xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 3932b9ca)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38 
39 #define RT6_DEBUG 2
40 
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46 
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48 
49 enum fib_walk_state_t {
50 #ifdef CONFIG_IPV6_SUBTREES
51 	FWS_S,
52 #endif
53 	FWS_L,
54 	FWS_R,
55 	FWS_C,
56 	FWS_U
57 };
58 
59 struct fib6_cleaner_t {
60 	struct fib6_walker_t w;
61 	struct net *net;
62 	int (*func)(struct rt6_info *, void *arg);
63 	void *arg;
64 };
65 
66 static DEFINE_RWLOCK(fib6_walker_lock);
67 
68 #ifdef CONFIG_IPV6_SUBTREES
69 #define FWS_INIT FWS_S
70 #else
71 #define FWS_INIT FWS_L
72 #endif
73 
74 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
75 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
76 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
77 static int fib6_walk(struct fib6_walker_t *w);
78 static int fib6_walk_continue(struct fib6_walker_t *w);
79 
80 /*
81  *	A routing update causes an increase of the serial number on the
82  *	affected subtree. This allows for cached routes to be asynchronously
83  *	tested when modifications are made to the destination cache as a
84  *	result of redirects, path MTU changes, etc.
85  */
86 
87 static __u32 rt_sernum;
88 
89 static void fib6_gc_timer_cb(unsigned long arg);
90 
91 static LIST_HEAD(fib6_walkers);
92 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
93 
94 static inline void fib6_walker_link(struct fib6_walker_t *w)
95 {
96 	write_lock_bh(&fib6_walker_lock);
97 	list_add(&w->lh, &fib6_walkers);
98 	write_unlock_bh(&fib6_walker_lock);
99 }
100 
101 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
102 {
103 	write_lock_bh(&fib6_walker_lock);
104 	list_del(&w->lh);
105 	write_unlock_bh(&fib6_walker_lock);
106 }
107 static __inline__ u32 fib6_new_sernum(void)
108 {
109 	u32 n = ++rt_sernum;
110 	if ((__s32)n <= 0)
111 		rt_sernum = n = 1;
112 	return n;
113 }
114 
115 /*
116  *	Auxiliary address test functions for the radix tree.
117  *
118  *	These assume a 32bit processor (although it will work on
119  *	64bit processors)
120  */
121 
122 /*
123  *	test bit
124  */
125 #if defined(__LITTLE_ENDIAN)
126 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
127 #else
128 # define BITOP_BE32_SWIZZLE	0
129 #endif
130 
131 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
132 {
133 	const __be32 *addr = token;
134 	/*
135 	 * Here,
136 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
137 	 * is optimized version of
138 	 *	htonl(1 << ((~fn_bit)&0x1F))
139 	 * See include/asm-generic/bitops/le.h.
140 	 */
141 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
142 	       addr[fn_bit >> 5];
143 }
144 
145 static __inline__ struct fib6_node *node_alloc(void)
146 {
147 	struct fib6_node *fn;
148 
149 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
150 
151 	return fn;
152 }
153 
154 static __inline__ void node_free(struct fib6_node *fn)
155 {
156 	kmem_cache_free(fib6_node_kmem, fn);
157 }
158 
159 static __inline__ void rt6_release(struct rt6_info *rt)
160 {
161 	if (atomic_dec_and_test(&rt->rt6i_ref))
162 		dst_free(&rt->dst);
163 }
164 
165 static void fib6_link_table(struct net *net, struct fib6_table *tb)
166 {
167 	unsigned int h;
168 
169 	/*
170 	 * Initialize table lock at a single place to give lockdep a key,
171 	 * tables aren't visible prior to being linked to the list.
172 	 */
173 	rwlock_init(&tb->tb6_lock);
174 
175 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
176 
177 	/*
178 	 * No protection necessary, this is the only list mutatation
179 	 * operation, tables never disappear once they exist.
180 	 */
181 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
182 }
183 
184 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
185 
186 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
187 {
188 	struct fib6_table *table;
189 
190 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
191 	if (table) {
192 		table->tb6_id = id;
193 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
194 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
195 		inet_peer_base_init(&table->tb6_peers);
196 	}
197 
198 	return table;
199 }
200 
201 struct fib6_table *fib6_new_table(struct net *net, u32 id)
202 {
203 	struct fib6_table *tb;
204 
205 	if (id == 0)
206 		id = RT6_TABLE_MAIN;
207 	tb = fib6_get_table(net, id);
208 	if (tb)
209 		return tb;
210 
211 	tb = fib6_alloc_table(net, id);
212 	if (tb)
213 		fib6_link_table(net, tb);
214 
215 	return tb;
216 }
217 
218 struct fib6_table *fib6_get_table(struct net *net, u32 id)
219 {
220 	struct fib6_table *tb;
221 	struct hlist_head *head;
222 	unsigned int h;
223 
224 	if (id == 0)
225 		id = RT6_TABLE_MAIN;
226 	h = id & (FIB6_TABLE_HASHSZ - 1);
227 	rcu_read_lock();
228 	head = &net->ipv6.fib_table_hash[h];
229 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
230 		if (tb->tb6_id == id) {
231 			rcu_read_unlock();
232 			return tb;
233 		}
234 	}
235 	rcu_read_unlock();
236 
237 	return NULL;
238 }
239 
240 static void __net_init fib6_tables_init(struct net *net)
241 {
242 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
243 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
244 }
245 #else
246 
247 struct fib6_table *fib6_new_table(struct net *net, u32 id)
248 {
249 	return fib6_get_table(net, id);
250 }
251 
252 struct fib6_table *fib6_get_table(struct net *net, u32 id)
253 {
254 	  return net->ipv6.fib6_main_tbl;
255 }
256 
257 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
258 				   int flags, pol_lookup_t lookup)
259 {
260 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
261 }
262 
263 static void __net_init fib6_tables_init(struct net *net)
264 {
265 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
266 }
267 
268 #endif
269 
270 static int fib6_dump_node(struct fib6_walker_t *w)
271 {
272 	int res;
273 	struct rt6_info *rt;
274 
275 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
276 		res = rt6_dump_route(rt, w->args);
277 		if (res < 0) {
278 			/* Frame is full, suspend walking */
279 			w->leaf = rt;
280 			return 1;
281 		}
282 		WARN_ON(res == 0);
283 	}
284 	w->leaf = NULL;
285 	return 0;
286 }
287 
288 static void fib6_dump_end(struct netlink_callback *cb)
289 {
290 	struct fib6_walker_t *w = (void *)cb->args[2];
291 
292 	if (w) {
293 		if (cb->args[4]) {
294 			cb->args[4] = 0;
295 			fib6_walker_unlink(w);
296 		}
297 		cb->args[2] = 0;
298 		kfree(w);
299 	}
300 	cb->done = (void *)cb->args[3];
301 	cb->args[1] = 3;
302 }
303 
304 static int fib6_dump_done(struct netlink_callback *cb)
305 {
306 	fib6_dump_end(cb);
307 	return cb->done ? cb->done(cb) : 0;
308 }
309 
310 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
311 			   struct netlink_callback *cb)
312 {
313 	struct fib6_walker_t *w;
314 	int res;
315 
316 	w = (void *)cb->args[2];
317 	w->root = &table->tb6_root;
318 
319 	if (cb->args[4] == 0) {
320 		w->count = 0;
321 		w->skip = 0;
322 
323 		read_lock_bh(&table->tb6_lock);
324 		res = fib6_walk(w);
325 		read_unlock_bh(&table->tb6_lock);
326 		if (res > 0) {
327 			cb->args[4] = 1;
328 			cb->args[5] = w->root->fn_sernum;
329 		}
330 	} else {
331 		if (cb->args[5] != w->root->fn_sernum) {
332 			/* Begin at the root if the tree changed */
333 			cb->args[5] = w->root->fn_sernum;
334 			w->state = FWS_INIT;
335 			w->node = w->root;
336 			w->skip = w->count;
337 		} else
338 			w->skip = 0;
339 
340 		read_lock_bh(&table->tb6_lock);
341 		res = fib6_walk_continue(w);
342 		read_unlock_bh(&table->tb6_lock);
343 		if (res <= 0) {
344 			fib6_walker_unlink(w);
345 			cb->args[4] = 0;
346 		}
347 	}
348 
349 	return res;
350 }
351 
352 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
353 {
354 	struct net *net = sock_net(skb->sk);
355 	unsigned int h, s_h;
356 	unsigned int e = 0, s_e;
357 	struct rt6_rtnl_dump_arg arg;
358 	struct fib6_walker_t *w;
359 	struct fib6_table *tb;
360 	struct hlist_head *head;
361 	int res = 0;
362 
363 	s_h = cb->args[0];
364 	s_e = cb->args[1];
365 
366 	w = (void *)cb->args[2];
367 	if (!w) {
368 		/* New dump:
369 		 *
370 		 * 1. hook callback destructor.
