xref: /openbmc/linux/net/ipv4/udp.c (revision fd589a8f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 struct udp_table udp_table;
110 EXPORT_SYMBOL(udp_table);
111 
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
114 
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
117 
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
120 
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
123 
124 #define PORTS_PER_CHAIN (65536 / UDP_HTABLE_SIZE)
125 
126 static int udp_lib_lport_inuse(struct net *net, __u16 num,
127 			       const struct udp_hslot *hslot,
128 			       unsigned long *bitmap,
129 			       struct sock *sk,
130 			       int (*saddr_comp)(const struct sock *sk1,
131 						 const struct sock *sk2))
132 {
133 	struct sock *sk2;
134 	struct hlist_nulls_node *node;
135 
136 	sk_nulls_for_each(sk2, node, &hslot->head)
137 		if (net_eq(sock_net(sk2), net)			&&
138 		    sk2 != sk					&&
139 		    (bitmap || sk2->sk_hash == num)		&&
140 		    (!sk2->sk_reuse || !sk->sk_reuse)		&&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
142 			|| sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    (*saddr_comp)(sk, sk2)) {
144 			if (bitmap)
145 				__set_bit(sk2->sk_hash / UDP_HTABLE_SIZE,
146 					  bitmap);
147 			else
148 				return 1;
149 		}
150 	return 0;
151 }
152 
153 /**
154  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
155  *
156  *  @sk:          socket struct in question
157  *  @snum:        port number to look up
158  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
159  */
160 int udp_lib_get_port(struct sock *sk, unsigned short snum,
161 		       int (*saddr_comp)(const struct sock *sk1,
162 					 const struct sock *sk2))
163 {
164 	struct udp_hslot *hslot;
165 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
166 	int    error = 1;
167 	struct net *net = sock_net(sk);
168 
169 	if (!snum) {
170 		int low, high, remaining;
171 		unsigned rand;
172 		unsigned short first, last;
173 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
174 
175 		inet_get_local_port_range(&low, &high);
176 		remaining = (high - low) + 1;
177 
178 		rand = net_random();
179 		first = (((u64)rand * remaining) >> 32) + low;
180 		/*
181 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
182 		 */
183 		rand = (rand | 1) * UDP_HTABLE_SIZE;
184 		for (last = first + UDP_HTABLE_SIZE; first != last; first++) {
185 			hslot = &udptable->hash[udp_hashfn(net, first)];
186 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
187 			spin_lock_bh(&hslot->lock);
188 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
189 					    saddr_comp);
190 
191 			snum = first;
192 			/*
193 			 * Iterate on all possible values of snum for this hash.
194 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
195 			 * give us randomization and full range coverage.
196 			 */
197 			do {
198 				if (low <= snum && snum <= high &&
199 				    !test_bit(snum / UDP_HTABLE_SIZE, bitmap))
200 					goto found;
201 				snum += rand;
202 			} while (snum != first);
203 			spin_unlock_bh(&hslot->lock);
204 		}
205 		goto fail;
206 	} else {
207 		hslot = &udptable->hash[udp_hashfn(net, snum)];
208 		spin_lock_bh(&hslot->lock);
209 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, saddr_comp))
210 			goto fail_unlock;
211 	}
212 found:
213 	inet_sk(sk)->num = snum;
214 	sk->sk_hash = snum;
215 	if (sk_unhashed(sk)) {
216 		sk_nulls_add_node_rcu(sk, &hslot->head);
217 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
218 	}
219 	error = 0;
220 fail_unlock:
221 	spin_unlock_bh(&hslot->lock);
222 fail:
223 	return error;
224 }
225 EXPORT_SYMBOL(udp_lib_get_port);
226 
227 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
228 {
229 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
230 
231 	return 	(!ipv6_only_sock(sk2)  &&
232 		 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
233 		   inet1->rcv_saddr == inet2->rcv_saddr));
234 }
235 
236 int udp_v4_get_port(struct sock *sk, unsigned short snum)
237 {
238 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
