xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 171f1bc7)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <net/ipv6.h>
32 #include <net/ndisc.h>
33 #include <net/addrconf.h>
34 
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37 
38 #define RT6_DEBUG 2
39 
40 #if RT6_DEBUG >= 3
41 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
42 #else
43 #define RT6_TRACE(x...) do { ; } while (0)
44 #endif
45 
46 static struct kmem_cache * fib6_node_kmem __read_mostly;
47 
48 enum fib_walk_state_t
49 {
50 #ifdef CONFIG_IPV6_SUBTREES
51 	FWS_S,
52 #endif
53 	FWS_L,
54 	FWS_R,
55 	FWS_C,
56 	FWS_U
57 };
58 
59 struct fib6_cleaner_t
60 {
61 	struct fib6_walker_t w;
62 	struct net *net;
63 	int (*func)(struct rt6_info *, void *arg);
64 	void *arg;
65 };
66 
67 static DEFINE_RWLOCK(fib6_walker_lock);
68 
69 #ifdef CONFIG_IPV6_SUBTREES
70 #define FWS_INIT FWS_S
71 #else
72 #define FWS_INIT FWS_L
73 #endif
74 
75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
76 			      struct rt6_info *rt);
77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
79 static int fib6_walk(struct fib6_walker_t *w);
80 static int fib6_walk_continue(struct fib6_walker_t *w);
81 
82 /*
83  *	A routing update causes an increase of the serial number on the
84  *	affected subtree. This allows for cached routes to be asynchronously
85  *	tested when modifications are made to the destination cache as a
86  *	result of redirects, path MTU changes, etc.
87  */
88 
89 static __u32 rt_sernum;
90 
91 static void fib6_gc_timer_cb(unsigned long arg);
92 
93 static LIST_HEAD(fib6_walkers);
94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95 
96 static inline void fib6_walker_link(struct fib6_walker_t *w)
97 {
98 	write_lock_bh(&fib6_walker_lock);
99 	list_add(&w->lh, &fib6_walkers);
100 	write_unlock_bh(&fib6_walker_lock);
101 }
102 
103 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104 {
105 	write_lock_bh(&fib6_walker_lock);
106 	list_del(&w->lh);
107 	write_unlock_bh(&fib6_walker_lock);
108 }
109 static __inline__ u32 fib6_new_sernum(void)
110 {
111 	u32 n = ++rt_sernum;
112 	if ((__s32)n <= 0)
113 		rt_sernum = n = 1;
114 	return n;
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 	struct fib6_node *fn;
150 
151 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 
153 	return fn;
154 }
155 
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 	kmem_cache_free(fib6_node_kmem, fn);
159 }
160 
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 	if (atomic_dec_and_test(&rt->rt6i_ref))
164 		dst_free(&rt->dst);
165 }
166 
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169 	unsigned int h;
170 
171 	/*
172 	 * Initialize table lock at a single place to give lockdep a key,
173 	 * tables aren't visible prior to being linked to the list.
174 	 */
175 	rwlock_init(&tb->tb6_lock);
176 
177 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178 
179 	/*
180 	 * No protection necessary, this is the only list mutatation
181 	 * operation, tables never disappear once they exist.
182 	 */
183 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185 
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187 
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190 	struct fib6_table *table;
191 
192 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
193 	if (table != NULL) {
194 		table->tb6_id = id;
195 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197 	}
198 
199 	return table;
200 }
201 
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204 	struct fib6_table *tb;
205 
206 	if (id == 0)
207 		id = RT6_TABLE_MAIN;
208 	tb = fib6_get_table(net, id);
209 	if (tb)
210 		return tb;
211 
212 	tb = fib6_alloc_table(net, id);
213 	if (tb != NULL)
214 		fib6_link_table(net, tb);
215 
216 	return tb;
217 }
218 
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221 	struct fib6_table *tb;
222 	struct hlist_head *head;
223 	struct hlist_node *node;
224 	unsigned int h;
225 
226 	if (id == 0)
227 		id = RT6_TABLE_MAIN;
228 	h = id & (FIB6_TABLE_HASHSZ - 1);
229 	rcu_read_lock();
230 	head = &net->ipv6.fib_table_hash[h];
231 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232 		if (tb->tb6_id == id) {
233 			rcu_read_unlock();
234 			return tb;
235 		}
236 	}
237 	rcu_read_unlock();
238 
239 	return NULL;
240 }
241 
242 static void __net_init fib6_tables_init(struct net *net)
243 {
244 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
245 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248 
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251 	return fib6_get_table(net, id);
252 }
253 
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256 	  return net->ipv6.fib6_main_tbl;
257 }
258 
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
260 				   int flags, pol_lookup_t lookup)
261 {
262 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
263 }
264 