371 		 */
372 		cb->args[3] = (long)cb->done;
373 		cb->done = fib6_dump_done;
374 
375 		/*
376 		 * 2. allocate and initialize walker.
377 		 */
378 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
379 		if (!w)
380 			return -ENOMEM;
381 		w->func = fib6_dump_node;
382 		cb->args[2] = (long)w;
383 	}
384 
385 	arg.skb = skb;
386 	arg.cb = cb;
387 	arg.net = net;
388 	w->args = &arg;
389 
390 	rcu_read_lock();
391 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
392 		e = 0;
393 		head = &net->ipv6.fib_table_hash[h];
394 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
395 			if (e < s_e)
396 				goto next;
397 			res = fib6_dump_table(tb, skb, cb);
398 			if (res != 0)
399 				goto out;
400 next:
401 			e++;
402 		}
403 	}
404 out:
405 	rcu_read_unlock();
406 	cb->args[1] = e;
407 	cb->args[0] = h;
408 
409 	res = res < 0 ? res : skb->len;
410 	if (res <= 0)
411 		fib6_dump_end(cb);
412 	return res;
413 }
414 
415 /*
416  *	Routing Table
417  *
418  *	return the appropriate node for a routing tree "add" operation
419  *	by either creating and inserting or by returning an existing
420  *	node.
421  */
422 
423 static struct fib6_node *fib6_add_1(struct fib6_node *root,
424 				     struct in6_addr *addr, int plen,
425 				     int offset, int allow_create,
426 				     int replace_required)
427 {
428 	struct fib6_node *fn, *in, *ln;
429 	struct fib6_node *pn = NULL;
430 	struct rt6key *key;
431 	int	bit;
432 	__be32	dir = 0;
433 	__u32	sernum = fib6_new_sernum();
434 
435 	RT6_TRACE("fib6_add_1\n");
436 
437 	/* insert node in tree */
438 
439 	fn = root;
440 
441 	do {
442 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
443 
444 		/*
445 		 *	Prefix match
446 		 */
447 		if (plen < fn->fn_bit ||
448 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
449 			if (!allow_create) {
450 				if (replace_required) {
451 					pr_warn("Can't replace route, no match found\n");
452 					return ERR_PTR(-ENOENT);
453 				}
454 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
455 			}
456 			goto insert_above;
457 		}
458 
459 		/*
460 		 *	Exact match ?
461 		 */
462 
463 		if (plen == fn->fn_bit) {
464 			/* clean up an intermediate node */
465 			if (!(fn->fn_flags & RTN_RTINFO)) {
466 				rt6_release(fn->leaf);
467 				fn->leaf = NULL;
468 			}
469 
470 			fn->fn_sernum = sernum;
471 
472 			return fn;
473 		}
474 
475 		/*
476 		 *	We have more bits to go
477 		 */
478 
479 		/* Try to walk down on tree. */
480 		fn->fn_sernum = sernum;
481 		dir = addr_bit_set(addr, fn->fn_bit);
482 		pn = fn;
483 		fn = dir ? fn->right : fn->left;
484 	} while (fn);
485 
486 	if (!allow_create) {
487 		/* We should not create new node because
488 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
489 		 * I assume it is safe to require NLM_F_CREATE when
490 		 * REPLACE flag is used! Later we may want to remove the
491 		 * check for replace_required, because according
492 		 * to netlink specification, NLM_F_CREATE
493 		 * MUST be specified if new route is created.
494 		 * That would keep IPv6 consistent with IPv4
495 		 */
496 		if (replace_required) {
497 			pr_warn("Can't replace route, no match found\n");
498 			return ERR_PTR(-ENOENT);
499 		}
500 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
501 	}
502 	/*
503 	 *	We walked to the bottom of tree.
504 	 *	Create new leaf node without children.
505 	 */
506 
507 	ln = node_alloc();
508 
509 	if (!ln)
510 		return ERR_PTR(-ENOMEM);
511 	ln->fn_bit = plen;
512 
513 	ln->parent = pn;
514 	ln->fn_sernum = sernum;
515 
516 	if (dir)
517 		pn->right = ln;
518 	else
519 		pn->left  = ln;
520 
521 	return ln;
522 
523 
524 insert_above:
525 	/*
526 	 * split since we don't have a common prefix anymore or
527 	 * we have a less significant route.
528 	 * we've to insert an intermediate node on the list
529 	 * this new node will point to the one we need to create
530 	 * and the current
531 	 */
532 
533 	pn = fn->parent;
534 
535 	/* find 1st bit in difference between the 2 addrs.
536 
537 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
538 	   but if it is >= plen, the value is ignored in any case.
539 	 */
540 
541 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
542 
543 	/*
544 	 *		(intermediate)[in]
545 	 *	          /	   \
546 	 *	(new leaf node)[ln] (old node)[fn]
547 	 */
548 	if (plen > bit) {
549 		in = node_alloc();
550 		ln = node_alloc();
551 
552 		if (!in || !ln) {
553 			if (in)
554 				node_free(in);
555 			if (ln)
556 				node_free(ln);
557 			return ERR_PTR(-ENOMEM);
558 		}
559 
560 		/*
561 		 * new intermediate node.
