1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* 15 * Changes: 16 * Yuji SEKIYA @USAGI: Support default route on router node; 17 * remove ip6_null_entry from the top of 18 * routing table. 19 * Ville Nuorvala: Fixed routing subtrees. 20 */ 21 #include <linux/errno.h> 22 #include <linux/types.h> 23 #include <linux/net.h> 24 #include <linux/route.h> 25 #include <linux/netdevice.h> 26 #include <linux/in6.h> 27 #include <linux/init.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <net/ipv6.h> 32 #include <net/ndisc.h> 33 #include <net/addrconf.h> 34 35 #include <net/ip6_fib.h> 36 #include <net/ip6_route.h> 37 38 #define RT6_DEBUG 2 39 40 #if RT6_DEBUG >= 3 41 #define RT6_TRACE(x...) printk(KERN_DEBUG x) 42 #else 43 #define RT6_TRACE(x...) do { ; } while (0) 44 #endif 45 46 static struct kmem_cache * fib6_node_kmem __read_mostly; 47 48 enum fib_walk_state_t 49 { 50 #ifdef CONFIG_IPV6_SUBTREES 51 FWS_S, 52 #endif 53 FWS_L, 54 FWS_R, 55 FWS_C, 56 FWS_U 57 }; 58 59 struct fib6_cleaner_t 60 { 61 struct fib6_walker_t w; 62 struct net *net; 63 int (*func)(struct rt6_info *, void *arg); 64 void *arg; 65 }; 66 67 static DEFINE_RWLOCK(fib6_walker_lock); 68 69 #ifdef CONFIG_IPV6_SUBTREES 70 #define FWS_INIT FWS_S 71 #else 72 #define FWS_INIT FWS_L 73 #endif 74 75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 76 struct rt6_info *rt); 77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 79 static int fib6_walk(struct fib6_walker_t *w); 80 static int fib6_walk_continue(struct fib6_walker_t *w); 81 82 /* 83 * A routing update causes an increase of the serial number on the 84 * affected subtree. This allows for cached routes to be asynchronously 85 * tested when modifications are made to the destination cache as a 86 * result of redirects, path MTU changes, etc. 87 */ 88 89 static __u32 rt_sernum; 90 91 static void fib6_gc_timer_cb(unsigned long arg); 92 93 static LIST_HEAD(fib6_walkers); 94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh) 95 96 static inline void fib6_walker_link(struct fib6_walker_t *w) 97 { 98 write_lock_bh(&fib6_walker_lock); 99 list_add(&w->lh, &fib6_walkers); 100 write_unlock_bh(&fib6_walker_lock); 101 } 102 103 static inline void fib6_walker_unlink(struct fib6_walker_t *w) 104 { 105 write_lock_bh(&fib6_walker_lock); 106 list_del(&w->lh); 107 write_unlock_bh(&fib6_walker_lock); 108 } 109 static __inline__ u32 fib6_new_sernum(void) 110 { 111 u32 n = ++rt_sernum; 112 if ((__s32)n <= 0) 113 rt_sernum = n = 1; 114 return n; 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 static __inline__ struct fib6_node * node_alloc(void) 148 { 149 struct fib6_node *fn; 150 151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 152 153 return fn; 154 } 155 156 static __inline__ void node_free(struct fib6_node * fn) 157 { 158 kmem_cache_free(fib6_node_kmem, fn); 159 } 160 161 static __inline__ void rt6_release(struct rt6_info *rt) 162 { 163 if (atomic_dec_and_test(&rt->rt6i_ref)) 164 dst_free(&rt->dst); 165 } 166 167 static void fib6_link_table(struct net *net, struct fib6_table *tb) 168 { 169 unsigned int h; 170 171 /* 172 * Initialize table lock at a single place to give lockdep a key, 173 * tables aren't visible prior to being linked to the list. 174 */ 175 rwlock_init(&tb->tb6_lock); 176 177 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 178 179 /* 180 * No protection necessary, this is the only list mutatation 181 * operation, tables never disappear once they exist. 182 */ 183 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 184 } 185 186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 187 188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 189 { 190 struct fib6_table *table; 191 192 table = kzalloc(sizeof(*table), GFP_ATOMIC); 193 if (table != NULL) { 194 table->tb6_id = id; 195 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 196 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 197 } 198 199 return table; 200 } 201 202 struct fib6_table *fib6_new_table(struct net *net, u32 id) 203 { 204 struct fib6_table *tb; 205 206 if (id == 0) 207 id = RT6_TABLE_MAIN; 208 tb = fib6_get_table(net, id); 209 if (tb) 210 return tb; 211 212 tb = fib6_alloc_table(net, id); 213 if (tb != NULL) 214 fib6_link_table(net, tb); 215 216 return tb; 217 } 218 219 struct fib6_table *fib6_get_table(struct net *net, u32 id) 220 { 221 struct fib6_table *tb; 222 struct hlist_head *head; 223 struct hlist_node *node; 224 unsigned int h; 225 226 if (id == 0) 227 id = RT6_TABLE_MAIN; 228 h = id & (FIB6_TABLE_HASHSZ - 1); 229 rcu_read_lock(); 230 head = &net->ipv6.fib_table_hash[h]; 231 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 232 if (tb->tb6_id == id) { 233 rcu_read_unlock(); 234 return tb; 235 } 236 } 237 rcu_read_unlock(); 238 239 return NULL; 240 } 241 242 static void __net_init fib6_tables_init(struct net *net) 243 { 244 fib6_link_table(net, net->ipv6.fib6_main_tbl); 245 fib6_link_table(net, net->ipv6.fib6_local_tbl); 246 } 247 #else 248 249 struct fib6_table *fib6_new_table(struct net *net, u32 id) 250 { 251 return fib6_get_table(net, id); 252 } 253 254 struct fib6_table *fib6_get_table(struct net *net, u32 id) 255 { 256 return net->ipv6.fib6_main_tbl; 257 } 258 259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 260 int flags, pol_lookup_t lookup) 261 { 262 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 263 } 264 265 static void __net_init fib6_tables_init(struct net *net) 266 { 267 fib6_link_table(net, net->ipv6.fib6_main_tbl); 268 } 269 270 #endif 271 272 static int fib6_dump_node(struct fib6_walker_t *w) 273 { 274 int res; 275 struct rt6_info *rt; 276 277 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 278 res = rt6_dump_route(rt, w->args); 279 if (res < 0) { 280 /* Frame is full, suspend walking */ 281 w->leaf = rt; 282 return 1; 283 } 284 WARN_ON(res == 0); 285 } 286 w->leaf = NULL; 287 return 0; 288 } 289 290 static void fib6_dump_end(struct netlink_callback *cb) 291 { 292 struct fib6_walker_t *w = (void*)cb->args[2]; 293 294 if (w) { 295 if (cb->args[4]) { 296 cb->args[4] = 0; 297 fib6_walker_unlink(w); 298 } 299 cb->args[2] = 0; 300 kfree(w); 301 } 302 cb->done = (void*)cb->args[3]; 303 cb->args[1] = 3; 304 } 305 306 static int fib6_dump_done(struct netlink_callback *cb) 307 { 308 fib6_dump_end(cb); 309 return cb->done ? cb->done(cb) : 0; 310 } 311 312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 313 struct netlink_callback *cb) 314 { 315 struct fib6_walker_t *w; 316 int res; 317 318 w = (void *)cb->args[2]; 319 w->root = &table->tb6_root; 320 321 if (cb->args[4] == 0) { 322 w->count = 0; 323 w->skip = 0; 324 325 read_lock_bh(&table->tb6_lock); 326 res = fib6_walk(w); 327 read_unlock_bh(&table->tb6_lock); 328 if (res > 0) { 329 cb->args[4] = 1; 330 cb->args[5] = w->root->fn_sernum; 331 } 332 } else { 333 if (cb->args[5] != w->root->fn_sernum) { 334 /* Begin at the root if the tree changed */ 335 cb->args[5] = w->root->fn_sernum; 336 w->state = FWS_INIT; 337 w->node = w->root; 338 w->skip = w->count; 339 } else 340 w->skip = 0; 341 342 read_lock_bh(&table->tb6_lock); 343 res = fib6_walk_continue(w); 344 read_unlock_bh(&table->tb6_lock); 345 if (res <= 0) { 346 fib6_walker_unlink(w); 347 cb->args[4] = 0; 348 } 349 } 350 351 return res; 352 } 353 354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 355 { 356 struct net *net = sock_net(skb->sk); 357 unsigned int h, s_h; 358 unsigned int e = 0, s_e; 359 struct rt6_rtnl_dump_arg arg; 360 struct fib6_walker_t *w; 361 struct fib6_table *tb; 362 struct hlist_node *node; 363 struct hlist_head *head; 364 int res = 0; 365 366 s_h = cb->args[0]; 367 s_e = cb->args[1]; 368 369 w = (void *)cb->args[2]; 370 if (w == NULL) { 371 /* New dump: 372 * 373 * 1. hook callback destructor. 374 */ 375 cb->args[3] = (long)cb->done; 376 cb->done = fib6_dump_done; 377 378 /* 379 * 2. allocate and initialize walker. 380 */ 381 w = kzalloc(sizeof(*w), GFP_ATOMIC); 382 if (w == NULL) 383 return -ENOMEM; 384 w->func = fib6_dump_node; 385 cb->args[2] = (long)w; 386 } 387 388 arg.skb = skb; 389 arg.cb = cb; 390 arg.net = net; 391 w->args = &arg; 392 393 rcu_read_lock(); 394 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 395 e = 0; 396 head = &net->ipv6.fib_table_hash[h]; 397 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 398 if (e < s_e) 399 goto next; 400 res = fib6_dump_table(tb, skb, cb); 401 if (res != 0) 402 goto out; 403 next: 404 e++; 405 } 406 } 407 out: 408 rcu_read_unlock(); 409 cb->args[1] = e; 410 cb->args[0] = h; 411 412 res = res < 0 ? res : skb->len; 413 if (res <= 0) 414 fib6_dump_end(cb); 415 return res; 416 } 417 418 /* 419 * Routing Table 420 * 421 * return the appropriate node for a routing tree "add" operation 422 * by either creating and inserting or by returning an existing 423 * node. 424 */ 425 426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, 427 int addrlen, int plen, 428 int offset) 429 { 430 struct fib6_node *fn, *in, *ln; 431 struct fib6_node *pn = NULL; 432 struct rt6key *key; 433 int bit; 434 __be32 dir = 0; 435 __u32 sernum = fib6_new_sernum(); 436 437 RT6_TRACE("fib6_add_1\n"); 438 439 /* insert node in tree */ 440 441 fn = root; 442 443 do { 444 key = (struct rt6key *)((u8 *)fn->leaf + offset); 445 446 /* 447 * Prefix match 448 */ 449 if (plen < fn->fn_bit || 450 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 451 goto insert_above; 452 453 /* 454 * Exact match ? 