xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 3805e6a1)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160 
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 	int cpu;
164 
165 	if (!non_pcpu_rt->rt6i_pcpu)
166 		return;
167 
168 	for_each_possible_cpu(cpu) {
169 		struct rt6_info **ppcpu_rt;
170 		struct rt6_info *pcpu_rt;
171 
172 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 		pcpu_rt = *ppcpu_rt;
174 		if (pcpu_rt) {
175 			rt6_rcu_free(pcpu_rt);
176 			*ppcpu_rt = NULL;
177 		}
178 	}
179 
180 	non_pcpu_rt->rt6i_pcpu = NULL;
181 }
182 
183 static void rt6_release(struct rt6_info *rt)
184 {
185 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
186 		rt6_free_pcpu(rt);
187 		rt6_rcu_free(rt);
188 	}
189 }
190 
191 static void fib6_link_table(struct net *net, struct fib6_table *tb)
192 {
193 	unsigned int h;
194 
195 	/*
196 	 * Initialize table lock at a single place to give lockdep a key,
197 	 * tables aren't visible prior to being linked to the list.
198 	 */
199 	rwlock_init(&tb->tb6_lock);
200 
201 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
202 
203 	/*
204 	 * No protection necessary, this is the only list mutatation
205 	 * operation, tables never disappear once they exist.
206 	 */
207 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
208 }
209 
210 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
211 
212 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
213 {
214 	struct fib6_table *table;
215 
216 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
217 	if (table) {
218 		table->tb6_id = id;
219 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221 		inet_peer_base_init(&table->tb6_peers);
222 	}
223 
224 	return table;
225 }
226 
227 struct fib6_table *fib6_new_table(struct net *net, u32 id)
228 {
229 	struct fib6_table *tb;
230 
231 	if (id == 0)
232 		id = RT6_TABLE_MAIN;
233 	tb = fib6_get_table(net, id);
234 	if (tb)
235 		return tb;
236 
237 	tb = fib6_alloc_table(net, id);
238 	if (tb)
239 		fib6_link_table(net, tb);
240 
241 	return tb;
242 }
243 EXPORT_SYMBOL_GPL(fib6_new_table);
244 
245 struct fib6_table *fib6_get_table(struct net *net, u32 id)
246 {
247 	struct fib6_table *tb;
248 	struct hlist_head *head;
249 	unsigned int h;
250 
251 	if (id == 0)
252 		id = RT6_TABLE_MAIN;
253 	h = id & (FIB6_TABLE_HASHSZ - 1);
254 	rcu_read_lock();
255 	head = &net->ipv6.fib_table_hash[h];
256 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
257 		if (tb->tb6_id == id) {
258 			rcu_read_unlock();
259 			return tb;
260 		}
261 	}
262 	rcu_read_unlock();
263 
264 	return NULL;
265 }
266 EXPORT_SYMBOL_GPL(fib6_get_table);
267 
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274 
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277 	return fib6_get_table(net, id);
278 }
279 
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282 	  return net->ipv6.fib6_main_tbl;
283 }
284 
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 				   int flags, pol_lookup_t lookup)
287 {
288 	struct rt6_info *rt;
289 
290 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291 	if (rt->rt6i_flags & RTF_REJECT &&
292 	    rt->dst.error == -EAGAIN) {
293 		ip6_rt_put(rt);
294 		rt = net->ipv6.ip6_null_entry;
295 		dst_hold(&rt->dst);
296 	}
297 
298 	return &rt->dst;
299 }
300 
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305 
306 #endif
307 
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310 	int res;
311 	struct rt6_info *rt;
312 
313 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 		res = rt6_dump_route(rt, w->args);
315 		if (res < 0) {
316 			/* Frame is full, suspend walking */
317 			w->leaf = rt;
318 			return 1;
319 		}
320 	}
321 	w->leaf = NULL;
322 	return 0;
323 }
324 
325 static void fib6_dump_end(struct netlink_callback *cb)
326 {
327 	struct net *net = sock_net(cb->skb->sk);
328 	struct fib6_walker *w = (void *)cb->args[2];
329 
330 	if (w) {
331 		if (cb->args[4]) {
332 			cb->args[4] = 0;
333 			fib6_walker_unlink(net, w);
334 		}
335 		cb->args[2] = 0;
336 		kfree(w);
337 	}
338 	cb->done = (void *)cb->args[3];
339 	cb->args[1] = 3;
340 }
341 
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344 	fib6_dump_end(cb);
345 	return cb->done ? cb->done(cb) : 0;
346 }
347 
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349 			   struct netlink_callback *cb)
350 {
351 	struct net *net = sock_net(skb->sk);
352 	struct fib6_walker *w;
353 	int res;
354 
355 	w = (void *)cb->args[2];
356 	w->root = &table->tb6_root;
357 
358 	if (cb->args[4] == 0) {
359 		w->count = 0;
360 		w->skip = 0;
361 
362 		read_lock_bh(&table->tb6_lock);
363 		res = fib6_walk(net, w);
364 		read_unlock_bh(&table->tb6_lock);
365 		if (res > 0) {
366 			cb->args[4] = 1;
367 			cb->args[5] = w->root->fn_sernum;
368 		}
369 	} else {
370 		if (cb->args[5] != w->root->fn_sernum) {
371 			/* Begin at the root if the tree changed */
372 			cb->args[5] = w->root->fn_sernum;
373 			w->state = FWS_INIT;
374 			w->node = w->root;
375 			w->skip = w->count;
376 		} else
377 			w->skip = 0;
378 
379 		read_lock_bh(&table->tb6_lock);
380 		res = fib6_walk_continue(w);
381 		read_unlock_bh(&table->tb6_lock);
382 		if (res <= 0) {
383 			fib6_walker_unlink(net, w);
384 			cb->args[4] = 0;
385 		}
386 	}
387 
388 	return res;
389 }
390 
391 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
392 {
393 	struct net *net = sock_net(skb->sk);
394 	unsigned int h, s_h;
395 	unsigned int e = 0, s_e;
396 	struct rt6_rtnl_dump_arg arg;
397 	struct fib6_walker *w;
398 	struct fib6_table *tb;
399 	struct hlist_head *head;
400 	int res = 0;
401 
402 	s_h = cb->args[0];
403 	s_e = cb->args[1];
404 
405 	w = (void *)cb->args[2];
406 	if (!w) {
407 		/* New dump:
408 		 *
409 		 * 1. hook callback destructor.
410 		 */
411 		cb->args[3] = (long)cb->done;
412 		cb->done = fib6_dump_done;
413 
414 		/*
415 		 * 2. allocate and initialize walker.
