xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 0c7beb2d)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/ndisc.h>
35 #include <net/addrconf.h>
36 #include <net/lwtunnel.h>
37 #include <net/fib_notifier.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 static struct kmem_cache *fib6_node_kmem __read_mostly;
43 
44 struct fib6_cleaner {
45 	struct fib6_walker w;
46 	struct net *net;
47 	int (*func)(struct fib6_info *, void *arg);
48 	int sernum;
49 	void *arg;
50 	bool skip_notify;
51 };
52 
53 #ifdef CONFIG_IPV6_SUBTREES
54 #define FWS_INIT FWS_S
55 #else
56 #define FWS_INIT FWS_L
57 #endif
58 
59 static struct fib6_info *fib6_find_prefix(struct net *net,
60 					 struct fib6_table *table,
61 					 struct fib6_node *fn);
62 static struct fib6_node *fib6_repair_tree(struct net *net,
63 					  struct fib6_table *table,
64 					  struct fib6_node *fn);
65 static int fib6_walk(struct net *net, struct fib6_walker *w);
66 static int fib6_walk_continue(struct fib6_walker *w);
67 
68 /*
69  *	A routing update causes an increase of the serial number on the
70  *	affected subtree. This allows for cached routes to be asynchronously
71  *	tested when modifications are made to the destination cache as a
72  *	result of redirects, path MTU changes, etc.
73  */
74 
75 static void fib6_gc_timer_cb(struct timer_list *t);
76 
77 #define FOR_WALKERS(net, w) \
78 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
79 
80 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
81 {
82 	write_lock_bh(&net->ipv6.fib6_walker_lock);
83 	list_add(&w->lh, &net->ipv6.fib6_walkers);
84 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
85 }
86 
87 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
88 {
89 	write_lock_bh(&net->ipv6.fib6_walker_lock);
90 	list_del(&w->lh);
91 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
92 }
93 
94 static int fib6_new_sernum(struct net *net)
95 {
96 	int new, old;
97 
98 	do {
99 		old = atomic_read(&net->ipv6.fib6_sernum);
100 		new = old < INT_MAX ? old + 1 : 1;
101 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
102 				old, new) != old);
103 	return new;
104 }
105 
106 enum {
107 	FIB6_NO_SERNUM_CHANGE = 0,
108 };
109 
110 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
111 {
112 	struct fib6_node *fn;
113 
114 	fn = rcu_dereference_protected(f6i->fib6_node,
115 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
116 	if (fn)
117 		fn->fn_sernum = fib6_new_sernum(net);
118 }
119 
120 /*
121  *	Auxiliary address test functions for the radix tree.
122  *
123  *	These assume a 32bit processor (although it will work on
124  *	64bit processors)
125  */
126 
127 /*
128  *	test bit
129  */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE	0
134 #endif
135 
136 static __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 	const __be32 *addr = token;
139 	/*
140 	 * Here,
141 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 	 * is optimized version of
143 	 *	htonl(1 << ((~fn_bit)&0x1F))
144 	 * See include/asm-generic/bitops/le.h.
145 	 */
146 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 	       addr[fn_bit >> 5];
148 }
149 
150 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags)
151 {
152 	struct fib6_info *f6i;
153 
154 	f6i = kzalloc(sizeof(*f6i), gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	f6i->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags);
159 	if (!f6i->rt6i_pcpu) {
160 		kfree(f6i);
161 		return NULL;
162 	}
163 
164 	INIT_LIST_HEAD(&f6i->fib6_siblings);
165 	atomic_inc(&f6i->fib6_ref);
166 
167 	return f6i;
168 }
169 
170 void fib6_info_destroy_rcu(struct rcu_head *head)
171 {
172 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
173 	struct rt6_exception_bucket *bucket;
174 
175 	WARN_ON(f6i->fib6_node);
176 
177 	bucket = rcu_dereference_protected(f6i->rt6i_exception_bucket, 1);
178 	if (bucket) {
179 		f6i->rt6i_exception_bucket = NULL;
180 		kfree(bucket);
181 	}
182 
183 	if (f6i->rt6i_pcpu) {
184 		int cpu;
185 
186 		for_each_possible_cpu(cpu) {
187 			struct rt6_info **ppcpu_rt;
188 			struct rt6_info *pcpu_rt;
189 
190 			ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
191 			pcpu_rt = *ppcpu_rt;
192 			if (pcpu_rt) {
193 				dst_dev_put(&pcpu_rt->dst);
194 				dst_release(&pcpu_rt->dst);
195 				*ppcpu_rt = NULL;
196 			}
197 		}
198 
199 		free_percpu(f6i->rt6i_pcpu);
200 	}
201 
202 	fib6_nh_release(&f6i->fib6_nh);
203 
204 	ip_fib_metrics_put(f6i->fib6_metrics);
205 
206 	kfree(f6i);
207 }
208 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
209 
210 static struct fib6_node *node_alloc(struct net *net)
211 {
212 	struct fib6_node *fn;
213 
214 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
215 	if (fn)
216 		net->ipv6.rt6_stats->fib_nodes++;
217 
218 	return fn;
219 }
220 
221 static void node_free_immediate(struct net *net, struct fib6_node *fn)
222 {
223 	kmem_cache_free(fib6_node_kmem, fn);
224 	net->ipv6.rt6_stats->fib_nodes--;
225 }
226 
227 static void node_free_rcu(struct rcu_head *head)
228 {
229 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
230 
231 	kmem_cache_free(fib6_node_kmem, fn);
232 }
233 
234 static void node_free(struct net *net, struct fib6_node *fn)
235 {
236 	call_rcu(&fn->rcu, node_free_rcu);
237 	net->ipv6.rt6_stats->fib_nodes--;
238 }
239 
240 static void fib6_free_table(struct fib6_table *table)
241 {
242 	inetpeer_invalidate_tree(&table->tb6_peers);
243 	kfree(table);
244 }
245 
246 static void fib6_link_table(struct net *net, struct fib6_table *tb)
247 {
248 	unsigned int h;
249 
250 	/*
251 	 * Initialize table lock at a single place to give lockdep a key,
252 	 * tables aren't visible prior to being linked to the list.
253 	 */
254 	spin_lock_init(&tb->tb6_lock);
255 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
256 
257 	/*
258 	 * No protection necessary, this is the only list mutatation
259 	 * operation, tables never disappear once they exist.
260 	 */
261 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
262 }
263 
264 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
265 
266 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
267 {
268 	struct fib6_table *table;
269 
270 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
271 	if (table) {
272 		table->tb6_id = id;
273 		rcu_assign_pointer(table->tb6_root.leaf,
274 				   net->ipv6.fib6_null_entry);
275 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
276 		inet_peer_base_init(&table->tb6_peers);
277 	}
278 
279 	return table;
280 }
281 
282 struct fib6_table *fib6_new_table(struct net *net, u32 id)
283 {
284 	struct fib6_table *tb;
285 
286 	if (id == 0)
287 		id = RT6_TABLE_MAIN;
288 	tb = fib6_get_table(net, id);
289 	if (tb)
290 		return tb;
291 
292 	tb = fib6_alloc_table(net, id);
293 	if (tb)
294 		fib6_link_table(net, tb);
295 
296 	return tb;
297 }
298 EXPORT_SYMBOL_GPL(fib6_new_table);
299 
300 struct fib6_table *fib6_get_table(struct net *net, u32 id)
301 {
302 	struct fib6_table *tb;
303 	struct hlist_head *head;
304 	unsigned int h;
305 
306 	if (id == 0)
307 		id = RT6_TABLE_MAIN;
308 	h = id & (FIB6_TABLE_HASHSZ - 1);
309 	rcu_read_lock();
310 	head = &net->ipv6.fib_table_hash[h];
311 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
312 		if (tb->tb6_id == id) {
313 			rcu_read_unlock();
314 			return tb;
315 		}
316 	}
317 	rcu_read_unlock();
318 
319 	return NULL;
320 }
321 EXPORT_SYMBOL_GPL(fib6_get_table);
322 
323 static void __net_init fib6_tables_init(struct net *net)
324 {
325 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
326 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
327 }
328 #else
329 
330 struct fib6_table *fib6_new_table(struct net *net, u32 id)
331 {
332 	return fib6_get_table(net, id);
333 }
334 
335 struct fib6_table *fib6_get_table(struct net *net, u32 id)
336 {
337 	  return net->ipv6.fib6_main_tbl;
338 }
339 
340 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
341 				   const struct sk_buff *skb,
342 				   int flags, pol_lookup_t lookup)
343 {
344 	struct rt6_info *rt;
345 
346 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
347 	if (rt->dst.error == -EAGAIN) {
348 		ip6_rt_put(rt);
349 		rt = net->ipv6.ip6_null_entry;