265 static void __net_init fib6_tables_init(struct net *net)
266 {
267 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269 
270 #endif
271 
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274 	int res;
275 	struct rt6_info *rt;
276 
277 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
278 		res = rt6_dump_route(rt, w->args);
279 		if (res < 0) {
280 			/* Frame is full, suspend walking */
281 			w->leaf = rt;
282 			return 1;
283 		}
284 		WARN_ON(res == 0);
285 	}
286 	w->leaf = NULL;
287 	return 0;
288 }
289 
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292 	struct fib6_walker_t *w = (void*)cb->args[2];
293 
294 	if (w) {
295 		if (cb->args[4]) {
296 			cb->args[4] = 0;
297 			fib6_walker_unlink(w);
298 		}
299 		cb->args[2] = 0;
300 		kfree(w);
301 	}
302 	cb->done = (void*)cb->args[3];
303 	cb->args[1] = 3;
304 }
305 
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308 	fib6_dump_end(cb);
309 	return cb->done ? cb->done(cb) : 0;
310 }
311 
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313 			   struct netlink_callback *cb)
314 {
315 	struct fib6_walker_t *w;
316 	int res;
317 
318 	w = (void *)cb->args[2];
319 	w->root = &table->tb6_root;
320 
321 	if (cb->args[4] == 0) {
322 		w->count = 0;
323 		w->skip = 0;
324 
325 		read_lock_bh(&table->tb6_lock);
326 		res = fib6_walk(w);
327 		read_unlock_bh(&table->tb6_lock);
328 		if (res > 0) {
329 			cb->args[4] = 1;
330 			cb->args[5] = w->root->fn_sernum;
331 		}
332 	} else {
333 		if (cb->args[5] != w->root->fn_sernum) {
334 			/* Begin at the root if the tree changed */
335 			cb->args[5] = w->root->fn_sernum;
336 			w->state = FWS_INIT;
337 			w->node = w->root;
338 			w->skip = w->count;
339 		} else
340 			w->skip = 0;
341 
342 		read_lock_bh(&table->tb6_lock);
343 		res = fib6_walk_continue(w);
344 		read_unlock_bh(&table->tb6_lock);
345 		if (res <= 0) {
346 			fib6_walker_unlink(w);
347 			cb->args[4] = 0;
348 		}
349 	}
350 
351 	return res;
352 }
353 
354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 {
356 	struct net *net = sock_net(skb->sk);
357 	unsigned int h, s_h;
358 	unsigned int e = 0, s_e;
359 	struct rt6_rtnl_dump_arg arg;
360 	struct fib6_walker_t *w;
361 	struct fib6_table *tb;
362 	struct hlist_node *node;
363 	struct hlist_head *head;
364 	int res = 0;
365 
366 	s_h = cb->args[0];
367 	s_e = cb->args[1];
368 
369 	w = (void *)cb->args[2];
370 	if (w == NULL) {
371 		/* New dump:
372 		 *
373 		 * 1. hook callback destructor.
374 		 */
375 		cb->args[3] = (long)cb->done;
376 		cb->done = fib6_dump_done;
377 
378 		/*
379 		 * 2. allocate and initialize walker.
380 		 */
381 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
382 		if (w == NULL)
383 			return -ENOMEM;
384 		w->func = fib6_dump_node;
385 		cb->args[2] = (long)w;
386 	}
387 
388 	arg.skb = skb;
389 	arg.cb = cb;
390 	arg.net = net;
391 	w->args = &arg;
392 
393 	rcu_read_lock();
394 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
395 		e = 0;
396 		head = &net->ipv6.fib_table_hash[h];
397 		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
398 			if (e < s_e)
399 				goto next;
400 			res = fib6_dump_table(tb, skb, cb);
401 			if (res != 0)
402 				goto out;
403 next:
404 			e++;
405 		}
406 	}
407 out:
408 	rcu_read_unlock();
409 	cb->args[1] = e;
410 	cb->args[0] = h;
411 
412 	res = res < 0 ? res : skb->len;
413 	if (res <= 0)
414 		fib6_dump_end(cb);
415 	return res;
416 }
417 
418 /*
419  *	Routing Table
420  *
421  *	return the appropriate node for a routing tree "add" operation
422  *	by either creating and inserting or by returning an existing
423  *	node.
424  */
425 
426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427 				     int addrlen, int plen,
428 				     int offset)
429 {
430 	struct fib6_node *fn, *in, *ln;
431 	struct fib6_node *pn = NULL;
432 	struct rt6key *key;
433 	int	bit;
434 	__be32	dir = 0;
435 	__u32	sernum = fib6_new_sernum();
436 
437 	RT6_TRACE("fib6_add_1\n");
438 
439 	/* insert node in tree */
440 
441 	fn = root;
442 
443 	do {
444 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
445 
446 		/*
447 		 *	Prefix match
448 		 */
449 		if (plen < fn->fn_bit ||
450 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
451 			goto insert_above;
452 
453 		/*
454 		 *	Exact match ?
455 		 */
456 
457 		if (plen == fn->fn_bit) {
458 			/* clean up an intermediate node */
459 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
460 				rt6_release(fn->leaf);
461 				fn->leaf = NULL;
462 			}
463 
464 			fn->fn_sernum = sernum;
465 
466 			return fn;
467 		}
468 
469 		/*
470 		 *	We have more bits to go
471 		 */
472 
473 		/* Try to walk down on tree. */
474 		fn->fn_sernum = sernum;
475 		dir = addr_bit_set(addr, fn->fn_bit);
476 		pn = fn;
477 		fn = dir ? fn->right: fn->left;
478 	} while (fn);
479 
480 	/*
481 	 *	We walked to the bottom of tree.
482 	 *	Create new leaf node without children.
