xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34 
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37 
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39 
40 struct fib6_cleaner {
41 	struct fib6_walker w;
42 	struct net *net;
43 	int (*func)(struct fib6_info *, void *arg);
44 	int sernum;
45 	void *arg;
46 	bool skip_notify;
47 };
48 
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54 
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 					 struct fib6_table *table,
57 					 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 					  struct fib6_table *table,
60 					  struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63 
64 /*
65  *	A routing update causes an increase of the serial number on the
66  *	affected subtree. This allows for cached routes to be asynchronously
67  *	tested when modifications are made to the destination cache as a
68  *	result of redirects, path MTU changes, etc.
69  */
70 
71 static void fib6_gc_timer_cb(struct timer_list *t);
72 
73 #define FOR_WALKERS(net, w) \
74 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75 
76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 	write_lock_bh(&net->ipv6.fib6_walker_lock);
79 	list_add(&w->lh, &net->ipv6.fib6_walkers);
80 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82 
83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 	write_lock_bh(&net->ipv6.fib6_walker_lock);
86 	list_del(&w->lh);
87 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89 
90 static int fib6_new_sernum(struct net *net)
91 {
92 	int new, old;
93 
94 	do {
95 		old = atomic_read(&net->ipv6.fib6_sernum);
96 		new = old < INT_MAX ? old + 1 : 1;
97 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 				old, new) != old);
99 	return new;
100 }
101 
102 enum {
103 	FIB6_NO_SERNUM_CHANGE = 0,
104 };
105 
106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 	struct fib6_node *fn;
109 
110 	fn = rcu_dereference_protected(f6i->fib6_node,
111 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 	if (fn)
113 		fn->fn_sernum = fib6_new_sernum(net);
114 }
115 
116 /*
117  *	Auxiliary address test functions for the radix tree.
118  *
119  *	These assume a 32bit processor (although it will work on
120  *	64bit processors)
121  */
122 
123 /*
124  *	test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE	0
130 #endif
131 
132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 	const __be32 *addr = token;
135 	/*
136 	 * Here,
137 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 	 * is optimized version of
139 	 *	htonl(1 << ((~fn_bit)&0x1F))
140 	 * See include/asm-generic/bitops/le.h.
141 	 */
142 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 	       addr[fn_bit >> 5];
144 }
145 
146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 	struct fib6_info *f6i;
149 	size_t sz = sizeof(*f6i);
150 
151 	if (with_fib6_nh)
152 		sz += sizeof(struct fib6_nh);
153 
154 	f6i = kzalloc(sz, gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	/* fib6_siblings is a union with nh_list, so this initializes both */
159 	INIT_LIST_HEAD(&f6i->fib6_siblings);
160 	refcount_set(&f6i->fib6_ref, 1);
161 
162 	return f6i;
163 }
164 
165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168 
169 	WARN_ON(f6i->fib6_node);
170 
171 	if (f6i->nh)
172 		nexthop_put(f6i->nh);
173 	else
174 		fib6_nh_release(f6i->fib6_nh);
175 
176 	ip_fib_metrics_put(f6i->fib6_metrics);
177 	kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180 
181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 	struct fib6_node *fn;
184 
185 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 	if (fn)
187 		net->ipv6.rt6_stats->fib_nodes++;
188 
189 	return fn;
190 }
191 
192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 	kmem_cache_free(fib6_node_kmem, fn);
195 	net->ipv6.rt6_stats->fib_nodes--;
196 }
197 
198 static void node_free_rcu(struct rcu_head *head)
199 {
200 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201 
202 	kmem_cache_free(fib6_node_kmem, fn);
203 }
204 
205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 	call_rcu(&fn->rcu, node_free_rcu);
208 	net->ipv6.rt6_stats->fib_nodes--;
209 }
210 
211 static void fib6_free_table(struct fib6_table *table)
212 {
213 	inetpeer_invalidate_tree(&table->tb6_peers);
214 	kfree(table);
215 }
216 
217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 	unsigned int h;
220 
221 	/*
222 	 * Initialize table lock at a single place to give lockdep a key,
223 	 * tables aren't visible prior to being linked to the list.
224 	 */
225 	spin_lock_init(&tb->tb6_lock);
226 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227 
228 	/*
229 	 * No protection necessary, this is the only list mutatation
230 	 * operation, tables never disappear once they exist.
231 	 */
232 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234 
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236 
237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 	struct fib6_table *table;
240 
241 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 	if (table) {
243 		table->tb6_id = id;
244 		rcu_assign_pointer(table->tb6_root.leaf,
245 				   net->ipv6.fib6_null_entry);
246 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 		inet_peer_base_init(&table->tb6_peers);
248 	}
249 
250 	return table;
251 }
252 
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	struct fib6_table *tb;
256 
257 	if (id == 0)
258 		id = RT6_TABLE_MAIN;
259 	tb = fib6_get_table(net, id);
260 	if (tb)
261 		return tb;
262 
263 	tb = fib6_alloc_table(net, id);
264 	if (tb)
265 		fib6_link_table(net, tb);
266 
267 	return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270 
271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 	struct fib6_table *tb;
274 	struct hlist_head *head;
275 	unsigned int h;
276 
277 	if (id == 0)
278 		id = RT6_TABLE_MAIN;
279 	h = id & (FIB6_TABLE_HASHSZ - 1);
280 	rcu_read_lock();
281 	head = &net->ipv6.fib_table_hash[h];
282 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 		if (tb->tb6_id == id) {
284 			rcu_read_unlock();
285 			return tb;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293 
294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300 
301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 	return fib6_get_table(net, id);
304 }
305 
306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 	  return net->ipv6.fib6_main_tbl;
309 }
310 
311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 				   const struct sk_buff *skb,
313 				   int flags, pol_lookup_t lookup)
314 {
315 	struct rt6_info *rt;
316 
317 	rt = pol_lookup_func(lookup,
318 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 	if (rt->dst.error == -EAGAIN) {
320 		ip6_rt_put_flags(rt, flags);
321 		rt = net->ipv6.ip6_null_entry;
322 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 			dst_hold(&rt->dst);
324 	}
325 
326 	return &rt->dst;
327 }
328 
329 /* called with rcu lock held; no reference taken on fib6_info */
330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 		struct fib6_result *res, int flags)
332 {
333 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 				 res, flags);
335 }
336 
337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341 
342 #endif
343 
344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 	unsigned int h, fib_seq = 0;
347 
348 	rcu_read_lock();
349 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 		struct fib6_table *tb;
352 
353 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 			fib_seq += tb->fib_seq;
355 	}
356 	rcu_read_unlock();
357 
358 	return fib_seq;
359 }
360 
361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 				    enum fib_event_type event_type,
363 				    struct fib6_info *rt,
364 				    struct netlink_ext_ack *extack)
365 {
366 	struct fib6_entry_notifier_info info = {
367 		.info.extack = extack,
368 		.rt = rt,
369 	};
370 
371 	return call_fib6_notifier(nb, event_type, &info.info);
372 }
373 
374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 					      enum fib_event_type event_type,
376 					      struct fib6_info *rt,
377 					      unsigned int nsiblings,
378 					      struct netlink_ext_ack *extack)
379 {
380 	struct fib6_entry_notifier_info info = {
381 		.info.extack = extack,
382 		.rt = rt,
383 		.nsiblings = nsiblings,
384 	};
385 
386 	return call_fib6_notifier(nb, event_type, &info.info);
387 }
388 
389 int call_fib6_entry_notifiers(struct net *net,
390 			      enum fib_event_type event_type,
391 			      struct fib6_info *rt,
392 			      struct netlink_ext_ack *extack)
393 {
394 	struct fib6_entry_notifier_info info = {
395 		.info.extack = extack,
396 		.rt = rt,
397 	};
398 
399 	rt->fib6_table->fib_seq++;
400 	return call_fib6_notifiers(net, event_type, &info.info);
401 }
402 
403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 					enum fib_event_type event_type,
405 					struct fib6_info *rt,
406 					unsigned int nsiblings,
407 					struct netlink_ext_ack *extack)
408 {
409 	struct fib6_entry_notifier_info info = {
410 		.info.extack = extack,
411 		.rt = rt,
412 		.nsiblings = nsiblings,
413 	};
414 
415 	rt->fib6_table->fib_seq++;
416 	return call_fib6_notifiers(net, event_type, &info.info);
417 }
418 
419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 	struct fib6_entry_notifier_info info = {
422 		.rt = rt,
423 		.nsiblings = rt->fib6_nsiblings,
424 	};
425 
426 	rt->fib6_table->fib_seq++;
427 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429 
430 struct fib6_dump_arg {
431 	struct net *net;
432 	struct notifier_block *nb;
433 	struct netlink_ext_ack *extack;
434 };
435 
436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 	int err;
440 
441 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 		return 0;
443 
444 	if (rt->fib6_nsiblings)
445 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 							 rt,
447 							 rt->fib6_nsiblings,
448 							 arg->extack);
449 	else
450 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 					       arg->extack);
452 
453 	return err;
454 }
455 
456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 	int err;
459 
460 	err = fib6_rt_dump(w->leaf, w->args);
461 	w->leaf = NULL;
462 	return err;
463 }
464 
465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 			   struct fib6_walker *w)
467 {
468 	int err;
469 
470 	w->root = &tb->tb6_root;
471 	spin_lock_bh(&tb->tb6_lock);
472 	err = fib6_walk(net, w);
473 	spin_unlock_bh(&tb->tb6_lock);
474 	return err;
475 }
476 
477 /* Called with rcu_read_lock() */
478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 		     struct netlink_ext_ack *extack)
480 {
481 	struct fib6_dump_arg arg;
482 	struct fib6_walker *w;
483 	unsigned int h;
484 	int err = 0;
485 
486 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 	if (!w)
488 		return -ENOMEM;
489 
490 	w->func = fib6_node_dump;
491 	arg.net = net;
492 	arg.nb = nb;
493 	arg.extack = extack;
494 	w->args = &arg;
495 
496 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 		struct fib6_table *tb;
499 
500 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 			err = fib6_table_dump(net, tb, w);
502 			if (err < 0)
503 				goto out;
504 		}
505 	}
506 
507 out:
508 	kfree(w);
509 
510 	return err;
511 }
512 
513 static int fib6_dump_node(struct fib6_walker *w)
514 {
515 	int res;
516 	struct fib6_info *rt;
517 
518 	for_each_fib6_walker_rt(w) {
519 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
520 		if (res >= 0) {
521 			/* Frame is full, suspend walking */
522 			w->leaf = rt;
523 
524 			/* We'll restart from this node, so if some routes were
525 			 * already dumped, skip them next time.