350 		dst_hold(&rt->dst);
351 	}
352 
353 	return &rt->dst;
354 }
355 
356 /* called with rcu lock held; no reference taken on fib6_info */
357 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
358 		struct fib6_result *res, int flags)
359 {
360 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
361 				 res, flags);
362 }
363 
364 static void __net_init fib6_tables_init(struct net *net)
365 {
366 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
367 }
368 
369 #endif
370 
371 unsigned int fib6_tables_seq_read(struct net *net)
372 {
373 	unsigned int h, fib_seq = 0;
374 
375 	rcu_read_lock();
376 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
377 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
378 		struct fib6_table *tb;
379 
380 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
381 			fib_seq += tb->fib_seq;
382 	}
383 	rcu_read_unlock();
384 
385 	return fib_seq;
386 }
387 
388 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
389 				    enum fib_event_type event_type,
390 				    struct fib6_info *rt)
391 {
392 	struct fib6_entry_notifier_info info = {
393 		.rt = rt,
394 	};
395 
396 	return call_fib6_notifier(nb, net, event_type, &info.info);
397 }
398 
399 static int call_fib6_entry_notifiers(struct net *net,
400 				     enum fib_event_type event_type,
401 				     struct fib6_info *rt,
402 				     struct netlink_ext_ack *extack)
403 {
404 	struct fib6_entry_notifier_info info = {
405 		.info.extack = extack,
406 		.rt = rt,
407 	};
408 
409 	rt->fib6_table->fib_seq++;
410 	return call_fib6_notifiers(net, event_type, &info.info);
411 }
412 
413 struct fib6_dump_arg {
414 	struct net *net;
415 	struct notifier_block *nb;
416 };
417 
418 static void fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
419 {
420 	if (rt == arg->net->ipv6.fib6_null_entry)
421 		return;
422 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
423 }
424 
425 static int fib6_node_dump(struct fib6_walker *w)
426 {
427 	struct fib6_info *rt;
428 
429 	for_each_fib6_walker_rt(w)
430 		fib6_rt_dump(rt, w->args);
431 	w->leaf = NULL;
432 	return 0;
433 }
434 
435 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
436 			    struct fib6_walker *w)
437 {
438 	w->root = &tb->tb6_root;
439 	spin_lock_bh(&tb->tb6_lock);
440 	fib6_walk(net, w);
441 	spin_unlock_bh(&tb->tb6_lock);
442 }
443 
444 /* Called with rcu_read_lock() */
445 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
446 {
447 	struct fib6_dump_arg arg;
448 	struct fib6_walker *w;
449 	unsigned int h;
450 
451 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
452 	if (!w)
453 		return -ENOMEM;
454 
455 	w->func = fib6_node_dump;
456 	arg.net = net;
457 	arg.nb = nb;
458 	w->args = &arg;
459 
460 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
461 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
462 		struct fib6_table *tb;
463 
464 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
465 			fib6_table_dump(net, tb, w);
466 	}
467 
468 	kfree(w);
469 
470 	return 0;
471 }
472 
473 static int fib6_dump_node(struct fib6_walker *w)
474 {
475 	int res;
476 	struct fib6_info *rt;
477 
478 	for_each_fib6_walker_rt(w) {
479 		res = rt6_dump_route(rt, w->args);
480 		if (res < 0) {
481 			/* Frame is full, suspend walking */
482 			w->leaf = rt;
483 			return 1;
484 		}
485 
486 		/* Multipath routes are dumped in one route with the
487 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
488 		 * last sibling of this route (no need to dump the
489 		 * sibling routes again)
490 		 */
491 		if (rt->fib6_nsiblings)
492 			rt = list_last_entry(&rt->fib6_siblings,
493 					     struct fib6_info,
494 					     fib6_siblings);
495 	}
496 	w->leaf = NULL;
497 	return 0;
498 }
499 
500 static void fib6_dump_end(struct netlink_callback *cb)
501 {
502 	struct net *net = sock_net(cb->skb->sk);
503 	struct fib6_walker *w = (void *)cb->args[2];
504 
505 	if (w) {
506 		if (cb->args[4]) {
507 			cb->args[4] = 0;
508 			fib6_walker_unlink(net, w);
509 		}
510 		cb->args[2] = 0;
511 		kfree(w);
512 	}
513 	cb->done = (void *)cb->args[3];
514 	cb->args[1] = 3;
515 }
516 
517 static int fib6_dump_done(struct netlink_callback *cb)
518 {
519 	fib6_dump_end(cb);
520 	return cb->done ? cb->done(cb) : 0;
521 }
522 
523 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
524 			   struct netlink_callback *cb)
525 {
526 	struct net *net = sock_net(skb->sk);
527 	struct fib6_walker *w;
528 	int res;
529 
530 	w = (void *)cb->args[2];
531 	w->root = &table->tb6_root;
532 
533 	if (cb->args[4] == 0) {
534 		w->count = 0;
535 		w->skip = 0;
536 
537 		spin_lock_bh(&table->tb6_lock);
538 		res = fib6_walk(net, w);
539 		spin_unlock_bh(&table->tb6_lock);
540 		if (res > 0) {
541 			cb->args[4] = 1;
542 			cb->args[5] = w->root->fn_sernum;
543 		}
544 	} else {
545 		if (cb->args[5] != w->root->fn_sernum) {
546 			/* Begin at the root if the tree changed */
547 			cb->args[5] = w->root->fn_sernum;
548 			w->state = FWS_INIT;
549 			w->node = w->root;
550 			w->skip = w->count;
551 		} else
552 			w->skip = 0;
553 
554 		spin_lock_bh(&table->tb6_lock);
555 		res = fib6_walk_continue(w);
556 		spin_unlock_bh(&table->tb6_lock);
557 		if (res <= 0) {
558 			fib6_walker_unlink(net, w);
559 			cb->args[4] = 0;
560 		}
561 	}
562 
563 	return res;
564 }
565 
566 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
567 {
568 	const struct nlmsghdr *nlh = cb->nlh;
569 	struct net *net = sock_net(skb->sk);
570 	struct rt6_rtnl_dump_arg arg = {};
571 	unsigned int h, s_h;
572 	unsigned int e = 0, s_e;
573 	struct fib6_walker *w;
574 	struct fib6_table *tb;
575 	struct hlist_head *head;
576 	int res = 0;
577 
578 	if (cb->strict_check) {
579 		int err;
580 
581 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
582 		if (err < 0)
583 			return err;
584 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
585 		struct rtmsg *rtm = nlmsg_data(nlh);
586 
587 		arg.filter.flags = rtm->rtm_flags & (RTM_F_PREFIX|RTM_F_CLONED);
588 	}
589 
590 	/* fib entries are never clones */
591 	if (arg.filter.flags & RTM_F_CLONED)
592 		goto out;
593 
594 	w = (void *)cb->args[2];
595 	if (!w) {
596 		/* New dump:
597 		 *
598 		 * 1. hook callback destructor.
599 		 */
600 		cb->args[3] = (long)cb->done;
601 		cb->done = fib6_dump_done;
602 
603 		/*
604 		 * 2. allocate and initialize walker.
605 		 */
606 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
607 		if (!w)
608 			return -ENOMEM;
609 		w->func = fib6_dump_node;
610 		cb->args[2] = (long)w;
611 	}
612 
613 	arg.skb = skb;
614 	arg.cb = cb;
615 	arg.net = net;
616 	w->args = &arg;
617 
618 	if (arg.filter.table_id) {
619 		tb = fib6_get_table(net, arg.filter.table_id);
620 		if (!tb) {
621 			if (arg.filter.dump_all_families)
622 				goto out;
623 
624 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
625 			return -ENOENT;
626 		}
627 
628 		if (!cb->args[0]) {
629 			res = fib6_dump_table(tb, skb, cb);
630 			if (!res)
631 				cb->args[0] = 1;
632 		}
633 		goto out;
634 	}
635 
636 	s_h = cb->args[0];
637 	s_e = cb->args[1];
638 
639 	rcu_read_lock();
640 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
641 		e = 0;
642 		head = &net->ipv6.fib_table_hash[h];
643 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
644 			if (e < s_e)
645 				goto next;
646 			res = fib6_dump_table(tb, skb, cb);
647 			if (res != 0)
648 				goto out_unlock;
649 next:
650 			e++;
651 		}
652 	}
653 out_unlock:
654 	rcu_read_unlock();
655 	cb->args[1] = e;
656 	cb->args[0] = h;
657 out:
658 	res = res < 0 ? res : skb->len;
659 	if (res <= 0)
660 		fib6_dump_end(cb);
661 	return res;
662 }
663 
664 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
665 {
666 	if (!f6i)
667 		return;
668 
669 	if (f6i->fib6_metrics == &dst_default_metrics) {
670 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
671 
672 		if (!p)
673 			return;
674 
675 		refcount_set(&p->refcnt, 1);
676 		f6i->fib6_metrics = p;
677 	}
678 
679 	f6i->fib6_metrics->metrics[metric - 1] = val;
680 }
681 
682 /*
683  *	Routing Table
684  *
685  *	return the appropriate node for a routing tree "add" operation
686  *	by either creating and inserting or by returning an existing
687  *	node.
