xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 4a3fad70)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 
43 struct fib6_cleaner {
44 	struct fib6_walker w;
45 	struct net *net;
46 	int (*func)(struct rt6_info *, void *arg);
47 	int sernum;
48 	void *arg;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 	struct fib6_table *table = rt->rt6i_table;
111 	struct net *net = dev_net(rt->dst.dev);
112 	struct fib6_node *fn;
113 
114 	spin_lock_bh(&table->tb6_lock);
115 	fn = rcu_dereference_protected(rt->rt6i_node,
116 			lockdep_is_held(&table->tb6_lock));
117 	if (fn)
118 		fn->fn_sernum = fib6_new_sernum(net);
119 	spin_unlock_bh(&table->tb6_lock);
120 }
121 
122 /*
123  *	Auxiliary address test functions for the radix tree.
124  *
125  *	These assume a 32bit processor (although it will work on
126  *	64bit processors)
127  */
128 
129 /*
130  *	test bit
131  */
132 #if defined(__LITTLE_ENDIAN)
133 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
134 #else
135 # define BITOP_BE32_SWIZZLE	0
136 #endif
137 
138 static __be32 addr_bit_set(const void *token, int fn_bit)
139 {
140 	const __be32 *addr = token;
141 	/*
142 	 * Here,
143 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
144 	 * is optimized version of
145 	 *	htonl(1 << ((~fn_bit)&0x1F))
146 	 * See include/asm-generic/bitops/le.h.
147 	 */
148 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
149 	       addr[fn_bit >> 5];
150 }
151 
152 static struct fib6_node *node_alloc(struct net *net)
153 {
154 	struct fib6_node *fn;
155 
156 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
157 	if (fn)
158 		net->ipv6.rt6_stats->fib_nodes++;
159 
160 	return fn;
161 }
162 
163 static void node_free_immediate(struct net *net, struct fib6_node *fn)
164 {
165 	kmem_cache_free(fib6_node_kmem, fn);
166 	net->ipv6.rt6_stats->fib_nodes--;
167 }
168 
169 static void node_free_rcu(struct rcu_head *head)
170 {
171 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
172 
173 	kmem_cache_free(fib6_node_kmem, fn);
174 }
175 
176 static void node_free(struct net *net, struct fib6_node *fn)
177 {
178 	call_rcu(&fn->rcu, node_free_rcu);
179 	net->ipv6.rt6_stats->fib_nodes--;
180 }
181 
182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
183 {
184 	int cpu;
185 
186 	if (!non_pcpu_rt->rt6i_pcpu)
187 		return;
188 
189 	for_each_possible_cpu(cpu) {
190 		struct rt6_info **ppcpu_rt;
191 		struct rt6_info *pcpu_rt;
192 
193 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
194 		pcpu_rt = *ppcpu_rt;
195 		if (pcpu_rt) {
196 			dst_dev_put(&pcpu_rt->dst);
197 			dst_release(&pcpu_rt->dst);
198 			*ppcpu_rt = NULL;
199 		}
200 	}
201 }
202 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
203 
204 static void fib6_free_table(struct fib6_table *table)
205 {
206 	inetpeer_invalidate_tree(&table->tb6_peers);
207 	kfree(table);
208 }
209 
210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 	unsigned int h;
213 
214 	/*
215 	 * Initialize table lock at a single place to give lockdep a key,
216 	 * tables aren't visible prior to being linked to the list.
217 	 */
218 	spin_lock_init(&tb->tb6_lock);
219 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
220 
221 	/*
222 	 * No protection necessary, this is the only list mutatation
223 	 * operation, tables never disappear once they exist.
224 	 */
225 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
226 }
227 
228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
229 
230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
231 {
232 	struct fib6_table *table;
233 
234 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
235 	if (table) {
236 		table->tb6_id = id;
237 		rcu_assign_pointer(table->tb6_root.leaf,
238 				   net->ipv6.ip6_null_entry);
239 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 		inet_peer_base_init(&table->tb6_peers);
241 	}
242 
243 	return table;
244 }
245 
246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 
250 	if (id == 0)
251 		id = RT6_TABLE_MAIN;
252 	tb = fib6_get_table(net, id);
253 	if (tb)
254 		return tb;
255 
256 	tb = fib6_alloc_table(net, id);
257 	if (tb)
258 		fib6_link_table(net, tb);
259 
260 	return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263 
264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 	struct fib6_table *tb;
267 	struct hlist_head *head;
268 	unsigned int h;
269 
270 	if (id == 0)
271 		id = RT6_TABLE_MAIN;
272 	h = id & (FIB6_TABLE_HASHSZ - 1);
273 	rcu_read_lock();
274 	head = &net->ipv6.fib_table_hash[h];
275 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 		if (tb->tb6_id == id) {
277 			rcu_read_unlock();
278 			return tb;
279 		}
280 	}
281 	rcu_read_unlock();
282 
283 	return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286 
287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293 
294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 	return fib6_get_table(net, id);
297 }
298 
299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 	  return net->ipv6.fib6_main_tbl;
302 }
303 
304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 				   int flags, pol_lookup_t lookup)
306 {
307 	struct rt6_info *rt;
308 
309 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 	if (rt->dst.error == -EAGAIN) {
311 		ip6_rt_put(rt);
312 		rt = net->ipv6.ip6_null_entry;
313 		dst_hold(&rt->dst);
314 	}
315 
316 	return &rt->dst;
317 }
318 
319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323 
324 #endif
325 
326 unsigned int fib6_tables_seq_read(struct net *net)
327 {
328 	unsigned int h, fib_seq = 0;
329 
330 	rcu_read_lock();
331 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
332 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
333 		struct fib6_table *tb;
334 
335 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
336 			fib_seq += tb->fib_seq;
337 	}
338 	rcu_read_unlock();
339 
340 	return fib_seq;
341 }
342 
343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
344 				    enum fib_event_type event_type,
345 				    struct rt6_info *rt)
346 {
347 	struct fib6_entry_notifier_info info = {
348 		.rt = rt,
349 	};
350 
351 	return call_fib6_notifier(nb, net, event_type, &info.info);
352 }
353 
354 static int call_fib6_entry_notifiers(struct net *net,
355 				     enum fib_event_type event_type,
356 				     struct rt6_info *rt,
357 				     struct netlink_ext_ack *extack)
358 {
359 	struct fib6_entry_notifier_info info = {
360 		.info.extack = extack,
361 		.rt = rt,
362 	};
363 
364 	rt->rt6i_table->fib_seq++;
365 	return call_fib6_notifiers(net, event_type, &info.info);
366 }
367 
368 struct fib6_dump_arg {
369 	struct net *net;
370 	struct notifier_block *nb;
371 };
372 
373 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
374 {
375 	if (rt == arg->net->ipv6.ip6_null_entry)
376 		return;
377 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
378 }
379 
380 static int fib6_node_dump(struct fib6_walker *w)
381 {
382 	struct rt6_info *rt;
383 
384 	for_each_fib6_walker_rt(w)
385 		fib6_rt_dump(rt, w->args);
386 	w->leaf = NULL;
387 	return 0;
388 }
389 
390 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
391 			    struct fib6_walker *w)
392 {
393 	w->root = &tb->tb6_root;
394 	spin_lock_bh(&tb->tb6_lock);
395 	fib6_walk(net, w);
396 	spin_unlock_bh(&tb->tb6_lock);
397 }
398 
399 /* Called with rcu_read_lock() */
400 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
401 {
402 	struct fib6_dump_arg arg;
403 	struct fib6_walker *w;
404 	unsigned int h;
405 
406 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
407 	if (!w)
408 		return -ENOMEM;
409 
410 	w->func = fib6_node_dump;
411 	arg.net = net;
412 	arg.nb = nb;
413 	w->args = &arg;
414 
415 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