416 		 */
417 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
418 		if (!w)
419 			return -ENOMEM;
420 		w->func = fib6_dump_node;
421 		cb->args[2] = (long)w;
422 	}
423 
424 	arg.skb = skb;
425 	arg.cb = cb;
426 	arg.net = net;
427 	w->args = &arg;
428 
429 	rcu_read_lock();
430 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
431 		e = 0;
432 		head = &net->ipv6.fib_table_hash[h];
433 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
434 			if (e < s_e)
435 				goto next;
436 			res = fib6_dump_table(tb, skb, cb);
437 			if (res != 0)
438 				goto out;
439 next:
440 			e++;
441 		}
442 	}
443 out:
444 	rcu_read_unlock();
445 	cb->args[1] = e;
446 	cb->args[0] = h;
447 
448 	res = res < 0 ? res : skb->len;
449 	if (res <= 0)
450 		fib6_dump_end(cb);
451 	return res;
452 }
453 
454 /*
455  *	Routing Table
456  *
457  *	return the appropriate node for a routing tree "add" operation
458  *	by either creating and inserting or by returning an existing
459  *	node.
460  */
461 
462 static struct fib6_node *fib6_add_1(struct fib6_node *root,
463 				     struct in6_addr *addr, int plen,
464 				     int offset, int allow_create,
465 				     int replace_required, int sernum)
466 {
467 	struct fib6_node *fn, *in, *ln;
468 	struct fib6_node *pn = NULL;
469 	struct rt6key *key;
470 	int	bit;
471 	__be32	dir = 0;
472 
473 	RT6_TRACE("fib6_add_1\n");
474 
475 	/* insert node in tree */
476 
477 	fn = root;
478 
479 	do {
480 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
481 
482 		/*
483 		 *	Prefix match
484 		 */
485 		if (plen < fn->fn_bit ||
486 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
487 			if (!allow_create) {
488 				if (replace_required) {
489 					pr_warn("Can't replace route, no match found\n");
490 					return ERR_PTR(-ENOENT);
491 				}
492 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
493 			}
494 			goto insert_above;
495 		}
496 
497 		/*
498 		 *	Exact match ?
499 		 */
500 
501 		if (plen == fn->fn_bit) {
502 			/* clean up an intermediate node */
503 			if (!(fn->fn_flags & RTN_RTINFO)) {
504 				rt6_release(fn->leaf);
505 				fn->leaf = NULL;
506 			}
507 
508 			fn->fn_sernum = sernum;
509 
510 			return fn;
511 		}
512 
513 		/*
514 		 *	We have more bits to go
515 		 */
516 
517 		/* Try to walk down on tree. */
518 		fn->fn_sernum = sernum;
519 		dir = addr_bit_set(addr, fn->fn_bit);
520 		pn = fn;
521 		fn = dir ? fn->right : fn->left;
522 	} while (fn);
523 
524 	if (!allow_create) {
525 		/* We should not create new node because
526 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
527 		 * I assume it is safe to require NLM_F_CREATE when
528 		 * REPLACE flag is used! Later we may want to remove the
529 		 * check for replace_required, because according
530 		 * to netlink specification, NLM_F_CREATE
531 		 * MUST be specified if new route is created.
532 		 * That would keep IPv6 consistent with IPv4
533 		 */
534 		if (replace_required) {
535 			pr_warn("Can't replace route, no match found\n");
536 			return ERR_PTR(-ENOENT);
537 		}
538 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
539 	}
540 	/*
541 	 *	We walked to the bottom of tree.
542 	 *	Create new leaf node without children.
543 	 */
544 
545 	ln = node_alloc();
546 
547 	if (!ln)
548 		return ERR_PTR(-ENOMEM);
549 	ln->fn_bit = plen;
550 
551 	ln->parent = pn;
552 	ln->fn_sernum = sernum;
553 
554 	if (dir)
555 		pn->right = ln;
556 	else
557 		pn->left  = ln;
558 
559 	return ln;
560 
561 
562 insert_above:
563 	/*
564 	 * split since we don't have a common prefix anymore or
565 	 * we have a less significant route.
566 	 * we've to insert an intermediate node on the list
567 	 * this new node will point to the one we need to create
568 	 * and the current
569 	 */
570 
571 	pn = fn->parent;
572 
573 	/* find 1st bit in difference between the 2 addrs.
574 
575 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
576 	   but if it is >= plen, the value is ignored in any case.
577 	 */
578 
579 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
580 
581 	/*
582 	 *		(intermediate)[in]
583 	 *	          /	   \
584 	 *	(new leaf node)[ln] (old node)[fn]
585 	 */
586 	if (plen > bit) {
587 		in = node_alloc();
588 		ln = node_alloc();
589 
590 		if (!in || !ln) {
591 			if (in)
592 				node_free(in);
593 			if (ln)
594 				node_free(ln);
595 			return ERR_PTR(-ENOMEM);
596 		}
597 
598 		/*
599 		 * new intermediate node.
600 		 * RTN_RTINFO will
601 		 * be off since that an address that chooses one of
602 		 * the branches would not match less specific routes
603 		 * in the other branch
604 		 */
605 
606 		in->fn_bit = bit;
607 
608 		in->parent = pn;
609 		in->leaf = fn->leaf;
610 		atomic_inc(&in->leaf->rt6i_ref);
611 
612 		in->fn_sernum = sernum;
613 
614 		/* update parent pointer */
615 		if (dir)
616 			pn->right = in;
617 		else
618 			pn->left  = in;
619 
620 		ln->fn_bit = plen;
621 
622 		ln->parent = in;
623 		fn->parent = in;
624 
625 		ln->fn_sernum = sernum;
626 
627 		if (addr_bit_set(addr, bit)) {
628 			in->right = ln;
629 			in->left  = fn;
630 		} else {
631 			in->left  = ln;
632 			in->right = fn;
633 		}
634 	} else { /* plen <= bit */
635 
636 		/*
637 		 *		(new leaf node)[ln]
638 		 *	          /	   \
639 		 *	     (old node)[fn] NULL
640 		 */
641 
642 		ln = node_alloc();
643 
644 		if (!ln)
645 			return ERR_PTR(-ENOMEM);
646 
647 		ln->fn_bit = plen;
648 
649 		ln->parent = pn;
650 
651 		ln->fn_sernum = sernum;
652 
653 		if (dir)
654 			pn->right = ln;
655 		else
656 			pn->left  = ln;
657 
658 		if (addr_bit_set(&key->addr, plen))
659 			ln->right = fn;
660 		else
661 			ln->left  = fn;
662 
663 		fn->parent = ln;
664 	}
665 	return ln;
666 }
667 
668 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
669 {
670 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
671 	       RTF_GATEWAY;
672 }
673 
674 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
675 {
676 	int i;
677 
678 	for (i = 0; i < RTAX_MAX; i++) {
679 		if (test_bit(i, mxc->mx_valid))
680 			mp[i] = mxc->mx[i];
681 	}
682 }
683 
684 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
685 {
686 	if (!mxc->mx)
687 		return 0;
688 
689 	if (dst->flags & DST_HOST) {
690 		u32 *mp = dst_metrics_write_ptr(dst);
691 
692 		if (unlikely(!mp))
693 			return -ENOMEM;
694 
695 		fib6_copy_metrics(mp, mxc);
696 	} else {
697 		dst_init_metrics(dst, mxc->mx, false);
698 
699 		/* We've stolen mx now. */
700 		mxc->mx = NULL;
701 	}
702 
703 	return 0;
704 }
705 
706 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
707 			  struct net *net)
708 {
709 	if (atomic_read(&rt->rt6i_ref) != 1) {
710 		/* This route is used as dummy address holder in some split
711 		 * nodes. It is not leaked, but it still holds other resources,
712 		 * which must be released in time. So, scan ascendant nodes
713 		 * and replace dummy references to this route with references
714 		 * to still alive ones.