688  */
689 
690 static struct fib6_node *fib6_add_1(struct net *net,
691 				    struct fib6_table *table,
692 				    struct fib6_node *root,
693 				    struct in6_addr *addr, int plen,
694 				    int offset, int allow_create,
695 				    int replace_required,
696 				    struct netlink_ext_ack *extack)
697 {
698 	struct fib6_node *fn, *in, *ln;
699 	struct fib6_node *pn = NULL;
700 	struct rt6key *key;
701 	int	bit;
702 	__be32	dir = 0;
703 
704 	RT6_TRACE("fib6_add_1\n");
705 
706 	/* insert node in tree */
707 
708 	fn = root;
709 
710 	do {
711 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
712 					    lockdep_is_held(&table->tb6_lock));
713 		key = (struct rt6key *)((u8 *)leaf + offset);
714 
715 		/*
716 		 *	Prefix match
717 		 */
718 		if (plen < fn->fn_bit ||
719 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
720 			if (!allow_create) {
721 				if (replace_required) {
722 					NL_SET_ERR_MSG(extack,
723 						       "Can not replace route - no match found");
724 					pr_warn("Can't replace route, no match found\n");
725 					return ERR_PTR(-ENOENT);
726 				}
727 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
728 			}
729 			goto insert_above;
730 		}
731 
732 		/*
733 		 *	Exact match ?
734 		 */
735 
736 		if (plen == fn->fn_bit) {
737 			/* clean up an intermediate node */
738 			if (!(fn->fn_flags & RTN_RTINFO)) {
739 				RCU_INIT_POINTER(fn->leaf, NULL);
740 				fib6_info_release(leaf);
741 			/* remove null_entry in the root node */
742 			} else if (fn->fn_flags & RTN_TL_ROOT &&
743 				   rcu_access_pointer(fn->leaf) ==
744 				   net->ipv6.fib6_null_entry) {
745 				RCU_INIT_POINTER(fn->leaf, NULL);
746 			}
747 
748 			return fn;
749 		}
750 
751 		/*
752 		 *	We have more bits to go
753 		 */
754 
755 		/* Try to walk down on tree. */
756 		dir = addr_bit_set(addr, fn->fn_bit);
757 		pn = fn;
758 		fn = dir ?
759 		     rcu_dereference_protected(fn->right,
760 					lockdep_is_held(&table->tb6_lock)) :
761 		     rcu_dereference_protected(fn->left,
762 					lockdep_is_held(&table->tb6_lock));
763 	} while (fn);
764 
765 	if (!allow_create) {
766 		/* We should not create new node because
767 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
768 		 * I assume it is safe to require NLM_F_CREATE when
769 		 * REPLACE flag is used! Later we may want to remove the
770 		 * check for replace_required, because according
771 		 * to netlink specification, NLM_F_CREATE
772 		 * MUST be specified if new route is created.
773 		 * That would keep IPv6 consistent with IPv4
774 		 */
775 		if (replace_required) {
776 			NL_SET_ERR_MSG(extack,
777 				       "Can not replace route - no match found");
778 			pr_warn("Can't replace route, no match found\n");
779 			return ERR_PTR(-ENOENT);
780 		}
781 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
782 	}
783 	/*
784 	 *	We walked to the bottom of tree.
785 	 *	Create new leaf node without children.
786 	 */
787 
788 	ln = node_alloc(net);
789 
790 	if (!ln)
791 		return ERR_PTR(-ENOMEM);
792 	ln->fn_bit = plen;
793 	RCU_INIT_POINTER(ln->parent, pn);
794 
795 	if (dir)
796 		rcu_assign_pointer(pn->right, ln);
797 	else
798 		rcu_assign_pointer(pn->left, ln);
799 
800 	return ln;
801 
802 
803 insert_above:
804 	/*
805 	 * split since we don't have a common prefix anymore or
806 	 * we have a less significant route.
807 	 * we've to insert an intermediate node on the list
808 	 * this new node will point to the one we need to create
809 	 * and the current
810 	 */
811 
812 	pn = rcu_dereference_protected(fn->parent,
813 				       lockdep_is_held(&table->tb6_lock));
814 
815 	/* find 1st bit in difference between the 2 addrs.
816 
817 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
818 	   but if it is >= plen, the value is ignored in any case.
819 	 */
820 
821 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
822 
823 	/*
824 	 *		(intermediate)[in]
825 	 *	          /	   \
826 	 *	(new leaf node)[ln] (old node)[fn]
827 	 */
828 	if (plen > bit) {
829 		in = node_alloc(net);
830 		ln = node_alloc(net);
831 
832 		if (!in || !ln) {
833 			if (in)
834 				node_free_immediate(net, in);
835 			if (ln)
836 				node_free_immediate(net, ln);
837 			return ERR_PTR(-ENOMEM);
838 		}
839 
840 		/*
841 		 * new intermediate node.
842 		 * RTN_RTINFO will
843 		 * be off since that an address that chooses one of
844 		 * the branches would not match less specific routes
845 		 * in the other branch
846 		 */
847 
848 		in->fn_bit = bit;
849 
850 		RCU_INIT_POINTER(in->parent, pn);
851 		in->leaf = fn->leaf;
852 		atomic_inc(&rcu_dereference_protected(in->leaf,
853 				lockdep_is_held(&table->tb6_lock))->fib6_ref);
854 
855 		/* update parent pointer */
856 		if (dir)
857 			rcu_assign_pointer(pn->right, in);
858 		else
859 			rcu_assign_pointer(pn->left, in);
860 
861 		ln->fn_bit = plen;
862 
863 		RCU_INIT_POINTER(ln->parent, in);
864 		rcu_assign_pointer(fn->parent, in);
865 
866 		if (addr_bit_set(addr, bit)) {
867 			rcu_assign_pointer(in->right, ln);
868 			rcu_assign_pointer(in->left, fn);
869 		} else {
870 			rcu_assign_pointer(in->left, ln);
871 			rcu_assign_pointer(in->right, fn);
872 		}
873 	} else { /* plen <= bit */
874 
875 		/*
876 		 *		(new leaf node)[ln]
877 		 *	          /	   \
878 		 *	     (old node)[fn] NULL
879 		 */
880 
881 		ln = node_alloc(net);
882 
883 		if (!ln)
884 			return ERR_PTR(-ENOMEM);
885 
886 		ln->fn_bit = plen;
887 
888 		RCU_INIT_POINTER(ln->parent, pn);
889 
890 		if (addr_bit_set(&key->addr, plen))
891 			RCU_INIT_POINTER(ln->right, fn);
892 		else
893 			RCU_INIT_POINTER(ln->left, fn);
894 
895 		rcu_assign_pointer(fn->parent, ln);
896 
897 		if (dir)
898 			rcu_assign_pointer(pn->right, ln);
899 		else
900 			rcu_assign_pointer(pn->left, ln);
901 	}
902 	return ln;
903 }
904 
905 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
906 				const struct fib6_table *table)
907 {
908 	int cpu;
909 
910 	/* release the reference to this fib entry from
911 	 * all of its cached pcpu routes
912 	 */
913 	for_each_possible_cpu(cpu) {
914 		struct rt6_info **ppcpu_rt;
915 		struct rt6_info *pcpu_rt;
916 
917 		ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
918 		pcpu_rt = *ppcpu_rt;
919 		if (pcpu_rt) {
920 			struct fib6_info *from;
921 
922 			from = rcu_dereference_protected(pcpu_rt->from,
923 					     lockdep_is_held(&table->tb6_lock));
924 			rcu_assign_pointer(pcpu_rt->from, NULL);
925 			fib6_info_release(from);
926 		}
927 	}
928 }
929 
930 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
931 			  struct net *net)
932 {
933 	struct fib6_table *table = rt->fib6_table;
934 
935 	if (atomic_read(&rt->fib6_ref) != 1) {
936 		/* This route is used as dummy address holder in some split
937 		 * nodes. It is not leaked, but it still holds other resources,
938 		 * which must be released in time. So, scan ascendant nodes
939 		 * and replace dummy references to this route with references
940 		 * to still alive ones.
941 		 */
942 		while (fn) {
943 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
944 					    lockdep_is_held(&table->tb6_lock));
945 			struct fib6_info *new_leaf;
946 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
947 				new_leaf = fib6_find_prefix(net, table, fn);
948 				atomic_inc(&new_leaf->fib6_ref);
949 
950 				rcu_assign_pointer(fn->leaf, new_leaf);
951 				fib6_info_release(rt);
952 			}
953 			fn = rcu_dereference_protected(fn->parent,
954 				    lockdep_is_held(&table->tb6_lock));
955 		}
956 
957 		if (rt->rt6i_pcpu)
958 			fib6_drop_pcpu_from(rt, table);
959 	}
960 }
961 
962 /*
963  *	Insert routing information in a node.