239 }
240 
241 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
242 			 unsigned short hnum,
243 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
244 {
245 	int score = -1;
246 
247 	if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
248 			!ipv6_only_sock(sk)) {
249 		struct inet_sock *inet = inet_sk(sk);
250 
251 		score = (sk->sk_family == PF_INET ? 1 : 0);
252 		if (inet->rcv_saddr) {
253 			if (inet->rcv_saddr != daddr)
254 				return -1;
255 			score += 2;
256 		}
257 		if (inet->daddr) {
258 			if (inet->daddr != saddr)
259 				return -1;
260 			score += 2;
261 		}
262 		if (inet->dport) {
263 			if (inet->dport != sport)
264 				return -1;
265 			score += 2;
266 		}
267 		if (sk->sk_bound_dev_if) {
268 			if (sk->sk_bound_dev_if != dif)
269 				return -1;
270 			score += 2;
271 		}
272 	}
273 	return score;
274 }
275 
276 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
277  * harder than this. -DaveM
278  */
279 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
280 		__be16 sport, __be32 daddr, __be16 dport,
281 		int dif, struct udp_table *udptable)
282 {
283 	struct sock *sk, *result;
284 	struct hlist_nulls_node *node;
285 	unsigned short hnum = ntohs(dport);
286 	unsigned int hash = udp_hashfn(net, hnum);
287 	struct udp_hslot *hslot = &udptable->hash[hash];
288 	int score, badness;
289 
290 	rcu_read_lock();
291 begin:
292 	result = NULL;
293 	badness = -1;
294 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
295 		score = compute_score(sk, net, saddr, hnum, sport,
296 				      daddr, dport, dif);
297 		if (score > badness) {
298 			result = sk;
299 			badness = score;
300 		}
301 	}
302 	/*
303 	 * if the nulls value we got at the end of this lookup is
304 	 * not the expected one, we must restart lookup.
305 	 * We probably met an item that was moved to another chain.
306 	 */
307 	if (get_nulls_value(node) != hash)
308 		goto begin;
309 
310 	if (result) {
311 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
312 			result = NULL;
313 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
314 				  daddr, dport, dif) < badness)) {
315 			sock_put(result);
316 			goto begin;
317 		}
318 	}
319 	rcu_read_unlock();
320 	return result;
321 }
322 
323 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
324 						 __be16 sport, __be16 dport,
325 						 struct udp_table *udptable)
326 {
327 	struct sock *sk;
328 	const struct iphdr *iph = ip_hdr(skb);
329 
330 	if (unlikely(sk = skb_steal_sock(skb)))
331 		return sk;
332 	else
333 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
334 					 iph->daddr, dport, inet_iif(skb),
335 					 udptable);
336 }
337 
338 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
339 			     __be32 daddr, __be16 dport, int dif)
340 {
341 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
342 }
343 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
344 
345 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
346 					     __be16 loc_port, __be32 loc_addr,
347 					     __be16 rmt_port, __be32 rmt_addr,
348 					     int dif)
349 {
350 	struct hlist_nulls_node *node;
351 	struct sock *s = sk;
352 	unsigned short hnum = ntohs(loc_port);
353 
354 	sk_nulls_for_each_from(s, node) {
355 		struct inet_sock *inet = inet_sk(s);
356 
357 		if (!net_eq(sock_net(s), net)				||
358 		    s->sk_hash != hnum					||
359 		    (inet->daddr && inet->daddr != rmt_addr)		||
360 		    (inet->dport != rmt_port && inet->dport)		||
361 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
362 		    ipv6_only_sock(s)					||
363 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
364 			continue;
365 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
366 			continue;
367 		goto found;
368 	}
369 	s = NULL;
370 found:
371 	return s;
372 }
373 
374 /*
375  * This routine is called by the ICMP module when it gets some
376  * sort of error condition.  If err < 0 then the socket should
377  * be closed and the error returned to the user.  If err > 0
378  * it's just the icmp type << 8 | icmp code.