416 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
417 		struct fib6_table *tb;
418 
419 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
420 			fib6_table_dump(net, tb, w);
421 	}
422 
423 	kfree(w);
424 
425 	return 0;
426 }
427 
428 static int fib6_dump_node(struct fib6_walker *w)
429 {
430 	int res;
431 	struct rt6_info *rt;
432 
433 	for_each_fib6_walker_rt(w) {
434 		res = rt6_dump_route(rt, w->args);
435 		if (res < 0) {
436 			/* Frame is full, suspend walking */
437 			w->leaf = rt;
438 			return 1;
439 		}
440 
441 		/* Multipath routes are dumped in one route with the
442 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
443 		 * last sibling of this route (no need to dump the
444 		 * sibling routes again)
445 		 */
446 		if (rt->rt6i_nsiblings)
447 			rt = list_last_entry(&rt->rt6i_siblings,
448 					     struct rt6_info,
449 					     rt6i_siblings);
450 	}
451 	w->leaf = NULL;
452 	return 0;
453 }
454 
455 static void fib6_dump_end(struct netlink_callback *cb)
456 {
457 	struct net *net = sock_net(cb->skb->sk);
458 	struct fib6_walker *w = (void *)cb->args[2];
459 
460 	if (w) {
461 		if (cb->args[4]) {
462 			cb->args[4] = 0;
463 			fib6_walker_unlink(net, w);
464 		}
465 		cb->args[2] = 0;
466 		kfree(w);
467 	}
468 	cb->done = (void *)cb->args[3];
469 	cb->args[1] = 3;
470 }
471 
472 static int fib6_dump_done(struct netlink_callback *cb)
473 {
474 	fib6_dump_end(cb);
475 	return cb->done ? cb->done(cb) : 0;
476 }
477 
478 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
479 			   struct netlink_callback *cb)
480 {
481 	struct net *net = sock_net(skb->sk);
482 	struct fib6_walker *w;
483 	int res;
484 
485 	w = (void *)cb->args[2];
486 	w->root = &table->tb6_root;
487 
488 	if (cb->args[4] == 0) {
489 		w->count = 0;
490 		w->skip = 0;
491 
492 		spin_lock_bh(&table->tb6_lock);
493 		res = fib6_walk(net, w);
494 		spin_unlock_bh(&table->tb6_lock);
495 		if (res > 0) {
496 			cb->args[4] = 1;
497 			cb->args[5] = w->root->fn_sernum;
498 		}
499 	} else {
500 		if (cb->args[5] != w->root->fn_sernum) {
501 			/* Begin at the root if the tree changed */
502 			cb->args[5] = w->root->fn_sernum;
503 			w->state = FWS_INIT;
504 			w->node = w->root;
505 			w->skip = w->count;
506 		} else
507 			w->skip = 0;
508 
509 		spin_lock_bh(&table->tb6_lock);
510 		res = fib6_walk_continue(w);
511 		spin_unlock_bh(&table->tb6_lock);
512 		if (res <= 0) {
513 			fib6_walker_unlink(net, w);
514 			cb->args[4] = 0;
515 		}
516 	}
517 
518 	return res;
519 }
520 
521 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
522 {
523 	struct net *net = sock_net(skb->sk);
524 	unsigned int h, s_h;
525 	unsigned int e = 0, s_e;
526 	struct rt6_rtnl_dump_arg arg;
527 	struct fib6_walker *w;
528 	struct fib6_table *tb;
529 	struct hlist_head *head;
530 	int res = 0;
531 
532 	s_h = cb->args[0];
533 	s_e = cb->args[1];
534 
535 	w = (void *)cb->args[2];
536 	if (!w) {
537 		/* New dump:
538 		 *
539 		 * 1. hook callback destructor.
540 		 */
541 		cb->args[3] = (long)cb->done;
542 		cb->done = fib6_dump_done;
543 
544 		/*
545 		 * 2. allocate and initialize walker.
546 		 */
547 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
548 		if (!w)
549 			return -ENOMEM;
550 		w->func = fib6_dump_node;
551 		cb->args[2] = (long)w;
552 	}
553 
554 	arg.skb = skb;
555 	arg.cb = cb;
556 	arg.net = net;
557 	w->args = &arg;
558 
559 	rcu_read_lock();
560 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
561 		e = 0;
562 		head = &net->ipv6.fib_table_hash[h];
563 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
564 			if (e < s_e)
565 				goto next;
566 			res = fib6_dump_table(tb, skb, cb);
567 			if (res != 0)
568 				goto out;
569 next:
570 			e++;
571 		}
572 	}
573 out:
574 	rcu_read_unlock();
575 	cb->args[1] = e;
576 	cb->args[0] = h;
577 
578 	res = res < 0 ? res : skb->len;
579 	if (res <= 0)
580 		fib6_dump_end(cb);
581 	return res;
582 }
583 
584 /*
585  *	Routing Table
586  *
587  *	return the appropriate node for a routing tree "add" operation
588  *	by either creating and inserting or by returning an existing
589  *	node.
590  */
591 
592 static struct fib6_node *fib6_add_1(struct net *net,
593 				    struct fib6_table *table,
594 				    struct fib6_node *root,
595 				    struct in6_addr *addr, int plen,
596 				    int offset, int allow_create,
597 				    int replace_required,
598 				    struct netlink_ext_ack *extack)
599 {
600 	struct fib6_node *fn, *in, *ln;
601 	struct fib6_node *pn = NULL;
602 	struct rt6key *key;
603 	int	bit;
604 	__be32	dir = 0;
605 
606 	RT6_TRACE("fib6_add_1\n");
607 
608 	/* insert node in tree */
609 
610 	fn = root;
611 
612 	do {
613 		struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
614 					    lockdep_is_held(&table->tb6_lock));
615 		key = (struct rt6key *)((u8 *)leaf + offset);
616 
617 		/*
618 		 *	Prefix match
619 		 */
620 		if (plen < fn->fn_bit ||
621 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
622 			if (!allow_create) {
623 				if (replace_required) {
624 					NL_SET_ERR_MSG(extack,
625 						       "Can not replace route - no match found");
626 					pr_warn("Can't replace route, no match found\n");
627 					return ERR_PTR(-ENOENT);
628 				}
629 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
630 			}
631 			goto insert_above;
632 		}
633 
634 		/*
635 		 *	Exact match ?
636 		 */
637 
638 		if (plen == fn->fn_bit) {
639 			/* clean up an intermediate node */
640 			if (!(fn->fn_flags & RTN_RTINFO)) {
641 				RCU_INIT_POINTER(fn->leaf, NULL);
642 				rt6_release(leaf);
643 			}
644 
645 			return fn;
646 		}
647 
648 		/*
649 		 *	We have more bits to go
650 		 */
651 
652 		/* Try to walk down on tree. */
653 		dir = addr_bit_set(addr, fn->fn_bit);
654 		pn = fn;
655 		fn = dir ?
656 		     rcu_dereference_protected(fn->right,
657 					lockdep_is_held(&table->tb6_lock)) :
658 		     rcu_dereference_protected(fn->left,
659 					lockdep_is_held(&table->tb6_lock));
660 	} while (fn);
661 
662 	if (!allow_create) {
663 		/* We should not create new node because
664 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
665 		 * I assume it is safe to require NLM_F_CREATE when
666 		 * REPLACE flag is used! Later we may want to remove the
667 		 * check for replace_required, because according
668 		 * to netlink specification, NLM_F_CREATE
669 		 * MUST be specified if new route is created.
670 		 * That would keep IPv6 consistent with IPv4
671 		 */
672 		if (replace_required) {
673 			NL_SET_ERR_MSG(extack,
674 				       "Can not replace route - no match found");
675 			pr_warn("Can't replace route, no match found\n");
676 			return ERR_PTR(-ENOENT);
677 		}
678 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
679 	}
680 	/*
681 	 *	We walked to the bottom of tree.
682 	 *	Create new leaf node without children.
683 	 */
684 
685 	ln = node_alloc(net);
686 
687 	if (!ln)
688 		return ERR_PTR(-ENOMEM);
689 	ln->fn_bit = plen;
690 	RCU_INIT_POINTER(ln->parent, pn);
691 
692 	if (dir)
693 		rcu_assign_pointer(pn->right, ln);
694 	else
695 		rcu_assign_pointer(pn->left, ln);
696 
697 	return ln;
698 
699 
700 insert_above:
701 	/*
702 	 * split since we don't have a common prefix anymore or
703 	 * we have a less significant route.
704 	 * we've to insert an intermediate node on the list
705 	 * this new node will point to the one we need to create
706 	 * and the current
707 	 */
708 
709 	pn = rcu_dereference_protected(fn->parent,
710 				       lockdep_is_held(&table->tb6_lock));
711 
712 	/* find 1st bit in difference between the 2 addrs.
713 
714 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
715 	   but if it is >= plen, the value is ignored in any case.