483 	 */
484 
485 	ln = node_alloc();
486 
487 	if (ln == NULL)
488 		return NULL;
489 	ln->fn_bit = plen;
490 
491 	ln->parent = pn;
492 	ln->fn_sernum = sernum;
493 
494 	if (dir)
495 		pn->right = ln;
496 	else
497 		pn->left  = ln;
498 
499 	return ln;
500 
501 
502 insert_above:
503 	/*
504 	 * split since we don't have a common prefix anymore or
505 	 * we have a less significant route.
506 	 * we've to insert an intermediate node on the list
507 	 * this new node will point to the one we need to create
508 	 * and the current
509 	 */
510 
511 	pn = fn->parent;
512 
513 	/* find 1st bit in difference between the 2 addrs.
514 
515 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
516 	   but if it is >= plen, the value is ignored in any case.
517 	 */
518 
519 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
520 
521 	/*
522 	 *		(intermediate)[in]
523 	 *	          /	   \
524 	 *	(new leaf node)[ln] (old node)[fn]
525 	 */
526 	if (plen > bit) {
527 		in = node_alloc();
528 		ln = node_alloc();
529 
530 		if (in == NULL || ln == NULL) {
531 			if (in)
532 				node_free(in);
533 			if (ln)
534 				node_free(ln);
535 			return NULL;
536 		}
537 
538 		/*
539 		 * new intermediate node.
540 		 * RTN_RTINFO will
541 		 * be off since that an address that chooses one of
542 		 * the branches would not match less specific routes
543 		 * in the other branch
544 		 */
545 
546 		in->fn_bit = bit;
547 
548 		in->parent = pn;
549 		in->leaf = fn->leaf;
550 		atomic_inc(&in->leaf->rt6i_ref);
551 
552 		in->fn_sernum = sernum;
553 
554 		/* update parent pointer */
555 		if (dir)
556 			pn->right = in;
557 		else
558 			pn->left  = in;
559 
560 		ln->fn_bit = plen;
561 
562 		ln->parent = in;
563 		fn->parent = in;
564 
565 		ln->fn_sernum = sernum;
566 
567 		if (addr_bit_set(addr, bit)) {
568 			in->right = ln;
569 			in->left  = fn;
570 		} else {
571 			in->left  = ln;
572 			in->right = fn;
573 		}
574 	} else { /* plen <= bit */
575 
576 		/*
577 		 *		(new leaf node)[ln]
578 		 *	          /	   \
579 		 *	     (old node)[fn] NULL
580 		 */
581 
582 		ln = node_alloc();
583 
584 		if (ln == NULL)
585 			return NULL;
586 
587 		ln->fn_bit = plen;
588 
589 		ln->parent = pn;
590 
591 		ln->fn_sernum = sernum;
592 
593 		if (dir)
594 			pn->right = ln;
595 		else
596 			pn->left  = ln;
597 
598 		if (addr_bit_set(&key->addr, plen))
599 			ln->right = fn;
600 		else
601 			ln->left  = fn;
602 
603 		fn->parent = ln;
604 	}
605 	return ln;
606 }
607 
608 /*
609  *	Insert routing information in a node.
610  */
611 
612 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
613 			    struct nl_info *info)
614 {
615 	struct rt6_info *iter = NULL;
616 	struct rt6_info **ins;
617 
618 	ins = &fn->leaf;
619 
620 	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
621 		/*
622 		 *	Search for duplicates
623 		 */
624 
625 		if (iter->rt6i_metric == rt->rt6i_metric) {
626 			/*
627 			 *	Same priority level
628 			 */
629 
630 			if (iter->rt6i_dev == rt->rt6i_dev &&
631 			    iter->rt6i_idev == rt->rt6i_idev &&
632 			    ipv6_addr_equal(&iter->rt6i_gateway,
633 					    &rt->rt6i_gateway)) {
634 				if (!(iter->rt6i_flags&RTF_EXPIRES))
635 					return -EEXIST;
636 				iter->rt6i_expires = rt->rt6i_expires;
637 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
638 					iter->rt6i_flags &= ~RTF_EXPIRES;
639 					iter->rt6i_expires = 0;
640 				}
641 				return -EEXIST;
642 			}
643 		}
644 
645 		if (iter->rt6i_metric > rt->rt6i_metric)
646 			break;
647 
648 		ins = &iter->dst.rt6_next;
649 	}
650 
651 	/* Reset round-robin state, if necessary */
652 	if (ins == &fn->leaf)
653 		fn->rr_ptr = NULL;
654 
655 	/*
656 	 *	insert node
657 	 */
658 
659 	rt->dst.rt6_next = iter;
660 	*ins = rt;
661 	rt->rt6i_node = fn;
662 	atomic_inc(&rt->rt6i_ref);
663 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
664 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
665 
666 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
667 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
668 		fn->fn_flags |= RTN_RTINFO;
669 	}
670 
671 	return 0;
672 }
673 
674 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
675 {
676 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
677 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
678 		mod_timer(&net->ipv6.ip6_fib_timer,
679 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
680 }
681 
682 void fib6_force_start_gc(struct net *net)
683 {
684 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
685 		mod_timer(&net->ipv6.ip6_fib_timer,
686 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
687 }
688 
689 /*
690  *	Add routing information to the routing tree.