379  * Header points to the ip header of the error packet. We move
380  * on past this. Then (as it used to claim before adjustment)
381  * header points to the first 8 bytes of the udp header.  We need
382  * to find the appropriate port.
383  */
384 
385 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
386 {
387 	struct inet_sock *inet;
388 	struct iphdr *iph = (struct iphdr *)skb->data;
389 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
390 	const int type = icmp_hdr(skb)->type;
391 	const int code = icmp_hdr(skb)->code;
392 	struct sock *sk;
393 	int harderr;
394 	int err;
395 	struct net *net = dev_net(skb->dev);
396 
397 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
398 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
399 	if (sk == NULL) {
400 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
401 		return;	/* No socket for error */
402 	}
403 
404 	err = 0;
405 	harderr = 0;
406 	inet = inet_sk(sk);
407 
408 	switch (type) {
409 	default:
410 	case ICMP_TIME_EXCEEDED:
411 		err = EHOSTUNREACH;
412 		break;
413 	case ICMP_SOURCE_QUENCH:
414 		goto out;
415 	case ICMP_PARAMETERPROB:
416 		err = EPROTO;
417 		harderr = 1;
418 		break;
419 	case ICMP_DEST_UNREACH:
420 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
421 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
422 				err = EMSGSIZE;
423 				harderr = 1;
424 				break;
425 			}
426 			goto out;
427 		}
428 		err = EHOSTUNREACH;
429 		if (code <= NR_ICMP_UNREACH) {
430 			harderr = icmp_err_convert[code].fatal;
431 			err = icmp_err_convert[code].errno;
432 		}
433 		break;
434 	}
435 
436 	/*
437 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
438 	 *	4.1.3.3.
439 	 */
440 	if (!inet->recverr) {
441 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
442 			goto out;
443 	} else {
444 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
445 	}
446 	sk->sk_err = err;
447 	sk->sk_error_report(sk);
448 out:
449 	sock_put(sk);
450 }
451 
452 void udp_err(struct sk_buff *skb, u32 info)
453 {
454 	__udp4_lib_err(skb, info, &udp_table);
455 }
456 
457 /*
458  * Throw away all pending data and cancel the corking. Socket is locked.
459  */
460 void udp_flush_pending_frames(struct sock *sk)
461 {
462 	struct udp_sock *up = udp_sk(sk);
463 
464 	if (up->pending) {
465 		up->len = 0;
466 		up->pending = 0;
467 		ip_flush_pending_frames(sk);
468 	}
469 }
470 EXPORT_SYMBOL(udp_flush_pending_frames);
471 
472 /**
473  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
474  * 	@sk: 	socket we are sending on
475  * 	@skb: 	sk_buff containing the filled-in UDP header
476  * 	        (checksum field must be zeroed out)
477  */
478 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
479 				 __be32 src, __be32 dst, int len)
480 {
481 	unsigned int offset;
482 	struct udphdr *uh = udp_hdr(skb);
483 	__wsum csum = 0;
484 
485 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
486 		/*
487 		 * Only one fragment on the socket.
488 		 */
489 		skb->csum_start = skb_transport_header(skb) - skb->head;
490 		skb->csum_offset = offsetof(struct udphdr, check);
491 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
492 	} else {
493 		/*
494 		 * HW-checksum won't work as there are two or more
495 		 * fragments on the socket so that all csums of sk_buffs
496 		 * should be together
497 		 */
498 		offset = skb_transport_offset(skb);
499 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
500 
501 		skb->ip_summed = CHECKSUM_NONE;
502 
503 		skb_queue_walk(&sk->sk_write_queue, skb) {
504 			csum = csum_add(csum, skb->csum);
505 		}
506 
507 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
508 		if (uh->check == 0)
509 			uh->check = CSUM_MANGLED_0;
510 	}
511 }
512 
513 /*
514  * Push out all pending data as one UDP datagram. Socket is locked.
