning tree when a device goes down etc. etc.
1442  *
1443  *	It guarantees that every node will be traversed,
1444  *	and that it will be traversed only once.
1445  *
1446  *	Callback function w->func may return:
1447  *	0 -> continue walking.
1448  *	positive value -> walking is suspended (used by tree dumps,
1449  *	and probably by gc, if it will be split to several slices)
1450  *	negative value -> terminate walking.
1451  *
1452  *	The function itself returns:
1453  *	0   -> walk is complete.
1454  *	>0  -> walk is incomplete (i.e. suspended)
1455  *	<0  -> walk is terminated by an error.
1456  */
1457 
1458 static int fib6_walk_continue(struct fib6_walker *w)
1459 {
1460 	struct fib6_node *fn, *pn;
1461 
1462 	for (;;) {
1463 		fn = w->node;
1464 		if (!fn)
1465 			return 0;
1466 
1467 		if (w->prune && fn != w->root &&
1468 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1469 			w->state = FWS_C;
1470 			w->leaf = fn->leaf;
1471 		}
1472 		switch (w->state) {
1473 #ifdef CONFIG_IPV6_SUBTREES
1474 		case FWS_S:
1475 			if (FIB6_SUBTREE(fn)) {
1476 				w->node = FIB6_SUBTREE(fn);
1477 				continue;
1478 			}
1479 			w->state = FWS_L;
1480 #endif
1481 		case FWS_L:
1482 			if (fn->left) {
1483 				w->node = fn->left;
1484 				w->state = FWS_INIT;
1485 				continue;
1486 			}
1487 			w->state = FWS_R;
1488 		case FWS_R:
1489 			if (fn->right) {
1490 				w->node = fn->right;
1491 				w->state = FWS_INIT;
1492 				continue;
1493 			}
1494 			w->state = FWS_C;
1495 			w->leaf = fn->leaf;
1496 		case FWS_C:
1497 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1498 				int err;
1499 
1500 				if (w->skip) {
1501 					w->skip--;
1502 					goto skip;
1503 				}
1504 
1505 				err = w->func(w);
1506 				if (err)
1507 					return err;
1508 
1509 				w->count++;
1510 				continue;
1511 			}
1512 skip:
1513 			w->state = FWS_U;
1514 		case FWS_U:
1515 			if (fn == w->root)
1516 				return 0;
1517 			pn = fn->parent;
1518 			w->node = pn;
1519 #ifdef CONFIG_IPV6_SUBTREES
1520 			if (FIB6_SUBTREE(pn) == fn) {
1521 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1522 				w->state = FWS_L;
1523 				continue;
1524 			}
1525 #endif
1526 			if (pn->left == fn) {
1527 				w->state = FWS_R;
1528 				continue;
1529 			}
1530 			if (pn->right == fn) {
1531 				w->state = FWS_C;
1532 				w->leaf = w->node->leaf;
1533 				continue;
1534 			}
1535 #if RT6_DEBUG >= 2
1536 			WARN_ON(1);
1537 #endif
1538 		}
1539 	}
1540 }
1541 
1542 static int fib6_walk(struct fib6_walker *w)
1543 {
1544 	int res;
1545 
1546 	w->state = FWS_INIT;
1547 	w->node = w->root;
1548 
1549 	fib6_walker_link(w);
1550 	res = fib6_walk_continue(w);
1551 	if (res <= 0)
1552 		fib6_walker_unlink(w);
1553 	return res;
1554 }
1555 
1556 static int fib6_clean_node(struct fib6_walker *w)
1557 {
1558 	int res;
1559 	struct rt6_info *rt;
1560 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1561 	struct nl_info info = {
1562 		.nl_net = c->net,
1563 	};
1564 
1565 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1566 	    w->node->fn_sernum != c->sernum)
1567 		w->node->fn_sernum = c->sernum;
1568 
1569 	if (!c->func) {
1570 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1571 		w->leaf = NULL;
1572 		return 0;
1573 	}
1574 
1575 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1576 		res = c->func(rt, c->arg);
1577 		if (res < 0) {
1578 			w->leaf = rt;
1579 			res = fib6_del(rt, &info);
1580 			if (res) {
1581 #if RT6_DEBUG >= 2
1582 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1583 					 __func__, rt, rt->rt6i_node, res);
1584 #endif
1585 				continue;
1586 			}
1587 			return 0;
1588 		}
1589 		WARN_ON(res != 0);
1590 	}
1591 	w->leaf = rt;
1592 	return 0;
1593 }
1594 
1595 /*
1596  *	Convenient frontend to tree walker.