964  */
965 
966 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
967 			    struct nl_info *info,
968 			    struct netlink_ext_ack *extack)
969 {
970 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
971 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
972 	struct fib6_info *iter = NULL;
973 	struct fib6_info __rcu **ins;
974 	struct fib6_info __rcu **fallback_ins = NULL;
975 	int replace = (info->nlh &&
976 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
977 	int add = (!info->nlh ||
978 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
979 	int found = 0;
980 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
981 	u16 nlflags = NLM_F_EXCL;
982 	int err;
983 
984 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
985 		nlflags |= NLM_F_APPEND;
986 
987 	ins = &fn->leaf;
988 
989 	for (iter = leaf; iter;
990 	     iter = rcu_dereference_protected(iter->fib6_next,
991 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
992 		/*
993 		 *	Search for duplicates
994 		 */
995 
996 		if (iter->fib6_metric == rt->fib6_metric) {
997 			/*
998 			 *	Same priority level
999 			 */
1000 			if (info->nlh &&
1001 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1002 				return -EEXIST;
1003 
1004 			nlflags &= ~NLM_F_EXCL;
1005 			if (replace) {
1006 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1007 					found++;
1008 					break;
1009 				}
1010 				if (rt_can_ecmp)
1011 					fallback_ins = fallback_ins ?: ins;
1012 				goto next_iter;
1013 			}
1014 
1015 			if (rt6_duplicate_nexthop(iter, rt)) {
1016 				if (rt->fib6_nsiblings)
1017 					rt->fib6_nsiblings = 0;
1018 				if (!(iter->fib6_flags & RTF_EXPIRES))
1019 					return -EEXIST;
1020 				if (!(rt->fib6_flags & RTF_EXPIRES))
1021 					fib6_clean_expires(iter);
1022 				else
1023 					fib6_set_expires(iter, rt->expires);
1024 
1025 				if (rt->fib6_pmtu)
1026 					fib6_metric_set(iter, RTAX_MTU,
1027 							rt->fib6_pmtu);
1028 				return -EEXIST;
1029 			}
1030 			/* If we have the same destination and the same metric,
1031 			 * but not the same gateway, then the route we try to
1032 			 * add is sibling to this route, increment our counter
1033 			 * of siblings, and later we will add our route to the
1034 			 * list.
1035 			 * Only static routes (which don't have flag
1036 			 * RTF_EXPIRES) are used for ECMPv6.
1037 			 *
1038 			 * To avoid long list, we only had siblings if the
1039 			 * route have a gateway.
1040 			 */
1041 			if (rt_can_ecmp &&
1042 			    rt6_qualify_for_ecmp(iter))
1043 				rt->fib6_nsiblings++;
1044 		}
1045 
1046 		if (iter->fib6_metric > rt->fib6_metric)
1047 			break;
1048 
1049 next_iter:
1050 		ins = &iter->fib6_next;
1051 	}
1052 
1053 	if (fallback_ins && !found) {
1054 		/* No ECMP-able route found, replace first non-ECMP one */
1055 		ins = fallback_ins;
1056 		iter = rcu_dereference_protected(*ins,
1057 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1058 		found++;
1059 	}
1060 
1061 	/* Reset round-robin state, if necessary */
1062 	if (ins == &fn->leaf)
1063 		fn->rr_ptr = NULL;
1064 
1065 	/* Link this route to others same route. */
1066 	if (rt->fib6_nsiblings) {
1067 		unsigned int fib6_nsiblings;
1068 		struct fib6_info *sibling, *temp_sibling;
1069 
1070 		/* Find the first route that have the same metric */
1071 		sibling = leaf;
1072 		while (sibling) {
1073 			if (sibling->fib6_metric == rt->fib6_metric &&
1074 			    rt6_qualify_for_ecmp(sibling)) {
1075 				list_add_tail(&rt->fib6_siblings,
1076 					      &sibling->fib6_siblings);
1077 				break;
1078 			}
1079 			sibling = rcu_dereference_protected(sibling->fib6_next,
1080 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1081 		}
1082 		/* For each sibling in the list, increment the counter of
1083 		 * siblings. BUG() if counters does not match, list of siblings
1084 		 * is broken!
1085 		 */
1086 		fib6_nsiblings = 0;
1087 		list_for_each_entry_safe(sibling, temp_sibling,
1088 					 &rt->fib6_siblings, fib6_siblings) {
1089 			sibling->fib6_nsiblings++;
1090 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1091 			fib6_nsiblings++;
1092 		}
1093 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1094 		rt6_multipath_rebalance(temp_sibling);
1095 	}
1096 
1097 	/*
1098 	 *	insert node
1099 	 */
1100 	if (!replace) {
1101 		if (!add)
1102 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1103 
1104 add:
1105 		nlflags |= NLM_F_CREATE;
1106 
1107 		err = call_fib6_entry_notifiers(info->nl_net,
1108 						FIB_EVENT_ENTRY_ADD,
1109 						rt, extack);
1110 		if (err)
1111 			return err;
1112 
1113 		rcu_assign_pointer(rt->fib6_next, iter);
1114 		atomic_inc(&rt->fib6_ref);
1115 		rcu_assign_pointer(rt->fib6_node, fn);
1116 		rcu_assign_pointer(*ins, rt);
1117 		if (!info->skip_notify)
1118 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1119 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1120 
1121 		if (!(fn->fn_flags & RTN_RTINFO)) {
1122 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1123 			fn->fn_flags |= RTN_RTINFO;
1124 		}
1125 
1126 	} else {
1127 		int nsiblings;
1128 
1129 		if (!found) {
1130 			if (add)
1131 				goto add;
1132 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1133 			return -ENOENT;
1134 		}
1135 
1136 		err = call_fib6_entry_notifiers(info->nl_net,
1137 						FIB_EVENT_ENTRY_REPLACE,
1138 						rt, extack);
1139 		if (err)
1140 			return err;
1141 
1142 		atomic_inc(&rt->fib6_ref);
1143 		rcu_assign_pointer(rt->fib6_node, fn);
1144 		rt->fib6_next = iter->fib6_next;
1145 		rcu_assign_pointer(*ins, rt);
1146 		if (!info->skip_notify)
1147 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1148 		if (!(fn->fn_flags & RTN_RTINFO)) {
1149 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1150 			fn->fn_flags |= RTN_RTINFO;
1151 		}
1152 		nsiblings = iter->fib6_nsiblings;
1153 		iter->fib6_node = NULL;
1154 		fib6_purge_rt(iter, fn, info->nl_net);
1155 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1156 			fn->rr_ptr = NULL;
1157 		fib6_info_release(iter);
1158 
1159 		if (nsiblings) {
1160 			/* Replacing an ECMP route, remove all siblings */
1161 			ins = &rt->fib6_next;
1162 			iter = rcu_dereference_protected(*ins,
1163 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1164 			while (iter) {
1165 				if (iter->fib6_metric > rt->fib6_metric)
1166 					break;
1167 				if (rt6_qualify_for_ecmp(iter)) {
1168 					*ins = iter->fib6_next;
1169 					iter->fib6_node = NULL;
1170 					fib6_purge_rt(iter, fn, info->nl_net);
1171 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1172 						fn->rr_ptr = NULL;
1173 					fib6_info_release(iter);
1174 					nsiblings--;
1175 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1176 				} else {
1177 					ins = &iter->fib6_next;
1178 				}
1179 				iter = rcu_dereference_protected(*ins,
1180 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1181 			}
1182 			WARN_ON(nsiblings != 0);
1183 		}
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1190 {
1191 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1192 	    (rt->fib6_flags & RTF_EXPIRES))
1193 		mod_timer(&net->ipv6.ip6_fib_timer,
1194 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1195 }
1196 
1197 void fib6_force_start_gc(struct net *net)
1198 {
1199 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1200 		mod_timer(&net->ipv6.ip6_fib_timer,
1201 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1202 }
1203 
1204 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1205 					   int sernum)
1206 {
1207 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1208 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1209 
1210 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1211 	smp_wmb();
1212 	while (fn) {
1213 		fn->fn_sernum = sernum;
1214 		fn = rcu_dereference_protected(fn->parent,
1215 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1216 	}
1217 }
1218 
1219 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1220 {
1221 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1222 }
1223 
1224 /*
1225  *	Add routing information to the routing tree.
1226  *	<destination addr>/<source addr>
1227  *	with source addr info in sub-trees
1228  *	Need to own table->tb6_lock
1229  */
1230 
1231 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1232 	     struct nl_info *info, struct netlink_ext_ack *extack)
1233 {
1234 	struct fib6_table *table = rt->fib6_table;
1235 	struct fib6_node *fn, *pn = NULL;
1236 	int err = -ENOMEM;
1237 	int allow_create = 1;
1238 	int replace_required = 0;
1239 	int sernum = fib6_new_sernum(info->nl_net);
1240 
1241 	if (info->nlh) {
1242 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1243 			allow_create = 0;
1244 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1245 			replace_required = 1;
1246 	}
1247 	if (!allow_create && !replace_required)
1248 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1249 
1250 	fn = fib6_add_1(info->nl_net, table, root,
1251 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1252 			offsetof(struct fib6_info, fib6_dst), allow_create,
1253 			replace_required, extack);
1254 	if (IS_ERR(fn)) {
1255 		err = PTR_ERR(fn);
1256 		fn = NULL;
1257 		goto out;
1258 	}
1259 
1260 	pn = fn;
1261 
1262 #ifdef CONFIG_IPV6_SUBTREES
1263 	if (rt->fib6_src.plen) {
1264 		struct fib6_node *sn;
1265 
1266 		if (!rcu_access_pointer(fn->subtree)) {
1267 			struct fib6_node *sfn;
1268 
1269 			/*
1270 			 * Create subtree.