455 */ 456 457 if (plen == fn->fn_bit) { 458 /* clean up an intermediate node */ 459 if ((fn->fn_flags & RTN_RTINFO) == 0) { 460 rt6_release(fn->leaf); 461 fn->leaf = NULL; 462 } 463 464 fn->fn_sernum = sernum; 465 466 return fn; 467 } 468 469 /* 470 * We have more bits to go 471 */ 472 473 /* Try to walk down on tree. */ 474 fn->fn_sernum = sernum; 475 dir = addr_bit_set(addr, fn->fn_bit); 476 pn = fn; 477 fn = dir ? fn->right: fn->left; 478 } while (fn); 479 480 /* 481 * We walked to the bottom of tree. 482 * Create new leaf node without children. 483 */ 484 485 ln = node_alloc(); 486 487 if (ln == NULL) 488 return NULL; 489 ln->fn_bit = plen; 490 491 ln->parent = pn; 492 ln->fn_sernum = sernum; 493 494 if (dir) 495 pn->right = ln; 496 else 497 pn->left = ln; 498 499 return ln; 500 501 502 insert_above: 503 /* 504 * split since we don't have a common prefix anymore or 505 * we have a less significant route. 506 * we've to insert an intermediate node on the list 507 * this new node will point to the one we need to create 508 * and the current 509 */ 510 511 pn = fn->parent; 512 513 /* find 1st bit in difference between the 2 addrs. 514 515 See comment in __ipv6_addr_diff: bit may be an invalid value, 516 but if it is >= plen, the value is ignored in any case. 517 */ 518 519 bit = __ipv6_addr_diff(addr, &key->addr, addrlen); 520 521 /* 522 * (intermediate)[in] 523 * / \ 524 * (new leaf node)[ln] (old node)[fn] 525 */ 526 if (plen > bit) { 527 in = node_alloc(); 528 ln = node_alloc(); 529 530 if (in == NULL || ln == NULL) { 531 if (in) 532 node_free(in); 533 if (ln) 534 node_free(ln); 535 return NULL; 536 } 537 538 /* 539 * new intermediate node. 540 * RTN_RTINFO will 541 * be off since that an address that chooses one of 542 * the branches would not match less specific routes 543 * in the other branch 544 */ 545 546 in->fn_bit = bit; 547 548 in->parent = pn; 549 in->leaf = fn->leaf; 550 atomic_inc(&in->leaf->rt6i_ref); 551 552 in->fn_sernum = sernum; 553 554 /* update parent pointer */ 555 if (dir) 556 pn->right = in; 557 else 558 pn->left = in; 559 560 ln->fn_bit = plen; 561 562 ln->parent = in; 563 fn->parent = in; 564 565 ln->fn_sernum = sernum; 566 567 if (addr_bit_set(addr, bit)) { 568 in->right = ln; 569 in->left = fn; 570 } else { 571 in->left = ln; 572 in->right = fn; 573 } 574 } else { /* plen <= bit */ 575 576 /* 577 * (new leaf node)[ln] 578 * / \ 579 * (old node)[fn] NULL 580 */ 581 582 ln = node_alloc(); 583 584 if (ln == NULL) 585 return NULL; 586 587 ln->fn_bit = plen; 588 589 ln->parent = pn; 590 591 ln->fn_sernum = sernum; 592 593 if (dir) 594 pn->right = ln; 595 else 596 pn->left = ln; 597 598 if (addr_bit_set(&key->addr, plen)) 599 ln->right = fn; 600 else 601 ln->left = fn; 602 603 fn->parent = ln; 604 } 605 return ln; 606 } 607 608 /* 609 * Insert routing information in a node. 610 */ 611 612 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 613 struct nl_info *info) 614 { 615 struct rt6_info *iter = NULL; 616 struct rt6_info **ins; 617 618 ins = &fn->leaf; 619 620 for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) { 621 /* 622 * Search for duplicates 623 */ 624 625 if (iter->rt6i_metric == rt->rt6i_metric) { 626 /* 627 * Same priority level 628 */ 629 630 if (iter->rt6i_dev == rt->rt6i_dev && 631 iter->rt6i_idev == rt->rt6i_idev && 632 ipv6_addr_equal(&iter->rt6i_gateway, 633 &rt->rt6i_gateway)) { 634 if (!(iter->rt6i_flags&RTF_EXPIRES)) 635 return -EEXIST; 636 iter->rt6i_expires = rt->rt6i_expires; 637 if (!(rt->rt6i_flags&RTF_EXPIRES)) { 638 iter->rt6i_flags &= ~RTF_EXPIRES; 639 iter->rt6i_expires = 0; 640 } 641 return -EEXIST; 642 } 643 } 644 645 if (iter->rt6i_metric > rt->rt6i_metric) 646 break; 647 648 ins = &iter->dst.rt6_next; 649 } 650 651 /* Reset round-robin state, if necessary */ 652 if (ins == &fn->leaf) 653 fn->rr_ptr = NULL; 654 655 /* 656 * insert node 657 */ 658 659 rt->dst.rt6_next = iter; 660 *ins = rt; 661 rt->rt6i_node = fn; 662 atomic_inc(&rt->rt6i_ref); 663 inet6_rt_notify(RTM_NEWROUTE, rt, info); 664 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 665 666 if ((fn->fn_flags & RTN_RTINFO) == 0) { 667 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 668 fn->fn_flags |= RTN_RTINFO; 669 } 670 671 return 0; 672 } 673 674 