515  */
516 static int udp_push_pending_frames(struct sock *sk)
517 {
518 	struct udp_sock  *up = udp_sk(sk);
519 	struct inet_sock *inet = inet_sk(sk);
520 	struct flowi *fl = &inet->cork.fl;
521 	struct sk_buff *skb;
522 	struct udphdr *uh;
523 	int err = 0;
524 	int is_udplite = IS_UDPLITE(sk);
525 	__wsum csum = 0;
526 
527 	/* Grab the skbuff where UDP header space exists. */
528 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
529 		goto out;
530 
531 	/*
532 	 * Create a UDP header
533 	 */
534 	uh = udp_hdr(skb);
535 	uh->source = fl->fl_ip_sport;
536 	uh->dest = fl->fl_ip_dport;
537 	uh->len = htons(up->len);
538 	uh->check = 0;
539 
540 	if (is_udplite)  				 /*     UDP-Lite      */
541 		csum  = udplite_csum_outgoing(sk, skb);
542 
543 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
544 
545 		skb->ip_summed = CHECKSUM_NONE;
546 		goto send;
547 
548 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
549 
550 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
551 		goto send;
552 
553 	} else						 /*   `normal' UDP    */
554 		csum = udp_csum_outgoing(sk, skb);
555 
556 	/* add protocol-dependent pseudo-header */
557 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
558 				      sk->sk_protocol, csum);
559 	if (uh->check == 0)
560 		uh->check = CSUM_MANGLED_0;
561 
562 send:
563 	err = ip_push_pending_frames(sk);
564 	if (err) {
565 		if (err == -ENOBUFS && !inet->recverr) {
566 			UDP_INC_STATS_USER(sock_net(sk),
567 					   UDP_MIB_SNDBUFERRORS, is_udplite);
568 			err = 0;
569 		}
570 	} else
571 		UDP_INC_STATS_USER(sock_net(sk),
572 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
573 out:
574 	up->len = 0;
575 	up->pending = 0;
576 	return err;
577 }
578 
579 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
580 		size_t len)
581 {
582 	struct inet_sock *inet = inet_sk(sk);
583 	struct udp_sock *up = udp_sk(sk);
584 	int ulen = len;
585 	struct ipcm_cookie ipc;
586 	struct rtable *rt = NULL;
587 	int free = 0;
588 	int connected = 0;
589 	__be32 daddr, faddr, saddr;
590 	__be16 dport;
591 	u8  tos;
592 	int err, is_udplite = IS_UDPLITE(sk);
593 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
594 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
595 
596 	if (len > 0xFFFF)
597 		return -EMSGSIZE;
598 
599 	/*
600 	 *	Check the flags.
601 	 */
602 
603 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
604 		return -EOPNOTSUPP;
605 
606 	ipc.opt = NULL;
607 	ipc.shtx.flags = 0;
608 
609 	if (up->pending) {
610 		/*
611 		 * There are pending frames.
612 		 * The socket lock must be held while it's corked.
613 		 */
614 		lock_sock(sk);
615 		if (likely(up->pending)) {
616 			if (unlikely(up->pending != AF_INET)) {
617 				release_sock(sk);
618 				return -EINVAL;
619 			}
620 			goto do_append_data;
621 		}
622 		release_sock(sk);
623 	}
624 	ulen += sizeof(struct udphdr);
625 
626 	/*
627 	 *	Get and verify the address.
628 	 */
629 	if (msg->msg_name) {
630 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
631 		if (msg->msg_namelen < sizeof(*usin))
632 			return -EINVAL;
633 		if (usin->sin_family != AF_INET) {
634 			if (usin->sin_family != AF_UNSPEC)
635 				return -EAFNOSUPPORT;
636 		}
637 
638 		daddr = usin->sin_addr.s_addr;
639 		dport = usin->sin_port;
640 		if (dport == 0)
641 			return -EINVAL;
642 	} else {
643 		if (sk->sk_state != TCP_ESTABLISHED)
644 			return -EDESTADDRREQ;
645 		daddr = inet->daddr;
646 		dport = inet->dport;
647 		/* Open fast path for connected socket.