526 			 */
527 			w->skip_in_node += res;
528 
529 			return 1;
530 		}
531 		w->skip_in_node = 0;
532 
533 		/* Multipath routes are dumped in one route with the
534 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
535 		 * last sibling of this route (no need to dump the
536 		 * sibling routes again)
537 		 */
538 		if (rt->fib6_nsiblings)
539 			rt = list_last_entry(&rt->fib6_siblings,
540 					     struct fib6_info,
541 					     fib6_siblings);
542 	}
543 	w->leaf = NULL;
544 	return 0;
545 }
546 
547 static void fib6_dump_end(struct netlink_callback *cb)
548 {
549 	struct net *net = sock_net(cb->skb->sk);
550 	struct fib6_walker *w = (void *)cb->args[2];
551 
552 	if (w) {
553 		if (cb->args[4]) {
554 			cb->args[4] = 0;
555 			fib6_walker_unlink(net, w);
556 		}
557 		cb->args[2] = 0;
558 		kfree(w);
559 	}
560 	cb->done = (void *)cb->args[3];
561 	cb->args[1] = 3;
562 }
563 
564 static int fib6_dump_done(struct netlink_callback *cb)
565 {
566 	fib6_dump_end(cb);
567 	return cb->done ? cb->done(cb) : 0;
568 }
569 
570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
571 			   struct netlink_callback *cb)
572 {
573 	struct net *net = sock_net(skb->sk);
574 	struct fib6_walker *w;
575 	int res;
576 
577 	w = (void *)cb->args[2];
578 	w->root = &table->tb6_root;
579 
580 	if (cb->args[4] == 0) {
581 		w->count = 0;
582 		w->skip = 0;
583 		w->skip_in_node = 0;
584 
585 		spin_lock_bh(&table->tb6_lock);
586 		res = fib6_walk(net, w);
587 		spin_unlock_bh(&table->tb6_lock);
588 		if (res > 0) {
589 			cb->args[4] = 1;
590 			cb->args[5] = w->root->fn_sernum;
591 		}
592 	} else {
593 		if (cb->args[5] != w->root->fn_sernum) {
594 			/* Begin at the root if the tree changed */
595 			cb->args[5] = w->root->fn_sernum;
596 			w->state = FWS_INIT;
597 			w->node = w->root;
598 			w->skip = w->count;
599 			w->skip_in_node = 0;
600 		} else
601 			w->skip = 0;
602 
603 		spin_lock_bh(&table->tb6_lock);
604 		res = fib6_walk_continue(w);
605 		spin_unlock_bh(&table->tb6_lock);
606 		if (res <= 0) {
607 			fib6_walker_unlink(net, w);
608 			cb->args[4] = 0;
609 		}
610 	}
611 
612 	return res;
613 }
614 
615 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
616 {
617 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
618 					 .filter.dump_routes = true };
619 	const struct nlmsghdr *nlh = cb->nlh;
620 	struct net *net = sock_net(skb->sk);
621 	unsigned int h, s_h;
622 	unsigned int e = 0, s_e;
623 	struct fib6_walker *w;
624 	struct fib6_table *tb;
625 	struct hlist_head *head;
626 	int res = 0;
627 
628 	if (cb->strict_check) {
629 		int err;
630 
631 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
632 		if (err < 0)
633 			return err;
634 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
635 		struct rtmsg *rtm = nlmsg_data(nlh);
636 
637 		if (rtm->rtm_flags & RTM_F_PREFIX)
638 			arg.filter.flags = RTM_F_PREFIX;
639 	}
640 
641 	w = (void *)cb->args[2];
642 	if (!w) {
643 		/* New dump:
644 		 *
645 		 * 1. hook callback destructor.
646 		 */
647 		cb->args[3] = (long)cb->done;
648 		cb->done = fib6_dump_done;
649 
650 		/*
651 		 * 2. allocate and initialize walker.
652 		 */
653 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
654 		if (!w)
655 			return -ENOMEM;
656 		w->func = fib6_dump_node;
657 		cb->args[2] = (long)w;
658 	}
659 
660 	arg.skb = skb;
661 	arg.cb = cb;
662 	arg.net = net;
663 	w->args = &arg;
664 
665 	if (arg.filter.table_id) {
666 		tb = fib6_get_table(net, arg.filter.table_id);
667 		if (!tb) {
668 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
669 				goto out;
670 
671 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
672 			return -ENOENT;
673 		}
674 
675 		if (!cb->args[0]) {
676 			res = fib6_dump_table(tb, skb, cb);
677 			if (!res)
678 				cb->args[0] = 1;
679 		}
680 		goto out;
681 	}
682 
683 	s_h = cb->args[0];
684 	s_e = cb->args[1];
685 
686 	rcu_read_lock();
687 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
688 		e = 0;
689 		head = &net->ipv6.fib_table_hash[h];
690 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
691 			if (e < s_e)
692 				goto next;
693 			res = fib6_dump_table(tb, skb, cb);
694 			if (res != 0)
695 				goto out_unlock;
696 next:
697 			e++;
698 		}
699 	}
700 out_unlock:
701 	rcu_read_unlock();
702 	cb->args[1] = e;
703 	cb->args[0] = h;
704 out:
705 	res = res < 0 ? res : skb->len;
706 	if (res <= 0)
707 		fib6_dump_end(cb);
708 	return res;
709 }
710 
711 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
712 {
713 	if (!f6i)
714 		return;
715 
716 	if (f6i->fib6_metrics == &dst_default_metrics) {
717 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
718 
719 		if (!p)
720 			return;
721 
722 		refcount_set(&p->refcnt, 1);
723 		f6i->fib6_metrics = p;
724 	}
725 
726 	f6i->fib6_metrics->metrics[metric - 1] = val;
727 }
728 
729 /*
730  *	Routing Table
731  *
732  *	return the appropriate node for a routing tree "add" operation
733  *	by either creating and inserting or by returning an existing
734  *	node.
735  */
736 
737 static struct fib6_node *fib6_add_1(struct net *net,
738 				    struct fib6_table *table,
739 				    struct fib6_node *root,
740 				    struct in6_addr *addr, int plen,
741 				    int offset, int allow_create,
742 				    int replace_required,
743 				    struct netlink_ext_ack *extack)
744 {
745 	struct fib6_node *fn, *in, *ln;
746 	struct fib6_node *pn = NULL;
747 	struct rt6key *key;
748 	int	bit;
749 	__be32	dir = 0;
750 
751 	RT6_TRACE("fib6_add_1\n");
752 
753 	/* insert node in tree */
754 
755 	fn = root;
756 
757 	do {
758 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
759 					    lockdep_is_held(&table->tb6_lock));
760 		key = (struct rt6key *)((u8 *)leaf + offset);
761 
762 		/*
763 		 *	Prefix match
764 		 */
765 		if (plen < fn->fn_bit ||
766 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
767 			if (!allow_create) {
768 				if (replace_required) {
769 					NL_SET_ERR_MSG(extack,
770 						       "Can not replace route - no match found");
771 					pr_warn("Can't replace route, no match found\n");
772 					return ERR_PTR(-ENOENT);
773 				}
774 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
775 			}
776 			goto insert_above;
777 		}
778 
779 		/*
780 		 *	Exact match ?
781 		 */
782 
783 		if (plen == fn->fn_bit) {
784 			/* clean up an intermediate node */
785 			if (!(fn->fn_flags & RTN_RTINFO)) {
786 				RCU_INIT_POINTER(fn->leaf, NULL);
787 				fib6_info_release(leaf);
788 			/* remove null_entry in the root node */
789 			} else if (fn->fn_flags & RTN_TL_ROOT &&
790 				   rcu_access_pointer(fn->leaf) ==
791 				   net->ipv6.fib6_null_entry) {
792 				RCU_INIT_POINTER(fn->leaf, NULL);
793 			}
794 
795 			return fn;
796 		}
797 
798 		/*
799 		 *	We have more bits to go
800 		 */
801 
802 		/* Try to walk down on tree. */
803 		dir = addr_bit_set(addr, fn->fn_bit);
804 		pn = fn;
805 		fn = dir ?
806 		     rcu_dereference_protected(fn->right,
807 					lockdep_is_held(&table->tb6_lock)) :
808 		     rcu_dereference_protected(fn->left,
809 					lockdep_is_held(&table->tb6_lock));
810 	} while (fn);
811 
812 	if (!allow_create) {
813 		/* We should not create new node because
814 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
815 		 * I assume it is safe to require NLM_F_CREATE when
816 		 * REPLACE flag is used! Later we may want to remove the
817 		 * check for replace_required, because according
818 		 * to netlink specification, NLM_F_CREATE
819 		 * MUST be specified if new route is created.