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt) 675 { 676 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 677 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE))) 678 mod_timer(&net->ipv6.ip6_fib_timer, 679 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 680 } 681 682 void fib6_force_start_gc(struct net *net) 683 { 684 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 685 mod_timer(&net->ipv6.ip6_fib_timer, 686 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 687 } 688 689 /* 690 * Add routing information to the routing tree. 691 * <destination addr>/<source addr> 692 * with source addr info in sub-trees 693 */ 694 695 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info) 696 { 697 struct fib6_node *fn, *pn = NULL; 698 int err = -ENOMEM; 699 700 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), 701 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst)); 702 703 if (fn == NULL) 704 goto out; 705 706 pn = fn; 707 708 #ifdef CONFIG_IPV6_SUBTREES 709 if (rt->rt6i_src.plen) { 710 struct fib6_node *sn; 711 712 if (fn->subtree == NULL) { 713 struct fib6_node *sfn; 714 715 /* 716 * Create subtree. 717 * 718 * fn[main tree] 719 * | 720 * sfn[subtree root] 721 * \ 722 * sn[new leaf node] 723 */ 724 725 /* Create subtree root node */ 726 sfn = node_alloc(); 727 if (sfn == NULL) 728 goto st_failure; 729 730 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 731 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 732 sfn->fn_flags = RTN_ROOT; 733 sfn->fn_sernum = fib6_new_sernum(); 734 735 /* Now add the first leaf node to new subtree */ 736 737 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 738 sizeof(struct in6_addr), rt->rt6i_src.plen, 739 offsetof(struct rt6_info, rt6i_src)); 740 741 if (sn == NULL) { 742 /* If it is failed, discard just allocated 743 root, and then (in st_failure) stale node 744 in main tree. 745 */ 746 node_free(sfn); 747 goto st_failure; 748 } 749 750 /* Now link new subtree to main tree */ 751 sfn->parent = fn; 752 fn->subtree = sfn; 753 } else { 754 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 755 sizeof(struct in6_addr), rt->rt6i_src.plen, 756 offsetof(struct rt6_info, rt6i_src)); 757 758 if (sn == NULL) 759 goto st_failure; 760 } 761 762 if (fn->leaf == NULL) { 763 fn->leaf = rt; 764 atomic_inc(&rt->rt6i_ref); 765 } 766 fn = sn; 767 } 768 #endif 769 770 err = fib6_add_rt2node(fn, rt, info); 771 772 if (err == 0) { 773 fib6_start_gc(info->nl_net, rt); 774 if (!(rt->rt6i_flags&RTF_CACHE)) 775 fib6_prune_clones(info->nl_net, pn, rt); 776 } 777 778 out: 779 if (err) { 780 #ifdef CONFIG_IPV6_SUBTREES 781 /* 782 * If fib6_add_1 has cleared the old leaf pointer in the 783 * super-tree leaf node we have to find a new one for it. 784 */ 785 if (pn != fn && pn->leaf == rt) { 786 pn->leaf = NULL; 787 atomic_dec(&rt->rt6i_ref); 788 } 789 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 790 pn->leaf = fib6_find_prefix(info->nl_net, pn); 791 #if RT6_DEBUG >= 2 792 if (!pn->leaf) { 793 WARN_ON(pn->leaf == NULL); 794 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 795 } 796 #endif 797 atomic_inc(&pn->leaf->rt6i_ref); 798 } 799 #endif 800 dst_free(&rt->dst); 801 } 802 return err; 803 804 #ifdef CONFIG_IPV6_SUBTREES 805 /* Subtree creation failed, probably main tree node 806 is orphan. If it is, shoot it. 807 */ 808 st_failure: 809 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 810 fib6_repair_tree(info->nl_net, fn); 811 dst_free(&rt->dst); 812 return err; 813 #endif 814 } 815 816 /* 817 * Routing tree lookup 818 * 819 */ 820 821 struct lookup_args { 822 int offset; /* key offset on rt6_info */ 823 const struct in6_addr *addr; /* search key */ 824 }; 825 826 static struct fib6_node * fib6_lookup_1(struct fib6_node *root, 827 struct lookup_args *args) 828 { 829 struct fib6_node *fn; 830 __be32 dir; 831 832 if (unlikely(args->offset == 0)) 833 return NULL; 834 835 /* 836 * Descend on a tree 837 */ 838 839 fn = root; 840 841 for (;;) { 842 struct fib6_node *next; 843 844 dir = addr_bit_set(args->addr, fn->fn_bit); 845 846 next = dir ? fn->right : fn->left; 847 848 if (next) { 849 fn = next; 850 continue; 851 } 852 853 break; 854 } 855 856 while(fn) { 857 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 858 struct rt6key *key; 859 860 key = (struct rt6key *) ((u8 *) fn->leaf + 861 args->offset); 862 863 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 864 #ifdef CONFIG_IPV6_SUBTREES 865 if (fn->subtree) 866 fn = fib6_lookup_1(fn->subtree, args + 1); 867 #endif 868 if (!fn || fn->fn_flags & RTN_RTINFO) 869 return fn; 870 } 871 } 872 873 if (fn->fn_flags & RTN_ROOT) 874 break; 875 876 fn = fn->parent; 877 } 878 879 return NULL; 880 } 881 882 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 883 const struct in6_addr *saddr) 884 { 885 struct fib6_node *fn; 886 struct lookup_args args[] = { 887 { 888 .offset = offsetof(struct rt6_info, rt6i_dst), 889 .addr = daddr, 890 }, 891 #ifdef CONFIG_IPV6_SUBTREES 892 { 893 .offset = offsetof(struct rt6_info, rt6i_src), 894 .addr = saddr, 895 }, 896 #endif 897 { 898 .offset = 0, /* sentinel */ 899 } 900 }; 901 902 fn = fib6_lookup_1(root, daddr ? args : args + 1); 903 904 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT) 905 fn = root; 906 907 return fn; 908 } 909 910 /* 911 * Get node with specified destination prefix (and source prefix, 912 * if subtrees are used) 913 */ 914 915 916 static struct fib6_node * fib6_locate_1(struct fib6_node *root, 917 const struct in6_addr *addr, 918 int plen, int offset) 919 { 920 struct fib6_node *fn; 921 922 for (fn = root; fn ; ) { 923 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 924 925 /* 926 * Prefix match 927 */ 928 if (plen < fn->fn_bit || 929 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 930 return NULL; 931 932 if (plen == fn->fn_bit) 933 return fn; 934 935 /* 936 * We have more bits to go 937 */ 938 if (addr_bit_set(addr, fn->fn_bit)) 939 fn = fn->right; 940 else 941 fn = fn->left; 942 } 943 return NULL; 944 } 945 946 struct fib6_node * fib6_locate(struct fib6_node *root, 947 const struct in6_addr *daddr, int dst_len, 948 const struct in6_addr *saddr, int src_len) 949 { 950 struct fib6_node *fn; 951 952 fn = fib6_locate_1(root, daddr, dst_len, 953 offsetof(struct rt6_info, rt6i_dst)); 954 955 #ifdef CONFIG_IPV6_SUBTREES 956 if (src_len) { 957 WARN_ON(saddr == NULL); 958 if (fn && fn->subtree) 959 fn = fib6_locate_1(fn->subtree, saddr, src_len, 960 offsetof(struct rt6_info, rt6i_src)); 961 } 962 #endif 963 964 if (fn && fn->fn_flags&RTN_RTINFO) 965 return fn; 966 967 return NULL; 968 } 969 970 971 /* 972 * Deletion 973 * 974 */ 975 976 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 977 { 978 if (fn->fn_flags&RTN_ROOT) 979 return net->ipv6.ip6_null_entry; 980 981 while(fn) { 982 if(fn->left) 983 return fn->left->leaf; 984 985 if(fn->right) 986 return fn->right->leaf; 987 988 fn = FIB6_SUBTREE(fn); 989 } 990 return NULL; 991 } 992 993 /* 994 * Called to trim the tree of intermediate nodes when possible. "fn" 995 * is the node we want to try and remove. 996 */ 997 998 static struct fib6_node *fib6_repair_tree(struct net *net, 999 struct fib6_node *fn) 1000 { 1001 int children; 1002 int nstate; 1003 struct fib6_node *child, *pn; 1004 struct fib6_walker_t *w; 1005 int iter = 0; 1006 1007 for (;;) { 1008 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1009 iter++; 1010 1011 WARN_ON(fn->fn_flags & RTN_RTINFO); 1012 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1013 WARN_ON(fn->leaf != NULL); 1014 1015 children = 0; 1016 child = NULL; 1017 if (fn->right) child = fn->right, children |= 1; 1018 if (fn->left) child = fn->left, children |= 2; 1019 1020 if (children == 3 || FIB6_SUBTREE(fn) 1021 #ifdef CONFIG_IPV6_SUBTREES 1022 /* Subtree root (i.e. fn) may have one child */ 1023 || (children && fn->fn_flags&RTN_ROOT) 1024 #endif 1025 ) { 1026 fn->leaf = fib6_find_prefix(net, fn); 1027 #if RT6_DEBUG >= 2 1028 if (fn->leaf==NULL) { 1029 WARN_ON(!fn->leaf); 1030 fn->leaf = net->ipv6.ip6_null_entry; 1031 } 1032 #endif 1033 atomic_inc(&fn->leaf->rt6i_ref); 1034 return fn->parent; 1035 } 1036 1037 pn = fn->parent; 1038 #ifdef CONFIG_IPV6_SUBTREES 1039 if (FIB6_SUBTREE(pn) == fn) { 1040 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1041 FIB6_SUBTREE(pn) = NULL; 1042 nstate = FWS_L; 1043 } else { 1044 WARN_ON(fn->fn_flags & RTN_ROOT); 1045 #endif 1046 if (pn->right == fn) pn->right = child; 1047 else if (pn->left == fn) pn->left = child; 1048 #if RT6_DEBUG >= 2 1049 else 1050 WARN_ON(1); 1051 #endif 1052 if (child) 1053 child->parent = pn; 1054 nstate = FWS_R; 1055 #ifdef CONFIG_IPV6_SUBTREES 1056 } 1057 #endif 1058 1059 read_lock(&fib6_walker_lock); 1060 FOR_WALKERS(w) { 1061 if (child == NULL) { 1062 if (w->root == fn) { 1063 w->root = w->node = NULL; 1064 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1065 } else if (w->node == fn) { 1066 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1067 w->node = pn; 1068 w->state = nstate; 1069 } 1070 } else { 1071 if (w->root == fn) { 1072 w->root = child; 1073 