562 		 * RTN_RTINFO will
563 		 * be off since that an address that chooses one of
564 		 * the branches would not match less specific routes
565 		 * in the other branch
566 		 */
567 
568 		in->fn_bit = bit;
569 
570 		in->parent = pn;
571 		in->leaf = fn->leaf;
572 		atomic_inc(&in->leaf->rt6i_ref);
573 
574 		in->fn_sernum = sernum;
575 
576 		/* update parent pointer */
577 		if (dir)
578 			pn->right = in;
579 		else
580 			pn->left  = in;
581 
582 		ln->fn_bit = plen;
583 
584 		ln->parent = in;
585 		fn->parent = in;
586 
587 		ln->fn_sernum = sernum;
588 
589 		if (addr_bit_set(addr, bit)) {
590 			in->right = ln;
591 			in->left  = fn;
592 		} else {
593 			in->left  = ln;
594 			in->right = fn;
595 		}
596 	} else { /* plen <= bit */
597 
598 		/*
599 		 *		(new leaf node)[ln]
600 		 *	          /	   \
601 		 *	     (old node)[fn] NULL
602 		 */
603 
604 		ln = node_alloc();
605 
606 		if (!ln)
607 			return ERR_PTR(-ENOMEM);
608 
609 		ln->fn_bit = plen;
610 
611 		ln->parent = pn;
612 
613 		ln->fn_sernum = sernum;
614 
615 		if (dir)
616 			pn->right = ln;
617 		else
618 			pn->left  = ln;
619 
620 		if (addr_bit_set(&key->addr, plen))
621 			ln->right = fn;
622 		else
623 			ln->left  = fn;
624 
625 		fn->parent = ln;
626 	}
627 	return ln;
628 }
629 
630 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
631 {
632 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
633 	       RTF_GATEWAY;
634 }
635 
636 static int fib6_commit_metrics(struct dst_entry *dst,
637 			       struct nlattr *mx, int mx_len)
638 {
639 	struct nlattr *nla;
640 	int remaining;
641 	u32 *mp;
642 
643 	if (dst->flags & DST_HOST) {
644 		mp = dst_metrics_write_ptr(dst);
645 	} else {
646 		mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_ATOMIC);
647 		if (!mp)
648 			return -ENOMEM;
649 		dst_init_metrics(dst, mp, 0);
650 	}
651 
652 	nla_for_each_attr(nla, mx, mx_len, remaining) {
653 		int type = nla_type(nla);
654 
655 		if (type) {
656 			if (type > RTAX_MAX)
657 				return -EINVAL;
658 
659 			mp[type - 1] = nla_get_u32(nla);
660 		}
661 	}
662 	return 0;
663 }
664 
665 /*
666  *	Insert routing information in a node.
667  */
668 
669 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
670 			    struct nl_info *info, struct nlattr *mx, int mx_len)
671 {
672 	struct rt6_info *iter = NULL;
673 	struct rt6_info **ins;
674 	int replace = (info->nlh &&
675 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
676 	int add = (!info->nlh ||
677 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
678 	int found = 0;
679 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
680 	int err;
681 
682 	ins = &fn->leaf;
683 
684 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
685 		/*
686 		 *	Search for duplicates
687 		 */
688 
689 		if (iter->rt6i_metric == rt->rt6i_metric) {
690 			/*
691 			 *	Same priority level
692 			 */
693 			if (info->nlh &&
694 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
695 				return -EEXIST;
696 			if (replace) {
697 				found++;
698 				break;
699 			}
700 
701 			if (iter->dst.dev == rt->dst.dev &&
702 			    iter->rt6i_idev == rt->rt6i_idev &&
703 			    ipv6_addr_equal(&iter->rt6i_gateway,
704 					    &rt->rt6i_gateway)) {
705 				if (rt->rt6i_nsiblings)
706 					rt->rt6i_nsiblings = 0;
707 				if (!(iter->rt6i_flags & RTF_EXPIRES))
708 					return -EEXIST;
709 				if (!(rt->rt6i_flags & RTF_EXPIRES))
710 					rt6_clean_expires(iter);
711 				else
712 					rt6_set_expires(iter, rt->dst.expires);
713 				return -EEXIST;
714 			}
715 			/* If we have the same destination and the same metric,
716 			 * but not the same gateway, then the route we try to
717 			 * add is sibling to this route, increment our counter
718 			 * of siblings, and later we will add our route to the
719 			 * list.
720 			 * Only static routes (which don't have flag
721 			 * RTF_EXPIRES) are used for ECMPv6.
722 			 *
723 			 * To avoid long list, we only had siblings if the
724 			 * route have a gateway.
725 			 */
726 			if (rt_can_ecmp &&
727 			    rt6_qualify_for_ecmp(iter))
728 				rt->rt6i_nsiblings++;
729 		}
730 
731 		if (iter->rt6i_metric > rt->rt6i_metric)
732 			break;
733 
734 		ins = &iter->dst.rt6_next;
735 	}
736 
737 	/* Reset round-robin state, if necessary */
738 	if (ins == &fn->leaf)
739 		fn->rr_ptr = NULL;
740 
741 	/* Link this route to others same route. */
742 	if (rt->rt6i_nsiblings) {
743 		unsigned int rt6i_nsiblings;
744 		struct rt6_info *sibling, *temp_sibling;
745 
746 		/* Find the first route that have the same metric */
747 		sibling = fn->leaf;
748 		while (sibling) {
749 			if (sibling->rt6i_metric == rt->rt6i_metric &&
750 			    rt6_qualify_for_ecmp(sibling)) {
751 				list_add_tail(&rt->rt6i_siblings,
752 					      &sibling->rt6i_siblings);
753 				break;
754 			}
755 			sibling = sibling->dst.rt6_next;
756 		}
757 		/* For each sibling in the list, increment the counter of
758 		 * siblings. BUG() if counters does not match, list of siblings
759 		 * is broken!
760 		 */
761 		rt6i_nsiblings = 0;
762 		list_for_each_entry_safe(sibling, temp_sibling,
763 					 &rt->rt6i_siblings, rt6i_siblings) {
764 			sibling->rt6i_nsiblings++;
765 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
766 			rt6i_nsiblings++;
767 		}
768 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
769 	}
770 
771 	/*
772 	 *	insert node
773 	 */
774 	if (!replace) {
775 		if (!add)
776 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
777 
778 add:
779 		if (mx) {
780 			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
781 			if (err)
782 				return err;
783 		}
784 		rt->dst.rt6_next = iter;
785 		*ins = rt;
786 		rt->rt6i_node = fn;
787 		atomic_inc(&rt->rt6i_ref);
788 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
789 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
790 
791 		if (!(fn->fn_flags & RTN_RTINFO)) {
792 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
793 			fn->fn_flags |= RTN_RTINFO;
794 		}
795 
796 	} else {
797 		if (!found) {
798 			if (add)
799 				goto add;
800 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
801 			return -ENOENT;
802 		}
803 		if (mx) {
804 			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
805 			if (err)
806 				return err;
807 		}
808 		*ins = rt;
809 		rt->rt6i_node = fn;
810 		rt->dst.rt6_next = iter->dst.rt6_next;
811 		atomic_inc(&rt->rt6i_ref);
812 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
813 		rt6_release(iter);
814 		if (!(fn->fn_flags & RTN_RTINFO)) {
815 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
816 			fn->fn_flags |= RTN_RTINFO;
817 		}
818 	}
819 
820 	return 0;
821 }
822 
823 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
824 {
825 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
826 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
827 		mod_timer(&net->ipv6.ip6_fib_timer,
828 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
829 }
830 
831 void fib6_force_start_gc(struct net *net)
832 {
833 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
834 		mod_timer(&net->ipv6.ip6_fib_timer,
835 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
836 }
837 
838 /*
839  *	Add routing information to the routing tree.