648 		   Route will not be used, if at least one option is set.
649 		 */
650 		connected = 1;
651 	}
652 	ipc.addr = inet->saddr;
653 
654 	ipc.oif = sk->sk_bound_dev_if;
655 	err = sock_tx_timestamp(msg, sk, &ipc.shtx);
656 	if (err)
657 		return err;
658 	if (msg->msg_controllen) {
659 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
660 		if (err)
661 			return err;
662 		if (ipc.opt)
663 			free = 1;
664 		connected = 0;
665 	}
666 	if (!ipc.opt)
667 		ipc.opt = inet->opt;
668 
669 	saddr = ipc.addr;
670 	ipc.addr = faddr = daddr;
671 
672 	if (ipc.opt && ipc.opt->srr) {
673 		if (!daddr)
674 			return -EINVAL;
675 		faddr = ipc.opt->faddr;
676 		connected = 0;
677 	}
678 	tos = RT_TOS(inet->tos);
679 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
680 	    (msg->msg_flags & MSG_DONTROUTE) ||
681 	    (ipc.opt && ipc.opt->is_strictroute)) {
682 		tos |= RTO_ONLINK;
683 		connected = 0;
684 	}
685 
686 	if (ipv4_is_multicast(daddr)) {
687 		if (!ipc.oif)
688 			ipc.oif = inet->mc_index;
689 		if (!saddr)
690 			saddr = inet->mc_addr;
691 		connected = 0;
692 	}
693 
694 	if (connected)
695 		rt = (struct rtable *)sk_dst_check(sk, 0);
696 
697 	if (rt == NULL) {
698 		struct flowi fl = { .oif = ipc.oif,
699 				    .nl_u = { .ip4_u =
700 					      { .daddr = faddr,
701 						.saddr = saddr,
702 						.tos = tos } },
703 				    .proto = sk->sk_protocol,
704 				    .flags = inet_sk_flowi_flags(sk),
705 				    .uli_u = { .ports =
706 					       { .sport = inet->sport,
707 						 .dport = dport } } };
708 		struct net *net = sock_net(sk);
709 
710 		security_sk_classify_flow(sk, &fl);
711 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
712 		if (err) {
713 			if (err == -ENETUNREACH)
714 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
715 			goto out;
716 		}
717 
718 		err = -EACCES;
719 		if ((rt->rt_flags & RTCF_BROADCAST) &&
720 		    !sock_flag(sk, SOCK_BROADCAST))
721 			goto out;
722 		if (connected)
723 			sk_dst_set(sk, dst_clone(&rt->u.dst));
724 	}
725 
726 	if (msg->msg_flags&MSG_CONFIRM)
727 		goto do_confirm;
728 back_from_confirm:
729 
730 	saddr = rt->rt_src;
731 	if (!ipc.addr)
732 		daddr = ipc.addr = rt->rt_dst;
733 
734 	lock_sock(sk);
735 	if (unlikely(up->pending)) {
736 		/* The socket is already corked while preparing it. */
737 		/* ... which is an evident application bug. --ANK */
738 		release_sock(sk);
739 
740 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
741 		err = -EINVAL;
742 		goto out;
743 	}
744 	/*
745 	 *	Now cork the socket to pend data.
746 	 */
747 	inet->cork.fl.fl4_dst = daddr;
748 	inet->cork.fl.fl_ip_dport = dport;
749 	inet->cork.fl.fl4_src = saddr;
750 	inet->cork.fl.fl_ip_sport = inet->sport;
751 	up->pending = AF_INET;
752 
753 do_append_data:
754 	up->len += ulen;
755 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
756 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
757 			sizeof(struct udphdr), &ipc, &rt,
758 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
759 	if (err)
760 		udp_flush_pending_frames(sk);
761 	else if (!corkreq)
762 		err = udp_push_pending_frames(sk);
763 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
764 		up->pending = 0;
765 	release_sock(sk);
766 
767 out:
768 	ip_rt_put(rt);
769 	if (free)
770 		kfree(ipc.opt);
771 	if (!err)
772 		return len;
773 	/*
774 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
775 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
776 	 * we don't have a good statistic (IpOutDiscards but it can be too many
777 	 * things).  We could add another new stat but at least for now that
778 	 * seems like overkill.