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1074 } 1075 if (w->node == fn) { 1076 w->node = child; 1077 if (children&2) { 1078 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1079 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; 1080 } else { 1081 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1082 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; 1083 } 1084 } 1085 } 1086 } 1087 read_unlock(&fib6_walker_lock); 1088 1089 node_free(fn); 1090 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn)) 1091 return pn; 1092 1093 rt6_release(pn->leaf); 1094 pn->leaf = NULL; 1095 fn = pn; 1096 } 1097 } 1098 1099 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1100 struct nl_info *info) 1101 { 1102 struct fib6_walker_t *w; 1103 struct rt6_info *rt = *rtp; 1104 struct net *net = info->nl_net; 1105 1106 RT6_TRACE("fib6_del_route\n"); 1107 1108 /* Unlink it */ 1109 *rtp = rt->dst.rt6_next; 1110 rt->rt6i_node = NULL; 1111 net->ipv6.rt6_stats->fib_rt_entries--; 1112 net->ipv6.rt6_stats->fib_discarded_routes++; 1113 1114 /* Reset round-robin state, if necessary */ 1115 if (fn->rr_ptr == rt) 1116 fn->rr_ptr = NULL; 1117 1118 /* Adjust walkers */ 1119 read_lock(&fib6_walker_lock); 1120 FOR_WALKERS(w) { 1121 if (w->state == FWS_C && w->leaf == rt) { 1122 RT6_TRACE("walker %p adjusted by delroute\n", w); 1123 w->leaf = rt->dst.rt6_next; 1124 if (w->leaf == NULL) 1125 w->state = FWS_U; 1126 } 1127 } 1128 read_unlock(&fib6_walker_lock); 1129 1130 rt->dst.rt6_next = NULL; 1131 1132 /* If it was last route, expunge its radix tree node */ 1133 if (fn->leaf == NULL) { 1134 fn->fn_flags &= ~RTN_RTINFO; 1135 net->ipv6.rt6_stats->fib_route_nodes--; 1136 fn = fib6_repair_tree(net, fn); 1137 } 1138 1139 if (atomic_read(&rt->rt6i_ref) != 1) { 1140 /* This route is used as dummy address holder in some split 1141 * nodes. It is not leaked, but it still holds other resources, 1142 * which must be released in time. So, scan ascendant nodes 1143 * and replace dummy references to this route with references 1144 * to still alive ones. 1145 */ 1146 while (fn) { 1147 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) { 1148 fn->leaf = fib6_find_prefix(net, fn); 1149 atomic_inc(&fn->leaf->rt6i_ref); 1150 rt6_release(rt); 1151 } 1152 fn = fn->parent; 1153 } 1154 /* No more references are possible at this point. */ 1155 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 1156 } 1157 1158 inet6_rt_notify(RTM_DELROUTE, rt, info); 1159 rt6_release(rt); 1160 } 1161 1162 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1163 { 1164 struct net *net = info->nl_net; 1165 struct fib6_node *fn = rt->rt6i_node; 1166 struct rt6_info **rtp; 1167 1168 #if RT6_DEBUG >= 2 1169 if (rt->dst.obsolete>0) { 1170 WARN_ON(fn != NULL); 1171 return -ENOENT; 1172 } 1173 #endif 1174 if (fn == NULL || rt == net->ipv6.ip6_null_entry) 1175 return -ENOENT; 1176 1177 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1178 1179 if (!(rt->rt6i_flags&RTF_CACHE)) { 1180 struct fib6_node *pn = fn; 1181 #ifdef CONFIG_IPV6_SUBTREES 1182 /* clones of this route might be in another subtree */ 1183 if (rt->rt6i_src.plen) { 1184 while (!(pn->fn_flags&RTN_ROOT)) 1185 pn = pn->parent; 1186 pn = pn->parent; 1187 } 1188 #endif 1189 fib6_prune_clones(info->nl_net, pn, rt); 1190 } 1191 1192 /* 1193 * Walk the leaf entries looking for ourself 1194 */ 1195 1196 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) { 1197 if (*rtp == rt) { 1198 fib6_del_route(fn, rtp, info); 1199 return 0; 1200 } 1201 } 1202 return -ENOENT; 1203 } 1204 1205 /* 1206 * Tree traversal function. 1207 * 1208 * Certainly, it is not interrupt safe. 1209 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1210 * It means, that we can modify tree during walking 1211 * and use this function for garbage collection, clone pruning, 1212 * cleaning tree when a device goes down etc. etc. 1213 * 1214 * It guarantees that every node will be traversed, 1215 * and that it will be traversed only once. 1216 * 1217 * Callback function w->func may return: 1218 * 0 -> continue walking. 1219 * positive value -> walking is suspended (used by tree dumps, 1220 * and probably by gc, if it will be split to several slices) 1221 * negative value -> terminate walking. 1222 * 1223 * The function itself returns: 1224 * 0 -> walk is complete. 1225 * >0 -> walk is incomplete (i.e. suspended) 1226 * <0 -> walk is terminated by an error. 