716 	 */
717 
718 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
719 
720 	/*
721 	 *		(intermediate)[in]
722 	 *	          /	   \
723 	 *	(new leaf node)[ln] (old node)[fn]
724 	 */
725 	if (plen > bit) {
726 		in = node_alloc(net);
727 		ln = node_alloc(net);
728 
729 		if (!in || !ln) {
730 			if (in)
731 				node_free_immediate(net, in);
732 			if (ln)
733 				node_free_immediate(net, ln);
734 			return ERR_PTR(-ENOMEM);
735 		}
736 
737 		/*
738 		 * new intermediate node.
739 		 * RTN_RTINFO will
740 		 * be off since that an address that chooses one of
741 		 * the branches would not match less specific routes
742 		 * in the other branch
743 		 */
744 
745 		in->fn_bit = bit;
746 
747 		RCU_INIT_POINTER(in->parent, pn);
748 		in->leaf = fn->leaf;
749 		atomic_inc(&rcu_dereference_protected(in->leaf,
750 				lockdep_is_held(&table->tb6_lock))->rt6i_ref);
751 
752 		/* update parent pointer */
753 		if (dir)
754 			rcu_assign_pointer(pn->right, in);
755 		else
756 			rcu_assign_pointer(pn->left, in);
757 
758 		ln->fn_bit = plen;
759 
760 		RCU_INIT_POINTER(ln->parent, in);
761 		rcu_assign_pointer(fn->parent, in);
762 
763 		if (addr_bit_set(addr, bit)) {
764 			rcu_assign_pointer(in->right, ln);
765 			rcu_assign_pointer(in->left, fn);
766 		} else {
767 			rcu_assign_pointer(in->left, ln);
768 			rcu_assign_pointer(in->right, fn);
769 		}
770 	} else { /* plen <= bit */
771 
772 		/*
773 		 *		(new leaf node)[ln]
774 		 *	          /	   \
775 		 *	     (old node)[fn] NULL
776 		 */
777 
778 		ln = node_alloc(net);
779 
780 		if (!ln)
781 			return ERR_PTR(-ENOMEM);
782 
783 		ln->fn_bit = plen;
784 
785 		RCU_INIT_POINTER(ln->parent, pn);
786 
787 		if (addr_bit_set(&key->addr, plen))
788 			RCU_INIT_POINTER(ln->right, fn);
789 		else
790 			RCU_INIT_POINTER(ln->left, fn);
791 
792 		rcu_assign_pointer(fn->parent, ln);
793 
794 		if (dir)
795 			rcu_assign_pointer(pn->right, ln);
796 		else
797 			rcu_assign_pointer(pn->left, ln);
798 	}
799 	return ln;
800 }
801 
802 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
803 {
804 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
805 	       RTF_GATEWAY;
806 }
807 
808 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
809 {
810 	int i;
811 
812 	for (i = 0; i < RTAX_MAX; i++) {
813 		if (test_bit(i, mxc->mx_valid))
814 			mp[i] = mxc->mx[i];
815 	}
816 }
817 
818 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
819 {
820 	if (!mxc->mx)
821 		return 0;
822 
823 	if (dst->flags & DST_HOST) {
824 		u32 *mp = dst_metrics_write_ptr(dst);
825 
826 		if (unlikely(!mp))
827 			return -ENOMEM;
828 
829 		fib6_copy_metrics(mp, mxc);
830 	} else {
831 		dst_init_metrics(dst, mxc->mx, false);
832 
833 		/* We've stolen mx now. */
834 		mxc->mx = NULL;
835 	}
836 
837 	return 0;
838 }
839 
840 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
841 			  struct net *net)
842 {
843 	struct fib6_table *table = rt->rt6i_table;
844 
845 	if (atomic_read(&rt->rt6i_ref) != 1) {
846 		/* This route is used as dummy address holder in some split
847 		 * nodes. It is not leaked, but it still holds other resources,
848 		 * which must be released in time. So, scan ascendant nodes
849 		 * and replace dummy references to this route with references
850 		 * to still alive ones.
851 		 */
852 		while (fn) {
853 			struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
854 					    lockdep_is_held(&table->tb6_lock));
855 			struct rt6_info *new_leaf;
856 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
857 				new_leaf = fib6_find_prefix(net, table, fn);
858 				atomic_inc(&new_leaf->rt6i_ref);
859 				rcu_assign_pointer(fn->leaf, new_leaf);
860 				rt6_release(rt);
861 			}
862 			fn = rcu_dereference_protected(fn->parent,
863 				    lockdep_is_held(&table->tb6_lock));
864 		}
865 	}
866 }
867 
868 /*
869  *	Insert routing information in a node.
870  */
871 
872 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
873 			    struct nl_info *info, struct mx6_config *mxc,
874 			    struct netlink_ext_ack *extack)
875 {
876 	struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
877 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
878 	struct rt6_info *iter = NULL;
879 	struct rt6_info __rcu **ins;
880 	struct rt6_info __rcu **fallback_ins = NULL;
881 	int replace = (info->nlh &&
882 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
883 	int add = (!info->nlh ||
884 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
885 	int found = 0;
886 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
887 	u16 nlflags = NLM_F_EXCL;
888 	int err;
889 
890 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
891 		nlflags |= NLM_F_APPEND;
892 
893 	ins = &fn->leaf;
894 
895 	for (iter = leaf; iter;
896 	     iter = rcu_dereference_protected(iter->dst.rt6_next,
897 				lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
898 		/*
899 		 *	Search for duplicates
900 		 */
901 
902 		if (iter->rt6i_metric == rt->rt6i_metric) {
903 			/*
904 			 *	Same priority level
905 			 */
906 			if (info->nlh &&
907 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
908 				return -EEXIST;
909 
910 			nlflags &= ~NLM_F_EXCL;
911 			if (replace) {
912 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
913 					found++;
914 					break;
915 				}
916 				if (rt_can_ecmp)
917 					fallback_ins = fallback_ins ?: ins;
918 				goto next_iter;
919 			}
920 
921 			if (rt6_duplicate_nexthop(iter, rt)) {
922 				if (rt->rt6i_nsiblings)
923 					rt->rt6i_nsiblings = 0;
924 				if (!(iter->rt6i_flags & RTF_EXPIRES))
925 					return -EEXIST;
926 				if (!(rt->rt6i_flags & RTF_EXPIRES))
927 					rt6_clean_expires(iter);
928 				else
929 					rt6_set_expires(iter, rt->dst.expires);
930 				iter->rt6i_pmtu = rt->rt6i_pmtu;
931 				return -EEXIST;
932 			}
933 			/* If we have the same destination and the same metric,
934 			 * but not the same gateway, then the route we try to
935 			 * add is sibling to this route, increment our counter
936 			 * of siblings, and later we will add our route to the
937 			 * list.
938 			 * Only static routes (which don't have flag
939 			 * RTF_EXPIRES) are used for ECMPv6.
940 			 *
941 			 * To avoid long list, we only had siblings if the
942 			 * route have a gateway.
943 			 */
944 			if (rt_can_ecmp &&
945 			    rt6_qualify_for_ecmp(iter))
946 				rt->rt6i_nsiblings++;
947 		}
948 
949 		if (iter->rt6i_metric > rt->rt6i_metric)
950 			break;
951 
952 next_iter:
953 		ins = &iter->dst.rt6_next;
954 	}
955 
956 	if (fallback_ins && !found) {
957 		/* No ECMP-able route found, replace first non-ECMP one */
958 		ins = fallback_ins;
959 		iter = rcu_dereference_protected(*ins,
960 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
961 		found++;
962 	}
963 
964 	/* Reset round-robin state, if necessary */
965 	if (ins == &fn->leaf)
966 		fn->rr_ptr = NULL;
967 
968 	/* Link this route to others same route. */
969 	if (rt->rt6i_nsiblings) {
970 		unsigned int rt6i_nsiblings;
971 		struct rt6_info *sibling, *temp_sibling;
972 
973 		/* Find the first route that have the same metric */
974 		sibling = leaf;
975 		while (sibling) {
976 			if (sibling->rt6i_metric == rt->rt6i_metric &&
977 			    rt6_qualify_for_ecmp(sibling)) {
978 				list_add_tail(&rt->rt6i_siblings,
979 					      &sibling->rt6i_siblings);
980 				break;
981 			}
982 			sibling = rcu_dereference_protected(sibling->dst.rt6_next,
983 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
984 		}
985 		/* For each sibling in the list, increment the counter of
986 		 * siblings. BUG() if counters does not match, list of siblings
987 		 * is broken!