820 		 * That would keep IPv6 consistent with IPv4
821 		 */
822 		if (replace_required) {
823 			NL_SET_ERR_MSG(extack,
824 				       "Can not replace route - no match found");
825 			pr_warn("Can't replace route, no match found\n");
826 			return ERR_PTR(-ENOENT);
827 		}
828 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
829 	}
830 	/*
831 	 *	We walked to the bottom of tree.
832 	 *	Create new leaf node without children.
833 	 */
834 
835 	ln = node_alloc(net);
836 
837 	if (!ln)
838 		return ERR_PTR(-ENOMEM);
839 	ln->fn_bit = plen;
840 	RCU_INIT_POINTER(ln->parent, pn);
841 
842 	if (dir)
843 		rcu_assign_pointer(pn->right, ln);
844 	else
845 		rcu_assign_pointer(pn->left, ln);
846 
847 	return ln;
848 
849 
850 insert_above:
851 	/*
852 	 * split since we don't have a common prefix anymore or
853 	 * we have a less significant route.
854 	 * we've to insert an intermediate node on the list
855 	 * this new node will point to the one we need to create
856 	 * and the current
857 	 */
858 
859 	pn = rcu_dereference_protected(fn->parent,
860 				       lockdep_is_held(&table->tb6_lock));
861 
862 	/* find 1st bit in difference between the 2 addrs.
863 
864 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
865 	   but if it is >= plen, the value is ignored in any case.
866 	 */
867 
868 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
869 
870 	/*
871 	 *		(intermediate)[in]
872 	 *	          /	   \
873 	 *	(new leaf node)[ln] (old node)[fn]
874 	 */
875 	if (plen > bit) {
876 		in = node_alloc(net);
877 		ln = node_alloc(net);
878 
879 		if (!in || !ln) {
880 			if (in)
881 				node_free_immediate(net, in);
882 			if (ln)
883 				node_free_immediate(net, ln);
884 			return ERR_PTR(-ENOMEM);
885 		}
886 
887 		/*
888 		 * new intermediate node.
889 		 * RTN_RTINFO will
890 		 * be off since that an address that chooses one of
891 		 * the branches would not match less specific routes
892 		 * in the other branch
893 		 */
894 
895 		in->fn_bit = bit;
896 
897 		RCU_INIT_POINTER(in->parent, pn);
898 		in->leaf = fn->leaf;
899 		fib6_info_hold(rcu_dereference_protected(in->leaf,
900 				lockdep_is_held(&table->tb6_lock)));
901 
902 		/* update parent pointer */
903 		if (dir)
904 			rcu_assign_pointer(pn->right, in);
905 		else
906 			rcu_assign_pointer(pn->left, in);
907 
908 		ln->fn_bit = plen;
909 
910 		RCU_INIT_POINTER(ln->parent, in);
911 		rcu_assign_pointer(fn->parent, in);
912 
913 		if (addr_bit_set(addr, bit)) {
914 			rcu_assign_pointer(in->right, ln);
915 			rcu_assign_pointer(in->left, fn);
916 		} else {
917 			rcu_assign_pointer(in->left, ln);
918 			rcu_assign_pointer(in->right, fn);
919 		}
920 	} else { /* plen <= bit */
921 
922 		/*
923 		 *		(new leaf node)[ln]
924 		 *	          /	   \
925 		 *	     (old node)[fn] NULL
926 		 */
927 
928 		ln = node_alloc(net);
929 
930 		if (!ln)
931 			return ERR_PTR(-ENOMEM);
932 
933 		ln->fn_bit = plen;
934 
935 		RCU_INIT_POINTER(ln->parent, pn);
936 
937 		if (addr_bit_set(&key->addr, plen))
938 			RCU_INIT_POINTER(ln->right, fn);
939 		else
940 			RCU_INIT_POINTER(ln->left, fn);
941 
942 		rcu_assign_pointer(fn->parent, ln);
943 
944 		if (dir)
945 			rcu_assign_pointer(pn->right, ln);
946 		else
947 			rcu_assign_pointer(pn->left, ln);
948 	}
949 	return ln;
950 }
951 
952 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
953 				  const struct fib6_info *match,
954 				  const struct fib6_table *table)
955 {
956 	int cpu;
957 
958 	if (!fib6_nh->rt6i_pcpu)
959 		return;
960 
961 	/* release the reference to this fib entry from
962 	 * all of its cached pcpu routes
963 	 */
964 	for_each_possible_cpu(cpu) {
965 		struct rt6_info **ppcpu_rt;
966 		struct rt6_info *pcpu_rt;
967 
968 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
969 		pcpu_rt = *ppcpu_rt;
970 
971 		/* only dropping the 'from' reference if the cached route
972 		 * is using 'match'. The cached pcpu_rt->from only changes
973 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
974 		 * change from one fib6_info reference to another
975 		 */
976 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
977 			struct fib6_info *from;
978 
979 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
980 			fib6_info_release(from);
981 		}
982 	}
983 }
984 
985 struct fib6_nh_pcpu_arg {
986 	struct fib6_info	*from;
987 	const struct fib6_table *table;
988 };
989 
990 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
991 {
992 	struct fib6_nh_pcpu_arg *arg = _arg;
993 
994 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
995 	return 0;
996 }
997 
998 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
999 				const struct fib6_table *table)
1000 {
1001 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1002 	 * while we are cleaning them here.
1003 	 */
1004 	f6i->fib6_destroying = 1;
1005 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1006 
1007 	if (f6i->nh) {
1008 		struct fib6_nh_pcpu_arg arg = {
1009 			.from = f6i,
1010 			.table = table
1011 		};
1012 
1013 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1014 					 &arg);
1015 	} else {
1016 		struct fib6_nh *fib6_nh;
1017 
1018 		fib6_nh = f6i->fib6_nh;
1019 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1020 	}
1021 }
1022 
1023 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1024 			  struct net *net)
1025 {
1026 	struct fib6_table *table = rt->fib6_table;
1027 
1028 	fib6_drop_pcpu_from(rt, table);
1029 
1030 	if (rt->nh && !list_empty(&rt->nh_list))
1031 		list_del_init(&rt->nh_list);
1032 
1033 	if (refcount_read(&rt->fib6_ref) != 1) {
1034 		/* This route is used as dummy address holder in some split
1035 		 * nodes. It is not leaked, but it still holds other resources,
1036 		 * which must be released in time. So, scan ascendant nodes
1037 		 * and replace dummy references to this route with references
1038 		 * to still alive ones.
1039 		 */
1040 		while (fn) {
1041 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1042 					    lockdep_is_held(&table->tb6_lock));
1043 			struct fib6_info *new_leaf;
1044 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1045 				new_leaf = fib6_find_prefix(net, table, fn);
1046 				fib6_info_hold(new_leaf);
1047 
1048 				rcu_assign_pointer(fn->leaf, new_leaf);
1049 				fib6_info_release(rt);
1050 			}
1051 			fn = rcu_dereference_protected(fn->parent,
1052 				    lockdep_is_held(&table->tb6_lock));
1053 		}
1054 	}
1055 }
1056 
1057 /*
1058  *	Insert routing information in a node.
1059  */
1060 
1061 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1062 			    struct nl_info *info,
1063 			    struct netlink_ext_ack *extack)
1064 {
1065 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1066 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1067 	struct fib6_info *iter = NULL;
1068 	struct fib6_info __rcu **ins;
1069 	struct fib6_info __rcu **fallback_ins = NULL;
1070 	int replace = (info->nlh &&
1071 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1072 	int add = (!info->nlh ||
1073 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1074 	int found = 0;
1075 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1076 	bool notify_sibling_rt = false;
1077 	u16 nlflags = NLM_F_EXCL;
1078 	int err;
1079 
1080 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1081 		nlflags |= NLM_F_APPEND;
1082 
1083 	ins = &fn->leaf;
1084 
1085 	for (iter = leaf; iter;
1086 	     iter = rcu_dereference_protected(iter->fib6_next,
1087 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1088 		/*
1089 		 *	Search for duplicates
1090 		 */
1091 
1092 		if (iter->fib6_metric == rt->fib6_metric) {
1093 			/*
1094 			 *	Same priority level
1095 			 */
1096 			if (info->nlh &&
1097 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1098 				return -EEXIST;
1099 
1100 			nlflags &= ~NLM_F_EXCL;
1101 			if (replace) {
1102 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1103 					found++;
1104 					break;
1105 				}
1106 				fallback_ins = fallback_ins ?: ins;
1107 				goto next_iter;
1108 			}
1109 
1110 			if (rt6_duplicate_nexthop(iter, rt)) {
1111 				if (rt->fib6_nsiblings)
1112 					rt->fib6_nsiblings = 0;
1113 				if (!(iter->fib6_flags & RTF_EXPIRES))
1114 					return -EEXIST;
1115 				if (!(rt->fib6_flags & RTF_EXPIRES))
1116 					fib6_clean_expires(iter);
1117 				else
1118 					fib6_set_expires(iter, rt->expires);
1119 
1120 				if (rt->fib6_pmtu)
1121 					fib6_metric_set(iter, RTAX_MTU,
1122 							rt->fib6_pmtu);
1123 				return -EEXIST;
1124 			}
1125 			/* If we have the same destination and the same metric,
1126 			 * but not the same gateway, then the route we try to
1127 			 * add is sibling to this route, increment our counter
1128 			 * of siblings, and later we will add our route to the
1129 			 * list.
1130 			 * Only static routes (which don't have flag
1131 			 * RTF_EXPIRES) are used for ECMPv6.
1132 			 *
1133 			 * To avoid long list, we only had siblings if the
1134 			 * route have a gateway.