715 		 */
716 		while (fn) {
717 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
718 				fn->leaf = fib6_find_prefix(net, fn);
719 				atomic_inc(&fn->leaf->rt6i_ref);
720 				rt6_release(rt);
721 			}
722 			fn = fn->parent;
723 		}
724 		/* No more references are possible at this point. */
725 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
726 	}
727 }
728 
729 /*
730  *	Insert routing information in a node.
731  */
732 
733 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
734 			    struct nl_info *info, struct mx6_config *mxc)
735 {
736 	struct rt6_info *iter = NULL;
737 	struct rt6_info **ins;
738 	struct rt6_info **fallback_ins = NULL;
739 	int replace = (info->nlh &&
740 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
741 	int add = (!info->nlh ||
742 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
743 	int found = 0;
744 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
745 	int err;
746 
747 	ins = &fn->leaf;
748 
749 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
750 		/*
751 		 *	Search for duplicates
752 		 */
753 
754 		if (iter->rt6i_metric == rt->rt6i_metric) {
755 			/*
756 			 *	Same priority level
757 			 */
758 			if (info->nlh &&
759 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
760 				return -EEXIST;
761 			if (replace) {
762 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
763 					found++;
764 					break;
765 				}
766 				if (rt_can_ecmp)
767 					fallback_ins = fallback_ins ?: ins;
768 				goto next_iter;
769 			}
770 
771 			if (iter->dst.dev == rt->dst.dev &&
772 			    iter->rt6i_idev == rt->rt6i_idev &&
773 			    ipv6_addr_equal(&iter->rt6i_gateway,
774 					    &rt->rt6i_gateway)) {
775 				if (rt->rt6i_nsiblings)
776 					rt->rt6i_nsiblings = 0;
777 				if (!(iter->rt6i_flags & RTF_EXPIRES))
778 					return -EEXIST;
779 				if (!(rt->rt6i_flags & RTF_EXPIRES))
780 					rt6_clean_expires(iter);
781 				else
782 					rt6_set_expires(iter, rt->dst.expires);
783 				iter->rt6i_pmtu = rt->rt6i_pmtu;
784 				return -EEXIST;
785 			}
786 			/* If we have the same destination and the same metric,
787 			 * but not the same gateway, then the route we try to
788 			 * add is sibling to this route, increment our counter
789 			 * of siblings, and later we will add our route to the
790 			 * list.
791 			 * Only static routes (which don't have flag
792 			 * RTF_EXPIRES) are used for ECMPv6.
793 			 *
794 			 * To avoid long list, we only had siblings if the
795 			 * route have a gateway.
796 			 */
797 			if (rt_can_ecmp &&
798 			    rt6_qualify_for_ecmp(iter))
799 				rt->rt6i_nsiblings++;
800 		}
801 
802 		if (iter->rt6i_metric > rt->rt6i_metric)
803 			break;
804 
805 next_iter:
806 		ins = &iter->dst.rt6_next;
807 	}
808 
809 	if (fallback_ins && !found) {
810 		/* No ECMP-able route found, replace first non-ECMP one */
811 		ins = fallback_ins;
812 		iter = *ins;
813 		found++;
814 	}
815 
816 	/* Reset round-robin state, if necessary */
817 	if (ins == &fn->leaf)
818 		fn->rr_ptr = NULL;
819 
820 	/* Link this route to others same route. */
821 	if (rt->rt6i_nsiblings) {
822 		unsigned int rt6i_nsiblings;
823 		struct rt6_info *sibling, *temp_sibling;
824 
825 		/* Find the first route that have the same metric */
826 		sibling = fn->leaf;
827 		while (sibling) {
828 			if (sibling->rt6i_metric == rt->rt6i_metric &&
829 			    rt6_qualify_for_ecmp(sibling)) {
830 				list_add_tail(&rt->rt6i_siblings,
831 					      &sibling->rt6i_siblings);
832 				break;
833 			}
834 			sibling = sibling->dst.rt6_next;
835 		}
836 		/* For each sibling in the list, increment the counter of
837 		 * siblings. BUG() if counters does not match, list of siblings
838 		 * is broken!
839 		 */
840 		rt6i_nsiblings = 0;
841 		list_for_each_entry_safe(sibling, temp_sibling,
842 					 &rt->rt6i_siblings, rt6i_siblings) {
843 			sibling->rt6i_nsiblings++;
844 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
845 			rt6i_nsiblings++;
846 		}
847 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
848 	}
849 
850 	/*
851 	 *	insert node
852 	 */
853 	if (!replace) {
854 		if (!add)
855 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
856 
857 add:
858 		err = fib6_commit_metrics(&rt->dst, mxc);
859 		if (err)
860 			return err;
861 
862 		rt->dst.rt6_next = iter;
863 		*ins = rt;
864 		rt->rt6i_node = fn;
865 		atomic_inc(&rt->rt6i_ref);
866 		inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
867 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
868 
869 		if (!(fn->fn_flags & RTN_RTINFO)) {
870 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
871 			fn->fn_flags |= RTN_RTINFO;
872 		}
873 
874 	} else {
875 		int nsiblings;
876 
877 		if (!found) {
878 			if (add)
879 				goto add;
880 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
881 			return -ENOENT;
882 		}
883 
884 		err = fib6_commit_metrics(&rt->dst, mxc);
885 		if (err)
886 			return err;
887 
888 		*ins = rt;
889 		rt->rt6i_node = fn;
890 		rt->dst.rt6_next = iter->dst.rt6_next;
891 		atomic_inc(&rt->rt6i_ref);
892 		inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
893 		if (!(fn->fn_flags & RTN_RTINFO)) {
894 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
895 			fn->fn_flags |= RTN_RTINFO;
896 		}
897 		nsiblings = iter->rt6i_nsiblings;
898 		fib6_purge_rt(iter, fn, info->nl_net);
899 		rt6_release(iter);
900 
901 		if (nsiblings) {
902 			/* Replacing an ECMP route, remove all siblings */
903 			ins = &rt->dst.rt6_next;
904 			iter = *ins;
905 			while (iter) {
906 				if (rt6_qualify_for_ecmp(iter)) {
907 					*ins = iter->dst.rt6_next;
908 					fib6_purge_rt(iter, fn, info->nl_net);
909 					rt6_release(iter);
910 					nsiblings--;
911 				} else {
912 					ins = &iter->dst.rt6_next;
913 				}
914 				iter = *ins;
915 			}
916 			WARN_ON(nsiblings != 0);
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
924 {
925 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
926 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
927 		mod_timer(&net->ipv6.ip6_fib_timer,
928 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
929 }
930 
931 void fib6_force_start_gc(struct net *net)
932 {
933 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
934 		mod_timer(&net->ipv6.ip6_fib_timer,
935 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
936 }
937 
938 /*
939  *	Add routing information to the routing tree.