779 	 */
780 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
781 		UDP_INC_STATS_USER(sock_net(sk),
782 				UDP_MIB_SNDBUFERRORS, is_udplite);
783 	}
784 	return err;
785 
786 do_confirm:
787 	dst_confirm(&rt->u.dst);
788 	if (!(msg->msg_flags&MSG_PROBE) || len)
789 		goto back_from_confirm;
790 	err = 0;
791 	goto out;
792 }
793 EXPORT_SYMBOL(udp_sendmsg);
794 
795 int udp_sendpage(struct sock *sk, struct page *page, int offset,
796 		 size_t size, int flags)
797 {
798 	struct udp_sock *up = udp_sk(sk);
799 	int ret;
800 
801 	if (!up->pending) {
802 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
803 
804 		/* Call udp_sendmsg to specify destination address which
805 		 * sendpage interface can't pass.
806 		 * This will succeed only when the socket is connected.
807 		 */
808 		ret = udp_sendmsg(NULL, sk, &msg, 0);
809 		if (ret < 0)
810 			return ret;
811 	}
812 
813 	lock_sock(sk);
814 
815 	if (unlikely(!up->pending)) {
816 		release_sock(sk);
817 
818 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
819 		return -EINVAL;
820 	}
821 
822 	ret = ip_append_page(sk, page, offset, size, flags);
823 	if (ret == -EOPNOTSUPP) {
824 		release_sock(sk);
825 		return sock_no_sendpage(sk->sk_socket, page, offset,
826 					size, flags);
827 	}
828 	if (ret < 0) {
829 		udp_flush_pending_frames(sk);
830 		goto out;
831 	}
832 
833 	up->len += size;
834 	if (!(up->corkflag || (flags&MSG_MORE)))
835 		ret = udp_push_pending_frames(sk);
836 	if (!ret)
837 		ret = size;
838 out:
839 	release_sock(sk);
840 	return ret;
841 }
842 
843 /*
844  *	IOCTL requests applicable to the UDP protocol
845  */
846 
847 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
848 {
849 	switch (cmd) {
850 	case SIOCOUTQ:
851 	{
852 		int amount = sk_wmem_alloc_get(sk);
853 
854 		return put_user(amount, (int __user *)arg);
855 	}
856 
857 	case SIOCINQ:
858 	{
859 		struct sk_buff *skb;
860 		unsigned long amount;
861 
862 		amount = 0;
863 		spin_lock_bh(&sk->sk_receive_queue.lock);
864 		skb = skb_peek(&sk->sk_receive_queue);
865 		if (skb != NULL) {
866 			/*
867 			 * We will only return the amount
868 			 * of this packet since that is all
869 			 * that will be read.
870 			 */
871 			amount = skb->len - sizeof(struct udphdr);
872 		}
873 		spin_unlock_bh(&sk->sk_receive_queue.lock);
874 		return put_user(amount, (int __user *)arg);
875 	}
876 
877 	default:
878 		return -ENOIOCTLCMD;
879 	}
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL(udp_ioctl);
884 
885 /*
886  * 	This should be easy, if there is something there we
887  * 	return it, otherwise we block.
888  */
889 
890 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
891 		size_t len, int noblock, int flags, int *addr_len)
892 {
893 	struct inet_sock *inet = inet_sk(sk);
894 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
895 	struct sk_buff *skb;
896 	unsigned int ulen, copied;
897 	int peeked;
898 	int err;
899 	int is_udplite = IS_UDPLITE(sk);
900 
901 	/*
902 	 *	Check any passed addresses
903 	 */
904 	if (addr_len)
905 		*addr_len = sizeof(*sin);
906 
907 	if (flags & MSG_ERRQUEUE)
908 		return ip_recv_error(sk, msg, len);
909 
910 try_again:
911 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
912 				  &peeked, &err);
913 	if (!skb)
914 		goto out;
915 
916 	ulen = skb->len - sizeof(struct udphdr);
917 	copied = len;
918 	if (copied > ulen)
919 		copied = ulen;
920 	else if (copied < ulen)
921 		msg->msg_flags |= MSG_TRUNC;
922 
923 	/*
924 	 * If checksum is needed at all, try to do it while copying the
925 	 * data.  If the data is truncated, or if we only want a partial
926 	 * coverage checksum (UDP-Lite), do it before the copy.