1135 			 */
1136 			if (rt_can_ecmp &&
1137 			    rt6_qualify_for_ecmp(iter))
1138 				rt->fib6_nsiblings++;
1139 		}
1140 
1141 		if (iter->fib6_metric > rt->fib6_metric)
1142 			break;
1143 
1144 next_iter:
1145 		ins = &iter->fib6_next;
1146 	}
1147 
1148 	if (fallback_ins && !found) {
1149 		/* No matching route with same ecmp-able-ness found, replace
1150 		 * first matching route
1151 		 */
1152 		ins = fallback_ins;
1153 		iter = rcu_dereference_protected(*ins,
1154 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1155 		found++;
1156 	}
1157 
1158 	/* Reset round-robin state, if necessary */
1159 	if (ins == &fn->leaf)
1160 		fn->rr_ptr = NULL;
1161 
1162 	/* Link this route to others same route. */
1163 	if (rt->fib6_nsiblings) {
1164 		unsigned int fib6_nsiblings;
1165 		struct fib6_info *sibling, *temp_sibling;
1166 
1167 		/* Find the first route that have the same metric */
1168 		sibling = leaf;
1169 		notify_sibling_rt = true;
1170 		while (sibling) {
1171 			if (sibling->fib6_metric == rt->fib6_metric &&
1172 			    rt6_qualify_for_ecmp(sibling)) {
1173 				list_add_tail(&rt->fib6_siblings,
1174 					      &sibling->fib6_siblings);
1175 				break;
1176 			}
1177 			sibling = rcu_dereference_protected(sibling->fib6_next,
1178 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1179 			notify_sibling_rt = false;
1180 		}
1181 		/* For each sibling in the list, increment the counter of
1182 		 * siblings. BUG() if counters does not match, list of siblings
1183 		 * is broken!
1184 		 */
1185 		fib6_nsiblings = 0;
1186 		list_for_each_entry_safe(sibling, temp_sibling,
1187 					 &rt->fib6_siblings, fib6_siblings) {
1188 			sibling->fib6_nsiblings++;
1189 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1190 			fib6_nsiblings++;
1191 		}
1192 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1193 		rt6_multipath_rebalance(temp_sibling);
1194 	}
1195 
1196 	/*
1197 	 *	insert node
1198 	 */
1199 	if (!replace) {
1200 		if (!add)
1201 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1202 
1203 add:
1204 		nlflags |= NLM_F_CREATE;
1205 
1206 		/* The route should only be notified if it is the first
1207 		 * route in the node or if it is added as a sibling
1208 		 * route to the first route in the node.
1209 		 */
1210 		if (!info->skip_notify_kernel &&
1211 		    (notify_sibling_rt || ins == &fn->leaf)) {
1212 			enum fib_event_type fib_event;
1213 
1214 			if (notify_sibling_rt)
1215 				fib_event = FIB_EVENT_ENTRY_APPEND;
1216 			else
1217 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1218 			err = call_fib6_entry_notifiers(info->nl_net,
1219 							fib_event, rt,
1220 							extack);
1221 			if (err) {
1222 				struct fib6_info *sibling, *next_sibling;
1223 
1224 				/* If the route has siblings, then it first
1225 				 * needs to be unlinked from them.
1226 				 */
1227 				if (!rt->fib6_nsiblings)
1228 					return err;
1229 
1230 				list_for_each_entry_safe(sibling, next_sibling,
1231 							 &rt->fib6_siblings,
1232 							 fib6_siblings)
1233 					sibling->fib6_nsiblings--;
1234 				rt->fib6_nsiblings = 0;
1235 				list_del_init(&rt->fib6_siblings);
1236 				rt6_multipath_rebalance(next_sibling);
1237 				return err;
1238 			}
1239 		}
1240 
1241 		rcu_assign_pointer(rt->fib6_next, iter);
1242 		fib6_info_hold(rt);
1243 		rcu_assign_pointer(rt->fib6_node, fn);
1244 		rcu_assign_pointer(*ins, rt);
1245 		if (!info->skip_notify)
1246 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1247 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1248 
1249 		if (!(fn->fn_flags & RTN_RTINFO)) {
1250 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1251 			fn->fn_flags |= RTN_RTINFO;
1252 		}
1253 
1254 	} else {
1255 		int nsiblings;
1256 
1257 		if (!found) {
1258 			if (add)
1259 				goto add;
1260 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1261 			return -ENOENT;
1262 		}
1263 
1264 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1265 			err = call_fib6_entry_notifiers(info->nl_net,
1266 							FIB_EVENT_ENTRY_REPLACE,
1267 							rt, extack);
1268 			if (err)
1269 				return err;
1270 		}
1271 
1272 		fib6_info_hold(rt);
1273 		rcu_assign_pointer(rt->fib6_node, fn);
1274 		rt->fib6_next = iter->fib6_next;
1275 		rcu_assign_pointer(*ins, rt);
1276 		if (!info->skip_notify)
1277 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1278 		if (!(fn->fn_flags & RTN_RTINFO)) {
1279 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1280 			fn->fn_flags |= RTN_RTINFO;
1281 		}
1282 		nsiblings = iter->fib6_nsiblings;
1283 		iter->fib6_node = NULL;
1284 		fib6_purge_rt(iter, fn, info->nl_net);
1285 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1286 			fn->rr_ptr = NULL;
1287 		fib6_info_release(iter);
1288 
1289 		if (nsiblings) {
1290 			/* Replacing an ECMP route, remove all siblings */
1291 			ins = &rt->fib6_next;
1292 			iter = rcu_dereference_protected(*ins,
1293 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1294 			while (iter) {
1295 				if (iter->fib6_metric > rt->fib6_metric)
1296 					break;
1297 				if (rt6_qualify_for_ecmp(iter)) {
1298 					*ins = iter->fib6_next;
1299 					iter->fib6_node = NULL;
1300 					fib6_purge_rt(iter, fn, info->nl_net);
1301 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1302 						fn->rr_ptr = NULL;
1303 					fib6_info_release(iter);
1304 					nsiblings--;
1305 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1306 				} else {
1307 					ins = &iter->fib6_next;
1308 				}
1309 				iter = rcu_dereference_protected(*ins,
1310 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1311 			}
1312 			WARN_ON(nsiblings != 0);
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1320 {
1321 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1322 	    (rt->fib6_flags & RTF_EXPIRES))
1323 		mod_timer(&net->ipv6.ip6_fib_timer,
1324 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1325 }
1326 
1327 void fib6_force_start_gc(struct net *net)
1328 {
1329 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1330 		mod_timer(&net->ipv6.ip6_fib_timer,
1331 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1332 }
1333 
1334 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1335 					   int sernum)
1336 {
1337 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1338 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1339 
1340 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1341 	smp_wmb();
1342 	while (fn) {
1343 		fn->fn_sernum = sernum;
1344 		fn = rcu_dereference_protected(fn->parent,
1345 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1346 	}
1347 }
1348 
1349 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1350 {
1351 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1352 }
1353 
1354 /* allow ipv4 to update sernum via ipv6_stub */
1355 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1356 {
1357 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1358 	fib6_update_sernum_upto_root(net, f6i);
1359 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1360 }
1361 
1362 /*
1363  *	Add routing information to the routing tree.
1364  *	<destination addr>/<source addr>
1365  *	with source addr info in sub-trees
1366  *	Need to own table->tb6_lock
1367  */
1368 
1369 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1370 	     struct nl_info *info, struct netlink_ext_ack *extack)
1371 {
1372 	struct fib6_table *table = rt->fib6_table;
1373 	struct fib6_node *fn, *pn = NULL;
1374 	int err = -ENOMEM;
1375 	int allow_create = 1;
1376 	int replace_required = 0;
1377 	int sernum = fib6_new_sernum(info->nl_net);
1378 
1379 	if (info->nlh) {
1380 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1381 			allow_create = 0;
1382 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1383 			replace_required = 1;
1384 	}
1385 	if (!allow_create && !replace_required)
1386 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1387 
1388 	fn = fib6_add_1(info->nl_net, table, root,
1389 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1390 			offsetof(struct fib6_info, fib6_dst), allow_create,
1391 			replace_required, extack);
1392 	if (IS_ERR(fn)) {
1393 		err = PTR_ERR(fn);
1394 		fn = NULL;
1395 		goto out;
1396 	}
1397 
1398 	pn = fn;
1399 
1400 #ifdef CONFIG_IPV6_SUBTREES
1401 	if (rt->fib6_src.plen) {
1402 		struct fib6_node *sn;
1403 
1404 		if (!rcu_access_pointer(fn->subtree)) {
1405 			struct fib6_node *sfn;
1406 
1407 			/*
1408 			 * Create subtree.
1409 			 *
1410 			 *		fn[main tree]
1411 			 *		|
1412 			 *		sfn[subtree root]
1413 			 *		   \
1414 			 *		    sn[new leaf node]
1415 			 */
1416 
1417 			/* Create subtree root node */
1418 			sfn = node_alloc(info->nl_net);
1419 			if (!sfn)
1420 				goto failure;
1421 
1422 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1423 			rcu_assign_pointer(sfn->leaf,
1424 					   info->nl_net->ipv6.fib6_null_entry);
1425 			sfn->fn_flags = RTN_ROOT;
1426 
1427 			/* Now add the first leaf node to new subtree */
1428 
1429 			sn = fib6_add_1(info->nl_net, table, sfn,
1430 					&rt->fib6_src.addr, rt->fib6_src.plen,
1431 					offsetof(struct fib6_info, fib6_src),
1432 					allow_create, replace_required, extack);
1433 
1434 			if (IS_ERR(sn)) {
1435 				/* If it is failed, discard just allocated
1436 				   root, and then (in failure) stale node
1437 				   in main tree.