1271 			 *
1272 			 *		fn[main tree]
1273 			 *		|
1274 			 *		sfn[subtree root]
1275 			 *		   \
1276 			 *		    sn[new leaf node]
1277 			 */
1278 
1279 			/* Create subtree root node */
1280 			sfn = node_alloc(info->nl_net);
1281 			if (!sfn)
1282 				goto failure;
1283 
1284 			atomic_inc(&info->nl_net->ipv6.fib6_null_entry->fib6_ref);
1285 			rcu_assign_pointer(sfn->leaf,
1286 					   info->nl_net->ipv6.fib6_null_entry);
1287 			sfn->fn_flags = RTN_ROOT;
1288 
1289 			/* Now add the first leaf node to new subtree */
1290 
1291 			sn = fib6_add_1(info->nl_net, table, sfn,
1292 					&rt->fib6_src.addr, rt->fib6_src.plen,
1293 					offsetof(struct fib6_info, fib6_src),
1294 					allow_create, replace_required, extack);
1295 
1296 			if (IS_ERR(sn)) {
1297 				/* If it is failed, discard just allocated
1298 				   root, and then (in failure) stale node
1299 				   in main tree.
1300 				 */
1301 				node_free_immediate(info->nl_net, sfn);
1302 				err = PTR_ERR(sn);
1303 				goto failure;
1304 			}
1305 
1306 			/* Now link new subtree to main tree */
1307 			rcu_assign_pointer(sfn->parent, fn);
1308 			rcu_assign_pointer(fn->subtree, sfn);
1309 		} else {
1310 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1311 					&rt->fib6_src.addr, rt->fib6_src.plen,
1312 					offsetof(struct fib6_info, fib6_src),
1313 					allow_create, replace_required, extack);
1314 
1315 			if (IS_ERR(sn)) {
1316 				err = PTR_ERR(sn);
1317 				goto failure;
1318 			}
1319 		}
1320 
1321 		if (!rcu_access_pointer(fn->leaf)) {
1322 			if (fn->fn_flags & RTN_TL_ROOT) {
1323 				/* put back null_entry for root node */
1324 				rcu_assign_pointer(fn->leaf,
1325 					    info->nl_net->ipv6.fib6_null_entry);
1326 			} else {
1327 				atomic_inc(&rt->fib6_ref);
1328 				rcu_assign_pointer(fn->leaf, rt);
1329 			}
1330 		}
1331 		fn = sn;
1332 	}
1333 #endif
1334 
1335 	err = fib6_add_rt2node(fn, rt, info, extack);
1336 	if (!err) {
1337 		__fib6_update_sernum_upto_root(rt, sernum);
1338 		fib6_start_gc(info->nl_net, rt);
1339 	}
1340 
1341 out:
1342 	if (err) {
1343 #ifdef CONFIG_IPV6_SUBTREES
1344 		/*
1345 		 * If fib6_add_1 has cleared the old leaf pointer in the
1346 		 * super-tree leaf node we have to find a new one for it.
1347 		 */
1348 		if (pn != fn) {
1349 			struct fib6_info *pn_leaf =
1350 				rcu_dereference_protected(pn->leaf,
1351 				    lockdep_is_held(&table->tb6_lock));
1352 			if (pn_leaf == rt) {
1353 				pn_leaf = NULL;
1354 				RCU_INIT_POINTER(pn->leaf, NULL);
1355 				fib6_info_release(rt);
1356 			}
1357 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1358 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1359 							   pn);
1360 #if RT6_DEBUG >= 2
1361 				if (!pn_leaf) {
1362 					WARN_ON(!pn_leaf);
1363 					pn_leaf =
1364 					    info->nl_net->ipv6.fib6_null_entry;
1365 				}
1366 #endif
1367 				fib6_info_hold(pn_leaf);
1368 				rcu_assign_pointer(pn->leaf, pn_leaf);
1369 			}
1370 		}
1371 #endif
1372 		goto failure;
1373 	}
1374 	return err;
1375 
1376 failure:
1377 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1378 	 * 1. fn is an intermediate node and we failed to add the new
1379 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1380 	 * failure case.
1381 	 * 2. fn is the root node in the table and we fail to add the first
1382 	 * default route to it.
1383 	 */
1384 	if (fn &&
1385 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1386 	     (fn->fn_flags & RTN_TL_ROOT &&
1387 	      !rcu_access_pointer(fn->leaf))))
1388 		fib6_repair_tree(info->nl_net, table, fn);
1389 	return err;
1390 }
1391 
1392 /*
1393  *	Routing tree lookup
1394  *
1395  */
1396 
1397 struct lookup_args {
1398 	int			offset;		/* key offset on fib6_info */
1399 	const struct in6_addr	*addr;		/* search key			*/
1400 };
1401 
1402 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1403 					    struct lookup_args *args)
1404 {
1405 	struct fib6_node *fn;
1406 	__be32 dir;
1407 
1408 	if (unlikely(args->offset == 0))
1409 		return NULL;
1410 
1411 	/*
1412 	 *	Descend on a tree
1413 	 */
1414 
1415 	fn = root;
1416 
1417 	for (;;) {
1418 		struct fib6_node *next;
1419 
1420 		dir = addr_bit_set(args->addr, fn->fn_bit);
1421 
1422 		next = dir ? rcu_dereference(fn->right) :
1423 			     rcu_dereference(fn->left);
1424 
1425 		if (next) {
1426 			fn = next;
1427 			continue;
1428 		}
1429 		break;
1430 	}
1431 
1432 	while (fn) {
1433 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1434 
1435 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1436 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1437 			struct rt6key *key;
1438 
1439 			if (!leaf)
1440 				goto backtrack;
1441 
1442 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1443 
1444 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1445 #ifdef CONFIG_IPV6_SUBTREES
1446 				if (subtree) {
1447 					struct fib6_node *sfn;
1448 					sfn = fib6_node_lookup_1(subtree,
1449 								 args + 1);
1450 					if (!sfn)
1451 						goto backtrack;
1452 					fn = sfn;
1453 				}
1454 #endif
1455 				if (fn->fn_flags & RTN_RTINFO)
1456 					return fn;
1457 			}
1458 		}
1459 backtrack:
1460 		if (fn->fn_flags & RTN_ROOT)
1461 			break;
1462 
1463 		fn = rcu_dereference(fn->parent);
1464 	}
1465 
1466 	return NULL;
1467 }
1468 
1469 /* called with rcu_read_lock() held
1470  */
1471 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1472 				   const struct in6_addr *daddr,
1473 				   const struct in6_addr *saddr)
1474 {
1475 	struct fib6_node *fn;
1476 	struct lookup_args args[] = {
1477 		{
1478 			.offset = offsetof(struct fib6_info, fib6_dst),
1479 			.addr = daddr,
1480 		},
1481 #ifdef CONFIG_IPV6_SUBTREES
1482 		{
1483 			.offset = offsetof(struct fib6_info, fib6_src),
1484 			.addr = saddr,
1485 		},
1486 #endif
1487 		{
1488 			.offset = 0,	/* sentinel */
1489 		}
1490 	};
1491 
1492 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1493 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1494 		fn = root;
1495 
1496 	return fn;
1497 }
1498 
1499 /*
1500  *	Get node with specified destination prefix (and source prefix,
1501  *	if subtrees are used)
1502  *	exact_match == true means we try to find fn with exact match of
1503  *	the passed in prefix addr
1504  *	exact_match == false means we try to find fn with longest prefix
1505  *	match of the passed in prefix addr. This is useful for finding fn
1506  *	for cached route as it will be stored in the exception table under
1507  *	the node with longest prefix length.
1508  */
1509 
1510 
1511 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1512 				       const struct in6_addr *addr,
1513 				       int plen, int offset,
1514 				       bool exact_match)
1515 {
1516 	struct fib6_node *fn, *prev = NULL;
1517 
1518 	for (fn = root; fn ; ) {
1519 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1520 		struct rt6key *key;
1521 
1522 		/* This node is being deleted */
1523 		if (!leaf) {
1524 			if (plen <= fn->fn_bit)
1525 				goto out;
1526 			else
1527 				goto next;
1528 		}
1529 
1530 		key = (struct rt6key *)((u8 *)leaf + offset);
1531 
1532 		/*
1533 		 *	Prefix match
1534 		 */
1535 		if (plen < fn->fn_bit ||
1536 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1537 			goto out;
1538 
1539 		if (plen == fn->fn_bit)
1540 			return fn;
1541 
1542 		prev = fn;
1543 
1544 next:
1545 		/*
1546 		 *	We have more bits to go
1547 		 */
1548 		if (addr_bit_set(addr, fn->fn_bit))
1549 			fn = rcu_dereference(fn->right);
1550 		else
1551 			fn = rcu_dereference(fn->left);
1552 	}
1553 out:
1554 	if (exact_match)
1555 		return NULL;
1556 	else
1557 		return prev;
1558 }
1559 
1560 struct fib6_node *fib6_locate(struct fib6_node *root,
1561 			      const struct in6_addr *daddr, int dst_len,
1562 			      const struct in6_addr *saddr, int src_len,
1563 			      bool exact_match)
1564 {
1565 	struct fib6_node *fn;
1566 
1567 	fn = fib6_locate_1(root, daddr, dst_len,
1568 			   offsetof(struct fib6_info, fib6_dst),
1569 			   exact_match);
1570 
1571 #ifdef CONFIG_IPV6_SUBTREES
1572 	if (src_len) {
1573 		WARN_ON(saddr == NULL);
1574 		if (fn) {
1575 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576 
1577 			if (subtree) {
1578 				fn = fib6_locate_1(subtree, saddr, src_len,
1579 					   offsetof(struct fib6_info, fib6_src),
1580 					   exact_match);
1581 			}
1582 		}
1583 	}
1584 #endif
1585 
1586 	if (fn && fn->fn_flags & RTN_RTINFO)
1587 		return fn;
1588 
1589 	return NULL;
1590 }
1591 
1592 
1593 /*
1594  *	Deletion
1595  *
1596  */
1597 
1598 static struct fib6_info *fib6_find_prefix(struct net *net,
1599 					 struct fib6_table *table,
1600 					 struct fib6_node *fn)
1601 {
1602 	struct fib6_node *child_left, *child_right;
1603 
1604 	if (fn->fn_flags & RTN_ROOT)
1605 		return net->ipv6.fib6_null_entry;
1606 
1607 	while (fn) {
1608 		child_left = rcu_dereference_protected(fn->left,
1609 				    lockdep_is_held(&table->tb6_lock));
1610 		child_right = rcu_dereference_protected(fn->right,
1611 				    lockdep_is_held(&table->tb6_lock));
1612 		if (child_left)
1613 			return rcu_dereference_protected(child_left->leaf,
1614 					lockdep_is_held(&table->tb6_lock));
1615 		if (child_right)
1616 			return rcu_dereference_protected(child_right->leaf,
1617 					lockdep_is_held(&table->tb6_lock));
1618 
1619 		fn = FIB6_SUBTREE(fn);
1620 	}
1621 	return NULL;
1622 }
1623 
1624 /*
1625  *	Called to trim the tree of intermediate nodes when possible. "fn"
1626  *	is the node we want to try and remove.