940  *	<destination addr>/<source addr>
941  *	with source addr info in sub-trees
942  */
943 
944 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
945 	     struct nl_info *info, struct mx6_config *mxc)
946 {
947 	struct fib6_node *fn, *pn = NULL;
948 	int err = -ENOMEM;
949 	int allow_create = 1;
950 	int replace_required = 0;
951 	int sernum = fib6_new_sernum(info->nl_net);
952 
953 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
954 			 !atomic_read(&rt->dst.__refcnt)))
955 		return -EINVAL;
956 
957 	if (info->nlh) {
958 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
959 			allow_create = 0;
960 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
961 			replace_required = 1;
962 	}
963 	if (!allow_create && !replace_required)
964 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
965 
966 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
967 			offsetof(struct rt6_info, rt6i_dst), allow_create,
968 			replace_required, sernum);
969 	if (IS_ERR(fn)) {
970 		err = PTR_ERR(fn);
971 		fn = NULL;
972 		goto out;
973 	}
974 
975 	pn = fn;
976 
977 #ifdef CONFIG_IPV6_SUBTREES
978 	if (rt->rt6i_src.plen) {
979 		struct fib6_node *sn;
980 
981 		if (!fn->subtree) {
982 			struct fib6_node *sfn;
983 
984 			/*
985 			 * Create subtree.
986 			 *
987 			 *		fn[main tree]
988 			 *		|
989 			 *		sfn[subtree root]
990 			 *		   \
991 			 *		    sn[new leaf node]
992 			 */
993 
994 			/* Create subtree root node */
995 			sfn = node_alloc();
996 			if (!sfn)
997 				goto st_failure;
998 
999 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1000 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1001 			sfn->fn_flags = RTN_ROOT;
1002 			sfn->fn_sernum = sernum;
1003 
1004 			/* Now add the first leaf node to new subtree */
1005 
1006 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1007 					rt->rt6i_src.plen,
1008 					offsetof(struct rt6_info, rt6i_src),
1009 					allow_create, replace_required, sernum);
1010 
1011 			if (IS_ERR(sn)) {
1012 				/* If it is failed, discard just allocated
1013 				   root, and then (in st_failure) stale node
1014 				   in main tree.
1015 				 */
1016 				node_free(sfn);
1017 				err = PTR_ERR(sn);
1018 				goto st_failure;
1019 			}
1020 
1021 			/* Now link new subtree to main tree */
1022 			sfn->parent = fn;
1023 			fn->subtree = sfn;
1024 		} else {
1025 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1026 					rt->rt6i_src.plen,
1027 					offsetof(struct rt6_info, rt6i_src),
1028 					allow_create, replace_required, sernum);
1029 
1030 			if (IS_ERR(sn)) {
1031 				err = PTR_ERR(sn);
1032 				goto st_failure;
1033 			}
1034 		}
1035 
1036 		if (!fn->leaf) {
1037 			fn->leaf = rt;
1038 			atomic_inc(&rt->rt6i_ref);
1039 		}
1040 		fn = sn;
1041 	}
1042 #endif
1043 
1044 	err = fib6_add_rt2node(fn, rt, info, mxc);
1045 	if (!err) {
1046 		fib6_start_gc(info->nl_net, rt);
1047 		if (!(rt->rt6i_flags & RTF_CACHE))
1048 			fib6_prune_clones(info->nl_net, pn);
1049 		rt->dst.flags &= ~DST_NOCACHE;
1050 	}
1051 
1052 out:
1053 	if (err) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1055 		/*
1056 		 * If fib6_add_1 has cleared the old leaf pointer in the
1057 		 * super-tree leaf node we have to find a new one for it.
1058 		 */
1059 		if (pn != fn && pn->leaf == rt) {
1060 			pn->leaf = NULL;
1061 			atomic_dec(&rt->rt6i_ref);
1062 		}
1063 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1064 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1065 #if RT6_DEBUG >= 2
1066 			if (!pn->leaf) {
1067 				WARN_ON(pn->leaf == NULL);
1068 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1069 			}
1070 #endif
1071 			atomic_inc(&pn->leaf->rt6i_ref);
1072 		}
1073 #endif
1074 		if (!(rt->dst.flags & DST_NOCACHE))
1075 			dst_free(&rt->dst);
1076 	}
1077 	return err;
1078 
1079 #ifdef CONFIG_IPV6_SUBTREES
1080 	/* Subtree creation failed, probably main tree node
1081 	   is orphan. If it is, shoot it.
1082 	 */
1083 st_failure:
1084 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1085 		fib6_repair_tree(info->nl_net, fn);
1086 	if (!(rt->dst.flags & DST_NOCACHE))
1087 		dst_free(&rt->dst);
1088 	return err;
1089 #endif
1090 }
1091 
1092 /*
1093  *	Routing tree lookup
1094  *
1095  */
1096 
1097 struct lookup_args {
1098 	int			offset;		/* key offset on rt6_info	*/
1099 	const struct in6_addr	*addr;		/* search key			*/
1100 };
1101 
1102 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1103 				       struct lookup_args *args)
1104 {
1105 	struct fib6_node *fn;
1106 	__be32 dir;
1107 
1108 	if (unlikely(args->offset == 0))
1109 		return NULL;
1110 
1111 	/*
1112 	 *	Descend on a tree
1113 	 */
1114 
1115 	fn = root;
1116 
1117 	for (;;) {
1118 		struct fib6_node *next;
1119 
1120 		dir = addr_bit_set(args->addr, fn->fn_bit);
1121 
1122 		next = dir ? fn->right : fn->left;
1123 
1124 		if (next) {
1125 			fn = next;
1126 			continue;
1127 		}
1128 		break;
1129 	}
1130 
1131 	while (fn) {
1132 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1133 			struct rt6key *key;
1134 
1135 			key = (struct rt6key *) ((u8 *) fn->leaf +
1136 						 args->offset);
1137 
1138 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1139 #ifdef CONFIG_IPV6_SUBTREES
1140 				if (fn->subtree) {
1141 					struct fib6_node *sfn;
1142 					sfn = fib6_lookup_1(fn->subtree,
1143 							    args + 1);
1144 					if (!sfn)
1145 						goto backtrack;
1146 					fn = sfn;
1147 				}
1148 #endif
1149 				if (fn->fn_flags & RTN_RTINFO)
1150 					return fn;
1151 			}
1152 		}
1153 #ifdef CONFIG_IPV6_SUBTREES
1154 backtrack:
1155 #endif
1156 		if (fn->fn_flags & RTN_ROOT)
1157 			break;
1158 
1159 		fn = fn->parent;
1160 	}
1161 
1162 	return NULL;
1163 }
1164 
1165 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1166 			      const struct in6_addr *saddr)
1167 {
1168 	struct fib6_node *fn;
1169 	struct lookup_args args[] = {
1170 		{
1171 			.offset = offsetof(struct rt6_info, rt6i_dst),
1172 			.addr = daddr,
1173 		},
1174 #ifdef CONFIG_IPV6_SUBTREES
1175 		{