988 		 */
989 		rt6i_nsiblings = 0;
990 		list_for_each_entry_safe(sibling, temp_sibling,
991 					 &rt->rt6i_siblings, rt6i_siblings) {
992 			sibling->rt6i_nsiblings++;
993 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
994 			rt6i_nsiblings++;
995 		}
996 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
997 	}
998 
999 	/*
1000 	 *	insert node
1001 	 */
1002 	if (!replace) {
1003 		if (!add)
1004 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1005 
1006 add:
1007 		nlflags |= NLM_F_CREATE;
1008 		err = fib6_commit_metrics(&rt->dst, mxc);
1009 		if (err)
1010 			return err;
1011 
1012 		rcu_assign_pointer(rt->dst.rt6_next, iter);
1013 		atomic_inc(&rt->rt6i_ref);
1014 		rcu_assign_pointer(rt->rt6i_node, fn);
1015 		rcu_assign_pointer(*ins, rt);
1016 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1017 					  rt, extack);
1018 		if (!info->skip_notify)
1019 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1020 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1021 
1022 		if (!(fn->fn_flags & RTN_RTINFO)) {
1023 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1024 			fn->fn_flags |= RTN_RTINFO;
1025 		}
1026 
1027 	} else {
1028 		int nsiblings;
1029 
1030 		if (!found) {
1031 			if (add)
1032 				goto add;
1033 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1034 			return -ENOENT;
1035 		}
1036 
1037 		err = fib6_commit_metrics(&rt->dst, mxc);
1038 		if (err)
1039 			return err;
1040 
1041 		atomic_inc(&rt->rt6i_ref);
1042 		rcu_assign_pointer(rt->rt6i_node, fn);
1043 		rt->dst.rt6_next = iter->dst.rt6_next;
1044 		rcu_assign_pointer(*ins, rt);
1045 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1046 					  rt, extack);
1047 		if (!info->skip_notify)
1048 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1049 		if (!(fn->fn_flags & RTN_RTINFO)) {
1050 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1051 			fn->fn_flags |= RTN_RTINFO;
1052 		}
1053 		nsiblings = iter->rt6i_nsiblings;
1054 		iter->rt6i_node = NULL;
1055 		fib6_purge_rt(iter, fn, info->nl_net);
1056 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1057 			fn->rr_ptr = NULL;
1058 		rt6_release(iter);
1059 
1060 		if (nsiblings) {
1061 			/* Replacing an ECMP route, remove all siblings */
1062 			ins = &rt->dst.rt6_next;
1063 			iter = rcu_dereference_protected(*ins,
1064 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1065 			while (iter) {
1066 				if (iter->rt6i_metric > rt->rt6i_metric)
1067 					break;
1068 				if (rt6_qualify_for_ecmp(iter)) {
1069 					*ins = iter->dst.rt6_next;
1070 					iter->rt6i_node = NULL;
1071 					fib6_purge_rt(iter, fn, info->nl_net);
1072 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1073 						fn->rr_ptr = NULL;
1074 					rt6_release(iter);
1075 					nsiblings--;
1076 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1077 				} else {
1078 					ins = &iter->dst.rt6_next;
1079 				}
1080 				iter = rcu_dereference_protected(*ins,
1081 					lockdep_is_held(&rt->rt6i_table->tb6_lock));
1082 			}
1083 			WARN_ON(nsiblings != 0);
1084 		}
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1091 {
1092 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1093 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1094 		mod_timer(&net->ipv6.ip6_fib_timer,
1095 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1096 }
1097 
1098 void fib6_force_start_gc(struct net *net)
1099 {
1100 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1101 		mod_timer(&net->ipv6.ip6_fib_timer,
1102 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1103 }
1104 
1105 static void fib6_update_sernum_upto_root(struct rt6_info *rt,
1106 					 int sernum)
1107 {
1108 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1109 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1110 
1111 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1112 	smp_wmb();
1113 	while (fn) {
1114 		fn->fn_sernum = sernum;
1115 		fn = rcu_dereference_protected(fn->parent,
1116 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1117 	}
1118 }
1119 
1120 /*
1121  *	Add routing information to the routing tree.
1122  *	<destination addr>/<source addr>
1123  *	with source addr info in sub-trees
1124  *	Need to own table->tb6_lock
1125  */
1126 
1127 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1128 	     struct nl_info *info, struct mx6_config *mxc,
1129 	     struct netlink_ext_ack *extack)
1130 {
1131 	struct fib6_table *table = rt->rt6i_table;
1132 	struct fib6_node *fn, *pn = NULL;
1133 	int err = -ENOMEM;
1134 	int allow_create = 1;
1135 	int replace_required = 0;
1136 	int sernum = fib6_new_sernum(info->nl_net);
1137 
1138 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1139 		return -EINVAL;
1140 	if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1141 		return -EINVAL;
1142 
1143 	if (info->nlh) {
1144 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1145 			allow_create = 0;
1146 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1147 			replace_required = 1;
1148 	}
1149 	if (!allow_create && !replace_required)
1150 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1151 
1152 	fn = fib6_add_1(info->nl_net, table, root,
1153 			&rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1154 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1155 			replace_required, extack);
1156 	if (IS_ERR(fn)) {
1157 		err = PTR_ERR(fn);
1158 		fn = NULL;
1159 		goto out;
1160 	}
1161 
1162 	pn = fn;
1163 
1164 #ifdef CONFIG_IPV6_SUBTREES
1165 	if (rt->rt6i_src.plen) {
1166 		struct fib6_node *sn;
1167 
1168 		if (!rcu_access_pointer(fn->subtree)) {
1169 			struct fib6_node *sfn;
1170 
1171 			/*
1172 			 * Create subtree.
1173 			 *
1174 			 *		fn[main tree]
1175 			 *		|
1176 			 *		sfn[subtree root]
1177 			 *		   \
1178 			 *		    sn[new leaf node]
1179 			 */
1180 
1181 			/* Create subtree root node */
1182 			sfn = node_alloc(info->nl_net);
1183 			if (!sfn)
1184 				goto failure;
1185 
1186 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1187 			rcu_assign_pointer(sfn->leaf,
1188 					   info->nl_net->ipv6.ip6_null_entry);
1189 			sfn->fn_flags = RTN_ROOT;
1190 
1191 			/* Now add the first leaf node to new subtree */
1192 
1193 			sn = fib6_add_1(info->nl_net, table, sfn,
1194 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1195 					offsetof(struct rt6_info, rt6i_src),
1196 					allow_create, replace_required, extack);
1197 
1198 			if (IS_ERR(sn)) {
1199 				/* If it is failed, discard just allocated
1200 				   root, and then (in failure) stale node
1201 				   in main tree.
1202 				 */
1203 				node_free_immediate(info->nl_net, sfn);
1204 				err = PTR_ERR(sn);
1205 				goto failure;
1206 			}
1207 
1208 			/* Now link new subtree to main tree */
1209 			rcu_assign_pointer(sfn->parent, fn);
1210 			rcu_assign_pointer(fn->subtree, sfn);
1211 		} else {
1212 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1213 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1214 					offsetof(struct rt6_info, rt6i_src),
1215 					allow_create, replace_required, extack);
1216 
1217 			if (IS_ERR(sn)) {
1218 				err = PTR_ERR(sn);
1219 				goto failure;
1220 			}
1221 		}
1222 
1223 		if (!rcu_access_pointer(fn->leaf)) {
1224 			atomic_inc(&rt->rt6i_ref);
1225 			rcu_assign_pointer(fn->leaf, rt);
1226 		}
1227 		fn = sn;
1228 	}
1229 #endif
1230 
1231 	err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1232 	if (!err) {
1233 		fib6_update_sernum_upto_root(rt, sernum);
1234 		fib6_start_gc(info->nl_net, rt);
1235 	}
1236 
1237 out:
1238 	if (err) {
1239 #ifdef CONFIG_IPV6_SUBTREES
1240 		/*
1241 		 * If fib6_add_1 has cleared the old leaf pointer in the
1242 		 * super-tree leaf node we have to find a new one for it.