927 	 */
928 
929 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
930 		if (udp_lib_checksum_complete(skb))
931 			goto csum_copy_err;
932 	}
933 
934 	if (skb_csum_unnecessary(skb))
935 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
936 					      msg->msg_iov, copied);
937 	else {
938 		err = skb_copy_and_csum_datagram_iovec(skb,
939 						       sizeof(struct udphdr),
940 						       msg->msg_iov);
941 
942 		if (err == -EINVAL)
943 			goto csum_copy_err;
944 	}
945 
946 	if (err)
947 		goto out_free;
948 
949 	if (!peeked)
950 		UDP_INC_STATS_USER(sock_net(sk),
951 				UDP_MIB_INDATAGRAMS, is_udplite);
952 
953 	sock_recv_timestamp(msg, sk, skb);
954 
955 	/* Copy the address. */
956 	if (sin) {
957 		sin->sin_family = AF_INET;
958 		sin->sin_port = udp_hdr(skb)->source;
959 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
960 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
961 	}
962 	if (inet->cmsg_flags)
963 		ip_cmsg_recv(msg, skb);
964 
965 	err = copied;
966 	if (flags & MSG_TRUNC)
967 		err = ulen;
968 
969 out_free:
970 	lock_sock(sk);
971 	skb_free_datagram(sk, skb);
972 	release_sock(sk);
973 out:
974 	return err;
975 
976 csum_copy_err:
977 	lock_sock(sk);
978 	if (!skb_kill_datagram(sk, skb, flags))
979 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
980 	release_sock(sk);
981 
982 	if (noblock)
983 		return -EAGAIN;
984 	goto try_again;
985 }
986 
987 
988 int udp_disconnect(struct sock *sk, int flags)
989 {
990 	struct inet_sock *inet = inet_sk(sk);
991 	/*
992 	 *	1003.1g - break association.
993 	 */
994 
995 	sk->sk_state = TCP_CLOSE;
996 	inet->daddr = 0;
997 	inet->dport = 0;
998 	sk->sk_bound_dev_if = 0;
999 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1000 		inet_reset_saddr(sk);
1001 
1002 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1003 		sk->sk_prot->unhash(sk);
1004 		inet->sport = 0;
1005 	}
1006 	sk_dst_reset(sk);
1007 	return 0;
1008 }
1009 EXPORT_SYMBOL(udp_disconnect);
1010 
1011 void udp_lib_unhash(struct sock *sk)
1012 {
1013 	if (sk_hashed(sk)) {
1014 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1015 		unsigned int hash = udp_hashfn(sock_net(sk), sk->sk_hash);
1016 		struct udp_hslot *hslot = &udptable->hash[hash];
1017 
1018 		spin_lock_bh(&hslot->lock);
1019 		if (sk_nulls_del_node_init_rcu(sk)) {
1020 			inet_sk(sk)->num = 0;
1021 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1022 		}
1023 		spin_unlock_bh(&hslot->lock);
1024 	}
1025 }
1026 EXPORT_SYMBOL(udp_lib_unhash);
1027 
1028 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1029 {
1030 	int is_udplite = IS_UDPLITE(sk);
1031 	int rc;
1032 
1033 	if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
1034 		/* Note that an ENOMEM error is charged twice */
1035 		if (rc == -ENOMEM) {
1036 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1037 					 is_udplite);
1038 			atomic_inc(&sk->sk_drops);
1039 		}
1040 		goto drop;
1041 	}
1042 
1043 	return 0;
1044 
1045 drop:
1046 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1047 	kfree_skb(skb);
1048 	return -1;
1049 }
1050 
1051 /* returns:
1052  *  -1: error
1053  *   0: success
1054  *  >0: "udp encap" protocol resubmission
1055  *
1056  * Note that in the success and error cases, the skb is assumed to
1057  * have either been requeued or freed.