1176 			.offset = offsetof(struct rt6_info, rt6i_src),
1177 			.addr = saddr,
1178 		},
1179 #endif
1180 		{
1181 			.offset = 0,	/* sentinel */
1182 		}
1183 	};
1184 
1185 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1186 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1187 		fn = root;
1188 
1189 	return fn;
1190 }
1191 
1192 /*
1193  *	Get node with specified destination prefix (and source prefix,
1194  *	if subtrees are used)
1195  */
1196 
1197 
1198 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1199 				       const struct in6_addr *addr,
1200 				       int plen, int offset)
1201 {
1202 	struct fib6_node *fn;
1203 
1204 	for (fn = root; fn ; ) {
1205 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1206 
1207 		/*
1208 		 *	Prefix match
1209 		 */
1210 		if (plen < fn->fn_bit ||
1211 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1212 			return NULL;
1213 
1214 		if (plen == fn->fn_bit)
1215 			return fn;
1216 
1217 		/*
1218 		 *	We have more bits to go
1219 		 */
1220 		if (addr_bit_set(addr, fn->fn_bit))
1221 			fn = fn->right;
1222 		else
1223 			fn = fn->left;
1224 	}
1225 	return NULL;
1226 }
1227 
1228 struct fib6_node *fib6_locate(struct fib6_node *root,
1229 			      const struct in6_addr *daddr, int dst_len,
1230 			      const struct in6_addr *saddr, int src_len)
1231 {
1232 	struct fib6_node *fn;
1233 
1234 	fn = fib6_locate_1(root, daddr, dst_len,
1235 			   offsetof(struct rt6_info, rt6i_dst));
1236 
1237 #ifdef CONFIG_IPV6_SUBTREES
1238 	if (src_len) {
1239 		WARN_ON(saddr == NULL);
1240 		if (fn && fn->subtree)
1241 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1242 					   offsetof(struct rt6_info, rt6i_src));
1243 	}
1244 #endif
1245 
1246 	if (fn && fn->fn_flags & RTN_RTINFO)
1247 		return fn;
1248 
1249 	return NULL;
1250 }
1251 
1252 
1253 /*
1254  *	Deletion
1255  *
1256  */
1257 
1258 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1259 {
1260 	if (fn->fn_flags & RTN_ROOT)
1261 		return net->ipv6.ip6_null_entry;
1262 
1263 	while (fn) {
1264 		if (fn->left)
1265 			return fn->left->leaf;
1266 		if (fn->right)
1267 			return fn->right->leaf;
1268 
1269 		fn = FIB6_SUBTREE(fn);
1270 	}
1271 	return NULL;
1272 }
1273 
1274 /*
1275  *	Called to trim the tree of intermediate nodes when possible. "fn"
1276  *	is the node we want to try and remove.
1277  */
1278 
1279 static struct fib6_node *fib6_repair_tree(struct net *net,
1280 					   struct fib6_node *fn)
1281 {
1282 	int children;
1283 	int nstate;
1284 	struct fib6_node *child, *pn;
1285 	struct fib6_walker *w;
1286 	int iter = 0;
1287 
1288 	for (;;) {
1289 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1290 		iter++;
1291 
1292 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1293 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1294 		WARN_ON(fn->leaf);
1295 
1296 		children = 0;
1297 		child = NULL;
1298 		if (fn->right)
1299 			child = fn->right, children |= 1;
1300 		if (fn->left)
1301 			child = fn->left, children |= 2;
1302 
1303 		if (children == 3 || FIB6_SUBTREE(fn)
1304 #ifdef CONFIG_IPV6_SUBTREES
1305 		    /* Subtree root (i.e. fn) may have one child */
1306 		    || (children && fn->fn_flags & RTN_ROOT)
1307 #endif
1308 		    ) {
1309 			fn->leaf = fib6_find_prefix(net, fn);
1310 #if RT6_DEBUG >= 2
1311 			if (!fn->leaf) {
1312 				WARN_ON(!fn->leaf);
1313 				fn->leaf = net->ipv6.ip6_null_entry;
1314 			}
1315 #endif
1316 			atomic_inc(&fn->leaf->rt6i_ref);
1317 			return fn->parent;
1318 		}
1319 
1320 		pn = fn->parent;
1321 #ifdef CONFIG_IPV6_SUBTREES
1322 		if (FIB6_SUBTREE(pn) == fn) {
1323 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1324 			FIB6_SUBTREE(pn) = NULL;
1325 			nstate = FWS_L;
1326 		} else {
1327 			WARN_ON(fn->fn_flags & RTN_ROOT);
1328 #endif
1329 			if (pn->right == fn)
1330 				pn->right = child;
1331 			else if (pn->left == fn)
1332 				pn->left = child;
1333 #if RT6_DEBUG >= 2
1334 			else
1335 				WARN_ON(1);
1336 #endif
1337 			if (child)
1338 				child->parent = pn;
1339 			nstate = FWS_R;
1340 #ifdef CONFIG_IPV6_SUBTREES
1341 		}
1342 #endif
1343 
1344 		read_lock(&net->ipv6.fib6_walker_lock);
1345 		FOR_WALKERS(net, w) {
1346 			if (!child) {
1347 				if (w->root == fn) {
1348 					w->root = w->node = NULL;
1349 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1350 				} else if (w->node == fn) {
1351 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1352 					w->node = pn;
1353 					w->state = nstate;
1354 				}
1355 			} else {
1356 				if (w->root == fn) {
1357 					w->root = child;
1358 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1359 				}
1360 				if (w->node == fn) {
1361 					w->node = child;
1362 					if (children&2) {
1363 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1364 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1365 					} else {
1366 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1367 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1368 					}
1369 				}
1370 			}
1371 		}
1372 		read_unlock(&net->ipv6.fib6_walker_lock);
1373 
1374 		node_free(fn);
1375 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1376 			return pn;
1377 
1378 		rt6_release(pn->leaf);
1379 		pn->leaf = NULL;
1380 		fn = pn;
1381 	}
1382 }
1383 
1384 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1385 			   struct nl_info *info)
1386 {
1387 	struct fib6_walker *w;
1388 	struct rt6_info *rt = *rtp;
1389 	struct net *net = info->nl_net;
1390 
1391 	RT6_TRACE("fib6_del_route\n");
1392 
1393 	/* Unlink it */
1394 	*rtp = rt->dst.rt6_next;
1395 	rt->rt6i_node = NULL;
1396 	net->ipv6.rt6_stats->fib_rt_entries--;
1397 	net->ipv6.rt6_stats->fib_discarded_routes++;
1398 
1399 	/* Reset round-robin state, if necessary */
1400 	if (fn->rr_ptr == rt)
1401 		fn->rr_ptr = NULL;
1402 
1403 	/* Remove this entry from other siblings */
1404 	if (rt->rt6i_nsiblings) {
1405 		struct rt6_info *sibling, *next_sibling;
1406 
1407 		list_for_each_entry_safe(sibling, next_sibling,
1408 					 &rt->rt6i_siblings, rt6i_siblings)
1409 			sibling->rt6i_nsiblings--;