1243 		 */
1244 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1245 					    lockdep_is_held(&table->tb6_lock));
1246 		if (pn != fn && pn_leaf == rt) {
1247 			pn_leaf = NULL;
1248 			RCU_INIT_POINTER(pn->leaf, NULL);
1249 			atomic_dec(&rt->rt6i_ref);
1250 		}
1251 		if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1252 			pn_leaf = fib6_find_prefix(info->nl_net, table, pn);
1253 #if RT6_DEBUG >= 2
1254 			if (!pn_leaf) {
1255 				WARN_ON(!pn_leaf);
1256 				pn_leaf = info->nl_net->ipv6.ip6_null_entry;
1257 			}
1258 #endif
1259 			atomic_inc(&pn_leaf->rt6i_ref);
1260 			rcu_assign_pointer(pn->leaf, pn_leaf);
1261 		}
1262 #endif
1263 		goto failure;
1264 	}
1265 	return err;
1266 
1267 failure:
1268 	/* fn->leaf could be NULL if fn is an intermediate node and we
1269 	 * failed to add the new route to it in both subtree creation
1270 	 * failure and fib6_add_rt2node() failure case.
1271 	 * In both cases, fib6_repair_tree() should be called to fix
1272 	 * fn->leaf.
1273 	 */
1274 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1275 		fib6_repair_tree(info->nl_net, table, fn);
1276 	/* Always release dst as dst->__refcnt is guaranteed
1277 	 * to be taken before entering this function
1278 	 */
1279 	dst_release_immediate(&rt->dst);
1280 	return err;
1281 }
1282 
1283 /*
1284  *	Routing tree lookup
1285  *
1286  */
1287 
1288 struct lookup_args {
1289 	int			offset;		/* key offset on rt6_info	*/
1290 	const struct in6_addr	*addr;		/* search key			*/
1291 };
1292 
1293 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1294 				       struct lookup_args *args)
1295 {
1296 	struct fib6_node *fn;
1297 	__be32 dir;
1298 
1299 	if (unlikely(args->offset == 0))
1300 		return NULL;
1301 
1302 	/*
1303 	 *	Descend on a tree
1304 	 */
1305 
1306 	fn = root;
1307 
1308 	for (;;) {
1309 		struct fib6_node *next;
1310 
1311 		dir = addr_bit_set(args->addr, fn->fn_bit);
1312 
1313 		next = dir ? rcu_dereference(fn->right) :
1314 			     rcu_dereference(fn->left);
1315 
1316 		if (next) {
1317 			fn = next;
1318 			continue;
1319 		}
1320 		break;
1321 	}
1322 
1323 	while (fn) {
1324 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1325 
1326 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1327 			struct rt6_info *leaf = rcu_dereference(fn->leaf);
1328 			struct rt6key *key;
1329 
1330 			if (!leaf)
1331 				goto backtrack;
1332 
1333 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1334 
1335 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1336 #ifdef CONFIG_IPV6_SUBTREES
1337 				if (subtree) {
1338 					struct fib6_node *sfn;
1339 					sfn = fib6_lookup_1(subtree, args + 1);
1340 					if (!sfn)
1341 						goto backtrack;
1342 					fn = sfn;
1343 				}
1344 #endif
1345 				if (fn->fn_flags & RTN_RTINFO)
1346 					return fn;
1347 			}
1348 		}
1349 backtrack:
1350 		if (fn->fn_flags & RTN_ROOT)
1351 			break;
1352 
1353 		fn = rcu_dereference(fn->parent);
1354 	}
1355 
1356 	return NULL;
1357 }
1358 
1359 /* called with rcu_read_lock() held
1360  */
1361 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1362 			      const struct in6_addr *saddr)
1363 {
1364 	struct fib6_node *fn;
1365 	struct lookup_args args[] = {
1366 		{
1367 			.offset = offsetof(struct rt6_info, rt6i_dst),
1368 			.addr = daddr,
1369 		},
1370 #ifdef CONFIG_IPV6_SUBTREES
1371 		{
1372 			.offset = offsetof(struct rt6_info, rt6i_src),
1373 			.addr = saddr,
1374 		},
1375 #endif
1376 		{
1377 			.offset = 0,	/* sentinel */
1378 		}
1379 	};
1380 
1381 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1382 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1383 		fn = root;
1384 
1385 	return fn;
1386 }
1387 
1388 /*
1389  *	Get node with specified destination prefix (and source prefix,
1390  *	if subtrees are used)
1391  *	exact_match == true means we try to find fn with exact match of
1392  *	the passed in prefix addr
1393  *	exact_match == false means we try to find fn with longest prefix
1394  *	match of the passed in prefix addr. This is useful for finding fn
1395  *	for cached route as it will be stored in the exception table under
1396  *	the node with longest prefix length.
1397  */
1398 
1399 
1400 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1401 				       const struct in6_addr *addr,
1402 				       int plen, int offset,
1403 				       bool exact_match)
1404 {
1405 	struct fib6_node *fn, *prev = NULL;
1406 
1407 	for (fn = root; fn ; ) {
1408 		struct rt6_info *leaf = rcu_dereference(fn->leaf);
1409 		struct rt6key *key;
1410 
1411 		/* This node is being deleted */
1412 		if (!leaf) {
1413 			if (plen <= fn->fn_bit)
1414 				goto out;
1415 			else
1416 				goto next;
1417 		}
1418 
1419 		key = (struct rt6key *)((u8 *)leaf + offset);
1420 
1421 		/*
1422 		 *	Prefix match
1423 		 */
1424 		if (plen < fn->fn_bit ||
1425 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1426 			goto out;
1427 
1428 		if (plen == fn->fn_bit)
1429 			return fn;
1430 
1431 		prev = fn;
1432 
1433 next:
1434 		/*
1435 		 *	We have more bits to go
1436 		 */
1437 		if (addr_bit_set(addr, fn->fn_bit))
1438 			fn = rcu_dereference(fn->right);
1439 		else
1440 			fn = rcu_dereference(fn->left);
1441 	}
1442 out:
1443 	if (exact_match)
1444 		return NULL;
1445 	else
1446 		return prev;
1447 }
1448 
1449 struct fib6_node *fib6_locate(struct fib6_node *root,
1450 			      const struct in6_addr *daddr, int dst_len,
1451 			      const struct in6_addr *saddr, int src_len,
1452 			      bool exact_match)
1453 {
1454 	struct fib6_node *fn;
1455 
1456 	fn = fib6_locate_1(root, daddr, dst_len,
1457 			   offsetof(struct rt6_info, rt6i_dst),
1458 			   exact_match);
1459 
1460 #ifdef CONFIG_IPV6_SUBTREES
1461 	if (src_len) {
1462 		WARN_ON(saddr == NULL);
1463 		if (fn) {
1464 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1465 
1466 			if (subtree) {
1467 				fn = fib6_locate_1(subtree, saddr, src_len,
1468 					   offsetof(struct rt6_info, rt6i_src),
1469 					   exact_match);
1470 			}
1471 		}
1472 	}
1473 #endif
1474 
1475 	if (fn && fn->fn_flags & RTN_RTINFO)
1476 		return fn;
1477 
1478 	return NULL;
1479 }
1480 
1481 
1482 /*
1483  *	Deletion
1484  *
1485  */
1486 
1487 static struct rt6_info *fib6_find_prefix(struct net *net,
1488 					 struct fib6_table *table,
1489 					 struct fib6_node *fn)
1490 {
1491 	struct fib6_node *child_left, *child_right;
1492 
1493 	if (fn->fn_flags & RTN_ROOT)
1494 		return net->ipv6.ip6_null_entry;
1495 
1496 	while (fn) {
1497 		child_left = rcu_dereference_protected(fn->left,
1498 				    lockdep_is_held(&table->tb6_lock));
1499 		child_right = rcu_dereference_protected(fn->right,
1500 				    lockdep_is_held(&table->tb6_lock));
1501 		if (child_left)
1502 			return rcu_dereference_protected(child_left->leaf,
1503 					lockdep_is_held(&table->tb6_lock));
1504 		if (child_right)
1505 			return rcu_dereference_protected(child_right->leaf,
1506 					lockdep_is_held(&table->tb6_lock));
1507 
1508 		fn = FIB6_SUBTREE(fn);
1509 	}
1510 	return NULL;
1511 }
1512 
1513 /*
1514  *	Called to trim the tree of intermediate nodes when possible. "fn"
1515  *	is the node we want to try and remove.