1627  *	Need to own table->tb6_lock
1628  */
1629 
1630 static struct fib6_node *fib6_repair_tree(struct net *net,
1631 					  struct fib6_table *table,
1632 					  struct fib6_node *fn)
1633 {
1634 	int children;
1635 	int nstate;
1636 	struct fib6_node *child;
1637 	struct fib6_walker *w;
1638 	int iter = 0;
1639 
1640 	/* Set fn->leaf to null_entry for root node. */
1641 	if (fn->fn_flags & RTN_TL_ROOT) {
1642 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1643 		return fn;
1644 	}
1645 
1646 	for (;;) {
1647 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1648 					    lockdep_is_held(&table->tb6_lock));
1649 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1650 					    lockdep_is_held(&table->tb6_lock));
1651 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1652 					    lockdep_is_held(&table->tb6_lock));
1653 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1654 					    lockdep_is_held(&table->tb6_lock));
1655 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1656 					    lockdep_is_held(&table->tb6_lock));
1657 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1658 					    lockdep_is_held(&table->tb6_lock));
1659 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1660 					    lockdep_is_held(&table->tb6_lock));
1661 		struct fib6_info *new_fn_leaf;
1662 
1663 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1664 		iter++;
1665 
1666 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1667 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1668 		WARN_ON(fn_leaf);
1669 
1670 		children = 0;
1671 		child = NULL;
1672 		if (fn_r)
1673 			child = fn_r, children |= 1;
1674 		if (fn_l)
1675 			child = fn_l, children |= 2;
1676 
1677 		if (children == 3 || FIB6_SUBTREE(fn)
1678 #ifdef CONFIG_IPV6_SUBTREES
1679 		    /* Subtree root (i.e. fn) may have one child */
1680 		    || (children && fn->fn_flags & RTN_ROOT)
1681 #endif
1682 		    ) {
1683 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1684 #if RT6_DEBUG >= 2
1685 			if (!new_fn_leaf) {
1686 				WARN_ON(!new_fn_leaf);
1687 				new_fn_leaf = net->ipv6.fib6_null_entry;
1688 			}
1689 #endif
1690 			fib6_info_hold(new_fn_leaf);
1691 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1692 			return pn;
1693 		}
1694 
1695 #ifdef CONFIG_IPV6_SUBTREES
1696 		if (FIB6_SUBTREE(pn) == fn) {
1697 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1698 			RCU_INIT_POINTER(pn->subtree, NULL);
1699 			nstate = FWS_L;
1700 		} else {
1701 			WARN_ON(fn->fn_flags & RTN_ROOT);
1702 #endif
1703 			if (pn_r == fn)
1704 				rcu_assign_pointer(pn->right, child);
1705 			else if (pn_l == fn)
1706 				rcu_assign_pointer(pn->left, child);
1707 #if RT6_DEBUG >= 2
1708 			else
1709 				WARN_ON(1);
1710 #endif
1711 			if (child)
1712 				rcu_assign_pointer(child->parent, pn);
1713 			nstate = FWS_R;
1714 #ifdef CONFIG_IPV6_SUBTREES
1715 		}
1716 #endif
1717 
1718 		read_lock(&net->ipv6.fib6_walker_lock);
1719 		FOR_WALKERS(net, w) {
1720 			if (!child) {
1721 				if (w->node == fn) {
1722 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1723 					w->node = pn;
1724 					w->state = nstate;
1725 				}
1726 			} else {
1727 				if (w->node == fn) {
1728 					w->node = child;
1729 					if (children&2) {
1730 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1731 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1732 					} else {
1733 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1734 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1735 					}
1736 				}
1737 			}
1738 		}
1739 		read_unlock(&net->ipv6.fib6_walker_lock);
1740 
1741 		node_free(net, fn);
1742 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1743 			return pn;
1744 
1745 		RCU_INIT_POINTER(pn->leaf, NULL);
1746 		fib6_info_release(pn_leaf);
1747 		fn = pn;
1748 	}
1749 }
1750 
1751 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1752 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1753 {
1754 	struct fib6_walker *w;
1755 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1756 				    lockdep_is_held(&table->tb6_lock));
1757 	struct net *net = info->nl_net;
1758 
1759 	RT6_TRACE("fib6_del_route\n");
1760 
1761 	/* Unlink it */
1762 	*rtp = rt->fib6_next;
1763 	rt->fib6_node = NULL;
1764 	net->ipv6.rt6_stats->fib_rt_entries--;
1765 	net->ipv6.rt6_stats->fib_discarded_routes++;
1766 
1767 	/* Flush all cached dst in exception table */
1768 	rt6_flush_exceptions(rt);
1769 
1770 	/* Reset round-robin state, if necessary */
1771 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1772 		fn->rr_ptr = NULL;
1773 
1774 	/* Remove this entry from other siblings */
1775 	if (rt->fib6_nsiblings) {
1776 		struct fib6_info *sibling, *next_sibling;
1777 
1778 		list_for_each_entry_safe(sibling, next_sibling,
1779 					 &rt->fib6_siblings, fib6_siblings)
1780 			sibling->fib6_nsiblings--;
1781 		rt->fib6_nsiblings = 0;
1782 		list_del_init(&rt->fib6_siblings);
1783 		rt6_multipath_rebalance(next_sibling);
1784 	}
1785 
1786 	/* Adjust walkers */
1787 	read_lock(&net->ipv6.fib6_walker_lock);
1788 	FOR_WALKERS(net, w) {
1789 		if (w->state == FWS_C && w->leaf == rt) {
1790 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1791 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1792 					    lockdep_is_held(&table->tb6_lock));
1793 			if (!w->leaf)
1794 				w->state = FWS_U;
1795 		}
1796 	}
1797 	read_unlock(&net->ipv6.fib6_walker_lock);
1798 
1799 	/* If it was last route, call fib6_repair_tree() to:
1800 	 * 1. For root node, put back null_entry as how the table was created.
1801 	 * 2. For other nodes, expunge its radix tree node.
1802 	 */
1803 	if (!rcu_access_pointer(fn->leaf)) {
1804 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1805 			fn->fn_flags &= ~RTN_RTINFO;
1806 			net->ipv6.rt6_stats->fib_route_nodes--;
1807 		}
1808 		fn = fib6_repair_tree(net, table, fn);
1809 	}
1810 
1811 	fib6_purge_rt(rt, fn, net);
1812 
1813 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1814 	if (!info->skip_notify)
1815 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1816 	fib6_info_release(rt);
1817 }
1818 
1819 /* Need to own table->tb6_lock */
1820 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1821 {
1822 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1823 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1824 	struct fib6_table *table = rt->fib6_table;
1825 	struct net *net = info->nl_net;
1826 	struct fib6_info __rcu **rtp;
1827 	struct fib6_info __rcu **rtp_next;
1828 
1829 	if (!fn || rt == net->ipv6.fib6_null_entry)
1830 		return -ENOENT;
1831 
1832 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1833 
1834 	/*
1835 	 *	Walk the leaf entries looking for ourself
1836 	 */
1837 
1838 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1839 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
1840 					lockdep_is_held(&table->tb6_lock));
1841 		if (rt == cur) {
1842 			fib6_del_route(table, fn, rtp, info);
1843 			return 0;
1844 		}
1845 		rtp_next = &cur->fib6_next;
1846 	}
1847 	return -ENOENT;
1848 }
1849 
1850 /*
1851  *	Tree traversal function.
1852  *
1853  *	Certainly, it is not interrupt safe.
1854  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1855  *	It means, that we can modify tree during walking
1856  *	and use this function for garbage collection, clone pruning,
1857  *	cleaning tree when a device goes down etc. etc.