840  *	<destination addr>/<source addr>
841  *	with source addr info in sub-trees
842  */
843 
844 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info,
845 	     struct nlattr *mx, int mx_len)
846 {
847 	struct fib6_node *fn, *pn = NULL;
848 	int err = -ENOMEM;
849 	int allow_create = 1;
850 	int replace_required = 0;
851 
852 	if (info->nlh) {
853 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
854 			allow_create = 0;
855 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
856 			replace_required = 1;
857 	}
858 	if (!allow_create && !replace_required)
859 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
860 
861 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
862 			offsetof(struct rt6_info, rt6i_dst), allow_create,
863 			replace_required);
864 	if (IS_ERR(fn)) {
865 		err = PTR_ERR(fn);
866 		fn = NULL;
867 		goto out;
868 	}
869 
870 	pn = fn;
871 
872 #ifdef CONFIG_IPV6_SUBTREES
873 	if (rt->rt6i_src.plen) {
874 		struct fib6_node *sn;
875 
876 		if (!fn->subtree) {
877 			struct fib6_node *sfn;
878 
879 			/*
880 			 * Create subtree.
881 			 *
882 			 *		fn[main tree]
883 			 *		|
884 			 *		sfn[subtree root]
885 			 *		   \
886 			 *		    sn[new leaf node]
887 			 */
888 
889 			/* Create subtree root node */
890 			sfn = node_alloc();
891 			if (!sfn)
892 				goto st_failure;
893 
894 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
895 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
896 			sfn->fn_flags = RTN_ROOT;
897 			sfn->fn_sernum = fib6_new_sernum();
898 
899 			/* Now add the first leaf node to new subtree */
900 
901 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
902 					rt->rt6i_src.plen,
903 					offsetof(struct rt6_info, rt6i_src),
904 					allow_create, replace_required);
905 
906 			if (IS_ERR(sn)) {
907 				/* If it is failed, discard just allocated
908 				   root, and then (in st_failure) stale node
909 				   in main tree.
910 				 */
911 				node_free(sfn);
912 				err = PTR_ERR(sn);
913 				goto st_failure;
914 			}
915 
916 			/* Now link new subtree to main tree */
917 			sfn->parent = fn;
918 			fn->subtree = sfn;
919 		} else {
920 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
921 					rt->rt6i_src.plen,
922 					offsetof(struct rt6_info, rt6i_src),
923 					allow_create, replace_required);
924 
925 			if (IS_ERR(sn)) {
926 				err = PTR_ERR(sn);
927 				goto st_failure;
928 			}
929 		}
930 
931 		if (!fn->leaf) {
932 			fn->leaf = rt;
933 			atomic_inc(&rt->rt6i_ref);
934 		}
935 		fn = sn;
936 	}
937 #endif
938 
939 	err = fib6_add_rt2node(fn, rt, info, mx, mx_len);
940 	if (!err) {
941 		fib6_start_gc(info->nl_net, rt);
942 		if (!(rt->rt6i_flags & RTF_CACHE))
943 			fib6_prune_clones(info->nl_net, pn);
944 	}
945 
946 out:
947 	if (err) {
948 #ifdef CONFIG_IPV6_SUBTREES
949 		/*
950 		 * If fib6_add_1 has cleared the old leaf pointer in the
951 		 * super-tree leaf node we have to find a new one for it.
952 		 */
953 		if (pn != fn && pn->leaf == rt) {
954 			pn->leaf = NULL;
955 			atomic_dec(&rt->rt6i_ref);
956 		}
957 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
958 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
959 #if RT6_DEBUG >= 2
960 			if (!pn->leaf) {
961 				WARN_ON(pn->leaf == NULL);
962 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
963 			}
964 #endif
965 			atomic_inc(&pn->leaf->rt6i_ref);
966 		}
967 #endif
968 		dst_free(&rt->dst);
969 	}
970 	return err;
971 
972 #ifdef CONFIG_IPV6_SUBTREES
973 	/* Subtree creation failed, probably main tree node
974 	   is orphan. If it is, shoot it.
975 	 */
976 st_failure:
977 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
978 		fib6_repair_tree(info->nl_net, fn);
979 	dst_free(&rt->dst);
980 	return err;
981 #endif
982 }
983 
984 /*
985  *	Routing tree lookup
986  *
987  */
988 
989 struct lookup_args {
990 	int			offset;		/* key offset on rt6_info	*/
991 	const struct in6_addr	*addr;		/* search key			*/
992 };
993 
994 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
995 				       struct lookup_args *args)
996 {
997 	struct fib6_node *fn;
998 	__be32 dir;
999 
1000 	if (unlikely(args->offset == 0))
1001 		return NULL;
1002 
1003 	/*
1004 	 *	Descend on a tree
1005 	 */
1006 
1007 	fn = root;
1008 
1009 	for (;;) {
1010 		struct fib6_node *next;
1011 
1012 		dir = addr_bit_set(args->addr, fn->fn_bit);
1013 
1014 		next = dir ? fn->right : fn->left;
1015 
1016 		if (next) {
1017 			fn = next;
1018 			continue;
1019 		}
1020 		break;
1021 	}
1022 
1023 	while (fn) {
1024 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1025 			struct rt6key *key;
1026 
1027 			key = (struct rt6key *) ((u8 *) fn->leaf +
1028 						 args->offset);
1029 
1030 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1031 #ifdef CONFIG_IPV6_SUBTREES
1032 				if (fn->subtree) {
1033 					struct fib6_node *sfn;
1034 					sfn = fib6_lookup_1(fn->subtree,
1035 							    args + 1);
1036 					if (!sfn)
1037 						goto backtrack;
1038 					fn = sfn;
1039 				}
1040 #endif
1041 				if (fn->fn_flags & RTN_RTINFO)
1042 					return fn;
1043 			}
1044 		}
1045 #ifdef CONFIG_IPV6_SUBTREES
1046 backtrack:
1047 #endif
1048 		if (fn->fn_flags & RTN_ROOT)
1049 			break;
1050 
1051 		fn = fn->parent;
1052 	}
1053 
1054 	return NULL;
1055 }
1056 
1057 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1058 			      const struct in6_addr *saddr)
1059 {
1060 	struct fib6_node *fn;
1061 	struct lookup_args args[] = {
1062 		{
1063 			.offset = offsetof(struct rt6_info, rt6i_dst),
1064 			.addr = daddr,
1065 		},
1066 #ifdef CONFIG_IPV6_SUBTREES
1067 		{
1068 			.offset = offsetof(struct rt6_info, rt6i_src),
1069 			.addr = saddr,
1070 		},
1071 #endif
1072 		{
1073 			.offset = 0,	/* sentinel */
1074 		}
1075 	};
1076 
1077 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1078 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1079 		fn = root;
1080 
1081 	return fn;
1082 }
1083 
1084 /*
1085  *	Get node with specified destination prefix (and source prefix,
1086  *	if subtrees are used)
1087  */
1088 
1089 
1090 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1091 				       const struct in6_addr *addr,
1092 				       int plen, int offset)
1093 {
1094 	struct fib6_node *fn;
1095 
1096 	for (fn = root; fn ; ) {
1097 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1098 