1438 				 */
1439 				node_free_immediate(info->nl_net, sfn);
1440 				err = PTR_ERR(sn);
1441 				goto failure;
1442 			}
1443 
1444 			/* Now link new subtree to main tree */
1445 			rcu_assign_pointer(sfn->parent, fn);
1446 			rcu_assign_pointer(fn->subtree, sfn);
1447 		} else {
1448 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1449 					&rt->fib6_src.addr, rt->fib6_src.plen,
1450 					offsetof(struct fib6_info, fib6_src),
1451 					allow_create, replace_required, extack);
1452 
1453 			if (IS_ERR(sn)) {
1454 				err = PTR_ERR(sn);
1455 				goto failure;
1456 			}
1457 		}
1458 
1459 		if (!rcu_access_pointer(fn->leaf)) {
1460 			if (fn->fn_flags & RTN_TL_ROOT) {
1461 				/* put back null_entry for root node */
1462 				rcu_assign_pointer(fn->leaf,
1463 					    info->nl_net->ipv6.fib6_null_entry);
1464 			} else {
1465 				fib6_info_hold(rt);
1466 				rcu_assign_pointer(fn->leaf, rt);
1467 			}
1468 		}
1469 		fn = sn;
1470 	}
1471 #endif
1472 
1473 	err = fib6_add_rt2node(fn, rt, info, extack);
1474 	if (!err) {
1475 		if (rt->nh)
1476 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1477 		__fib6_update_sernum_upto_root(rt, sernum);
1478 		fib6_start_gc(info->nl_net, rt);
1479 	}
1480 
1481 out:
1482 	if (err) {
1483 #ifdef CONFIG_IPV6_SUBTREES
1484 		/*
1485 		 * If fib6_add_1 has cleared the old leaf pointer in the
1486 		 * super-tree leaf node we have to find a new one for it.
1487 		 */
1488 		if (pn != fn) {
1489 			struct fib6_info *pn_leaf =
1490 				rcu_dereference_protected(pn->leaf,
1491 				    lockdep_is_held(&table->tb6_lock));
1492 			if (pn_leaf == rt) {
1493 				pn_leaf = NULL;
1494 				RCU_INIT_POINTER(pn->leaf, NULL);
1495 				fib6_info_release(rt);
1496 			}
1497 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1498 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1499 							   pn);
1500 #if RT6_DEBUG >= 2
1501 				if (!pn_leaf) {
1502 					WARN_ON(!pn_leaf);
1503 					pn_leaf =
1504 					    info->nl_net->ipv6.fib6_null_entry;
1505 				}
1506 #endif
1507 				fib6_info_hold(pn_leaf);
1508 				rcu_assign_pointer(pn->leaf, pn_leaf);
1509 			}
1510 		}
1511 #endif
1512 		goto failure;
1513 	} else if (fib6_requires_src(rt)) {
1514 		fib6_routes_require_src_inc(info->nl_net);
1515 	}
1516 	return err;
1517 
1518 failure:
1519 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520 	 * 1. fn is an intermediate node and we failed to add the new
1521 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1522 	 * failure case.
1523 	 * 2. fn is the root node in the table and we fail to add the first
1524 	 * default route to it.
1525 	 */
1526 	if (fn &&
1527 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528 	     (fn->fn_flags & RTN_TL_ROOT &&
1529 	      !rcu_access_pointer(fn->leaf))))
1530 		fib6_repair_tree(info->nl_net, table, fn);
1531 	return err;
1532 }
1533 
1534 /*
1535  *	Routing tree lookup
1536  *
1537  */
1538 
1539 struct lookup_args {
1540 	int			offset;		/* key offset on fib6_info */
1541 	const struct in6_addr	*addr;		/* search key			*/
1542 };
1543 
1544 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545 					    struct lookup_args *args)
1546 {
1547 	struct fib6_node *fn;
1548 	__be32 dir;
1549 
1550 	if (unlikely(args->offset == 0))
1551 		return NULL;
1552 
1553 	/*
1554 	 *	Descend on a tree
1555 	 */
1556 
1557 	fn = root;
1558 
1559 	for (;;) {
1560 		struct fib6_node *next;
1561 
1562 		dir = addr_bit_set(args->addr, fn->fn_bit);
1563 
1564 		next = dir ? rcu_dereference(fn->right) :
1565 			     rcu_dereference(fn->left);
1566 
1567 		if (next) {
1568 			fn = next;
1569 			continue;
1570 		}
1571 		break;
1572 	}
1573 
1574 	while (fn) {
1575 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576 
1577 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1578 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579 			struct rt6key *key;
1580 
1581 			if (!leaf)
1582 				goto backtrack;
1583 
1584 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585 
1586 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587 #ifdef CONFIG_IPV6_SUBTREES
1588 				if (subtree) {
1589 					struct fib6_node *sfn;
1590 					sfn = fib6_node_lookup_1(subtree,
1591 								 args + 1);
1592 					if (!sfn)
1593 						goto backtrack;
1594 					fn = sfn;
1595 				}
1596 #endif
1597 				if (fn->fn_flags & RTN_RTINFO)
1598 					return fn;
1599 			}
1600 		}
1601 backtrack:
1602 		if (fn->fn_flags & RTN_ROOT)
1603 			break;
1604 
1605 		fn = rcu_dereference(fn->parent);
1606 	}
1607 
1608 	return NULL;
1609 }
1610 
1611 /* called with rcu_read_lock() held
1612  */
1613 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614 				   const struct in6_addr *daddr,
1615 				   const struct in6_addr *saddr)
1616 {
1617 	struct fib6_node *fn;
1618 	struct lookup_args args[] = {
1619 		{
1620 			.offset = offsetof(struct fib6_info, fib6_dst),
1621 			.addr = daddr,
1622 		},
1623 #ifdef CONFIG_IPV6_SUBTREES
1624 		{
1625 			.offset = offsetof(struct fib6_info, fib6_src),
1626 			.addr = saddr,
1627 		},
1628 #endif
1629 		{
1630 			.offset = 0,	/* sentinel */
1631 		}
1632 	};
1633 
1634 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636 		fn = root;
1637 
1638 	return fn;
1639 }
1640 
1641 /*
1642  *	Get node with specified destination prefix (and source prefix,
1643  *	if subtrees are used)
1644  *	exact_match == true means we try to find fn with exact match of
1645  *	the passed in prefix addr
1646  *	exact_match == false means we try to find fn with longest prefix
1647  *	match of the passed in prefix addr. This is useful for finding fn
1648  *	for cached route as it will be stored in the exception table under
1649  *	the node with longest prefix length.
1650  */
1651 
1652 
1653 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654 				       const struct in6_addr *addr,
1655 				       int plen, int offset,
1656 				       bool exact_match)
1657 {
1658 	struct fib6_node *fn, *prev = NULL;
1659 
1660 	for (fn = root; fn ; ) {
1661 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662 		struct rt6key *key;
1663 
1664 		/* This node is being deleted */
1665 		if (!leaf) {
1666 			if (plen <= fn->fn_bit)
1667 				goto out;
1668 			else
1669 				goto next;
1670 		}
1671 
1672 		key = (struct rt6key *)((u8 *)leaf + offset);
1673 
1674 		/*
1675 		 *	Prefix match
1676 		 */
1677 		if (plen < fn->fn_bit ||
1678 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679 			goto out;
1680 
1681 		if (plen == fn->fn_bit)
1682 			return fn;
1683 
1684 		if (fn->fn_flags & RTN_RTINFO)
1685 			prev = fn;
1686 
1687 next:
1688 		/*
1689 		 *	We have more bits to go
1690 		 */
1691 		if (addr_bit_set(addr, fn->fn_bit))
1692 			fn = rcu_dereference(fn->right);
1693 		else
1694 			fn = rcu_dereference(fn->left);
1695 	}
1696 out:
1697 	if (exact_match)
1698 		return NULL;
1699 	else
1700 		return prev;
1701 }
1702 
1703 struct fib6_node *fib6_locate(struct fib6_node *root,
1704 			      const struct in6_addr *daddr, int dst_len,
1705 			      const struct in6_addr *saddr, int src_len,
1706 			      bool exact_match)
1707 {
1708 	struct fib6_node *fn;
1709 
1710 	fn = fib6_locate_1(root, daddr, dst_len,
1711 			   offsetof(struct fib6_info, fib6_dst),
1712 			   exact_match);
1713 
1714 #ifdef CONFIG_IPV6_SUBTREES
1715 	if (src_len) {
1716 		WARN_ON(saddr == NULL);
1717 		if (fn) {
1718 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719 
1720 			if (subtree) {
1721 				fn = fib6_locate_1(subtree, saddr, src_len,
1722 					   offsetof(struct fib6_info, fib6_src),
1723 					   exact_match);
1724 			}
1725 		}
1726 	}
1727 #endif
1728 
1729 	if (fn && fn->fn_flags & RTN_RTINFO)
1730 		return fn;
1731 
1732 	return NULL;
1733 }
1734 
1735 
1736 /*
1737  *	Deletion
1738  *
1739  */
1740 
1741 static struct fib6_info *fib6_find_prefix(struct net *net,
1742 					 struct fib6_table *table,
1743 					 struct fib6_node *fn)
1744 {
1745 	struct fib6_node *child_left, *child_right;
1746 
1747 	if (fn->fn_flags & RTN_ROOT)
1748 		return net->ipv6.fib6_null_entry;
1749 
1750 	while (fn) {
1751 		child_left = rcu_dereference_protected(fn->left,
1752 				    lockdep_is_held(&table->tb6_lock));
1753 		child_right = rcu_dereference_protected(fn->right,
1754 				    lockdep_is_held(&table->tb6_lock));
1755 		if (child_left)
1756 			return rcu_dereference_protected(child_left->leaf,
1757 					lockdep_is_held(&table->tb6_lock));
1758 		if (child_right)
1759 			return rcu_dereference_protected(child_right->leaf,
1760 					lockdep_is_held(&table->tb6_lock));
1761 
1762 		fn = FIB6_SUBTREE(fn);
1763 	}
1764 	return NULL;
1765 }
1766 
1767 /*
1768  *	Called to trim the tree of intermediate nodes when possible. "fn"
1769  *	is the node we want to try and remove.