691  *	<destination addr>/<source addr>
692  *	with source addr info in sub-trees
693  */
694 
695 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
696 {
697 	struct fib6_node *fn, *pn = NULL;
698 	int err = -ENOMEM;
699 
700 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
701 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
702 
703 	if (fn == NULL)
704 		goto out;
705 
706 	pn = fn;
707 
708 #ifdef CONFIG_IPV6_SUBTREES
709 	if (rt->rt6i_src.plen) {
710 		struct fib6_node *sn;
711 
712 		if (fn->subtree == NULL) {
713 			struct fib6_node *sfn;
714 
715 			/*
716 			 * Create subtree.
717 			 *
718 			 *		fn[main tree]
719 			 *		|
720 			 *		sfn[subtree root]
721 			 *		   \
722 			 *		    sn[new leaf node]
723 			 */
724 
725 			/* Create subtree root node */
726 			sfn = node_alloc();
727 			if (sfn == NULL)
728 				goto st_failure;
729 
730 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
731 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
732 			sfn->fn_flags = RTN_ROOT;
733 			sfn->fn_sernum = fib6_new_sernum();
734 
735 			/* Now add the first leaf node to new subtree */
736 
737 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
738 					sizeof(struct in6_addr), rt->rt6i_src.plen,
739 					offsetof(struct rt6_info, rt6i_src));
740 
741 			if (sn == NULL) {
742 				/* If it is failed, discard just allocated
743 				   root, and then (in st_failure) stale node
744 				   in main tree.
745 				 */
746 				node_free(sfn);
747 				goto st_failure;
748 			}
749 
750 			/* Now link new subtree to main tree */
751 			sfn->parent = fn;
752 			fn->subtree = sfn;
753 		} else {
754 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
755 					sizeof(struct in6_addr), rt->rt6i_src.plen,
756 					offsetof(struct rt6_info, rt6i_src));
757 
758 			if (sn == NULL)
759 				goto st_failure;
760 		}
761 
762 		if (fn->leaf == NULL) {
763 			fn->leaf = rt;
764 			atomic_inc(&rt->rt6i_ref);
765 		}
766 		fn = sn;
767 	}
768 #endif
769 
770 	err = fib6_add_rt2node(fn, rt, info);
771 
772 	if (err == 0) {
773 		fib6_start_gc(info->nl_net, rt);
774 		if (!(rt->rt6i_flags&RTF_CACHE))
775 			fib6_prune_clones(info->nl_net, pn, rt);
776 	}
777 
778 out:
779 	if (err) {
780 #ifdef CONFIG_IPV6_SUBTREES
781 		/*
782 		 * If fib6_add_1 has cleared the old leaf pointer in the
783 		 * super-tree leaf node we have to find a new one for it.
784 		 */
785 		if (pn != fn && pn->leaf == rt) {
786 			pn->leaf = NULL;
787 			atomic_dec(&rt->rt6i_ref);
788 		}
789 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
790 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
791 #if RT6_DEBUG >= 2
792 			if (!pn->leaf) {
793 				WARN_ON(pn->leaf == NULL);
794 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
795 			}
796 #endif
797 			atomic_inc(&pn->leaf->rt6i_ref);
798 		}
799 #endif
800 		dst_free(&rt->dst);
801 	}
802 	return err;
803 
804 #ifdef CONFIG_IPV6_SUBTREES
805 	/* Subtree creation failed, probably main tree node
806 	   is orphan. If it is, shoot it.
807 	 */
808 st_failure:
809 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
810 		fib6_repair_tree(info->nl_net, fn);
811 	dst_free(&rt->dst);
812 	return err;
813 #endif
814 }
815 
816 /*
817  *	Routing tree lookup
818  *
819  */
820 
821 struct lookup_args {
822 	int		offset;		/* key offset on rt6_info	*/
823 	const struct in6_addr	*addr;		/* search key			*/
824 };
825 
826 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
827 					struct lookup_args *args)
828 {
829 	struct fib6_node *fn;
830 	__be32 dir;
831 
832 	if (unlikely(args->offset == 0))
833 		return NULL;
834 
835 	/*
836 	 *	Descend on a tree
837 	 */
838 
839 	fn = root;
840 
841 	for (;;) {
842 		struct fib6_node *next;
843 
844 		dir = addr_bit_set(args->addr, fn->fn_bit);
845 
846 		next = dir ? fn->right : fn->left;
847 
848 		if (next) {
849 			fn = next;
850 			continue;
851 		}
852 
853 		break;
854 	}
855 
856 	while(fn) {
857 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
858 			struct rt6key *key;
859 
860 			key = (struct rt6key *) ((u8 *) fn->leaf +
861 						 args->offset);
862 
863 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
864 #ifdef CONFIG_IPV6_SUBTREES
865 				if (fn->subtree)
866 					fn = fib6_lookup_1(fn->subtree, args + 1);
867 #endif
868 				if (!fn || fn->fn_flags & RTN_RTINFO)
869 					return fn;
870 			}
871 		}
872 
873 		if (fn->fn_flags & RTN_ROOT)
874 			break;
875 
876 		fn = fn->parent;
877 	}
878 
879 	return NULL;
880 }
881 
882 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
883 			       const struct in6_addr *saddr)
884 {
885 	struct fib6_node *fn;