1410 		rt->rt6i_nsiblings = 0;
1411 		list_del_init(&rt->rt6i_siblings);
1412 	}
1413 
1414 	/* Adjust walkers */
1415 	read_lock(&net->ipv6.fib6_walker_lock);
1416 	FOR_WALKERS(net, w) {
1417 		if (w->state == FWS_C && w->leaf == rt) {
1418 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1419 			w->leaf = rt->dst.rt6_next;
1420 			if (!w->leaf)
1421 				w->state = FWS_U;
1422 		}
1423 	}
1424 	read_unlock(&net->ipv6.fib6_walker_lock);
1425 
1426 	rt->dst.rt6_next = NULL;
1427 
1428 	/* If it was last route, expunge its radix tree node */
1429 	if (!fn->leaf) {
1430 		fn->fn_flags &= ~RTN_RTINFO;
1431 		net->ipv6.rt6_stats->fib_route_nodes--;
1432 		fn = fib6_repair_tree(net, fn);
1433 	}
1434 
1435 	fib6_purge_rt(rt, fn, net);
1436 
1437 	inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1438 	rt6_release(rt);
1439 }
1440 
1441 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1442 {
1443 	struct net *net = info->nl_net;
1444 	struct fib6_node *fn = rt->rt6i_node;
1445 	struct rt6_info **rtp;
1446 
1447 #if RT6_DEBUG >= 2
1448 	if (rt->dst.obsolete > 0) {
1449 		WARN_ON(fn);
1450 		return -ENOENT;
1451 	}
1452 #endif
1453 	if (!fn || rt == net->ipv6.ip6_null_entry)
1454 		return -ENOENT;
1455 
1456 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1457 
1458 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1459 		struct fib6_node *pn = fn;
1460 #ifdef CONFIG_IPV6_SUBTREES
1461 		/* clones of this route might be in another subtree */
1462 		if (rt->rt6i_src.plen) {
1463 			while (!(pn->fn_flags & RTN_ROOT))
1464 				pn = pn->parent;
1465 			pn = pn->parent;
1466 		}
1467 #endif
1468 		fib6_prune_clones(info->nl_net, pn);
1469 	}
1470 
1471 	/*
1472 	 *	Walk the leaf entries looking for ourself
1473 	 */
1474 
1475 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1476 		if (*rtp == rt) {
1477 			fib6_del_route(fn, rtp, info);
1478 			return 0;
1479 		}
1480 	}
1481 	return -ENOENT;
1482 }
1483 
1484 /*
1485  *	Tree traversal function.
1486  *
1487  *	Certainly, it is not interrupt safe.
1488  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1489  *	It means, that we can modify tree during walking
1490  *	and use this function for garbage collection, clone pruning,
1491  *	cleaning tree when a device goes down etc. etc.
1492  *
1493  *	It guarantees that every node will be traversed,
1494  *	and that it will be traversed only once.
1495  *
1496  *	Callback function w->func may return:
1497  *	0 -> continue walking.
1498  *	positive value -> walking is suspended (used by tree dumps,
1499  *	and probably by gc, if it will be split to several slices)
1500  *	negative value -> terminate walking.
1501  *
1502  *	The function itself returns:
1503  *	0   -> walk is complete.
1504  *	>0  -> walk is incomplete (i.e. suspended)
1505  *	<0  -> walk is terminated by an error.
1506  */
1507 
1508 static int fib6_walk_continue(struct fib6_walker *w)
1509 {
1510 	struct fib6_node *fn, *pn;
1511 
1512 	for (;;) {
1513 		fn = w->node;
1514 		if (!fn)
1515 			return 0;
1516 
1517 		if (w->prune && fn != w->root &&
1518 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1519 			w->state = FWS_C;
1520 			w->leaf = fn->leaf;
1521 		}
1522 		switch (w->state) {
1523 #ifdef CONFIG_IPV6_SUBTREES
1524 		case FWS_S:
1525 			if (FIB6_SUBTREE(fn)) {
1526 				w->node = FIB6_SUBTREE(fn);
1527 				continue;
1528 			}
1529 			w->state = FWS_L;
1530 #endif
1531 		case FWS_L:
1532 			if (fn->left) {
1533 				w->node = fn->left;
1534 				w->state = FWS_INIT;
1535 				continue;
1536 			}
1537 			w->state = FWS_R;
1538 		case FWS_R:
1539 			if (fn->right) {
1540 				w->node = fn->right;
1541 				w->state = FWS_INIT;
1542 				continue;
1543 			}
1544 			w->state = FWS_C;
1545 			w->leaf = fn->leaf;
1546 		case FWS_C:
1547 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1548 				int err;
1549 
1550 				if (w->skip) {
1551 					w->skip--;
1552 					goto skip;
1553 				}
1554 
1555 				err = w->func(w);
1556 				if (err)
1557 					return err;
1558 
1559 				w->count++;
1560 				continue;
1561 			}
1562 skip:
1563 			w->state = FWS_U;
1564 		case FWS_U:
1565 			if (fn == w->root)
1566 				return 0;
1567 			pn = fn->parent;
1568 			w->node = pn;
1569 #ifdef CONFIG_IPV6_SUBTREES
1570 			if (FIB6_SUBTREE(pn) == fn) {
1571 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1572 				w->state = FWS_L;
1573 				continue;
1574 			}
1575 #endif
1576 			if (pn->left == fn) {
1577 				w->state = FWS_R;
1578 				continue;
1579 			}
1580 			if (pn->right == fn) {
1581 				w->state = FWS_C;
1582 				w->leaf = w->node->leaf;
1583 				continue;
1584 			}
1585 #if RT6_DEBUG >= 2
1586 			WARN_ON(1);
1587 #endif
1588 		}
1589 	}
1590 }
1591 
1592 static int fib6_walk(struct net *net, struct fib6_walker *w)
1593 {
1594 	int res;
1595 
1596 	w->state = FWS_INIT;
1597 	w->node = w->root;
1598 
1599 	fib6_walker_link(net, w);
1600 	res = fib6_walk_continue(w);
1601 	if (res <= 0)
1602 		fib6_walker_unlink(net, w);
1603 	return res;
1604 }
1605 
1606 static int fib6_clean_node(struct fib6_walker *w)
1607 {
1608 	int res;
1609 	struct rt6_info *rt;
1610 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1611 	struct nl_info info = {
1612 		.nl_net = c->net,
1613 	};
1614 
1615 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1616 	    w->node->fn_sernum != c->sernum)
1617 		w->node->fn_sernum = c->sernum;
1618 
1619 	if (!c->func) {
1620 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1621 		w->leaf = NULL;
1622 		return 0;
1623 	}
1624 
1625 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1626 		res = c->func(rt, c->arg);
1627 		if (res < 0) {
1628 			w->leaf = rt;
1629 			res = fib6_del(rt, &info);
1630 			if (res) {
1631 #if RT6_DEBUG >= 2
1632 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1633 					 __func__, rt, rt->rt6i_node, res);
1634 #endif
1635 				continue;
1636 			}
1637 			return 0;
1638 		}
1639 		WARN_ON(res != 0);
1640 	}
1641 	w->leaf = rt;
1642 	return 0;
1643 }
1644 
1645 /*
1646  *	Convenient frontend to tree walker.