1516  *	Need to own table->tb6_lock
1517  */
1518 
1519 static struct fib6_node *fib6_repair_tree(struct net *net,
1520 					  struct fib6_table *table,
1521 					  struct fib6_node *fn)
1522 {
1523 	int children;
1524 	int nstate;
1525 	struct fib6_node *child;
1526 	struct fib6_walker *w;
1527 	int iter = 0;
1528 
1529 	for (;;) {
1530 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1531 					    lockdep_is_held(&table->tb6_lock));
1532 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1533 					    lockdep_is_held(&table->tb6_lock));
1534 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1535 					    lockdep_is_held(&table->tb6_lock));
1536 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1537 					    lockdep_is_held(&table->tb6_lock));
1538 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1539 					    lockdep_is_held(&table->tb6_lock));
1540 		struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1541 					    lockdep_is_held(&table->tb6_lock));
1542 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1543 					    lockdep_is_held(&table->tb6_lock));
1544 		struct rt6_info *new_fn_leaf;
1545 
1546 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1547 		iter++;
1548 
1549 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1550 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1551 		WARN_ON(fn_leaf);
1552 
1553 		children = 0;
1554 		child = NULL;
1555 		if (fn_r)
1556 			child = fn_r, children |= 1;
1557 		if (fn_l)
1558 			child = fn_l, children |= 2;
1559 
1560 		if (children == 3 || FIB6_SUBTREE(fn)
1561 #ifdef CONFIG_IPV6_SUBTREES
1562 		    /* Subtree root (i.e. fn) may have one child */
1563 		    || (children && fn->fn_flags & RTN_ROOT)
1564 #endif
1565 		    ) {
1566 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1567 #if RT6_DEBUG >= 2
1568 			if (!new_fn_leaf) {
1569 				WARN_ON(!new_fn_leaf);
1570 				new_fn_leaf = net->ipv6.ip6_null_entry;
1571 			}
1572 #endif
1573 			atomic_inc(&new_fn_leaf->rt6i_ref);
1574 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1575 			return pn;
1576 		}
1577 
1578 #ifdef CONFIG_IPV6_SUBTREES
1579 		if (FIB6_SUBTREE(pn) == fn) {
1580 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1581 			RCU_INIT_POINTER(pn->subtree, NULL);
1582 			nstate = FWS_L;
1583 		} else {
1584 			WARN_ON(fn->fn_flags & RTN_ROOT);
1585 #endif
1586 			if (pn_r == fn)
1587 				rcu_assign_pointer(pn->right, child);
1588 			else if (pn_l == fn)
1589 				rcu_assign_pointer(pn->left, child);
1590 #if RT6_DEBUG >= 2
1591 			else
1592 				WARN_ON(1);
1593 #endif
1594 			if (child)
1595 				rcu_assign_pointer(child->parent, pn);
1596 			nstate = FWS_R;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 		}
1599 #endif
1600 
1601 		read_lock(&net->ipv6.fib6_walker_lock);
1602 		FOR_WALKERS(net, w) {
1603 			if (!child) {
1604 				if (w->node == fn) {
1605 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1606 					w->node = pn;
1607 					w->state = nstate;
1608 				}
1609 			} else {
1610 				if (w->node == fn) {
1611 					w->node = child;
1612 					if (children&2) {
1613 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1614 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1615 					} else {
1616 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1617 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1618 					}
1619 				}
1620 			}
1621 		}
1622 		read_unlock(&net->ipv6.fib6_walker_lock);
1623 
1624 		node_free(net, fn);
1625 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1626 			return pn;
1627 
1628 		RCU_INIT_POINTER(pn->leaf, NULL);
1629 		rt6_release(pn_leaf);
1630 		fn = pn;
1631 	}
1632 }
1633 
1634 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1635 			   struct rt6_info __rcu **rtp, struct nl_info *info)
1636 {
1637 	struct fib6_walker *w;
1638 	struct rt6_info *rt = rcu_dereference_protected(*rtp,
1639 				    lockdep_is_held(&table->tb6_lock));
1640 	struct net *net = info->nl_net;
1641 
1642 	RT6_TRACE("fib6_del_route\n");
1643 
1644 	WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1645 
1646 	/* Unlink it */
1647 	*rtp = rt->dst.rt6_next;
1648 	rt->rt6i_node = NULL;
1649 	net->ipv6.rt6_stats->fib_rt_entries--;
1650 	net->ipv6.rt6_stats->fib_discarded_routes++;
1651 
1652 	/* Flush all cached dst in exception table */
1653 	rt6_flush_exceptions(rt);
1654 
1655 	/* Reset round-robin state, if necessary */
1656 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1657 		fn->rr_ptr = NULL;
1658 
1659 	/* Remove this entry from other siblings */
1660 	if (rt->rt6i_nsiblings) {
1661 		struct rt6_info *sibling, *next_sibling;
1662 
1663 		list_for_each_entry_safe(sibling, next_sibling,
1664 					 &rt->rt6i_siblings, rt6i_siblings)
1665 			sibling->rt6i_nsiblings--;
1666 		rt->rt6i_nsiblings = 0;
1667 		list_del_init(&rt->rt6i_siblings);
1668 	}
1669 
1670 	/* Adjust walkers */
1671 	read_lock(&net->ipv6.fib6_walker_lock);
1672 	FOR_WALKERS(net, w) {
1673 		if (w->state == FWS_C && w->leaf == rt) {
1674 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1675 			w->leaf = rcu_dereference_protected(rt->dst.rt6_next,
1676 					    lockdep_is_held(&table->tb6_lock));
1677 			if (!w->leaf)
1678 				w->state = FWS_U;
1679 		}
1680 	}
1681 	read_unlock(&net->ipv6.fib6_walker_lock);
1682 
1683 	/* If it was last route, expunge its radix tree node */
1684 	if (!rcu_access_pointer(fn->leaf)) {
1685 		fn->fn_flags &= ~RTN_RTINFO;
1686 		net->ipv6.rt6_stats->fib_route_nodes--;
1687 		fn = fib6_repair_tree(net, table, fn);
1688 	}
1689 
1690 	fib6_purge_rt(rt, fn, net);
1691 
1692 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1693 	if (!info->skip_notify)
1694 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1695 	rt6_release(rt);
1696 }
1697 
1698 /* Need to own table->tb6_lock */
1699 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1700 {
1701 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1702 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1703 	struct fib6_table *table = rt->rt6i_table;
1704 	struct net *net = info->nl_net;
1705 	struct rt6_info __rcu **rtp;
1706 	struct rt6_info __rcu **rtp_next;
1707 
1708 #if RT6_DEBUG >= 2
1709 	if (rt->dst.obsolete > 0) {
1710 		WARN_ON(fn);
1711 		return -ENOENT;
1712 	}
1713 #endif
1714 	if (!fn || rt == net->ipv6.ip6_null_entry)
1715 		return -ENOENT;
1716 
1717 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1718 
1719 	/* remove cached dst from exception table */
1720 	if (rt->rt6i_flags & RTF_CACHE)
1721 		return rt6_remove_exception_rt(rt);
1722 
1723 	/*
1724 	 *	Walk the leaf entries looking for ourself
1725 	 */
1726 
1727 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1728 		struct rt6_info *cur = rcu_dereference_protected(*rtp,
1729 					lockdep_is_held(&table->tb6_lock));
1730 		if (rt == cur) {
1731 			fib6_del_route(table, fn, rtp, info);
1732 			return 0;
1733 		}
1734 		rtp_next = &cur->dst.rt6_next;
1735 	}
1736 	return -ENOENT;
1737 }
1738 
1739 /*
1740  *	Tree traversal function.
1741  *
1742  *	Certainly, it is not interrupt safe.
1743  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1744  *	It means, that we can modify tree during walking
1745  *	and use this function for garbage collection, clone pruning,
1746  *	cleaning tree when a device goes down etc. etc.
1747  *
1748  *	It guarantees that every node will be traversed,
1749  *	and that it will be traversed only once.
1750  *
1751  *	Callback function w->func may return:
1752  *	0 -> continue walking.
1753  *	positive value -> walking is suspended (used by tree dumps,
1754  *	and probably by gc, if it will be split to several slices)
1755  *	negative value -> terminate walking.
1756  *
1757  *	The function itself returns:
1758  *	0   -> walk is complete.
1759  *	>0  -> walk is incomplete (i.e. suspended)
1760  *	<0  -> walk is terminated by an error.
1761  *
1762  *	This function is called with tb6_lock held.