886 	struct lookup_args args[] = {
887 		{
888 			.offset = offsetof(struct rt6_info, rt6i_dst),
889 			.addr = daddr,
890 		},
891 #ifdef CONFIG_IPV6_SUBTREES
892 		{
893 			.offset = offsetof(struct rt6_info, rt6i_src),
894 			.addr = saddr,
895 		},
896 #endif
897 		{
898 			.offset = 0,	/* sentinel */
899 		}
900 	};
901 
902 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
903 
904 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
905 		fn = root;
906 
907 	return fn;
908 }
909 
910 /*
911  *	Get node with specified destination prefix (and source prefix,
912  *	if subtrees are used)
913  */
914 
915 
916 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
917 					const struct in6_addr *addr,
918 					int plen, int offset)
919 {
920 	struct fib6_node *fn;
921 
922 	for (fn = root; fn ; ) {
923 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
924 
925 		/*
926 		 *	Prefix match
927 		 */
928 		if (plen < fn->fn_bit ||
929 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
930 			return NULL;
931 
932 		if (plen == fn->fn_bit)
933 			return fn;
934 
935 		/*
936 		 *	We have more bits to go
937 		 */
938 		if (addr_bit_set(addr, fn->fn_bit))
939 			fn = fn->right;
940 		else
941 			fn = fn->left;
942 	}
943 	return NULL;
944 }
945 
946 struct fib6_node * fib6_locate(struct fib6_node *root,
947 			       const struct in6_addr *daddr, int dst_len,
948 			       const struct in6_addr *saddr, int src_len)
949 {
950 	struct fib6_node *fn;
951 
952 	fn = fib6_locate_1(root, daddr, dst_len,
953 			   offsetof(struct rt6_info, rt6i_dst));
954 
955 #ifdef CONFIG_IPV6_SUBTREES
956 	if (src_len) {
957 		WARN_ON(saddr == NULL);
958 		if (fn && fn->subtree)
959 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
960 					   offsetof(struct rt6_info, rt6i_src));
961 	}
962 #endif
963 
964 	if (fn && fn->fn_flags&RTN_RTINFO)
965 		return fn;
966 
967 	return NULL;
968 }
969 
970 
971 /*
972  *	Deletion
973  *
974  */
975 
976 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
977 {
978 	if (fn->fn_flags&RTN_ROOT)
979 		return net->ipv6.ip6_null_entry;
980 
981 	while(fn) {
982 		if(fn->left)
983 			return fn->left->leaf;
984 
985 		if(fn->right)
986 			return fn->right->leaf;
987 
988 		fn = FIB6_SUBTREE(fn);
989 	}
990 	return NULL;
991 }
992 
993 /*
994  *	Called to trim the tree of intermediate nodes when possible. "fn"
995  *	is the node we want to try and remove.
996  */
997 
998 static struct fib6_node *fib6_repair_tree(struct net *net,
999 					   struct fib6_node *fn)
1000 {
1001 	int children;
1002 	int nstate;
1003 	struct fib6_node *child, *pn;
1004 	struct fib6_walker_t *w;
1005 	int iter = 0;
1006 
1007 	for (;;) {
1008 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1009 		iter++;
1010 
1011 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1012 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1013 		WARN_ON(fn->leaf != NULL);
1014 
1015 		children = 0;
1016 		child = NULL;
1017 		if (fn->right) child = fn->right, children |= 1;
1018 		if (fn->left) child = fn->left, children |= 2;
1019 
1020 		if (children == 3 || FIB6_SUBTREE(fn)
1021 #ifdef CONFIG_IPV6_SUBTREES
1022 		    /* Subtree root (i.e. fn) may have one child */
1023 		    || (children && fn->fn_flags&RTN_ROOT)
1024 #endif
1025 		    ) {
1026 			fn->leaf = fib6_find_prefix(net, fn);
1027 #if RT6_DEBUG >= 2
1028 			if (fn->leaf==NULL) {
1029 				WARN_ON(!fn->leaf);
1030 				fn->leaf = net->ipv6.ip6_null_entry;
1031 			}
1032 #endif
1033 			atomic_inc(&fn->leaf->rt6i_ref);
1034 			return fn->parent;
1035 		}
1036 
1037 		pn = fn->parent;
1038 #ifdef CONFIG_IPV6_SUBTREES
1039 		if (FIB6_SUBTREE(pn) == fn) {
1040 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1041 			FIB6_SUBTREE(pn) = NULL;
1042 			nstate = FWS_L;
1043 		} else {
1044 			WARN_ON(fn->fn_flags & RTN_ROOT);
1045 #endif
1046 			if (pn->right == fn) pn->right = child;
1047 			else if (pn->left == fn) pn->left = child;
1048 #if RT6_DEBUG >= 2
1049 			else
1050 				WARN_ON(1);
1051 #endif
1052 			if (child)
1053 				child->parent = pn;
1054 			nstate = FWS_R;
1055 #ifdef CONFIG_IPV6_SUBTREES
1056 		}
1057 #endif
1058 
1059 		read_lock(&fib6_walker_lock);
1060 		FOR_WALKERS(w) {
1061 			if (child == NULL) {
1062 				if (w->root == fn) {
1063 					w->root = w->node = NULL;
1064 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1065 				} else if (w->node == fn) {
1066 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1067 					w->node = pn;
1068 					w->state = nstate;
1069 				}
1070 			} else {
1071 				if (w->root == fn) {
1072 					w->root = child;
1073 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1074 				}