1227 */ 1228 1229 static int fib6_walk_continue(struct fib6_walker_t *w) 1230 { 1231 struct fib6_node *fn, *pn; 1232 1233 for (;;) { 1234 fn = w->node; 1235 if (fn == NULL) 1236 return 0; 1237 1238 if (w->prune && fn != w->root && 1239 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) { 1240 w->state = FWS_C; 1241 w->leaf = fn->leaf; 1242 } 1243 switch (w->state) { 1244 #ifdef CONFIG_IPV6_SUBTREES 1245 case FWS_S: 1246 if (FIB6_SUBTREE(fn)) { 1247 w->node = FIB6_SUBTREE(fn); 1248 continue; 1249 } 1250 w->state = FWS_L; 1251 #endif 1252 case FWS_L: 1253 if (fn->left) { 1254 w->node = fn->left; 1255 w->state = FWS_INIT; 1256 continue; 1257 } 1258 w->state = FWS_R; 1259 case FWS_R: 1260 if (fn->right) { 1261 w->node = fn->right; 1262 w->state = FWS_INIT; 1263 continue; 1264 } 1265 w->state = FWS_C; 1266 w->leaf = fn->leaf; 1267 case FWS_C: 1268 if (w->leaf && fn->fn_flags&RTN_RTINFO) { 1269 int err; 1270 1271 if (w->count < w->skip) { 1272 w->count++; 1273 continue; 1274 } 1275 1276 err = w->func(w); 1277 if (err) 1278 return err; 1279 1280 w->count++; 1281 continue; 1282 } 1283 w->state = FWS_U; 1284 case FWS_U: 1285 if (fn == w->root) 1286 return 0; 1287 pn = fn->parent; 1288 w->node = pn; 1289 #ifdef CONFIG_IPV6_SUBTREES 1290 if (FIB6_SUBTREE(pn) == fn) { 1291 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1292 w->state = FWS_L; 1293 continue; 1294 } 1295 #endif 1296 if (pn->left == fn) { 1297 w->state = FWS_R; 1298 continue; 1299 } 1300 if (pn->right == fn) { 1301 w->state = FWS_C; 1302 w->leaf = w->node->leaf; 1303 continue; 1304 } 1305 #if RT6_DEBUG >= 2 1306 WARN_ON(1); 1307 #endif 1308 } 1309 } 1310 } 1311 1312 static int fib6_walk(struct fib6_walker_t *w) 1313 { 1314 int res; 1315 1316 w->state = FWS_INIT; 1317 w->node = w->root; 1318 1319 fib6_walker_link(w); 1320 res = fib6_walk_continue(w); 1321 if (res <= 0) 1322 fib6_walker_unlink(w); 1323 return res; 1324 } 1325 1326 static int fib6_clean_node(struct fib6_walker_t *w) 1327 { 1328 int res; 1329 struct rt6_info *rt; 1330 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w); 1331 struct nl_info info = { 1332 .nl_net = c->net, 1333 }; 1334 1335 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 1336 res = c->func(rt, c->arg); 1337 if (res < 0) { 1338 w->leaf = rt; 1339 res = fib6_del(rt, &info); 1340 if (res) { 1341 #if RT6_DEBUG >= 2 1342 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); 1343 #endif 1344 continue; 1345 } 1346 return 0; 1347 } 1348 WARN_ON(res != 0); 1349 } 1350 w->leaf = rt; 1351 return 0; 1352 } 1353 1354 /* 1355 * Convenient frontend to tree walker. 1356 * 1357 * func is called on each route. 1358 * It may return -1 -> delete this route. 1359 * 0 -> continue walking 1360 * 1361 * prune==1 -> only immediate children of node (certainly, 1362 * ignoring pure split nodes) will be scanned. 1363 */ 1364 1365 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1366 int (*func)(struct rt6_info *, void *arg), 1367 int prune, void *arg) 1368 { 1369 struct fib6_cleaner_t c; 1370 1371 c.w.root = root; 1372 c.w.func = fib6_clean_node; 1373 c.w.prune = prune; 1374 c.w.count = 0; 1375 c.w.skip = 0; 1376 c.func = func; 1377 c.arg = arg; 1378 c.net = net; 1379 1380 fib6_walk(&c.w); 1381 } 1382 1383 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg), 1384 int prune, void *arg) 1385 { 1386 struct fib6_table *table; 1387 struct hlist_node *node; 1388 struct hlist_head *head; 1389 unsigned int h; 1390 1391 rcu_read_lock(); 1392 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1393 head = &net->ipv6.fib_table_hash[h]; 1394 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) { 1395 write_lock_bh(&table->tb6_lock); 1396 fib6_clean_tree(net, &table->tb6_root, 1397 func, prune, arg); 1398 write_unlock_bh(&table->tb6_lock); 1399 } 1400 } 1401 rcu_read_unlock(); 1402 } 1403 1404 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1405 { 1406 if (rt->rt6i_flags & RTF_CACHE) { 1407 RT6_TRACE("pruning clone %p\n", rt); 1408 return -1; 1409 } 1410 1411 return 0; 1412 } 1413 1414 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 1415 struct rt6_info *rt) 1416 { 1417 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt); 1418 } 1419 1420 /* 1421 * Garbage collection 1422 */ 1423 1424 static struct fib6_gc_args 1425 { 1426 int timeout; 1427 int more; 1428 } gc_args; 1429 1430 static int fib6_age(struct rt6_info *rt, void *arg) 1431 { 1432 unsigned long now = jiffies; 1433 1434 /* 1435 * check addrconf expiration here. 1436 * Routes are expired even if they are in use. 1437 * 1438 * Also age clones. Note, that clones are aged out 1439 * only if they are not in use now. 1440 */ 1441 1442 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) { 1443 if (time_after(now, rt->rt6i_expires)) { 1444 RT6_TRACE("expiring %p\n", rt); 1445 return -1; 1446 } 1447 gc_args.more++; 1448 } else if (rt->rt6i_flags & RTF_CACHE) { 1449 if (atomic_read(&rt->dst.