1647  *
1648  *	func is called on each route.
1649  *		It may return -1 -> delete this route.
1650  *		              0  -> continue walking
1651  *
1652  *	prune==1 -> only immediate children of node (certainly,
1653  *	ignoring pure split nodes) will be scanned.
1654  */
1655 
1656 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1657 			    int (*func)(struct rt6_info *, void *arg),
1658 			    bool prune, int sernum, void *arg)
1659 {
1660 	struct fib6_cleaner c;
1661 
1662 	c.w.root = root;
1663 	c.w.func = fib6_clean_node;
1664 	c.w.prune = prune;
1665 	c.w.count = 0;
1666 	c.w.skip = 0;
1667 	c.func = func;
1668 	c.sernum = sernum;
1669 	c.arg = arg;
1670 	c.net = net;
1671 
1672 	fib6_walk(net, &c.w);
1673 }
1674 
1675 static void __fib6_clean_all(struct net *net,
1676 			     int (*func)(struct rt6_info *, void *),
1677 			     int sernum, void *arg)
1678 {
1679 	struct fib6_table *table;
1680 	struct hlist_head *head;
1681 	unsigned int h;
1682 
1683 	rcu_read_lock();
1684 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1685 		head = &net->ipv6.fib_table_hash[h];
1686 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1687 			write_lock_bh(&table->tb6_lock);
1688 			fib6_clean_tree(net, &table->tb6_root,
1689 					func, false, sernum, arg);
1690 			write_unlock_bh(&table->tb6_lock);
1691 		}
1692 	}
1693 	rcu_read_unlock();
1694 }
1695 
1696 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1697 		    void *arg)
1698 {
1699 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1700 }
1701 
1702 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1703 {
1704 	if (rt->rt6i_flags & RTF_CACHE) {
1705 		RT6_TRACE("pruning clone %p\n", rt);
1706 		return -1;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1713 {
1714 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1715 			FIB6_NO_SERNUM_CHANGE, NULL);
1716 }
1717 
1718 static void fib6_flush_trees(struct net *net)
1719 {
1720 	int new_sernum = fib6_new_sernum(net);
1721 
1722 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1723 }
1724 
1725 /*
1726  *	Garbage collection
1727  */
1728 
1729 struct fib6_gc_args
1730 {
1731 	int			timeout;
1732 	int			more;
1733 };
1734 
1735 static int fib6_age(struct rt6_info *rt, void *arg)
1736 {
1737 	struct fib6_gc_args *gc_args = arg;
1738 	unsigned long now = jiffies;
1739 
1740 	/*
1741 	 *	check addrconf expiration here.
1742 	 *	Routes are expired even if they are in use.
1743 	 *
1744 	 *	Also age clones. Note, that clones are aged out
1745 	 *	only if they are not in use now.
1746 	 */
1747 
1748 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1749 		if (time_after(now, rt->dst.expires)) {
1750 			RT6_TRACE("expiring %p\n", rt);
1751 			return -1;
1752 		}
1753 		gc_args->more++;
1754 	} else if (rt->rt6i_flags & RTF_CACHE) {
1755 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1756 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1757 			RT6_TRACE("aging clone %p\n", rt);
1758 			return -1;
1759 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1760 			struct neighbour *neigh;
1761 			__u8 neigh_flags = 0;
1762 
1763 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1764 			if (neigh) {
1765 				neigh_flags = neigh->flags;
1766 				neigh_release(neigh);
1767 			}
1768 			if (!(neigh_flags & NTF_ROUTER)) {
1769 				RT6_TRACE("purging route %p via non-router but gateway\n",
1770 					  rt);
1771 				return -1;
1772 			}
1773 		}
1774 		gc_args->more++;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1781 {
1782 	struct fib6_gc_args gc_args;
1783 	unsigned long now;
1784 
1785 	if (force) {
1786 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1787 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1788 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1789 		return;
1790 	}
1791 	gc_args.timeout = expires ? (int)expires :
1792 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1793 
1794 	gc_args.more = icmp6_dst_gc();
1795 
1796 	fib6_clean_all(net, fib6_age, &gc_args);
1797 	now = jiffies;
1798 	net->ipv6.ip6_rt_last_gc = now;
1799 
1800 	if (gc_args.more)
1801 		mod_timer(&net->ipv6.ip6_fib_timer,
1802 			  round_jiffies(now
1803 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1804 	else
1805 		del_timer(&net->ipv6.ip6_fib_timer);
1806 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1807 }
1808 
1809 static void fib6_gc_timer_cb(unsigned long arg)
1810 {
1811 	fib6_run_gc(0, (struct net *)arg, true);
1812 }
1813 
1814 static int __net_init fib6_net_init(struct net *net)
1815 {
1816 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1817 
1818 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1819 	rwlock_init(&net->ipv6.fib6_walker_lock);
1820 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1821 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1822 
1823 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1824 	if (!net->ipv6.rt6_stats)
1825 		goto out_timer;
1826 
1827 	/* Avoid false sharing : Use at least a full cache line */
1828 	size = max_t(size_t, size, L1_CACHE_BYTES);
1829 
1830 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1831 	if (!net->ipv6.fib_table_hash)
1832 		goto out_rt6_stats;
1833 
1834 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1835 					  GFP_KERNEL);
1836 	if (!net->ipv6.fib6_main_tbl)
1837 		goto out_fib_table_hash;
1838 
1839 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1840 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1841 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1842 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1843 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1844 
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1847 					   GFP_KERNEL);
1848 	if (!net->ipv6.fib6_local_tbl)
1849 		goto out_fib6_main_tbl;
1850 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1851 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1852 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1853 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1854 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1855 #endif
1856 	fib6_tables_init(net);
1857 
1858 	return 0;
1859 
1860 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1861 out_fib6_main_tbl:
1862 	kfree(net->ipv6.fib6_main_tbl);
1863 #endif
1864 out_fib_table_hash:
1865 	kfree(net->ipv6.fib_table_hash);
1866 out_rt6_stats:
1867 	kfree(net->ipv6.rt6_stats);
1868 out_timer:
1869 	return -ENOMEM;
1870 }
1871 
1872 static void fib6_net_exit(struct net *net)
1873 {
1874 	rt6_ifdown(net, NULL);