1075 				if (w->node == fn) {
1076 					w->node = child;
1077 					if (children&2) {
1078 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1079 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1080 					} else {
1081 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1082 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1083 					}
1084 				}
1085 			}
1086 		}
1087 		read_unlock(&fib6_walker_lock);
1088 
1089 		node_free(fn);
1090 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1091 			return pn;
1092 
1093 		rt6_release(pn->leaf);
1094 		pn->leaf = NULL;
1095 		fn = pn;
1096 	}
1097 }
1098 
1099 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1100 			   struct nl_info *info)
1101 {
1102 	struct fib6_walker_t *w;
1103 	struct rt6_info *rt = *rtp;
1104 	struct net *net = info->nl_net;
1105 
1106 	RT6_TRACE("fib6_del_route\n");
1107 
1108 	/* Unlink it */
1109 	*rtp = rt->dst.rt6_next;
1110 	rt->rt6i_node = NULL;
1111 	net->ipv6.rt6_stats->fib_rt_entries--;
1112 	net->ipv6.rt6_stats->fib_discarded_routes++;
1113 
1114 	/* Reset round-robin state, if necessary */
1115 	if (fn->rr_ptr == rt)
1116 		fn->rr_ptr = NULL;
1117 
1118 	/* Adjust walkers */
1119 	read_lock(&fib6_walker_lock);
1120 	FOR_WALKERS(w) {
1121 		if (w->state == FWS_C && w->leaf == rt) {
1122 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1123 			w->leaf = rt->dst.rt6_next;
1124 			if (w->leaf == NULL)
1125 				w->state = FWS_U;
1126 		}
1127 	}
1128 	read_unlock(&fib6_walker_lock);
1129 
1130 	rt->dst.rt6_next = NULL;
1131 
1132 	/* If it was last route, expunge its radix tree node */
1133 	if (fn->leaf == NULL) {
1134 		fn->fn_flags &= ~RTN_RTINFO;
1135 		net->ipv6.rt6_stats->fib_route_nodes--;
1136 		fn = fib6_repair_tree(net, fn);
1137 	}
1138 
1139 	if (atomic_read(&rt->rt6i_ref) != 1) {
1140 		/* This route is used as dummy address holder in some split
1141 		 * nodes. It is not leaked, but it still holds other resources,
1142 		 * which must be released in time. So, scan ascendant nodes
1143 		 * and replace dummy references to this route with references
1144 		 * to still alive ones.
1145 		 */
1146 		while (fn) {
1147 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1148 				fn->leaf = fib6_find_prefix(net, fn);
1149 				atomic_inc(&fn->leaf->rt6i_ref);
1150 				rt6_release(rt);
1151 			}
1152 			fn = fn->parent;
1153 		}
1154 		/* No more references are possible at this point. */
1155 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1156 	}
1157 
1158 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1159 	rt6_release(rt);
1160 }
1161 
1162 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1163 {
1164 	struct net *net = info->nl_net;
1165 	struct fib6_node *fn = rt->rt6i_node;
1166 	struct rt6_info **rtp;
1167 
1168 #if RT6_DEBUG >= 2
1169 	if (rt->dst.obsolete>0) {
1170 		WARN_ON(fn != NULL);
1171 		return -ENOENT;
1172 	}
1173 #endif
1174 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1175 		return -ENOENT;
1176 
1177 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1178 
1179 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1180 		struct fib6_node *pn = fn;
1181 #ifdef CONFIG_IPV6_SUBTREES
1182 		/* clones of this route might be in another subtree */
1183 		if (rt->rt6i_src.plen) {
1184 			while (!(pn->fn_flags&RTN_ROOT))
1185 				pn = pn->parent;
1186 			pn = pn->parent;
1187 		}
1188 #endif
1189 		fib6_prune_clones(info->nl_net, pn, rt);
1190 	}
1191 
1192 	/*
1193 	 *	Walk the leaf entries looking for ourself
1194 	 */
1195 
1196 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1197 		if (*rtp == rt) {
1198 			fib6_del_route(fn, rtp, info);
1199 			return 0;
1200 		}
1201 	}
1202 	return -ENOENT;
1203 }
1204 
1205 /*
1206  *	Tree traversal function.
1207  *
1208  *	Certainly, it is not interrupt safe.
1209  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1210  *	It means, that we can modify tree during walking
1211  *	and use this function for garbage collection, clone pruning,
1212  *	cleaning tree when a device goes down etc. etc.
1213  *
1214  *	It guarantees that every node will be traversed,
1215  *	and that it will be traversed only once.
1216  *
1217  *	Callback function w->func may return:
1218  *	0 -> continue walking.
1219  *	positive value -> walking is suspended (used by tree dumps,
1220  *	and probably by gc, if it will be split to several slices)
1221  *	negative value -> terminate walking.
1222  *
1223  *	The function itself returns:
1224  *	0   -> walk is complete.
1225  *	>0  -> walk is incomplete (i.e. suspended)
1226  *	<0  -> walk is terminated by an error.