1099 		/*
1100 		 *	Prefix match
1101 		 */
1102 		if (plen < fn->fn_bit ||
1103 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1104 			return NULL;
1105 
1106 		if (plen == fn->fn_bit)
1107 			return fn;
1108 
1109 		/*
1110 		 *	We have more bits to go
1111 		 */
1112 		if (addr_bit_set(addr, fn->fn_bit))
1113 			fn = fn->right;
1114 		else
1115 			fn = fn->left;
1116 	}
1117 	return NULL;
1118 }
1119 
1120 struct fib6_node *fib6_locate(struct fib6_node *root,
1121 			      const struct in6_addr *daddr, int dst_len,
1122 			      const struct in6_addr *saddr, int src_len)
1123 {
1124 	struct fib6_node *fn;
1125 
1126 	fn = fib6_locate_1(root, daddr, dst_len,
1127 			   offsetof(struct rt6_info, rt6i_dst));
1128 
1129 #ifdef CONFIG_IPV6_SUBTREES
1130 	if (src_len) {
1131 		WARN_ON(saddr == NULL);
1132 		if (fn && fn->subtree)
1133 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1134 					   offsetof(struct rt6_info, rt6i_src));
1135 	}
1136 #endif
1137 
1138 	if (fn && fn->fn_flags & RTN_RTINFO)
1139 		return fn;
1140 
1141 	return NULL;
1142 }
1143 
1144 
1145 /*
1146  *	Deletion
1147  *
1148  */
1149 
1150 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1151 {
1152 	if (fn->fn_flags & RTN_ROOT)
1153 		return net->ipv6.ip6_null_entry;
1154 
1155 	while (fn) {
1156 		if (fn->left)
1157 			return fn->left->leaf;
1158 		if (fn->right)
1159 			return fn->right->leaf;
1160 
1161 		fn = FIB6_SUBTREE(fn);
1162 	}
1163 	return NULL;
1164 }
1165 
1166 /*
1167  *	Called to trim the tree of intermediate nodes when possible. "fn"
1168  *	is the node we want to try and remove.
1169  */
1170 
1171 static struct fib6_node *fib6_repair_tree(struct net *net,
1172 					   struct fib6_node *fn)
1173 {
1174 	int children;
1175 	int nstate;
1176 	struct fib6_node *child, *pn;
1177 	struct fib6_walker_t *w;
1178 	int iter = 0;
1179 
1180 	for (;;) {
1181 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1182 		iter++;
1183 
1184 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1185 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1186 		WARN_ON(fn->leaf != NULL);
1187 
1188 		children = 0;
1189 		child = NULL;
1190 		if (fn->right)
1191 			child = fn->right, children |= 1;
1192 		if (fn->left)
1193 			child = fn->left, children |= 2;
1194 
1195 		if (children == 3 || FIB6_SUBTREE(fn)
1196 #ifdef CONFIG_IPV6_SUBTREES
1197 		    /* Subtree root (i.e. fn) may have one child */
1198 		    || (children && fn->fn_flags & RTN_ROOT)
1199 #endif
1200 		    ) {
1201 			fn->leaf = fib6_find_prefix(net, fn);
1202 #if RT6_DEBUG >= 2
1203 			if (!fn->leaf) {
1204 				WARN_ON(!fn->leaf);
1205 				fn->leaf = net->ipv6.ip6_null_entry;
1206 			}
1207 #endif
1208 			atomic_inc(&fn->leaf->rt6i_ref);
1209 			return fn->parent;
1210 		}
1211 
1212 		pn = fn->parent;
1213 #ifdef CONFIG_IPV6_SUBTREES
1214 		if (FIB6_SUBTREE(pn) == fn) {
1215 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1216 			FIB6_SUBTREE(pn) = NULL;
1217 			nstate = FWS_L;
1218 		} else {
1219 			WARN_ON(fn->fn_flags & RTN_ROOT);
1220 #endif
1221 			if (pn->right == fn)
1222 				pn->right = child;
1223 			else if (pn->left == fn)
1224 				pn->left = child;
1225 #if RT6_DEBUG >= 2
1226 			else
1227 				WARN_ON(1);
1228 #endif
1229 			if (child)
1230 				child->parent = pn;
1231 			nstate = FWS_R;
1232 #ifdef CONFIG_IPV6_SUBTREES
1233 		}
1234 #endif
1235 
1236 		read_lock(&fib6_walker_lock);
1237 		FOR_WALKERS(w) {
1238 			if (!child) {
1239 				if (w->root == fn) {
1240 					w->root = w->node = NULL;
1241 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1242 				} else if (w->node == fn) {
1243 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1244 					w->node = pn;
1245 					w->state = nstate;
1246 				}
1247 			} else {
1248 				if (w->root == fn) {
1249 					w->root = child;
1250 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1251 				}
1252 				if (w->node == fn) {
1253 					w->node = child;
1254 					if (children&2) {
1255 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1256 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1257 					} else {
1258 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1259 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1260 					}
1261 				}
1262 			}
1263 		}
1264 		read_unlock(&fib6_walker_lock);
1265 
1266 		node_free(fn);
1267 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1268 			return pn;
1269 
1270 		rt6_release(pn->leaf);
1271 		pn->leaf = NULL;
1272 		fn = pn;
1273 	}
1274 }
1275 
1276 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1277 			   struct nl_info *info)
1278 {
1279 	struct fib6_walker_t *w;
1280 	struct rt6_info *rt = *rtp;
1281 	struct net *net = info->nl_net;
1282 
1283 	RT6_TRACE("fib6_del_route\n");
1284 
1285 	/* Unlink it */
1286 	*rtp = rt->dst.rt6_next;
1287 	rt->rt6i_node = NULL;
1288 	net->ipv6.rt6_stats->fib_rt_entries--;
1289 	net->ipv6.rt6_stats->fib_discarded_routes++;
1290 
1291 	/* Reset round-robin state, if necessary */
1292 	if (fn->rr_ptr == rt)
1293 		fn->rr_ptr = NULL;
1294 
1295 	/* Remove this entry from other siblings */
1296 	if (rt->rt6i_nsiblings) {
1297 		struct rt6_info *sibling, *next_sibling;
1298 
1299 		list_for_each_entry_safe(sibling, next_sibling,
1300 					 &rt->rt6i_siblings, rt6i_siblings)
1301 			sibling->rt6i_nsiblings--;
1302 		rt->rt6i_nsiblings = 0;
1303 		list_del_init(&rt->rt6i_siblings);
1304 	}
1305 
1306 	/* Adjust walkers */
1307 	read_lock(&fib6_walker_lock);
1308 	FOR_WALKERS(w) {
1309 		if (w->state == FWS_C && w->leaf == rt) {
1310 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1311 			w->leaf = rt->dst.rt6_next;
1312 			if (!w->leaf)
1313 				w->state = FWS_U;
1314 		}
1315 	}
1316 	read_unlock(&fib6_walker_lock);
1317 
1318 	rt->dst.rt6_next = NULL;
1319 
1320 	/* If it was last route, expunge its radix tree node */
1321 	if (!fn->leaf) {
1322 		fn->fn_flags &= ~RTN_RTINFO;
1323 		net->ipv6.rt6_stats->fib_route_nodes--;
1324 		fn = fib6_repair_tree(net, fn);
1325 	}
1326 
1327 	if (atomic_read(&rt->rt6i_ref) != 1) {
1328 		/* This route is used as dummy address holder in some split
1329 		 * nodes. It is not leaked, but it still holds other resources,
1330 		 * which must be released in time. So, scan ascendant nodes
1331 		 * and replace dummy references to this route with references
1332 		 * to still alive ones.