1858  *
1859  *	It guarantees that every node will be traversed,
1860  *	and that it will be traversed only once.
1861  *
1862  *	Callback function w->func may return:
1863  *	0 -> continue walking.
1864  *	positive value -> walking is suspended (used by tree dumps,
1865  *	and probably by gc, if it will be split to several slices)
1866  *	negative value -> terminate walking.
1867  *
1868  *	The function itself returns:
1869  *	0   -> walk is complete.
1870  *	>0  -> walk is incomplete (i.e. suspended)
1871  *	<0  -> walk is terminated by an error.
1872  *
1873  *	This function is called with tb6_lock held.
1874  */
1875 
1876 static int fib6_walk_continue(struct fib6_walker *w)
1877 {
1878 	struct fib6_node *fn, *pn, *left, *right;
1879 
1880 	/* w->root should always be table->tb6_root */
1881 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1882 
1883 	for (;;) {
1884 		fn = w->node;
1885 		if (!fn)
1886 			return 0;
1887 
1888 		switch (w->state) {
1889 #ifdef CONFIG_IPV6_SUBTREES
1890 		case FWS_S:
1891 			if (FIB6_SUBTREE(fn)) {
1892 				w->node = FIB6_SUBTREE(fn);
1893 				continue;
1894 			}
1895 			w->state = FWS_L;
1896 #endif
1897 			/* fall through */
1898 		case FWS_L:
1899 			left = rcu_dereference_protected(fn->left, 1);
1900 			if (left) {
1901 				w->node = left;
1902 				w->state = FWS_INIT;
1903 				continue;
1904 			}
1905 			w->state = FWS_R;
1906 			/* fall through */
1907 		case FWS_R:
1908 			right = rcu_dereference_protected(fn->right, 1);
1909 			if (right) {
1910 				w->node = right;
1911 				w->state = FWS_INIT;
1912 				continue;
1913 			}
1914 			w->state = FWS_C;
1915 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1916 			/* fall through */
1917 		case FWS_C:
1918 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1919 				int err;
1920 
1921 				if (w->skip) {
1922 					w->skip--;
1923 					goto skip;
1924 				}
1925 
1926 				err = w->func(w);
1927 				if (err)
1928 					return err;
1929 
1930 				w->count++;
1931 				continue;
1932 			}
1933 skip:
1934 			w->state = FWS_U;
1935 			/* fall through */
1936 		case FWS_U:
1937 			if (fn == w->root)
1938 				return 0;
1939 			pn = rcu_dereference_protected(fn->parent, 1);
1940 			left = rcu_dereference_protected(pn->left, 1);
1941 			right = rcu_dereference_protected(pn->right, 1);
1942 			w->node = pn;
1943 #ifdef CONFIG_IPV6_SUBTREES
1944 			if (FIB6_SUBTREE(pn) == fn) {
1945 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1946 				w->state = FWS_L;
1947 				continue;
1948 			}
1949 #endif
1950 			if (left == fn) {
1951 				w->state = FWS_R;
1952 				continue;
1953 			}
1954 			if (right == fn) {
1955 				w->state = FWS_C;
1956 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1957 				continue;
1958 			}
1959 #if RT6_DEBUG >= 2
1960 			WARN_ON(1);
1961 #endif
1962 		}
1963 	}
1964 }
1965 
1966 static int fib6_walk(struct net *net, struct fib6_walker *w)
1967 {
1968 	int res;
1969 
1970 	w->state = FWS_INIT;
1971 	w->node = w->root;
1972 
1973 	fib6_walker_link(net, w);
1974 	res = fib6_walk_continue(w);
1975 	if (res <= 0)
1976 		fib6_walker_unlink(net, w);
1977 	return res;
1978 }
1979 
1980 static int fib6_clean_node(struct fib6_walker *w)
1981 {
1982 	int res;
1983 	struct fib6_info *rt;
1984 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1985 	struct nl_info info = {
1986 		.nl_net = c->net,
1987 		.skip_notify = c->skip_notify,
1988 	};
1989 
1990 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1991 	    w->node->fn_sernum != c->sernum)
1992 		w->node->fn_sernum = c->sernum;
1993 
1994 	if (!c->func) {
1995 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1996 		w->leaf = NULL;
1997 		return 0;
1998 	}
1999 
2000 	for_each_fib6_walker_rt(w) {
2001 		res = c->func(rt, c->arg);
2002 		if (res == -1) {
2003 			w->leaf = rt;
2004 			res = fib6_del(rt, &info);
2005 			if (res) {
2006 #if RT6_DEBUG >= 2
2007 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2008 					 __func__, rt,
2009 					 rcu_access_pointer(rt->fib6_node),
2010 					 res);
2011 #endif
2012 				continue;
2013 			}
2014 			return 0;
2015 		} else if (res == -2) {
2016 			if (WARN_ON(!rt->fib6_nsiblings))
2017 				continue;
2018 			rt = list_last_entry(&rt->fib6_siblings,
2019 					     struct fib6_info, fib6_siblings);
2020 			continue;
2021 		}
2022 		WARN_ON(res != 0);
2023 	}
2024 	w->leaf = rt;
2025 	return 0;
2026 }
2027 
2028 /*
2029  *	Convenient frontend to tree walker.
2030  *
2031  *	func is called on each route.
2032  *		It may return -2 -> skip multipath route.
2033  *			      -1 -> delete this route.
2034  *		              0  -> continue walking
2035  */
2036 
2037 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2038 			    int (*func)(struct fib6_info *, void *arg),
2039 			    int sernum, void *arg, bool skip_notify)
2040 {
2041 	struct fib6_cleaner c;
2042 
2043 	c.w.root = root;
2044 	c.w.func = fib6_clean_node;
2045 	c.w.count = 0;
2046 	c.w.skip = 0;
2047 	c.func = func;
2048 	c.sernum = sernum;
2049 	c.arg = arg;
2050 	c.net = net;
2051 	c.skip_notify = skip_notify;
2052 
2053 	fib6_walk(net, &c.w);
2054 }
2055 
2056 static void __fib6_clean_all(struct net *net,
2057 			     int (*func)(struct fib6_info *, void *),
2058 			     int sernum, void *arg, bool skip_notify)
2059 {
2060 	struct fib6_table *table;
2061 	struct hlist_head *head;
2062 	unsigned int h;
2063 
2064 	rcu_read_lock();
2065 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2066 		head = &net->ipv6.fib_table_hash[h];
2067 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2068 			spin_lock_bh(&table->tb6_lock);
2069 			fib6_clean_tree(net, &table->tb6_root,
2070 					func, sernum, arg, skip_notify);
2071 			spin_unlock_bh(&table->tb6_lock);
2072 		}
2073 	}
2074 	rcu_read_unlock();
2075 }
2076 
2077 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2078 		    void *arg)
2079 {
2080 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2081 }
2082 
2083 void fib6_clean_all_skip_notify(struct net *net,
2084 				int (*func)(struct fib6_info *, void *),
2085 				void *arg)
2086 {
2087 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2088 }
2089 
2090 static void fib6_flush_trees(struct net *net)
2091 {
2092 	int new_sernum = fib6_new_sernum(net);
2093 
2094 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2095 }
2096 
2097 /*
2098  *	Garbage collection
2099  */
2100 
2101 static int fib6_age(struct fib6_info *rt, void *arg)
2102 {
2103 	struct fib6_gc_args *gc_args = arg;
2104 	unsigned long now = jiffies;
2105 
2106 	/*
2107 	 *	check addrconf expiration here.
2108 	 *	Routes are expired even if they are in use.
2109 	 */
2110 
2111 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2112 		if (time_after(now, rt->expires)) {
2113 			RT6_TRACE("expiring %p\n", rt);
2114 			return -1;
2115 		}
2116 		gc_args->more++;
2117 	}
2118 
2119 	/*	Also age clones in the exception table.
2120 	 *	Note, that clones are aged out
2121 	 *	only if they are not in use now.