1770  *	Need to own table->tb6_lock
1771  */
1772 
1773 static struct fib6_node *fib6_repair_tree(struct net *net,
1774 					  struct fib6_table *table,
1775 					  struct fib6_node *fn)
1776 {
1777 	int children;
1778 	int nstate;
1779 	struct fib6_node *child;
1780 	struct fib6_walker *w;
1781 	int iter = 0;
1782 
1783 	/* Set fn->leaf to null_entry for root node. */
1784 	if (fn->fn_flags & RTN_TL_ROOT) {
1785 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786 		return fn;
1787 	}
1788 
1789 	for (;;) {
1790 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791 					    lockdep_is_held(&table->tb6_lock));
1792 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793 					    lockdep_is_held(&table->tb6_lock));
1794 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795 					    lockdep_is_held(&table->tb6_lock));
1796 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797 					    lockdep_is_held(&table->tb6_lock));
1798 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799 					    lockdep_is_held(&table->tb6_lock));
1800 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801 					    lockdep_is_held(&table->tb6_lock));
1802 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803 					    lockdep_is_held(&table->tb6_lock));
1804 		struct fib6_info *new_fn_leaf;
1805 
1806 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807 		iter++;
1808 
1809 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1810 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811 		WARN_ON(fn_leaf);
1812 
1813 		children = 0;
1814 		child = NULL;
1815 		if (fn_r)
1816 			child = fn_r, children |= 1;
1817 		if (fn_l)
1818 			child = fn_l, children |= 2;
1819 
1820 		if (children == 3 || FIB6_SUBTREE(fn)
1821 #ifdef CONFIG_IPV6_SUBTREES
1822 		    /* Subtree root (i.e. fn) may have one child */
1823 		    || (children && fn->fn_flags & RTN_ROOT)
1824 #endif
1825 		    ) {
1826 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1827 #if RT6_DEBUG >= 2
1828 			if (!new_fn_leaf) {
1829 				WARN_ON(!new_fn_leaf);
1830 				new_fn_leaf = net->ipv6.fib6_null_entry;
1831 			}
1832 #endif
1833 			fib6_info_hold(new_fn_leaf);
1834 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1835 			return pn;
1836 		}
1837 
1838 #ifdef CONFIG_IPV6_SUBTREES
1839 		if (FIB6_SUBTREE(pn) == fn) {
1840 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1841 			RCU_INIT_POINTER(pn->subtree, NULL);
1842 			nstate = FWS_L;
1843 		} else {
1844 			WARN_ON(fn->fn_flags & RTN_ROOT);
1845 #endif
1846 			if (pn_r == fn)
1847 				rcu_assign_pointer(pn->right, child);
1848 			else if (pn_l == fn)
1849 				rcu_assign_pointer(pn->left, child);
1850 #if RT6_DEBUG >= 2
1851 			else
1852 				WARN_ON(1);
1853 #endif
1854 			if (child)
1855 				rcu_assign_pointer(child->parent, pn);
1856 			nstate = FWS_R;
1857 #ifdef CONFIG_IPV6_SUBTREES
1858 		}
1859 #endif
1860 
1861 		read_lock(&net->ipv6.fib6_walker_lock);
1862 		FOR_WALKERS(net, w) {
1863 			if (!child) {
1864 				if (w->node == fn) {
1865 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1866 					w->node = pn;
1867 					w->state = nstate;
1868 				}
1869 			} else {
1870 				if (w->node == fn) {
1871 					w->node = child;
1872 					if (children&2) {
1873 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1874 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1875 					} else {
1876 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1877 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1878 					}
1879 				}
1880 			}
1881 		}
1882 		read_unlock(&net->ipv6.fib6_walker_lock);
1883 
1884 		node_free(net, fn);
1885 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1886 			return pn;
1887 
1888 		RCU_INIT_POINTER(pn->leaf, NULL);
1889 		fib6_info_release(pn_leaf);
1890 		fn = pn;
1891 	}
1892 }
1893 
1894 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1895 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1896 {
1897 	struct fib6_info *leaf, *replace_rt = NULL;
1898 	struct fib6_walker *w;
1899 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1900 				    lockdep_is_held(&table->tb6_lock));
1901 	struct net *net = info->nl_net;
1902 	bool notify_del = false;
1903 
1904 	RT6_TRACE("fib6_del_route\n");
1905 
1906 	/* If the deleted route is the first in the node and it is not part of
1907 	 * a multipath route, then we need to replace it with the next route
1908 	 * in the node, if exists.
1909 	 */
1910 	leaf = rcu_dereference_protected(fn->leaf,
1911 					 lockdep_is_held(&table->tb6_lock));
1912 	if (leaf == rt && !rt->fib6_nsiblings) {
1913 		if (rcu_access_pointer(rt->fib6_next))
1914 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1915 					    lockdep_is_held(&table->tb6_lock));
1916 		else
1917 			notify_del = true;
1918 	}
1919 
1920 	/* Unlink it */
1921 	*rtp = rt->fib6_next;
1922 	rt->fib6_node = NULL;
1923 	net->ipv6.rt6_stats->fib_rt_entries--;
1924 	net->ipv6.rt6_stats->fib_discarded_routes++;
1925 
1926 	/* Flush all cached dst in exception table */
1927 	rt6_flush_exceptions(rt);
1928 
1929 	/* Reset round-robin state, if necessary */
1930 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1931 		fn->rr_ptr = NULL;
1932 
1933 	/* Remove this entry from other siblings */
1934 	if (rt->fib6_nsiblings) {
1935 		struct fib6_info *sibling, *next_sibling;
1936 
1937 		/* The route is deleted from a multipath route. If this
1938 		 * multipath route is the first route in the node, then we need
1939 		 * to emit a delete notification. Otherwise, we need to skip
1940 		 * the notification.
1941 		 */
1942 		if (rt->fib6_metric == leaf->fib6_metric &&
1943 		    rt6_qualify_for_ecmp(leaf))
1944 			notify_del = true;
1945 		list_for_each_entry_safe(sibling, next_sibling,
1946 					 &rt->fib6_siblings, fib6_siblings)
1947 			sibling->fib6_nsiblings--;
1948 		rt->fib6_nsiblings = 0;
1949 		list_del_init(&rt->fib6_siblings);
1950 		rt6_multipath_rebalance(next_sibling);
1951 	}
1952 
1953 	/* Adjust walkers */
1954 	read_lock(&net->ipv6.fib6_walker_lock);
1955 	FOR_WALKERS(net, w) {
1956 		if (w->state == FWS_C && w->leaf == rt) {
1957 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1958 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1959 					    lockdep_is_held(&table->tb6_lock));
1960 			if (!w->leaf)
1961 				w->state = FWS_U;
1962 		}
1963 	}
1964 	read_unlock(&net->ipv6.fib6_walker_lock);
1965 
1966 	/* If it was last route, call fib6_repair_tree() to:
1967 	 * 1. For root node, put back null_entry as how the table was created.
1968 	 * 2. For other nodes, expunge its radix tree node.
1969 	 */
1970 	if (!rcu_access_pointer(fn->leaf)) {
1971 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1972 			fn->fn_flags &= ~RTN_RTINFO;
1973 			net->ipv6.rt6_stats->fib_route_nodes--;
1974 		}
1975 		fn = fib6_repair_tree(net, table, fn);
1976 	}
1977 
1978 	fib6_purge_rt(rt, fn, net);
1979 
1980 	if (!info->skip_notify_kernel) {
1981 		if (notify_del)
1982 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1983 						  rt, NULL);
1984 		else if (replace_rt)
1985 			call_fib6_entry_notifiers_replace(net, replace_rt);
1986 	}
1987 	if (!info->skip_notify)
1988 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1989 
1990 	fib6_info_release(rt);
1991 }
1992 
1993 /* Need to own table->tb6_lock */
1994 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1995 {
1996 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1997 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1998 	struct fib6_table *table = rt->fib6_table;
1999 	struct net *net = info->nl_net;
2000 	struct fib6_info __rcu **rtp;
2001 	struct fib6_info __rcu **rtp_next;
2002 
2003 	if (!fn || rt == net->ipv6.fib6_null_entry)
2004 		return -ENOENT;
2005 
2006 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2007 
2008 	/*
2009 	 *	Walk the leaf entries looking for ourself
2010 	 */
2011 
2012 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2013 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2014 					lockdep_is_held(&table->tb6_lock));
2015 		if (rt == cur) {
2016 			if (fib6_requires_src(cur))
2017 				fib6_routes_require_src_dec(info->nl_net);
2018 			fib6_del_route(table, fn, rtp, info);
2019 			return 0;
2020 		}
2021 		rtp_next = &cur->fib6_next;
2022 	}
2023 	return -ENOENT;
2024 }
2025 
2026 /*
2027  *	Tree traversal function.
2028  *
2029  *	Certainly, it is not interrupt safe.
2030  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2031  *	It means, that we can modify tree during walking
2032  *	and use this function for garbage collection, clone pruning,
2033  *	cleaning tree when a device goes down etc. etc.
2034  *
2035  *	It guarantees that every node will be traversed,
2036  *	and that it will be traversed only once.
2037  *
2038  *	Callback function w->func may return:
2039  *	0 -> continue walking.
2040  *	positive value -> walking is suspended (used by tree dumps,
2041  *	and probably by gc, if it will be split to several slices)
2042  *	negative value -> terminate walking.