1333 		 */
1334 		while (fn) {
1335 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1336 				fn->leaf = fib6_find_prefix(net, fn);
1337 				atomic_inc(&fn->leaf->rt6i_ref);
1338 				rt6_release(rt);
1339 			}
1340 			fn = fn->parent;
1341 		}
1342 		/* No more references are possible at this point. */
1343 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1344 	}
1345 
1346 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1347 	rt6_release(rt);
1348 }
1349 
1350 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1351 {
1352 	struct net *net = info->nl_net;
1353 	struct fib6_node *fn = rt->rt6i_node;
1354 	struct rt6_info **rtp;
1355 
1356 #if RT6_DEBUG >= 2
1357 	if (rt->dst.obsolete > 0) {
1358 		WARN_ON(fn != NULL);
1359 		return -ENOENT;
1360 	}
1361 #endif
1362 	if (!fn || rt == net->ipv6.ip6_null_entry)
1363 		return -ENOENT;
1364 
1365 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1366 
1367 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1368 		struct fib6_node *pn = fn;
1369 #ifdef CONFIG_IPV6_SUBTREES
1370 		/* clones of this route might be in another subtree */
1371 		if (rt->rt6i_src.plen) {
1372 			while (!(pn->fn_flags & RTN_ROOT))
1373 				pn = pn->parent;
1374 			pn = pn->parent;
1375 		}
1376 #endif
1377 		fib6_prune_clones(info->nl_net, pn);
1378 	}
1379 
1380 	/*
1381 	 *	Walk the leaf entries looking for ourself
1382 	 */
1383 
1384 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1385 		if (*rtp == rt) {
1386 			fib6_del_route(fn, rtp, info);
1387 			return 0;
1388 		}
1389 	}
1390 	return -ENOENT;
1391 }
1392 
1393 /*
1394  *	Tree traversal function.
1395  *
1396  *	Certainly, it is not interrupt safe.
1397  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1398  *	It means, that we can modify tree during walking
1399  *	and use this function for garbage collection, clone pruning,
1400  *	cleaning tree when a device goes down etc. etc.
1401  *
1402  *	It guarantees that every node will be traversed,
1403  *	and that it will be traversed only once.
1404  *
1405  *	Callback function w->func may return:
1406  *	0 -> continue walking.
1407  *	positive value -> walking is suspended (used by tree dumps,
1408  *	and probably by gc, if it will be split to several slices)
1409  *	negative value -> terminate walking.
1410  *
1411  *	The function itself returns:
1412  *	0   -> walk is complete.
1413  *	>0  -> walk is incomplete (i.e. suspended)
1414  *	<0  -> walk is terminated by an error.
1415  */
1416 
1417 static int fib6_walk_continue(struct fib6_walker_t *w)
1418 {
1419 	struct fib6_node *fn, *pn;
1420 
1421 	for (;;) {
1422 		fn = w->node;
1423 		if (!fn)
1424 			return 0;
1425 
1426 		if (w->prune && fn != w->root &&
1427 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1428 			w->state = FWS_C;
1429 			w->leaf = fn->leaf;
1430 		}
1431 		switch (w->state) {
1432 #ifdef CONFIG_IPV6_SUBTREES
1433 		case FWS_S:
1434 			if (FIB6_SUBTREE(fn)) {
1435 				w->node = FIB6_SUBTREE(fn);
1436 				continue;
1437 			}
1438 			w->state = FWS_L;
1439 #endif
1440 		case FWS_L:
1441 			if (fn->left) {
1442 				w->node = fn->left;
1443 				w->state = FWS_INIT;
1444 				continue;
1445 			}
1446 			w->state = FWS_R;
1447 		case FWS_R:
1448 			if (fn->right) {
1449 				w->node = fn->right;
1450 				w->state = FWS_INIT;
1451 				continue;
1452 			}
1453 			w->state = FWS_C;
1454 			w->leaf = fn->leaf;
1455 		case FWS_C:
1456 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1457 				int err;
1458 
1459 				if (w->skip) {
1460 					w->skip--;
1461 					goto skip;
1462 				}
1463 
1464 				err = w->func(w);
1465 				if (err)
1466 					return err;
1467 
1468 				w->count++;
1469 				continue;
1470 			}
1471 skip:
1472 			w->state = FWS_U;
1473 		case FWS_U:
1474 			if (fn == w->root)
1475 				return 0;
1476 			pn = fn->parent;
1477 			w->node = pn;
1478 #ifdef CONFIG_IPV6_SUBTREES
1479 			if (FIB6_SUBTREE(pn) == fn) {
1480 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1481 				w->state = FWS_L;
1482 				continue;
1483 			}
1484 #endif
1485 			if (pn->left == fn) {
1486 				w->state = FWS_R;
1487 				continue;
1488 			}
1489 			if (pn->right == fn) {
1490 				w->state = FWS_C;
1491 				w->leaf = w->node->leaf;
1492 				continue;
1493 			}
1494 #if RT6_DEBUG >= 2
1495 			WARN_ON(1);
1496 #endif
1497 		}
1498 	}
1499 }
1500 
1501 static int fib6_walk(struct fib6_walker_t *w)
1502 {
1503 	int res;
1504 
1505 	w->state = FWS_INIT;
1506 	w->node = w->root;
1507 
1508 	fib6_walker_link(w);
1509 	res = fib6_walk_continue(w);
1510 	if (res <= 0)
1511 		fib6_walker_unlink(w);
1512 	return res;
1513 }
1514 
1515 static int fib6_clean_node(struct fib6_walker_t *w)
1516 {
1517 	int res;
1518 	struct rt6_info *rt;
1519 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1520 	struct nl_info info = {
1521 		.nl_net = c->net,
1522 	};
1523 
1524 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1525 		res = c->func(rt, c->arg);
1526 		if (res < 0) {
1527 			w->leaf = rt;
1528 			res = fib6_del(rt, &info);
1529 			if (res) {
1530 #if RT6_DEBUG >= 2
1531 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1532 					 __func__, rt, rt->rt6i_node, res);
1533 #endif
1534 				continue;
1535 			}
1536 			return 0;
1537 		}
1538 		WARN_ON(res != 0);
1539 	}
1540 	w->leaf = rt;
1541 	return 0;
1542 }
1543 
1544 /*
1545  *	Convenient frontend to tree walker.