1597  *
1598  *	func is called on each route.
1599  *		It may return -1 -> delete this route.
1600  *		              0  -> continue walking
1601  *
1602  *	prune==1 -> only immediate children of node (certainly,
1603  *	ignoring pure split nodes) will be scanned.
1604  */
1605 
1606 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1607 			    int (*func)(struct rt6_info *, void *arg),
1608 			    bool prune, int sernum, void *arg)
1609 {
1610 	struct fib6_cleaner c;
1611 
1612 	c.w.root = root;
1613 	c.w.func = fib6_clean_node;
1614 	c.w.prune = prune;
1615 	c.w.count = 0;
1616 	c.w.skip = 0;
1617 	c.func = func;
1618 	c.sernum = sernum;
1619 	c.arg = arg;
1620 	c.net = net;
1621 
1622 	fib6_walk(&c.w);
1623 }
1624 
1625 static void __fib6_clean_all(struct net *net,
1626 			     int (*func)(struct rt6_info *, void *),
1627 			     int sernum, void *arg)
1628 {
1629 	struct fib6_table *table;
1630 	struct hlist_head *head;
1631 	unsigned int h;
1632 
1633 	rcu_read_lock();
1634 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1635 		head = &net->ipv6.fib_table_hash[h];
1636 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1637 			write_lock_bh(&table->tb6_lock);
1638 			fib6_clean_tree(net, &table->tb6_root,
1639 					func, false, sernum, arg);
1640 			write_unlock_bh(&table->tb6_lock);
1641 		}
1642 	}
1643 	rcu_read_unlock();
1644 }
1645 
1646 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1647 		    void *arg)
1648 {
1649 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1650 }
1651 
1652 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1653 {
1654 	if (rt->rt6i_flags & RTF_CACHE) {
1655 		RT6_TRACE("pruning clone %p\n", rt);
1656 		return -1;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1663 {
1664 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1665 			FIB6_NO_SERNUM_CHANGE, NULL);
1666 }
1667 
1668 static void fib6_flush_trees(struct net *net)
1669 {
1670 	int new_sernum = fib6_new_sernum(net);
1671 
1672 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1673 }
1674 
1675 /*
1676  *	Garbage collection
1677  */
1678 
1679 static struct fib6_gc_args
1680 {
1681 	int			timeout;
1682 	int			more;
1683 } gc_args;
1684 
1685 static int fib6_age(struct rt6_info *rt, void *arg)
1686 {
1687 	unsigned long now = jiffies;
1688 
1689 	/*
1690 	 *	check addrconf expiration here.
1691 	 *	Routes are expired even if they are in use.
1692 	 *
1693 	 *	Also age clones. Note, that clones are aged out
1694 	 *	only if they are not in use now.
1695 	 */
1696 
1697 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1698 		if (time_after(now, rt->dst.expires)) {
1699 			RT6_TRACE("expiring %p\n", rt);
1700 			return -1;
1701 		}
1702 		gc_args.more++;
1703 	} else if (rt->rt6i_flags & RTF_CACHE) {
1704 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1705 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1706 			RT6_TRACE("aging clone %p\n", rt);
1707 			return -1;
1708 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1709 			struct neighbour *neigh;
1710 			__u8 neigh_flags = 0;
1711 
1712 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1713 			if (neigh) {
1714 				neigh_flags = neigh->flags;
1715 				neigh_release(neigh);
1716 			}
1717 			if (!(neigh_flags & NTF_ROUTER)) {
1718 				RT6_TRACE("purging route %p via non-router but gateway\n",
1719 					  rt);
1720 				return -1;
1721 			}
1722 		}
1723 		gc_args.more++;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static DEFINE_SPINLOCK(fib6_gc_lock);
1730 
1731 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1732 {
1733 	unsigned long now;
1734 
1735 	if (force) {
1736 		spin_lock_bh(&fib6_gc_lock);
1737 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1738 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1739 		return;
1740 	}
1741 	gc_args.timeout = expires ? (int)expires :
1742 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1743 
1744 	gc_args.more = icmp6_dst_gc();
1745 
1746 	fib6_clean_all(net, fib6_age, NULL);
1747 	now = jiffies;
1748 	net->ipv6.ip6_rt_last_gc = now;
1749 
1750 	if (gc_args.more)
1751 		mod_timer(&net->ipv6.ip6_fib_timer,
1752 			  round_jiffies(now
1753 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1754 	else
1755 		del_timer(&net->ipv6.ip6_fib_timer);