1875 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1876 
1877 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1878 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1879 	kfree(net->ipv6.fib6_local_tbl);
1880 #endif
1881 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1882 	kfree(net->ipv6.fib6_main_tbl);
1883 	kfree(net->ipv6.fib_table_hash);
1884 	kfree(net->ipv6.rt6_stats);
1885 }
1886 
1887 static struct pernet_operations fib6_net_ops = {
1888 	.init = fib6_net_init,
1889 	.exit = fib6_net_exit,
1890 };
1891 
1892 int __init fib6_init(void)
1893 {
1894 	int ret = -ENOMEM;
1895 
1896 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1897 					   sizeof(struct fib6_node),
1898 					   0, SLAB_HWCACHE_ALIGN,
1899 					   NULL);
1900 	if (!fib6_node_kmem)
1901 		goto out;
1902 
1903 	ret = register_pernet_subsys(&fib6_net_ops);
1904 	if (ret)
1905 		goto out_kmem_cache_create;
1906 
1907 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1908 			      NULL);
1909 	if (ret)
1910 		goto out_unregister_subsys;
1911 
1912 	__fib6_flush_trees = fib6_flush_trees;
1913 out:
1914 	return ret;
1915 
1916 out_unregister_subsys:
1917 	unregister_pernet_subsys(&fib6_net_ops);
1918 out_kmem_cache_create:
1919 	kmem_cache_destroy(fib6_node_kmem);
1920 	goto out;
1921 }
1922 
1923 void fib6_gc_cleanup(void)
1924 {
1925 	unregister_pernet_subsys(&fib6_net_ops);
1926 	kmem_cache_destroy(fib6_node_kmem);
1927 }
1928 
1929 #ifdef CONFIG_PROC_FS
1930 
1931 struct ipv6_route_iter {
1932 	struct seq_net_private p;
1933 	struct fib6_walker w;
1934 	loff_t skip;
1935 	struct fib6_table *tbl;
1936 	int sernum;
1937 };
1938 
1939 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1940 {
1941 	struct rt6_info *rt = v;
1942 	struct ipv6_route_iter *iter = seq->private;
1943 
1944 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1945 
1946 #ifdef CONFIG_IPV6_SUBTREES
1947 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1948 #else
1949 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1950 #endif
1951 	if (rt->rt6i_flags & RTF_GATEWAY)
1952 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1953 	else
1954 		seq_puts(seq, "00000000000000000000000000000000");
1955 
1956 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1957 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1958 		   rt->dst.__use, rt->rt6i_flags,
1959 		   rt->dst.dev ? rt->dst.dev->name : "");
1960 	iter->w.leaf = NULL;
1961 	return 0;
1962 }
1963 
1964 static int ipv6_route_yield(struct fib6_walker *w)
1965 {
1966 	struct ipv6_route_iter *iter = w->args;
1967 
1968 	if (!iter->skip)
1969 		return 1;
1970 
1971 	do {
1972 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1973 		iter->skip--;
1974 		if (!iter->skip && iter->w.leaf)
1975 			return 1;
1976 	} while (iter->w.leaf);
1977 
1978 	return 0;
1979 }
1980 
1981 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1982 				      struct net *net)
1983 {
1984 	memset(&iter->w, 0, sizeof(iter->w));
1985 	iter->w.func = ipv6_route_yield;
1986 	iter->w.root = &iter->tbl->tb6_root;
1987 	iter->w.state = FWS_INIT;
1988 	iter->w.node = iter->w.root;
1989 	iter->w.args = iter;
1990 	iter->sernum = iter->w.root->fn_sernum;
1991 	INIT_LIST_HEAD(&iter->w.lh);
1992 	fib6_walker_link(net, &iter->w);
1993 }
1994 
1995 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1996 						    struct net *net)
1997 {
1998 	unsigned int h;
1999 	struct hlist_node *node;
2000 
2001 	if (tbl) {
2002 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2003 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2004 	} else {
2005 		h = 0;
2006 		node = NULL;
2007 	}
2008 
2009 	while (!node && h < FIB6_TABLE_HASHSZ) {
2010 		node = rcu_dereference_bh(
2011 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2012 	}
2013 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2014 }
2015 
2016 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2017 {
2018 	if (iter->sernum != iter->w.root->fn_sernum) {
2019 		iter->sernum = iter->w.root->fn_sernum;
2020 		iter->w.state = FWS_INIT;
2021 		iter->w.node = iter->w.root;
2022 		WARN_ON(iter->w.skip);
2023 		iter->w.skip = iter->w.count;
2024 	}
2025 }
2026 
2027 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2028 {
2029 	int r;
2030 	struct rt6_info *n;
2031 	struct net *net = seq_file_net(seq);
2032 	struct ipv6_route_iter *iter = seq->private;
2033 
2034 	if (!v)
2035 		goto iter_table;
2036 
2037 	n = ((struct rt6_info *)v)->dst.rt6_next;
2038 	if (n) {
2039 		++*pos;
2040 		return n;
2041 	}
2042 
2043 iter_table:
2044 	ipv6_route_check_sernum(iter);
2045 	read_lock(&iter->tbl->tb6_lock);
2046 	r = fib6_walk_continue(&iter->w);
2047 	read_unlock(&iter->tbl->tb6_lock);
2048 	if (r > 0) {
2049 		if (v)
2050 			++*pos;
2051 		return iter->w.leaf;
2052 	} else if (r < 0) {
2053 		fib6_walker_unlink(net, &iter->w);
2054 		return NULL;
2055 	}
2056 	fib6_walker_unlink(net, &iter->w);
2057 
2058 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2059 	if (!iter->tbl)
2060 		return NULL;
2061 
2062 	ipv6_route_seq_setup_walk(iter, net);
2063 	goto iter_table;
2064 }
2065 
2066 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2067 	__acquires(RCU_BH)
2068 {
2069 	struct net *net = seq_file_net(seq);
2070 	struct ipv6_route_iter *iter = seq->private;
2071 
2072 	rcu_read_lock_bh();
2073 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2074 	iter->skip = *pos;
2075 
2076 	if (iter->tbl) {
2077 		ipv6_route_seq_setup_walk(iter, net);
2078 		return ipv6_route_seq_next(seq, NULL, pos);
2079 	} else {
2080 		return NULL;
2081 	}
2082 }
2083 
2084 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2085 {
2086 	struct fib6_walker *w = &iter->w;
2087 	return w->node && !(w->state == FWS_U && w->node == w->root);
2088 }
2089 
2090 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2091 	__releases(RCU_BH)
2092 {
2093 	struct net *net = seq_file_net(seq);
2094 	struct ipv6_route_iter *iter = seq->private;
2095 
2096 	if (ipv6_route_iter_active(iter))
2097 		fib6_walker_unlink(net, &iter->w);
2098 
2099 	rcu_read_unlock_bh();
2100 }
2101 
2102 static const struct seq_operations ipv6_route_seq_ops = {
2103 	.start	= ipv6_route_seq_start,
2104 	.next	= ipv6_route_seq_next,
2105 	.stop	= ipv6_route_seq_stop,
2106 	.show	= ipv6_route_seq_show
2107 };
2108 
2109 int ipv6_route_open(struct inode *inode, struct file *file)
2110 {
2111 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2112 			    sizeof(struct ipv6_route_iter));
2113 }
2114 
2115 #endif /* CONFIG_PROC_FS */
2116