1227  */
1228 
1229 static int fib6_walk_continue(struct fib6_walker_t *w)
1230 {
1231 	struct fib6_node *fn, *pn;
1232 
1233 	for (;;) {
1234 		fn = w->node;
1235 		if (fn == NULL)
1236 			return 0;
1237 
1238 		if (w->prune && fn != w->root &&
1239 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1240 			w->state = FWS_C;
1241 			w->leaf = fn->leaf;
1242 		}
1243 		switch (w->state) {
1244 #ifdef CONFIG_IPV6_SUBTREES
1245 		case FWS_S:
1246 			if (FIB6_SUBTREE(fn)) {
1247 				w->node = FIB6_SUBTREE(fn);
1248 				continue;
1249 			}
1250 			w->state = FWS_L;
1251 #endif
1252 		case FWS_L:
1253 			if (fn->left) {
1254 				w->node = fn->left;
1255 				w->state = FWS_INIT;
1256 				continue;
1257 			}
1258 			w->state = FWS_R;
1259 		case FWS_R:
1260 			if (fn->right) {
1261 				w->node = fn->right;
1262 				w->state = FWS_INIT;
1263 				continue;
1264 			}
1265 			w->state = FWS_C;
1266 			w->leaf = fn->leaf;
1267 		case FWS_C:
1268 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1269 				int err;
1270 
1271 				if (w->count < w->skip) {
1272 					w->count++;
1273 					continue;
1274 				}
1275 
1276 				err = w->func(w);
1277 				if (err)
1278 					return err;
1279 
1280 				w->count++;
1281 				continue;
1282 			}
1283 			w->state = FWS_U;
1284 		case FWS_U:
1285 			if (fn == w->root)
1286 				return 0;
1287 			pn = fn->parent;
1288 			w->node = pn;
1289 #ifdef CONFIG_IPV6_SUBTREES
1290 			if (FIB6_SUBTREE(pn) == fn) {
1291 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1292 				w->state = FWS_L;
1293 				continue;
1294 			}
1295 #endif
1296 			if (pn->left == fn) {
1297 				w->state = FWS_R;
1298 				continue;
1299 			}
1300 			if (pn->right == fn) {
1301 				w->state = FWS_C;
1302 				w->leaf = w->node->leaf;
1303 				continue;
1304 			}
1305 #if RT6_DEBUG >= 2
1306 			WARN_ON(1);
1307 #endif
1308 		}
1309 	}
1310 }
1311 
1312 static int fib6_walk(struct fib6_walker_t *w)
1313 {
1314 	int res;
1315 
1316 	w->state = FWS_INIT;
1317 	w->node = w->root;
1318 
1319 	fib6_walker_link(w);
1320 	res = fib6_walk_continue(w);
1321 	if (res <= 0)
1322 		fib6_walker_unlink(w);
1323 	return res;
1324 }
1325 
1326 static int fib6_clean_node(struct fib6_walker_t *w)
1327 {
1328 	int res;
1329 	struct rt6_info *rt;
1330 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1331 	struct nl_info info = {
1332 		.nl_net = c->net,
1333 	};
1334 
1335 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1336 		res = c->func(rt, c->arg);
1337 		if (res < 0) {
1338 			w->leaf = rt;
1339 			res = fib6_del(rt, &info);
1340 			if (res) {
1341 #if RT6_DEBUG >= 2
1342 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1343 #endif
1344 				continue;
1345 			}
1346 			return 0;
1347 		}
1348 		WARN_ON(res != 0);
1349 	}
1350 	w->leaf = rt;
1351 	return 0;
1352 }
1353 
1354 /*
1355  *	Convenient frontend to tree walker.
1356  *
1357  *	func is called on each route.
1358  *		It may return -1 -> delete this route.
1359  *		              0  -> continue walking
1360  *
1361  *	prune==1 -> only immediate children of node (certainly,
1362  *	ignoring pure split nodes) will be scanned.
1363  */
1364 
1365 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1366 			    int (*func)(struct rt6_info *, void *arg),
1367 			    int prune, void *arg)
1368 {
1369 	struct fib6_cleaner_t c;
1370 
1371 	c.w.root = root;
1372 	c.w.func = fib6_clean_node;
1373 	c.w.prune = prune;
1374 	c.w.count = 0;
1375 	c.w.skip = 0;
1376 	c.func = func;
1377 	c.arg = arg;
1378 	c.net = net;
1379 
1380 	fib6_walk(&c.w);
1381 }
1382 
1383 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1384 		    int prune, void *arg)
1385 {
1386 	struct fib6_table *table;
1387 	struct hlist_node *node;
1388 	struct hlist_head *head;
1389 	unsigned int h;
1390 
1391 	rcu_read_lock();
1392 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1393 		head = &net->ipv6.fib_table_hash[h];
1394 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1395 			write_lock_bh(&table->tb6_lock);
1396 			fib6_clean_tree(net, &table->tb6_root,
1397 					func, prune, arg);
1398 			write_unlock_bh(&table->tb6_lock);
1399 		}
1400 	}
1401 	rcu_read_unlock();
1402 }
1403 
1404 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1405 {
1406 	if (rt->rt6i_flags & RTF_CACHE) {
1407 		RT6_TRACE("pruning clone %p\n", rt);
1408 		return -1;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1415 			      struct rt6_info *rt)
1416 {
1417 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1418 }
1419 
1420 /*
1421  *	Garbage collection
1422  */
1423 
1424 static struct fib6_gc_args
1425 {
1426 	int			timeout;
1427 	int			more;
1428 } gc_args;
1429 
1430 static int fib6_age(struct rt6_info *rt, void *arg)
1431 {
1432 	unsigned long now = jiffies;
1433 
1434 	/*
1435 	 *	check addrconf expiration here.