__refcnt) == 0 && 1450 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) { 1451 RT6_TRACE("aging clone %p\n", rt); 1452 return -1; 1453 } else if ((rt->rt6i_flags & RTF_GATEWAY) && 1454 (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) { 1455 RT6_TRACE("purging route %p via non-router but gateway\n", 1456 rt); 1457 return -1; 1458 } 1459 gc_args.more++; 1460 } 1461 1462 return 0; 1463 } 1464 1465 static DEFINE_SPINLOCK(fib6_gc_lock); 1466 1467 void fib6_run_gc(unsigned long expires, struct net *net) 1468 { 1469 if (expires != ~0UL) { 1470 spin_lock_bh(&fib6_gc_lock); 1471 gc_args.timeout = expires ? (int)expires : 1472 net->ipv6.sysctl.ip6_rt_gc_interval; 1473 } else { 1474 if (!spin_trylock_bh(&fib6_gc_lock)) { 1475 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1476 return; 1477 } 1478 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval; 1479 } 1480 1481 gc_args.more = icmp6_dst_gc(); 1482 1483 fib6_clean_all(net, fib6_age, 0, NULL); 1484 1485 if (gc_args.more) 1486 mod_timer(&net->ipv6.ip6_fib_timer, 1487 round_jiffies(jiffies 1488 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1489 else 1490 del_timer(&net->ipv6.ip6_fib_timer); 1491 spin_unlock_bh(&fib6_gc_lock); 1492 } 1493 1494 static void fib6_gc_timer_cb(unsigned long arg) 1495 { 1496 fib6_run_gc(0, (struct net *)arg); 1497 } 1498 1499 static int __net_init fib6_net_init(struct net *net) 1500 { 1501 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 1502 1503 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1504 1505 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1506 if (!net->ipv6.rt6_stats) 1507 goto out_timer; 1508 1509 /* Avoid false sharing : Use at least a full cache line */ 1510 size = max_t(size_t, size, L1_CACHE_BYTES); 1511 1512 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 1513 if (!net->ipv6.fib_table_hash) 1514 goto out_rt6_stats; 1515 1516 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1517 GFP_KERNEL); 1518 if (!net->ipv6.fib6_main_tbl) 1519 goto out_fib_table_hash; 1520 1521 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1522 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1523 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1524 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1525 1526 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1527 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1528 GFP_KERNEL); 1529 if (!net->ipv6.fib6_local_tbl) 1530 goto out_fib6_main_tbl; 1531 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1532 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1533 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1534 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1535 #endif 1536 fib6_tables_init(net); 1537 1538 return 0; 1539 1540 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1541 out_fib6_main_tbl: 1542 kfree(net->ipv6.fib6_main_tbl); 1543 #endif 1544 out_fib_table_hash: 1545 kfree(net->ipv6.fib_table_hash); 1546 out_rt6_stats: 1547 kfree(net->ipv6.rt6_stats); 1548 out_timer: 1549 return -ENOMEM; 1550 } 1551 1552 static void fib6_net_exit(struct net *net) 1553 { 1554 rt6_ifdown(net, NULL); 1555 del_timer_sync(&net->ipv6.ip6_fib_timer); 1556 1557 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1558 kfree(net->ipv6.fib6_local_tbl); 1559 #endif 1560 kfree(net->ipv6.fib6_main_tbl); 1561 kfree(net->ipv6.fib_table_hash); 1562 kfree(net->ipv6.rt6_stats); 1563 } 1564 1565 static struct pernet_operations fib6_net_ops = { 1566 .init = fib6_net_init, 1567 .exit = fib6_net_exit, 1568 }; 1569 1570 int __init fib6_init(void) 1571 { 1572 int ret = -ENOMEM; 1573 1574 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1575 sizeof(struct fib6_node), 1576 0, SLAB_HWCACHE_ALIGN, 1577 NULL); 1578 if (!fib6_node_kmem) 1579 goto out; 1580 1581 ret = register_pernet_subsys(&fib6_net_ops); 1582 if (ret) 1583 goto out_kmem_cache_create; 1584 1585 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 1586 NULL); 1587 if (ret) 1588 goto out_unregister_subsys; 1589 out: 1590 return ret; 1591 1592 out_unregister_subsys: 1593 unregister_pernet_subsys(&fib6_net_ops); 1594 out_kmem_cache_create: 1595 kmem_cache_destroy(fib6_node_kmem); 1596 goto out; 1597 } 1598 1599 void fib6_gc_cleanup(void) 1600 { 1601 unregister_pernet_subsys(&fib6_net_ops); 1602 kmem_cache_destroy(fib6_node_kmem); 1603 } 1604