1763  */
1764 
1765 static int fib6_walk_continue(struct fib6_walker *w)
1766 {
1767 	struct fib6_node *fn, *pn, *left, *right;
1768 
1769 	/* w->root should always be table->tb6_root */
1770 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1771 
1772 	for (;;) {
1773 		fn = w->node;
1774 		if (!fn)
1775 			return 0;
1776 
1777 		switch (w->state) {
1778 #ifdef CONFIG_IPV6_SUBTREES
1779 		case FWS_S:
1780 			if (FIB6_SUBTREE(fn)) {
1781 				w->node = FIB6_SUBTREE(fn);
1782 				continue;
1783 			}
1784 			w->state = FWS_L;
1785 #endif
1786 			/* fall through */
1787 		case FWS_L:
1788 			left = rcu_dereference_protected(fn->left, 1);
1789 			if (left) {
1790 				w->node = left;
1791 				w->state = FWS_INIT;
1792 				continue;
1793 			}
1794 			w->state = FWS_R;
1795 			/* fall through */
1796 		case FWS_R:
1797 			right = rcu_dereference_protected(fn->right, 1);
1798 			if (right) {
1799 				w->node = right;
1800 				w->state = FWS_INIT;
1801 				continue;
1802 			}
1803 			w->state = FWS_C;
1804 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1805 			/* fall through */
1806 		case FWS_C:
1807 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1808 				int err;
1809 
1810 				if (w->skip) {
1811 					w->skip--;
1812 					goto skip;
1813 				}
1814 
1815 				err = w->func(w);
1816 				if (err)
1817 					return err;
1818 
1819 				w->count++;
1820 				continue;
1821 			}
1822 skip:
1823 			w->state = FWS_U;
1824 			/* fall through */
1825 		case FWS_U:
1826 			if (fn == w->root)
1827 				return 0;
1828 			pn = rcu_dereference_protected(fn->parent, 1);
1829 			left = rcu_dereference_protected(pn->left, 1);
1830 			right = rcu_dereference_protected(pn->right, 1);
1831 			w->node = pn;
1832 #ifdef CONFIG_IPV6_SUBTREES
1833 			if (FIB6_SUBTREE(pn) == fn) {
1834 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1835 				w->state = FWS_L;
1836 				continue;
1837 			}
1838 #endif
1839 			if (left == fn) {
1840 				w->state = FWS_R;
1841 				continue;
1842 			}
1843 			if (right == fn) {
1844 				w->state = FWS_C;
1845 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1846 				continue;
1847 			}
1848 #if RT6_DEBUG >= 2
1849 			WARN_ON(1);
1850 #endif
1851 		}
1852 	}
1853 }
1854 
1855 static int fib6_walk(struct net *net, struct fib6_walker *w)
1856 {
1857 	int res;
1858 
1859 	w->state = FWS_INIT;
1860 	w->node = w->root;
1861 
1862 	fib6_walker_link(net, w);
1863 	res = fib6_walk_continue(w);
1864 	if (res <= 0)
1865 		fib6_walker_unlink(net, w);
1866 	return res;
1867 }
1868 
1869 static int fib6_clean_node(struct fib6_walker *w)
1870 {
1871 	int res;
1872 	struct rt6_info *rt;
1873 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1874 	struct nl_info info = {
1875 		.nl_net = c->net,
1876 	};
1877 
1878 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1879 	    w->node->fn_sernum != c->sernum)
1880 		w->node->fn_sernum = c->sernum;
1881 
1882 	if (!c->func) {
1883 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1884 		w->leaf = NULL;
1885 		return 0;
1886 	}
1887 
1888 	for_each_fib6_walker_rt(w) {
1889 		res = c->func(rt, c->arg);
1890 		if (res < 0) {
1891 			w->leaf = rt;
1892 			res = fib6_del(rt, &info);
1893 			if (res) {
1894 #if RT6_DEBUG >= 2
1895 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1896 					 __func__, rt,
1897 					 rcu_access_pointer(rt->rt6i_node),
1898 					 res);
1899 #endif
1900 				continue;
1901 			}
1902 			return 0;
1903 		}
1904 		WARN_ON(res != 0);
1905 	}
1906 	w->leaf = rt;
1907 	return 0;
1908 }
1909 
1910 /*
1911  *	Convenient frontend to tree walker.
1912  *
1913  *	func is called on each route.
1914  *		It may return -1 -> delete this route.
1915  *		              0  -> continue walking
1916  */
1917 
1918 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1919 			    int (*func)(struct rt6_info *, void *arg),
1920 			    int sernum, void *arg)
1921 {
1922 	struct fib6_cleaner c;
1923 
1924 	c.w.root = root;
1925 	c.w.func = fib6_clean_node;
1926 	c.w.count = 0;
1927 	c.w.skip = 0;
1928 	c.func = func;
1929 	c.sernum = sernum;
1930 	c.arg = arg;
1931 	c.net = net;
1932 
1933 	fib6_walk(net, &c.w);
1934 }
1935 
1936 static void __fib6_clean_all(struct net *net,
1937 			     int (*func)(struct rt6_info *, void *),
1938 			     int sernum, void *arg)
1939 {
1940 	struct fib6_table *table;
1941 	struct hlist_head *head;
1942 	unsigned int h;
1943 
1944 	rcu_read_lock();
1945 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1946 		head = &net->ipv6.fib_table_hash[h];
1947 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1948 			spin_lock_bh(&table->tb6_lock);
1949 			fib6_clean_tree(net, &table->tb6_root,
1950 					func, sernum, arg);
1951 			spin_unlock_bh(&table->tb6_lock);
1952 		}
1953 	}
1954 	rcu_read_unlock();
1955 }
1956 
1957 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1958 		    void *arg)
1959 {
1960 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1961 }
1962 
1963 static void fib6_flush_trees(struct net *net)
1964 {
1965 	int new_sernum = fib6_new_sernum(net);
1966 
1967 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1968 }
1969 
1970 /*
1971  *	Garbage collection
1972  */
1973 
1974 static int fib6_age(struct rt6_info *rt, void *arg)
1975 {
1976 	struct fib6_gc_args *gc_args = arg;
1977 	unsigned long now = jiffies;
1978 
1979 	/*
1980 	 *	check addrconf expiration here.
1981 	 *	Routes are expired even if they are in use.
1982 	 */
1983 
1984 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1985 		if (time_after(now, rt->dst.expires)) {
1986 			RT6_TRACE("expiring %p\n", rt);
1987 			return -1;
1988 		}
1989 		gc_args->more++;
1990 	}
1991 
1992 	/*	Also age clones in the exception table.
1993 	 *	Note, that clones are aged out
1994 	 *	only if they are not in use now.