1546  *
1547  *	func is called on each route.
1548  *		It may return -1 -> delete this route.
1549  *		              0  -> continue walking
1550  *
1551  *	prune==1 -> only immediate children of node (certainly,
1552  *	ignoring pure split nodes) will be scanned.
1553  */
1554 
1555 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1556 			    int (*func)(struct rt6_info *, void *arg),
1557 			    int prune, void *arg)
1558 {
1559 	struct fib6_cleaner_t c;
1560 
1561 	c.w.root = root;
1562 	c.w.func = fib6_clean_node;
1563 	c.w.prune = prune;
1564 	c.w.count = 0;
1565 	c.w.skip = 0;
1566 	c.func = func;
1567 	c.arg = arg;
1568 	c.net = net;
1569 
1570 	fib6_walk(&c.w);
1571 }
1572 
1573 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1574 		    void *arg)
1575 {
1576 	struct fib6_table *table;
1577 	struct hlist_head *head;
1578 	unsigned int h;
1579 
1580 	rcu_read_lock();
1581 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1582 		head = &net->ipv6.fib_table_hash[h];
1583 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1584 			write_lock_bh(&table->tb6_lock);
1585 			fib6_clean_tree(net, &table->tb6_root,
1586 					func, 0, arg);
1587 			write_unlock_bh(&table->tb6_lock);
1588 		}
1589 	}
1590 	rcu_read_unlock();
1591 }
1592 
1593 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1594 {
1595 	if (rt->rt6i_flags & RTF_CACHE) {
1596 		RT6_TRACE("pruning clone %p\n", rt);
1597 		return -1;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1604 {
1605 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, NULL);
1606 }
1607 
1608 static int fib6_update_sernum(struct rt6_info *rt, void *arg)
1609 {
1610 	__u32 sernum = *(__u32 *)arg;
1611 
1612 	if (rt->rt6i_node &&
1613 	    rt->rt6i_node->fn_sernum != sernum)
1614 		rt->rt6i_node->fn_sernum = sernum;
1615 
1616 	return 0;
1617 }
1618 
1619 static void fib6_flush_trees(struct net *net)
1620 {
1621 	__u32 new_sernum = fib6_new_sernum();
1622 
1623 	fib6_clean_all(net, fib6_update_sernum, &new_sernum);
1624 }
1625 
1626 /*
1627  *	Garbage collection
1628  */
1629 
1630 static struct fib6_gc_args
1631 {
1632 	int			timeout;
1633 	int			more;
1634 } gc_args;
1635 
1636 static int fib6_age(struct rt6_info *rt, void *arg)
1637 {
1638 	unsigned long now = jiffies;
1639 
1640 	/*
1641 	 *	check addrconf expiration here.
1642 	 *	Routes are expired even if they are in use.
1643 	 *
1644 	 *	Also age clones. Note, that clones are aged out
1645 	 *	only if they are not in use now.
1646 	 */
1647 
1648 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1649 		if (time_after(now, rt->dst.expires)) {
1650 			RT6_TRACE("expiring %p\n", rt);
1651 			return -1;
1652 		}
1653 		gc_args.more++;
1654 	} else if (rt->rt6i_flags & RTF_CACHE) {
1655 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1656 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1657 			RT6_TRACE("aging clone %p\n", rt);
1658 			return -1;
1659 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1660 			struct neighbour *neigh;
1661 			__u8 neigh_flags = 0;
1662 
1663 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1664 			if (neigh) {
1665 				neigh_flags = neigh->flags;
1666 				neigh_release(neigh);
1667 			}
1668 			if (!(neigh_flags & NTF_ROUTER)) {
1669 				RT6_TRACE("purging route %p via non-router but gateway\n",
1670 					  rt);
1671 				return -1;
1672 			}
1673 		}
1674 		gc_args.more++;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static DEFINE_SPINLOCK(fib6_gc_lock);
1681 
1682 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1683 {
1684 	unsigned long now;
1685 
1686 	if (force) {
1687 		spin_lock_bh(&fib6_gc_lock);
1688 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1689 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1690 		return;
1691 	}
1692 	gc_args.timeout = expires ? (int)expires :
1693 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1694 
1695 	gc_args.more = icmp6_dst_gc();
1696 
1697 	fib6_clean_all(net, fib6_age, NULL);
1698 	now = jiffies;
1699 	net->ipv6.ip6_rt_last_gc = now;
1700 
1701 	if (gc_args.more)
1702 		mod_timer(&net->ipv6.ip6_fib_timer,
1703 			  round_jiffies(now
1704 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1705 	else
1706 		del_timer(&net->ipv6.ip6_fib_timer);
1707 	spin_unlock_bh(&fib6_gc_lock);
1708 }
1709 
1710 static void fib6_gc_timer_cb(unsigned long arg)
1711 {
1712 	fib6_run_gc(0, (struct net *)arg, true);
1713 }
1714 
1715 static int __net_init fib6_net_init(struct net *net)
1716 {
1717 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1718 
1719 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1720 
1721 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1722 	if (!net->ipv6.rt6_stats)
1723 		goto out_timer;
1724 
1725 	/* Avoid false sharing : Use at least a full cache line */
1726 	size = max_t(size_t, size, L1_CACHE_BYTES);
1727 
1728 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1729 	if (!net->ipv6.fib_table_hash)
1730 		goto out_rt6_stats;
1731 
1732 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1733 					  GFP_KERNEL);
1734 	if (!net->ipv6.fib6_main_tbl)
1735 		goto out_fib_table_hash;
1736 
1737 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1738 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1739 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1740 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1741 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1742 
1743 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1744 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1745 					   GFP_KERNEL);
1746 	if (!net->ipv6.fib6_local_tbl)
1747 		goto out_fib6_main_tbl;
1748 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1749 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1750 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1751 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1752 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1753 #endif
1754 	fib6_tables_init(net);
1755 
1756 	return 0;
1757 
1758 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1759 out_fib6_main_tbl:
1760 	kfree(net->ipv6.fib6_main_tbl);
1761 #endif
1762 out_fib_table_hash:
1763 	kfree(net->ipv6.fib_table_hash);
1764 out_rt6_stats:
1765 	kfree(net->ipv6.rt6_stats);
1766 out_timer:
1767 	return -ENOMEM;
1768 }
1769 
1770 static void fib6_net_exit(struct net *net)
1771 {
1772 	rt6_ifdown(net, NULL);
1773 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1774 