2122 	 */
2123 	rt6_age_exceptions(rt, gc_args, now);
2124 
2125 	return 0;
2126 }
2127 
2128 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2129 {
2130 	struct fib6_gc_args gc_args;
2131 	unsigned long now;
2132 
2133 	if (force) {
2134 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2135 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2136 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2137 		return;
2138 	}
2139 	gc_args.timeout = expires ? (int)expires :
2140 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2141 	gc_args.more = 0;
2142 
2143 	fib6_clean_all(net, fib6_age, &gc_args);
2144 	now = jiffies;
2145 	net->ipv6.ip6_rt_last_gc = now;
2146 
2147 	if (gc_args.more)
2148 		mod_timer(&net->ipv6.ip6_fib_timer,
2149 			  round_jiffies(now
2150 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2151 	else
2152 		del_timer(&net->ipv6.ip6_fib_timer);
2153 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2154 }
2155 
2156 static void fib6_gc_timer_cb(struct timer_list *t)
2157 {
2158 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2159 
2160 	fib6_run_gc(0, arg, true);
2161 }
2162 
2163 static int __net_init fib6_net_init(struct net *net)
2164 {
2165 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2166 	int err;
2167 
2168 	err = fib6_notifier_init(net);
2169 	if (err)
2170 		return err;
2171 
2172 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2173 	rwlock_init(&net->ipv6.fib6_walker_lock);
2174 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2175 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2176 
2177 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2178 	if (!net->ipv6.rt6_stats)
2179 		goto out_timer;
2180 
2181 	/* Avoid false sharing : Use at least a full cache line */
2182 	size = max_t(size_t, size, L1_CACHE_BYTES);
2183 
2184 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2185 	if (!net->ipv6.fib_table_hash)
2186 		goto out_rt6_stats;
2187 
2188 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2189 					  GFP_KERNEL);
2190 	if (!net->ipv6.fib6_main_tbl)
2191 		goto out_fib_table_hash;
2192 
2193 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2194 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2195 			   net->ipv6.fib6_null_entry);
2196 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2197 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2198 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2199 
2200 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2201 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2202 					   GFP_KERNEL);
2203 	if (!net->ipv6.fib6_local_tbl)
2204 		goto out_fib6_main_tbl;
2205 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2206 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2207 			   net->ipv6.fib6_null_entry);
2208 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2209 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2210 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2211 #endif
2212 	fib6_tables_init(net);
2213 
2214 	return 0;
2215 
2216 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2217 out_fib6_main_tbl:
2218 	kfree(net->ipv6.fib6_main_tbl);
2219 #endif
2220 out_fib_table_hash:
2221 	kfree(net->ipv6.fib_table_hash);
2222 out_rt6_stats:
2223 	kfree(net->ipv6.rt6_stats);
2224 out_timer:
2225 	fib6_notifier_exit(net);
2226 	return -ENOMEM;
2227 }
2228 
2229 static void fib6_net_exit(struct net *net)
2230 {
2231 	unsigned int i;
2232 
2233 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2234 
2235 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2236 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2237 		struct hlist_node *tmp;
2238 		struct fib6_table *tb;
2239 
2240 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2241 			hlist_del(&tb->tb6_hlist);
2242 			fib6_free_table(tb);
2243 		}
2244 	}
2245 
2246 	kfree(net->ipv6.fib_table_hash);
2247 	kfree(net->ipv6.rt6_stats);
2248 	fib6_notifier_exit(net);
2249 }
2250 
2251 static struct pernet_operations fib6_net_ops = {
2252 	.init = fib6_net_init,
2253 	.exit = fib6_net_exit,
2254 };
2255 
2256 int __init fib6_init(void)
2257 {
2258 	int ret = -ENOMEM;
2259 
2260 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2261 					   sizeof(struct fib6_node),
2262 					   0, SLAB_HWCACHE_ALIGN,
2263 					   NULL);
2264 	if (!fib6_node_kmem)
2265 		goto out;
2266 
2267 	ret = register_pernet_subsys(&fib6_net_ops);
2268 	if (ret)
2269 		goto out_kmem_cache_create;
2270 
2271 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2272 				   inet6_dump_fib, 0);
2273 	if (ret)
2274 		goto out_unregister_subsys;
2275 
2276 	__fib6_flush_trees = fib6_flush_trees;
2277 out:
2278 	return ret;
2279 
2280 out_unregister_subsys:
2281 	unregister_pernet_subsys(&fib6_net_ops);
2282 out_kmem_cache_create:
2283 	kmem_cache_destroy(fib6_node_kmem);
2284 	goto out;
2285 }
2286 
2287 void fib6_gc_cleanup(void)
2288 {
2289 	unregister_pernet_subsys(&fib6_net_ops);
2290 	kmem_cache_destroy(fib6_node_kmem);
2291 }
2292 
2293 #ifdef CONFIG_PROC_FS
2294 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2295 {
2296 	struct fib6_info *rt = v;
2297 	struct ipv6_route_iter *iter = seq->private;
2298 	unsigned int flags = rt->fib6_flags;
2299 	const struct net_device *dev;
2300 
2301 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2302 
2303 #ifdef CONFIG_IPV6_SUBTREES
2304 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2305 #else
2306 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2307 #endif
2308 	if (rt->fib6_nh.fib_nh_gw_family) {
2309 		flags |= RTF_GATEWAY;
2310 		seq_printf(seq, "%pi6", &rt->fib6_nh.fib_nh_gw6);
2311 	} else {
2312 		seq_puts(seq, "00000000000000000000000000000000");
2313 	}
2314 
2315 	dev = rt->fib6_nh.fib_nh_dev;
2316 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2317 		   rt->fib6_metric, atomic_read(&rt->fib6_ref), 0,
2318 		   flags, dev ? dev->name : "");
2319 	iter->w.leaf = NULL;
2320 	return 0;
2321 }
2322 
2323 static int ipv6_route_yield(struct fib6_walker *w)
2324 {
2325 	struct ipv6_route_iter *iter = w->args;
2326 
2327 	if (!iter->skip)
2328 		return 1;
2329 
2330 	do {
2331 		iter->w.leaf = rcu_dereference_protected(
2332 				iter->w.leaf->fib6_next,
2333 				lockdep_is_held(&iter->tbl->tb6_lock));
2334 		iter->skip--;
2335 		if (!iter->skip && iter->w.leaf)
2336 			return 1;
2337 	} while (iter->w.leaf);
2338 
2339 	return 0;
2340 }
2341 
2342 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2343 				      struct net *net)
2344 {
2345 	memset(&iter->w, 0, sizeof(iter->w));
2346 	iter->w.func = ipv6_route_yield;
2347 	iter->w.root = &iter->tbl->tb6_root;
2348 	iter->w.state = FWS_INIT;
2349 	iter->w.node = iter->w.root;
2350 	iter->w.args = iter;
2351 	iter->sernum = iter->w.root->fn_sernum;
2352 	INIT_LIST_HEAD(&iter->w.lh);
2353 	fib6_walker_link(net, &iter->w);
2354 }
2355 
2356 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2357 						    struct net *net)
2358 {
2359 	unsigned int h;
2360 	struct hlist_node *node;
2361 
2362 	if (tbl) {
2363 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2364 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2365 	} else {
2366 		h = 0;
2367 		node = NULL;
2368 	}
2369 
2370 	while (!node && h < FIB6_TABLE_HASHSZ) {
2371 		node = rcu_dereference_bh(
2372 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2373 	}
2374 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2375 }
2376 
2377 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2378 {
2379 	if (iter->sernum != iter->w.root->fn_sernum) {
2380 		iter->sernum = iter->w.root->fn_sernum;
2381 		iter->w.state = FWS_INIT;
2382 		iter->w.node = iter->w.root;
2383 		WARN_ON(iter->w.skip);
2384 		iter->w.skip = iter->w.count;
2385 	}
2386 }
2387 
2388 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2389 {
2390 	int r;
2391 	struct fib6_info *n;
2392 	struct net *net = seq_file_net(seq);
2393 	struct ipv6_route_iter *iter = seq->private;
2394 
2395 	if (!v)
2396 		goto iter_table;
2397 
2398 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2399 	if (n) {
2400 		++*pos;
2401 		return n;
2402 	}
2403 
2404 iter_table:
2405 	ipv6_route_check_sernum(iter);
2406 	spin_lock_bh(&iter->tbl->tb6_lock);
2407 	r = fib6_walk_continue(&iter->w);
2408 	spin_unlock_bh(&iter->tbl->tb6_lock);
2409 	if (r > 0) {
2410 		if (v)
2411 			++*pos;
2412 		return iter->w.leaf;
2413 	} else if (r < 0) {
2414 		fib6_walker_unlink(net, &iter->w);
2415 		return NULL;
2416 	}
2417 	fib6_walker_unlink(net, &iter->w);
2418 
2419 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2420 	if (!iter->tbl)
2421 		return NULL;
2422 
2423 	ipv6_route_seq_setup_walk(iter, net);
2424 	goto iter_table;
2425 }
2426 
2427 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2428 	__acquires(RCU_BH)
2429 {
2430 	struct net *net = seq_file_net(seq);
2431 	struct ipv6_route_iter *iter = seq->private;
2432 
2433 	rcu_read_lock_bh();
2434 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2435 	iter->skip = *pos;
2436 
2437 	if (iter->tbl) {
2438 		ipv6_route_seq_setup_walk(iter, net);
2439 		return ipv6_route_seq_next(seq, NULL, pos);
2440 	} else {
2441 		return NULL;
2442 	}
2443 }
2444 
2445 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2446 {
2447 	struct fib6_walker *w = &iter->w;
2448 	return w->node && !(w->state == FWS_U && w->node == w->root);
2449 }
2450 
2451 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2452 	__releases(RCU_BH)
2453 {
2454 	struct net *net = seq_file_net(seq);
2455 	struct ipv6_route_iter *iter = seq->private;
2456 
2457 	if (ipv6_route_iter_active(iter))
2458 		fib6_walker_unlink(net, &iter->w);
2459 
2460 	rcu_read_unlock_bh();
2461 }
2462 
2463 const struct seq_operations ipv6_route_seq_ops = {
2464 	.start	= ipv6_route_seq_start,
2465 	.next	= ipv6_route_seq_next,
2466 	.stop	= ipv6_route_seq_stop,
2467 	.show	= ipv6_route_seq_show
2468 };
2469 #endif /* CONFIG_PROC_FS */
2470