2043  *
2044  *	The function itself returns:
2045  *	0   -> walk is complete.
2046  *	>0  -> walk is incomplete (i.e. suspended)
2047  *	<0  -> walk is terminated by an error.
2048  *
2049  *	This function is called with tb6_lock held.
2050  */
2051 
2052 static int fib6_walk_continue(struct fib6_walker *w)
2053 {
2054 	struct fib6_node *fn, *pn, *left, *right;
2055 
2056 	/* w->root should always be table->tb6_root */
2057 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2058 
2059 	for (;;) {
2060 		fn = w->node;
2061 		if (!fn)
2062 			return 0;
2063 
2064 		switch (w->state) {
2065 #ifdef CONFIG_IPV6_SUBTREES
2066 		case FWS_S:
2067 			if (FIB6_SUBTREE(fn)) {
2068 				w->node = FIB6_SUBTREE(fn);
2069 				continue;
2070 			}
2071 			w->state = FWS_L;
2072 			fallthrough;
2073 #endif
2074 		case FWS_L:
2075 			left = rcu_dereference_protected(fn->left, 1);
2076 			if (left) {
2077 				w->node = left;
2078 				w->state = FWS_INIT;
2079 				continue;
2080 			}
2081 			w->state = FWS_R;
2082 			fallthrough;
2083 		case FWS_R:
2084 			right = rcu_dereference_protected(fn->right, 1);
2085 			if (right) {
2086 				w->node = right;
2087 				w->state = FWS_INIT;
2088 				continue;
2089 			}
2090 			w->state = FWS_C;
2091 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2092 			fallthrough;
2093 		case FWS_C:
2094 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2095 				int err;
2096 
2097 				if (w->skip) {
2098 					w->skip--;
2099 					goto skip;
2100 				}
2101 
2102 				err = w->func(w);
2103 				if (err)
2104 					return err;
2105 
2106 				w->count++;
2107 				continue;
2108 			}
2109 skip:
2110 			w->state = FWS_U;
2111 			fallthrough;
2112 		case FWS_U:
2113 			if (fn == w->root)
2114 				return 0;
2115 			pn = rcu_dereference_protected(fn->parent, 1);
2116 			left = rcu_dereference_protected(pn->left, 1);
2117 			right = rcu_dereference_protected(pn->right, 1);
2118 			w->node = pn;
2119 #ifdef CONFIG_IPV6_SUBTREES
2120 			if (FIB6_SUBTREE(pn) == fn) {
2121 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2122 				w->state = FWS_L;
2123 				continue;
2124 			}
2125 #endif
2126 			if (left == fn) {
2127 				w->state = FWS_R;
2128 				continue;
2129 			}
2130 			if (right == fn) {
2131 				w->state = FWS_C;
2132 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2133 				continue;
2134 			}
2135 #if RT6_DEBUG >= 2
2136 			WARN_ON(1);
2137 #endif
2138 		}
2139 	}
2140 }
2141 
2142 static int fib6_walk(struct net *net, struct fib6_walker *w)
2143 {
2144 	int res;
2145 
2146 	w->state = FWS_INIT;
2147 	w->node = w->root;
2148 
2149 	fib6_walker_link(net, w);
2150 	res = fib6_walk_continue(w);
2151 	if (res <= 0)
2152 		fib6_walker_unlink(net, w);
2153 	return res;
2154 }
2155 
2156 static int fib6_clean_node(struct fib6_walker *w)
2157 {
2158 	int res;
2159 	struct fib6_info *rt;
2160 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2161 	struct nl_info info = {
2162 		.nl_net = c->net,
2163 		.skip_notify = c->skip_notify,
2164 	};
2165 
2166 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2167 	    w->node->fn_sernum != c->sernum)
2168 		w->node->fn_sernum = c->sernum;
2169 
2170 	if (!c->func) {
2171 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2172 		w->leaf = NULL;
2173 		return 0;
2174 	}
2175 
2176 	for_each_fib6_walker_rt(w) {
2177 		res = c->func(rt, c->arg);
2178 		if (res == -1) {
2179 			w->leaf = rt;
2180 			res = fib6_del(rt, &info);
2181 			if (res) {
2182 #if RT6_DEBUG >= 2
2183 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2184 					 __func__, rt,
2185 					 rcu_access_pointer(rt->fib6_node),
2186 					 res);
2187 #endif
2188 				continue;
2189 			}
2190 			return 0;
2191 		} else if (res == -2) {
2192 			if (WARN_ON(!rt->fib6_nsiblings))
2193 				continue;
2194 			rt = list_last_entry(&rt->fib6_siblings,
2195 					     struct fib6_info, fib6_siblings);
2196 			continue;
2197 		}
2198 		WARN_ON(res != 0);
2199 	}
2200 	w->leaf = rt;
2201 	return 0;
2202 }
2203 
2204 /*
2205  *	Convenient frontend to tree walker.
2206  *
2207  *	func is called on each route.
2208  *		It may return -2 -> skip multipath route.
2209  *			      -1 -> delete this route.
2210  *		              0  -> continue walking
2211  */
2212 
2213 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2214 			    int (*func)(struct fib6_info *, void *arg),
2215 			    int sernum, void *arg, bool skip_notify)
2216 {
2217 	struct fib6_cleaner c;
2218 
2219 	c.w.root = root;
2220 	c.w.func = fib6_clean_node;
2221 	c.w.count = 0;
2222 	c.w.skip = 0;
2223 	c.w.skip_in_node = 0;
2224 	c.func = func;
2225 	c.sernum = sernum;
2226 	c.arg = arg;
2227 	c.net = net;
2228 	c.skip_notify = skip_notify;
2229 
2230 	fib6_walk(net, &c.w);
2231 }
2232 
2233 static void __fib6_clean_all(struct net *net,
2234 			     int (*func)(struct fib6_info *, void *),
2235 			     int sernum, void *arg, bool skip_notify)
2236 {
2237 	struct fib6_table *table;
2238 	struct hlist_head *head;
2239 	unsigned int h;
2240 
2241 	rcu_read_lock();
2242 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2243 		head = &net->ipv6.fib_table_hash[h];
2244 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2245 			spin_lock_bh(&table->tb6_lock);
2246 			fib6_clean_tree(net, &table->tb6_root,
2247 					func, sernum, arg, skip_notify);
2248 			spin_unlock_bh(&table->tb6_lock);
2249 		}
2250 	}
2251 	rcu_read_unlock();
2252 }
2253 
2254 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2255 		    void *arg)
2256 {
2257 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2258 }
2259 
2260 void fib6_clean_all_skip_notify(struct net *net,
2261 				int (*func)(struct fib6_info *, void *),
2262 				void *arg)
2263 {
2264 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2265 }
2266 
2267 static void fib6_flush_trees(struct net *net)
2268 {
2269 	int new_sernum = fib6_new_sernum(net);
2270 
2271 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2272 }
2273 
2274 /*
2275  *	Garbage collection
2276  */
2277 
2278 static int fib6_age(struct fib6_info *rt, void *arg)
2279 {
2280 	struct fib6_gc_args *gc_args = arg;
2281 	unsigned long now = jiffies;
2282 
2283 	/*
2284 	 *	check addrconf expiration here.
2285 	 *	Routes are expired even if they are in use.
2286 	 */
2287 
2288 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2289 		if (time_after(now, rt->expires)) {
2290 			RT6_TRACE("expiring %p\n", rt);
2291 			return -1;
2292 		}
2293 		gc_args->more++;
2294 	}
2295 
2296 	/*	Also age clones in the exception table.
2297 	 *	Note, that clones are aged out
2298 	 *	only if they are not in use now.