1756 	spin_unlock_bh(&fib6_gc_lock);
1757 }
1758 
1759 static void fib6_gc_timer_cb(unsigned long arg)
1760 {
1761 	fib6_run_gc(0, (struct net *)arg, true);
1762 }
1763 
1764 static int __net_init fib6_net_init(struct net *net)
1765 {
1766 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1767 
1768 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1769 
1770 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1771 	if (!net->ipv6.rt6_stats)
1772 		goto out_timer;
1773 
1774 	/* Avoid false sharing : Use at least a full cache line */
1775 	size = max_t(size_t, size, L1_CACHE_BYTES);
1776 
1777 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1778 	if (!net->ipv6.fib_table_hash)
1779 		goto out_rt6_stats;
1780 
1781 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1782 					  GFP_KERNEL);
1783 	if (!net->ipv6.fib6_main_tbl)
1784 		goto out_fib_table_hash;
1785 
1786 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1787 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1788 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1789 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1790 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1791 
1792 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1793 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1794 					   GFP_KERNEL);
1795 	if (!net->ipv6.fib6_local_tbl)
1796 		goto out_fib6_main_tbl;
1797 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1798 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1799 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1800 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1801 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1802 #endif
1803 	fib6_tables_init(net);
1804 
1805 	return 0;
1806 
1807 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1808 out_fib6_main_tbl:
1809 	kfree(net->ipv6.fib6_main_tbl);
1810 #endif
1811 out_fib_table_hash:
1812 	kfree(net->ipv6.fib_table_hash);
1813 out_rt6_stats:
1814 	kfree(net->ipv6.rt6_stats);
1815 out_timer:
1816 	return -ENOMEM;
1817 }
1818 
1819 static void fib6_net_exit(struct net *net)
1820 {
1821 	rt6_ifdown(net, NULL);
1822 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1823 
1824 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1825 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1826 	kfree(net->ipv6.fib6_local_tbl);
1827 #endif
1828 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1829 	kfree(net->ipv6.fib6_main_tbl);
1830 	kfree(net->ipv6.fib_table_hash);
1831 	kfree(net->ipv6.rt6_stats);
1832 }
1833 
1834 static struct pernet_operations fib6_net_ops = {
1835 	.init = fib6_net_init,
1836 	.exit = fib6_net_exit,
1837 };
1838 
1839 int __init fib6_init(void)
1840 {
1841 	int ret = -ENOMEM;
1842 
1843 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1844 					   sizeof(struct fib6_node),
1845 					   0, SLAB_HWCACHE_ALIGN,
1846 					   NULL);
1847 	if (!fib6_node_kmem)
1848 		goto out;
1849 
1850 	ret = register_pernet_subsys(&fib6_net_ops);
1851 	if (ret)
1852 		goto out_kmem_cache_create;
1853 
1854 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1855 			      NULL);
1856 	if (ret)
1857 		goto out_unregister_subsys;
1858 
1859 	__fib6_flush_trees = fib6_flush_trees;
1860 out:
1861 	return ret;
1862 
1863 out_unregister_subsys:
1864 	unregister_pernet_subsys(&fib6_net_ops);
1865 out_kmem_cache_create:
1866 	kmem_cache_destroy(fib6_node_kmem);
1867 	goto out;
1868 }
1869 
1870 void fib6_gc_cleanup(void)
1871 {
1872 	unregister_pernet_subsys(&fib6_net_ops);
1873 	kmem_cache_destroy(fib6_node_kmem);
1874 }
1875 
1876 #ifdef CONFIG_PROC_FS
1877 
1878 struct ipv6_route_iter {
1879 	struct seq_net_private p;
1880 	struct fib6_walker w;
1881 	loff_t skip;
1882 	struct fib6_table *tbl;
1883 	int sernum;
1884 };
1885 
1886 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1887 {
1888 	struct rt6_info *rt = v;
1889 	struct ipv6_route_iter *iter = seq->private;
1890 
1891 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1892 
1893 #ifdef CONFIG_IPV6_SUBTREES
1894 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1895 #else
1896 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1897 #endif
1898 	if (rt->rt6i_flags & RTF_GATEWAY)
1899 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1900 	else