1775 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1776 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1777 	kfree(net->ipv6.fib6_local_tbl);
1778 #endif
1779 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1780 	kfree(net->ipv6.fib6_main_tbl);
1781 	kfree(net->ipv6.fib_table_hash);
1782 	kfree(net->ipv6.rt6_stats);
1783 }
1784 
1785 static struct pernet_operations fib6_net_ops = {
1786 	.init = fib6_net_init,
1787 	.exit = fib6_net_exit,
1788 };
1789 
1790 int __init fib6_init(void)
1791 {
1792 	int ret = -ENOMEM;
1793 
1794 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1795 					   sizeof(struct fib6_node),
1796 					   0, SLAB_HWCACHE_ALIGN,
1797 					   NULL);
1798 	if (!fib6_node_kmem)
1799 		goto out;
1800 
1801 	ret = register_pernet_subsys(&fib6_net_ops);
1802 	if (ret)
1803 		goto out_kmem_cache_create;
1804 
1805 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1806 			      NULL);
1807 	if (ret)
1808 		goto out_unregister_subsys;
1809 
1810 	__fib6_flush_trees = fib6_flush_trees;
1811 out:
1812 	return ret;
1813 
1814 out_unregister_subsys:
1815 	unregister_pernet_subsys(&fib6_net_ops);
1816 out_kmem_cache_create:
1817 	kmem_cache_destroy(fib6_node_kmem);
1818 	goto out;
1819 }
1820 
1821 void fib6_gc_cleanup(void)
1822 {
1823 	unregister_pernet_subsys(&fib6_net_ops);
1824 	kmem_cache_destroy(fib6_node_kmem);
1825 }
1826 
1827 #ifdef CONFIG_PROC_FS
1828 
1829 struct ipv6_route_iter {
1830 	struct seq_net_private p;
1831 	struct fib6_walker_t w;
1832 	loff_t skip;
1833 	struct fib6_table *tbl;
1834 	__u32 sernum;
1835 };
1836 
1837 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1838 {
1839 	struct rt6_info *rt = v;
1840 	struct ipv6_route_iter *iter = seq->private;
1841 
1842 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1843 
1844 #ifdef CONFIG_IPV6_SUBTREES
1845 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1846 #else
1847 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1848 #endif
1849 	if (rt->rt6i_flags & RTF_GATEWAY)
1850 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1851 	else
1852 		seq_puts(seq, "00000000000000000000000000000000");
1853 
1854 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1855 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1856 		   rt->dst.__use, rt->rt6i_flags,
1857 		   rt->dst.dev ? rt->dst.dev->name : "");
1858 	iter->w.leaf = NULL;
1859 	return 0;
1860 }
1861 
1862 static int ipv6_route_yield(struct fib6_walker_t *w)
1863 {
1864 	struct ipv6_route_iter *iter = w->args;
1865 
1866 	if (!iter->skip)
1867 		return 1;
1868 
1869 	do {
1870 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1871 		iter->skip--;
1872 		if (!iter->skip && iter->w.leaf)
1873 			return 1;
1874 	} while (iter->w.leaf);
1875 
1876 	return 0;
1877 }
1878 
1879 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1880 {
1881 	memset(&iter->w, 0, sizeof(iter->w));
1882 	iter->w.func = ipv6_route_yield;
1883 	iter->w.root = &iter->tbl->tb6_root;
1884 	iter->w.state = FWS_INIT;
1885 	iter->w.node = iter->w.root;
1886 	iter->w.args = iter;
1887 	iter->sernum = iter->w.root->fn_sernum;
1888 	INIT_LIST_HEAD(&iter->w.lh);
1889 	fib6_walker_link(&iter->w);
1890 }
1891 
1892 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1893 						    struct net *net)
1894 {
1895 	unsigned int h;
1896 	struct hlist_node *node;
1897 
1898 	if (tbl) {
1899 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1900 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1901 	} else {
1902 		h = 0;
1903 		node = NULL;
1904 	}
1905 
1906 	while (!node && h < FIB6_TABLE_HASHSZ) {
1907 		node = rcu_dereference_bh(
1908 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1909 	}
1910 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1911 }
1912 
1913 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1914 {
1915 	if (iter->sernum != iter->w.root->fn_sernum) {
1916 		iter->sernum = iter->w.root->fn_sernum;
1917 		iter->w.state = FWS_INIT;
1918 		iter->w.node = iter->w.root;
1919 		WARN_ON(iter->w.skip);
1920 		iter->w.skip = iter->w.count;
1921 	}
1922 }
1923 
1924 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1925 {
1926 	int r;
1927 	struct rt6_info *n;
1928 	struct net *net = seq_file_net(seq);
1929 	struct ipv6_route_iter *iter = seq->private;
1930 
1931 	if (!v)
1932 		goto iter_table;
1933 
1934 	n = ((struct rt6_info *)v)->dst.rt6_next;
1935 	if (n) {
1936 		++*pos;
1937 		return n;
1938 	}
1939 
1940 iter_table:
1941 	ipv6_route_check_sernum(iter);
1942 	read_lock(&iter->tbl->tb6_lock);
1943 	r = fib6_walk_continue(&iter->w);
1944 	read_unlock(&iter->tbl->tb6_lock);
1945 	if (r > 0) {
1946 		if (v)
1947 			++*pos;
1948 		return iter->w.leaf;
1949 	} else if (r < 0) {
1950 		fib6_walker_unlink(&iter->w);
1951 		return NULL;
1952 	}
1953 	fib6_walker_unlink(&iter->w);
1954 
1955 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1956 	if (!iter->tbl)
1957 		return NULL;
1958 
1959 	ipv6_route_seq_setup_walk(iter);
1960 	goto iter_table;
1961 }
1962 
1963 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1964 	__acquires(RCU_BH)
1965 {
1966 	struct net *net = seq_file_net(seq);
1967 	struct ipv6_route_iter *iter = seq->private;
1968 
1969 	rcu_read_lock_bh();
1970 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
1971 	iter->skip = *pos;
1972 
1973 	if (iter->tbl) {
1974 		ipv6_route_seq_setup_walk(iter);
1975 		return ipv6_route_seq_next(seq, NULL, pos);
1976 	} else {
1977 		return NULL;
1978 	}
1979 }
1980 
1981 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1982 {
1983 	struct fib6_walker_t *w = &iter->w;
1984 	return w->node && !(w->state == FWS_U && w->node == w->root);
1985 }
1986 
1987 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1988 	__releases(RCU_BH)
1989 {
1990 	struct ipv6_route_iter *iter = seq->private;
1991 
1992 	if (ipv6_route_iter_active(iter))
1993 		fib6_walker_unlink(&iter->w);
1994 
1995 	rcu_read_unlock_bh();
1996 }
1997 
1998 static const struct seq_operations ipv6_route_seq_ops = {
1999 	.start	= ipv6_route_seq_start,
2000 	.next	= ipv6_route_seq_next,
2001 	.stop	= ipv6_route_seq_stop,
2002 	.show	= ipv6_route_seq_show
2003 };
2004 
2005 int ipv6_route_open(struct inode *inode, struct file *file)
2006 {
2007 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2008 			    sizeof(struct ipv6_route_iter));
2009 }
2010 
2011 #endif /* CONFIG_PROC_FS */
2012