2299 	 */
2300 	rt6_age_exceptions(rt, gc_args, now);
2301 
2302 	return 0;
2303 }
2304 
2305 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2306 {
2307 	struct fib6_gc_args gc_args;
2308 	unsigned long now;
2309 
2310 	if (force) {
2311 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2312 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2313 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2314 		return;
2315 	}
2316 	gc_args.timeout = expires ? (int)expires :
2317 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2318 	gc_args.more = 0;
2319 
2320 	fib6_clean_all(net, fib6_age, &gc_args);
2321 	now = jiffies;
2322 	net->ipv6.ip6_rt_last_gc = now;
2323 
2324 	if (gc_args.more)
2325 		mod_timer(&net->ipv6.ip6_fib_timer,
2326 			  round_jiffies(now
2327 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2328 	else
2329 		del_timer(&net->ipv6.ip6_fib_timer);
2330 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2331 }
2332 
2333 static void fib6_gc_timer_cb(struct timer_list *t)
2334 {
2335 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2336 
2337 	fib6_run_gc(0, arg, true);
2338 }
2339 
2340 static int __net_init fib6_net_init(struct net *net)
2341 {
2342 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2343 	int err;
2344 
2345 	err = fib6_notifier_init(net);
2346 	if (err)
2347 		return err;
2348 
2349 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2350 	rwlock_init(&net->ipv6.fib6_walker_lock);
2351 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2352 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2353 
2354 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2355 	if (!net->ipv6.rt6_stats)
2356 		goto out_timer;
2357 
2358 	/* Avoid false sharing : Use at least a full cache line */
2359 	size = max_t(size_t, size, L1_CACHE_BYTES);
2360 
2361 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2362 	if (!net->ipv6.fib_table_hash)
2363 		goto out_rt6_stats;
2364 
2365 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2366 					  GFP_KERNEL);
2367 	if (!net->ipv6.fib6_main_tbl)
2368 		goto out_fib_table_hash;
2369 
2370 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2371 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2372 			   net->ipv6.fib6_null_entry);
2373 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2374 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2375 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2376 
2377 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2378 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2379 					   GFP_KERNEL);
2380 	if (!net->ipv6.fib6_local_tbl)
2381 		goto out_fib6_main_tbl;
2382 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2383 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2384 			   net->ipv6.fib6_null_entry);
2385 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2386 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2387 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2388 #endif
2389 	fib6_tables_init(net);
2390 
2391 	return 0;
2392 
2393 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2394 out_fib6_main_tbl:
2395 	kfree(net->ipv6.fib6_main_tbl);
2396 #endif
2397 out_fib_table_hash:
2398 	kfree(net->ipv6.fib_table_hash);
2399 out_rt6_stats:
2400 	kfree(net->ipv6.rt6_stats);
2401 out_timer:
2402 	fib6_notifier_exit(net);
2403 	return -ENOMEM;
2404 }
2405 
2406 static void fib6_net_exit(struct net *net)
2407 {
2408 	unsigned int i;
2409 
2410 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2411 
2412 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2413 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2414 		struct hlist_node *tmp;
2415 		struct fib6_table *tb;
2416 
2417 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2418 			hlist_del(&tb->tb6_hlist);
2419 			fib6_free_table(tb);
2420 		}
2421 	}
2422 
2423 	kfree(net->ipv6.fib_table_hash);
2424 	kfree(net->ipv6.rt6_stats);
2425 	fib6_notifier_exit(net);
2426 }
2427 
2428 static struct pernet_operations fib6_net_ops = {
2429 	.init = fib6_net_init,
2430 	.exit = fib6_net_exit,
2431 };
2432 
2433 int __init fib6_init(void)
2434 {
2435 	int ret = -ENOMEM;
2436 
2437 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2438 					   sizeof(struct fib6_node),
2439 					   0, SLAB_HWCACHE_ALIGN,
2440 					   NULL);
2441 	if (!fib6_node_kmem)
2442 		goto out;
2443 
2444 	ret = register_pernet_subsys(&fib6_net_ops);
2445 	if (ret)
2446 		goto out_kmem_cache_create;
2447 
2448 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2449 				   inet6_dump_fib, 0);
2450 	if (ret)
2451 		goto out_unregister_subsys;
2452 
2453 	__fib6_flush_trees = fib6_flush_trees;
2454 out:
2455 	return ret;
2456 
2457 out_unregister_subsys:
2458 	unregister_pernet_subsys(&fib6_net_ops);
2459 out_kmem_cache_create:
2460 	kmem_cache_destroy(fib6_node_kmem);
2461 	goto out;
2462 }
2463 
2464 void fib6_gc_cleanup(void)
2465 {
2466 	unregister_pernet_subsys(&fib6_net_ops);
2467 	kmem_cache_destroy(fib6_node_kmem);
2468 }
2469 
2470 #ifdef CONFIG_PROC_FS
2471 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2472 {
2473 	struct fib6_info *rt = v;
2474 	struct ipv6_route_iter *iter = seq->private;
2475 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2476 	unsigned int flags = rt->fib6_flags;
2477 	const struct net_device *dev;
2478 
2479 	if (rt->nh)
2480 		fib6_nh = nexthop_fib6_nh(rt->nh);
2481 
2482 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2483 
2484 #ifdef CONFIG_IPV6_SUBTREES
2485 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2486 #else
2487 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2488 #endif
2489 	if (fib6_nh->fib_nh_gw_family) {
2490 		flags |= RTF_GATEWAY;
2491 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2492 	} else {
2493 		seq_puts(seq, "00000000000000000000000000000000");
2494 	}
2495 
2496 	dev = fib6_nh->fib_nh_dev;
2497 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2498 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2499 		   flags, dev ? dev->name : "");
2500 	iter->w.leaf = NULL;
2501 	return 0;
2502 }
2503 
2504 static int ipv6_route_yield(struct fib6_walker *w)
2505 {
2506 	struct ipv6_route_iter *iter = w->args;
2507 
2508 	if (!iter->skip)
2509 		return 1;
2510 
2511 	do {
2512 		iter->w.leaf = rcu_dereference_protected(
2513 				iter->w.leaf->fib6_next,
2514 				lockdep_is_held(&iter->tbl->tb6_lock));
2515 		iter->skip--;
2516 		if (!iter->skip && iter->w.leaf)
2517 			return 1;
2518 	} while (iter->w.leaf);
2519 
2520 	return 0;
2521 }
2522 
2523 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2524 				      struct net *net)
2525 {
2526 	memset(&iter->w, 0, sizeof(iter->w));
2527 	iter->w.func = ipv6_route_yield;
2528 	iter->w.root = &iter->tbl->tb6_root;
2529 	iter->w.state = FWS_INIT;
2530 	iter->w.node = iter->w.root;
2531 	iter->w.args = iter;
2532 	iter->sernum = iter->w.root->fn_sernum;
2533 	INIT_LIST_HEAD(&iter->w.lh);
2534 	fib6_walker_link(net, &iter->w);
2535 }
2536 
2537 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2538 						    struct net *net)
2539 {
2540 	unsigned int h;
2541 	struct hlist_node *node;
2542 
2543 	if (tbl) {
2544 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2545 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2546 	} else {
2547 		h = 0;
2548 		node = NULL;
2549 	}
2550 
2551 	while (!node && h < FIB6_TABLE_HASHSZ) {
2552 		node = rcu_dereference_bh(
2553 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2554 	}
2555 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2556 }
2557 
2558 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2559 {
2560 	if (iter->sernum != iter->w.root->fn_sernum) {
2561 		iter->sernum = iter->w.root->fn_sernum;
2562 		iter->w.state = FWS_INIT;
2563 		iter->w.node = iter->w.root;
2564 		WARN_ON(iter->w.skip);
2565 		iter->w.skip = iter->w.count;
2566 	}
2567 }
2568 
2569 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2570 {
2571 	int r;
2572 	struct fib6_info *n;
2573 	struct net *net = seq_file_net(seq);
2574 	struct ipv6_route_iter *iter = seq->private;
2575 
2576 	++(*pos);
2577 	if (!v)
2578 		goto iter_table;
2579 
2580 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2581 	if (n)
2582 		return n;
2583 
2584 iter_table:
2585 	ipv6_route_check_sernum(iter);
2586 	spin_lock_bh(&iter->tbl->tb6_lock);
2587 	r = fib6_walk_continue(&iter->w);
2588 	spin_unlock_bh(&iter->tbl->tb6_lock);
2589 	if (r > 0) {
2590 		return iter->w.leaf;
2591 	} else if (r < 0) {
2592 		fib6_walker_unlink(net, &iter->w);
2593 		return NULL;
2594 	}
2595 	fib6_walker_unlink(net, &iter->w);
2596 
2597 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2598 	if (!iter->tbl)
2599 		return NULL;
2600 
2601 	ipv6_route_seq_setup_walk(iter, net);
2602 	goto iter_table;
2603 }
2604 
2605 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2606 	__acquires(RCU_BH)
2607 {
2608 	struct net *net = seq_file_net(seq);
2609 	struct ipv6_route_iter *iter = seq->private;
2610 
2611 	rcu_read_lock_bh();
2612 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2613 	iter->skip = *pos;
2614 
2615 	if (iter->tbl) {
2616 		ipv6_route_seq_setup_walk(iter, net);
2617 		return ipv6_route_seq_next(seq, NULL, pos);
2618 	} else {
2619 		return NULL;
2620 	}
2621 }
2622 
2623 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2624 {
2625 	struct fib6_walker *w = &iter->w;
2626 	return w->node && !(w->state == FWS_U && w->node == w->root);
2627 }
2628 
2629 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2630 	__releases(RCU_BH)
2631 {
2632 	struct net *net = seq_file_net(seq);
2633 	struct ipv6_route_iter *iter = seq->private;
2634 
2635 	if (ipv6_route_iter_active(iter))
2636 		fib6_walker_unlink(net, &iter->w);
2637 
2638 	rcu_read_unlock_bh();
2639 }
2640 
2641 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2642 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2643 				    struct bpf_iter_meta *meta,
2644 				    void *v)
2645 {
2646 	struct bpf_iter__ipv6_route ctx;
2647 
2648 	ctx.meta = meta;
2649 	ctx.rt = v;
2650 	return bpf_iter_run_prog(prog, &ctx);
2651 }
2652 
2653 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2654 {
2655 	struct ipv6_route_iter *iter = seq->private;
2656 	struct bpf_iter_meta meta;
2657 	struct bpf_prog *prog;
2658 	int ret;
2659 
2660 	meta.seq = seq;
2661 	prog = bpf_iter_get_info(&meta, false);
2662 	if (!prog)
2663 		return ipv6_route_native_seq_show(seq, v);
2664 
2665 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2666 	iter->w.leaf = NULL;
2667 
2668 	return ret;
2669 }
2670 
2671 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2672 {
2673 	struct bpf_iter_meta meta;
2674 	struct bpf_prog *prog;
2675 
2676 	if (!v) {
2677 		meta.seq = seq;
2678 		prog = bpf_iter_get_info(&meta, true);
2679 		if (prog)
2680 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2681 	}
2682 
2683 	ipv6_route_native_seq_stop(seq, v);
2684 }
2685 #else
2686 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2687 {
2688 	return ipv6_route_native_seq_show(seq, v);
2689 }
2690 
2691 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2692 {
2693 	ipv6_route_native_seq_stop(seq, v);
2694 }
2695 #endif
2696 
2697 const struct seq_operations ipv6_route_seq_ops = {
2698 	.start	= ipv6_route_seq_start,
2699 	.next	= ipv6_route_seq_next,
2700 	.stop	= ipv6_route_seq_stop,
2701 	.show	= ipv6_route_seq_show
2702 };
2703 #endif /* CONFIG_PROC_FS */
2704