1995 	 */
1996 	rt6_age_exceptions(rt, gc_args, now);
1997 
1998 	return 0;
1999 }
2000 
2001 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2002 {
2003 	struct fib6_gc_args gc_args;
2004 	unsigned long now;
2005 
2006 	if (force) {
2007 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2008 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2009 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2010 		return;
2011 	}
2012 	gc_args.timeout = expires ? (int)expires :
2013 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2014 	gc_args.more = 0;
2015 
2016 	fib6_clean_all(net, fib6_age, &gc_args);
2017 	now = jiffies;
2018 	net->ipv6.ip6_rt_last_gc = now;
2019 
2020 	if (gc_args.more)
2021 		mod_timer(&net->ipv6.ip6_fib_timer,
2022 			  round_jiffies(now
2023 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2024 	else
2025 		del_timer(&net->ipv6.ip6_fib_timer);
2026 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2027 }
2028 
2029 static void fib6_gc_timer_cb(struct timer_list *t)
2030 {
2031 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2032 
2033 	fib6_run_gc(0, arg, true);
2034 }
2035 
2036 static int __net_init fib6_net_init(struct net *net)
2037 {
2038 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2039 	int err;
2040 
2041 	err = fib6_notifier_init(net);
2042 	if (err)
2043 		return err;
2044 
2045 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2046 	rwlock_init(&net->ipv6.fib6_walker_lock);
2047 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2048 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2049 
2050 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2051 	if (!net->ipv6.rt6_stats)
2052 		goto out_timer;
2053 
2054 	/* Avoid false sharing : Use at least a full cache line */
2055 	size = max_t(size_t, size, L1_CACHE_BYTES);
2056 
2057 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2058 	if (!net->ipv6.fib_table_hash)
2059 		goto out_rt6_stats;
2060 
2061 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2062 					  GFP_KERNEL);
2063 	if (!net->ipv6.fib6_main_tbl)
2064 		goto out_fib_table_hash;
2065 
2066 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2067 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2068 			   net->ipv6.ip6_null_entry);
2069 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2070 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2071 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2072 
2073 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2074 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2075 					   GFP_KERNEL);
2076 	if (!net->ipv6.fib6_local_tbl)
2077 		goto out_fib6_main_tbl;
2078 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2079 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2080 			   net->ipv6.ip6_null_entry);
2081 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2082 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2083 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2084 #endif
2085 	fib6_tables_init(net);
2086 
2087 	return 0;
2088 
2089 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2090 out_fib6_main_tbl:
2091 	kfree(net->ipv6.fib6_main_tbl);
2092 #endif
2093 out_fib_table_hash:
2094 	kfree(net->ipv6.fib_table_hash);
2095 out_rt6_stats:
2096 	kfree(net->ipv6.rt6_stats);
2097 out_timer:
2098 	fib6_notifier_exit(net);
2099 	return -ENOMEM;
2100 }
2101 
2102 static void fib6_net_exit(struct net *net)
2103 {
2104 	unsigned int i;
2105 
2106 	rt6_ifdown(net, NULL);
2107 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2108 
2109 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2110 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2111 		struct hlist_node *tmp;
2112 		struct fib6_table *tb;
2113 
2114 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2115 			hlist_del(&tb->tb6_hlist);
2116 			fib6_free_table(tb);
2117 		}
2118 	}
2119 
2120 	kfree(net->ipv6.fib_table_hash);
2121 	kfree(net->ipv6.rt6_stats);
2122 	fib6_notifier_exit(net);
2123 }
2124 
2125 static struct pernet_operations fib6_net_ops = {
2126 	.init = fib6_net_init,
2127 	.exit = fib6_net_exit,
2128 };
2129 
2130 int __init fib6_init(void)
2131 {
2132 	int ret = -ENOMEM;
2133 
2134 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2135 					   sizeof(struct fib6_node),
2136 					   0, SLAB_HWCACHE_ALIGN,
2137 					   NULL);
2138 	if (!fib6_node_kmem)
2139 		goto out;
2140 
2141 	ret = register_pernet_subsys(&fib6_net_ops);
2142 	if (ret)
2143 		goto out_kmem_cache_create;
2144 
2145 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2146 			      0);
2147 	if (ret)
2148 		goto out_unregister_subsys;
2149 
2150 	__fib6_flush_trees = fib6_flush_trees;
2151 out:
2152 	return ret;
2153 
2154 out_unregister_subsys:
2155 	unregister_pernet_subsys(&fib6_net_ops);
2156 out_kmem_cache_create:
2157 	kmem_cache_destroy(fib6_node_kmem);
2158 	goto out;
2159 }
2160 
2161 void fib6_gc_cleanup(void)
2162 {
2163 	unregister_pernet_subsys(&fib6_net_ops);
2164 	kmem_cache_destroy(fib6_node_kmem);
2165 }
2166 
2167 #ifdef CONFIG_PROC_FS
2168 
2169 struct ipv6_route_iter {
2170 	struct seq_net_private p;
2171 	struct fib6_walker w;
2172 	loff_t skip;
2173 	struct fib6_table *tbl;
2174 	int sernum;
2175 };
2176 
2177 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2178 {
2179 	struct rt6_info *rt = v;
2180 	struct ipv6_route_iter *iter = seq->private;
2181 
2182 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2183 
2184 #ifdef CONFIG_IPV6_SUBTREES
2185 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2186 #else
2187 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2188 #endif
2189 	if (rt->rt6i_flags & RTF_GATEWAY)
2190 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2191 	else
2192 		seq_puts(seq, "00000000000000000000000000000000");
2193 
2194 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2195 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2196 		   rt->dst.__use, rt->rt6i_flags,
2197 		   rt->dst.dev ? rt->dst.dev->name : "");
2198 	iter->w.leaf = NULL;
2199 	return 0;
2200 }
2201 
2202 static int ipv6_route_yield(struct fib6_walker *w)
2203 {
2204 	struct ipv6_route_iter *iter = w->args;
2205 
2206 	if (!iter->skip)
2207 		return 1;
2208 
2209 	do {
2210 		iter->w.leaf = rcu_dereference_protected(
2211 				iter->w.leaf->dst.rt6_next,
2212 				lockdep_is_held(&iter->tbl->tb6_lock));
2213 		iter->skip--;
2214 		if (!iter->skip && iter->w.leaf)
2215 			return 1;
2216 	} while (iter->w.leaf);
2217 
2218 	return 0;
2219 }
2220 
2221 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2222 				      struct net *net)
2223 {
2224 	memset(&iter->w, 0, sizeof(iter->w));
2225 	iter->w.func = ipv6_route_yield;
2226 	iter->w.root = &iter->tbl->tb6_root;
2227 	iter->w.state = FWS_INIT;
2228 	iter->w.node = iter->w.root;
2229 	iter->w.args = iter;
2230 	iter->sernum = iter->w.root->fn_sernum;
2231 	INIT_LIST_HEAD(&iter->w.lh);
2232 	fib6_walker_link(net, &iter->w);
2233 }
2234 
2235 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2236 						    struct net *net)
2237 {
2238 	unsigned int h;
2239 	struct hlist_node *node;
2240 
2241 	if (tbl) {
2242 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2243 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2244 	} else {
2245 		h = 0;
2246 		node = NULL;
2247 	}
2248 
2249 	while (!node && h < FIB6_TABLE_HASHSZ) {
2250 		node = rcu_dereference_bh(
2251 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2252 	}
2253 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2254 }
2255 
2256 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2257 {
2258 	if (iter->sernum != iter->w.root->fn_sernum) {
2259 		iter->sernum = iter->w.root->fn_sernum;
2260 		iter->w.state = FWS_INIT;
2261 		iter->w.node = iter->w.root;
2262 		WARN_ON(iter->w.skip);
2263 		iter->w.skip = iter->w.count;
2264 	}
2265 }
2266 
2267 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2268 {
2269 	int r;
2270 	struct rt6_info *n;
2271 	struct net *net = seq_file_net(seq);
2272 	struct ipv6_route_iter *iter = seq->private;
2273 
2274 	if (!v)
2275 		goto iter_table;
2276 
2277 	n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next);
2278 	if (n) {
2279 		++*pos;
2280 		return n;
2281 	}
2282 
2283 iter_table:
2284 	ipv6_route_check_sernum(iter);
2285 	spin_lock_bh(&iter->tbl->tb6_lock);
2286 	r = fib6_walk_continue(&iter->w);
2287 	spin_unlock_bh(&iter->tbl->tb6_lock);
2288 	if (r > 0) {
2289 		if (v)
2290 			++*pos;
2291 		return iter->w.leaf;
2292 	} else if (r < 0) {
2293 		fib6_walker_unlink(net, &iter->w);
2294 		return NULL;
2295 	}
2296 	fib6_walker_unlink(net, &iter->w);
2297 
2298 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2299 	if (!iter->tbl)
2300 		return NULL;
2301 
2302 	ipv6_route_seq_setup_walk(iter, net);
2303 	goto iter_table;
2304 }
2305 
2306 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2307 	__acquires(RCU_BH)
2308 {
2309 	struct net *net = seq_file_net(seq);
2310 	struct ipv6_route_iter *iter = seq->private;
2311 
2312 	rcu_read_lock_bh();
2313 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2314 	iter->skip = *pos;
2315 
2316 	if (iter->tbl) {
2317 		ipv6_route_seq_setup_walk(iter, net);
2318 		return ipv6_route_seq_next(seq, NULL, pos);
2319 	} else {
2320 		return NULL;
2321 	}
2322 }
2323 
2324 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2325 {
2326 	struct fib6_walker *w = &iter->w;
2327 	return w->node && !(w->state == FWS_U && w->node == w->root);
2328 }
2329 
2330 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2331 	__releases(RCU_BH)
2332 {
2333 	struct net *net = seq_file_net(seq);
2334 	struct ipv6_route_iter *iter = seq->private;
2335 
2336 	if (ipv6_route_iter_active(iter))
2337 		fib6_walker_unlink(net, &iter->w);
2338 
2339 	rcu_read_unlock_bh();
2340 }
2341 
2342 static const struct seq_operations ipv6_route_seq_ops = {
2343 	.start	= ipv6_route_seq_start,
2344 	.next	= ipv6_route_seq_next,
2345 	.stop	= ipv6_route_seq_stop,
2346 	.show	= ipv6_route_seq_show
2347 };
2348 
2349 int ipv6_route_open(struct inode *inode, struct file *file)
2350 {
2351 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2352 			    sizeof(struct ipv6_route_iter));
2353 }
2354 
2355 #endif /* CONFIG_PROC_FS */
2356