1901 		seq_puts(seq, "00000000000000000000000000000000");
1902 
1903 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1904 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1905 		   rt->dst.__use, rt->rt6i_flags,
1906 		   rt->dst.dev ? rt->dst.dev->name : "");
1907 	iter->w.leaf = NULL;
1908 	return 0;
1909 }
1910 
1911 static int ipv6_route_yield(struct fib6_walker *w)
1912 {
1913 	struct ipv6_route_iter *iter = w->args;
1914 
1915 	if (!iter->skip)
1916 		return 1;
1917 
1918 	do {
1919 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1920 		iter->skip--;
1921 		if (!iter->skip && iter->w.leaf)
1922 			return 1;
1923 	} while (iter->w.leaf);
1924 
1925 	return 0;
1926 }
1927 
1928 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1929 {
1930 	memset(&iter->w, 0, sizeof(iter->w));
1931 	iter->w.func = ipv6_route_yield;
1932 	iter->w.root = &iter->tbl->tb6_root;
1933 	iter->w.state = FWS_INIT;
1934 	iter->w.node = iter->w.root;
1935 	iter->w.args = iter;
1936 	iter->sernum = iter->w.root->fn_sernum;
1937 	INIT_LIST_HEAD(&iter->w.lh);
1938 	fib6_walker_link(&iter->w);
1939 }
1940 
1941 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1942 						    struct net *net)
1943 {
1944 	unsigned int h;
1945 	struct hlist_node *node;
1946 
1947 	if (tbl) {
1948 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1949 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1950 	} else {
1951 		h = 0;
1952 		node = NULL;
1953 	}
1954 
1955 	while (!node && h < FIB6_TABLE_HASHSZ) {
1956 		node = rcu_dereference_bh(
1957 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1958 	}
1959 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1960 }
1961 
1962 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1963 {
1964 	if (iter->sernum != iter->w.root->fn_sernum) {
1965 		iter->sernum = iter->w.root->fn_sernum;
1966 		iter->w.state = FWS_INIT;
1967 		iter->w.node = iter->w.root;
1968 		WARN_ON(iter->w.skip);
1969 		iter->w.skip = iter->w.count;
1970 	}
1971 }
1972 
1973 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1974 {
1975 	int r;
1976 	struct rt6_info *n;
1977 	struct net *net = seq_file_net(seq);
1978 	struct ipv6_route_iter *iter = seq->private;
1979 
1980 	if (!v)
1981 		goto iter_table;
1982 
1983 	n = ((struct rt6_info *)v)->dst.rt6_next;
1984 	if (n) {
1985 		++*pos;
1986 		return n;
1987 	}
1988 
1989 iter_table:
1990 	ipv6_route_check_sernum(iter);
1991 	read_lock(&iter->tbl->tb6_lock);
1992 	r = fib6_walk_continue(&iter->w);
1993 	read_unlock(&iter->tbl->tb6_lock);
1994 	if (r > 0) {
1995 		if (v)
1996 			++*pos;
1997 		return iter->w.leaf;
1998 	} else if (r < 0) {
1999 		fib6_walker_unlink(&iter->w);
2000 		return NULL;
2001 	}
2002 	fib6_walker_unlink(&iter->w);
2003 
2004 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2005 	if (!iter->tbl)
2006 		return NULL;
2007 
2008 	ipv6_route_seq_setup_walk(iter);
2009 	goto iter_table;
2010 }
2011 
2012 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2013 	__acquires(RCU_BH)
2014 {
2015 	struct net *net = seq_file_net(seq);
2016 	struct ipv6_route_iter *iter = seq->private;
2017 
2018 	rcu_read_lock_bh();
2019 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2020 	iter->skip = *pos;
2021 
2022 	if (iter->tbl) {
2023 		ipv6_route_seq_setup_walk(iter);
2024 		return ipv6_route_seq_next(seq, NULL, pos);
2025 	} else {
2026 		return NULL;
2027 	}
2028 }
2029 
2030 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2031 {
2032 	struct fib6_walker *w = &iter->w;
2033 	return w->node && !(w->state == FWS_U && w->node == w->root);
2034 }
2035 
2036 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2037 	__releases(RCU_BH)
2038 {
2039 	struct ipv6_route_iter *iter = seq->private;
2040 
2041 	if (ipv6_route_iter_active(iter))
2042 		fib6_walker_unlink(&iter->w);
2043 
2044 	rcu_read_unlock_bh();
2045 }
2046 
2047 static const struct seq_operations ipv6_route_seq_ops = {
2048 	.start	= ipv6_route_seq_start,
2049 	.next	= ipv6_route_seq_next,
2050 	.stop	= ipv6_route_seq_stop,
2051 	.show	= ipv6_route_seq_show
2052 };
2053 
2054 int ipv6_route_open(struct inode *inode, struct file *file)
2055 {
2056 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2057 			    sizeof(struct ipv6_route_iter));
2058 }
2059 
2060 #endif /* CONFIG_PROC_FS */
2061