1436 	 *	Routes are expired even if they are in use.
1437 	 *
1438 	 *	Also age clones. Note, that clones are aged out
1439 	 *	only if they are not in use now.
1440 	 */
1441 
1442 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1443 		if (time_after(now, rt->rt6i_expires)) {
1444 			RT6_TRACE("expiring %p\n", rt);
1445 			return -1;
1446 		}
1447 		gc_args.more++;
1448 	} else if (rt->rt6i_flags & RTF_CACHE) {
1449 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1450 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1451 			RT6_TRACE("aging clone %p\n", rt);
1452 			return -1;
1453 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1454 			   (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1455 			RT6_TRACE("purging route %p via non-router but gateway\n",
1456 				  rt);
1457 			return -1;
1458 		}
1459 		gc_args.more++;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 static DEFINE_SPINLOCK(fib6_gc_lock);
1466 
1467 void fib6_run_gc(unsigned long expires, struct net *net)
1468 {
1469 	if (expires != ~0UL) {
1470 		spin_lock_bh(&fib6_gc_lock);
1471 		gc_args.timeout = expires ? (int)expires :
1472 			net->ipv6.sysctl.ip6_rt_gc_interval;
1473 	} else {
1474 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1475 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1476 			return;
1477 		}
1478 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1479 	}
1480 
1481 	gc_args.more = icmp6_dst_gc();
1482 
1483 	fib6_clean_all(net, fib6_age, 0, NULL);
1484 
1485 	if (gc_args.more)
1486 		mod_timer(&net->ipv6.ip6_fib_timer,
1487 			  round_jiffies(jiffies
1488 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1489 	else
1490 		del_timer(&net->ipv6.ip6_fib_timer);
1491 	spin_unlock_bh(&fib6_gc_lock);
1492 }
1493 
1494 static void fib6_gc_timer_cb(unsigned long arg)
1495 {
1496 	fib6_run_gc(0, (struct net *)arg);
1497 }
1498 
1499 static int __net_init fib6_net_init(struct net *net)
1500 {
1501 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1502 
1503 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1504 
1505 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1506 	if (!net->ipv6.rt6_stats)
1507 		goto out_timer;
1508 
1509 	/* Avoid false sharing : Use at least a full cache line */
1510 	size = max_t(size_t, size, L1_CACHE_BYTES);
1511 
1512 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1513 	if (!net->ipv6.fib_table_hash)
1514 		goto out_rt6_stats;
1515 
1516 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1517 					  GFP_KERNEL);
1518 	if (!net->ipv6.fib6_main_tbl)
1519 		goto out_fib_table_hash;
1520 
1521 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1522 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1523 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1524 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1525 
1526 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1527 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1528 					   GFP_KERNEL);
1529 	if (!net->ipv6.fib6_local_tbl)
1530 		goto out_fib6_main_tbl;
1531 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1532 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1533 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1534 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1535 #endif
1536 	fib6_tables_init(net);
1537 
1538 	return 0;
1539 
1540 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1541 out_fib6_main_tbl:
1542 	kfree(net->ipv6.fib6_main_tbl);
1543 #endif
1544 out_fib_table_hash:
1545 	kfree(net->ipv6.fib_table_hash);
1546 out_rt6_stats:
1547 	kfree(net->ipv6.rt6_stats);
1548 out_timer:
1549 	return -ENOMEM;
1550  }
1551 
1552 static void fib6_net_exit(struct net *net)
1553 {
1554 	rt6_ifdown(net, NULL);
1555 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1556 
1557 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1558 	kfree(net->ipv6.fib6_local_tbl);
1559 #endif
1560 	kfree(net->ipv6.fib6_main_tbl);
1561 	kfree(net->ipv6.fib_table_hash);
1562 	kfree(net->ipv6.rt6_stats);
1563 }
1564 
1565 static struct pernet_operations fib6_net_ops = {
1566 	.init = fib6_net_init,
1567 	.exit = fib6_net_exit,
1568 };
1569 
1570 int __init fib6_init(void)
1571 {
1572 	int ret = -ENOMEM;
1573 
1574 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1575 					   sizeof(struct fib6_node),
1576 					   0, SLAB_HWCACHE_ALIGN,
1577 					   NULL);
1578 	if (!fib6_node_kmem)
1579 		goto out;
1580 
1581 	ret = register_pernet_subsys(&fib6_net_ops);
1582 	if (ret)
1583 		goto out_kmem_cache_create;
1584 
1585 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1586 			      NULL);
1587 	if (ret)
1588 		goto out_unregister_subsys;
1589 out:
1590 	return ret;
1591 
1592 out_unregister_subsys:
1593 	unregister_pernet_subsys(&fib6_net_ops);
1594 out_kmem_cache_create:
1595 	kmem_cache_destroy(fib6_node_kmem);
1596 	goto out;
1597 }
1598 
1599 void fib6_gc_cleanup(void)
1600 {
1601 	unregister_pernet_subsys(&fib6_net_ops);
1602 	kmem_cache_destroy(fib6_node_kmem);
1603 }
1604