1058  */
1059 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1060 {
1061 	struct udp_sock *up = udp_sk(sk);
1062 	int rc;
1063 	int is_udplite = IS_UDPLITE(sk);
1064 
1065 	/*
1066 	 *	Charge it to the socket, dropping if the queue is full.
1067 	 */
1068 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1069 		goto drop;
1070 	nf_reset(skb);
1071 
1072 	if (up->encap_type) {
1073 		/*
1074 		 * This is an encapsulation socket so pass the skb to
1075 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1076 		 * fall through and pass this up the UDP socket.
1077 		 * up->encap_rcv() returns the following value:
1078 		 * =0 if skb was successfully passed to the encap
1079 		 *    handler or was discarded by it.
1080 		 * >0 if skb should be passed on to UDP.
1081 		 * <0 if skb should be resubmitted as proto -N
1082 		 */
1083 
1084 		/* if we're overly short, let UDP handle it */
1085 		if (skb->len > sizeof(struct udphdr) &&
1086 		    up->encap_rcv != NULL) {
1087 			int ret;
1088 
1089 			ret = (*up->encap_rcv)(sk, skb);
1090 			if (ret <= 0) {
1091 				UDP_INC_STATS_BH(sock_net(sk),
1092 						 UDP_MIB_INDATAGRAMS,
1093 						 is_udplite);
1094 				return -ret;
1095 			}
1096 		}
1097 
1098 		/* FALLTHROUGH -- it's a UDP Packet */
1099 	}
1100 
1101 	/*
1102 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1103 	 */
1104 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1105 
1106 		/*
1107 		 * MIB statistics other than incrementing the error count are
1108 		 * disabled for the following two types of errors: these depend
1109 		 * on the application settings, not on the functioning of the
1110 		 * protocol stack as such.
1111 		 *
1112 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1113 		 * way ... to ... at least let the receiving application block
1114 		 * delivery of packets with coverage values less than a value
1115 		 * provided by the application."
1116 		 */
1117 		if (up->pcrlen == 0) {          /* full coverage was set  */
1118 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1119 				"%d while full coverage %d requested\n",
1120 				UDP_SKB_CB(skb)->cscov, skb->len);
1121 			goto drop;
1122 		}
1123 		/* The next case involves violating the min. coverage requested
1124 		 * by the receiver. This is subtle: if receiver wants x and x is
1125 		 * greater than the buffersize/MTU then receiver will complain
1126 		 * that it wants x while sender emits packets of smaller size y.
1127 		 * Therefore the above ...()->partial_cov statement is essential.
1128 		 */
1129 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1130 			LIMIT_NETDEBUG(KERN_WARNING
1131 				"UDPLITE: coverage %d too small, need min %d\n",
1132 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1133 			goto drop;
1134 		}
1135 	}
1136 
1137 	if (sk->sk_filter) {
1138 		if (udp_lib_checksum_complete(skb))
1139 			goto drop;
1140 	}
1141 
1142 	rc = 0;
1143 
1144 	bh_lock_sock(sk);
1145 	if (!sock_owned_by_user(sk))
1146 		rc = __udp_queue_rcv_skb(sk, skb);
1147 	else
1148 		sk_add_backlog(sk, skb);
1149 	bh_unlock_sock(sk);
1150 
1151 	return rc;
1152 
1153 drop:
1154 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1155 	kfree_skb(skb);
1156 	return -1;
1157 }
1158 
1159 /*
1160  *	Multicasts and broadcasts go to each listener.
1161  *
1162  *	Note: called only from the BH handler context,
1163  *	so we don't need to lock the hashes.
1164  */
1165 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1166 				    struct udphdr  *uh,
1167 				    __be32 saddr, __be32 daddr,
1168 				    struct udp_table *udptable)
1169 {
1170 	struct sock *sk;
1171 	struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
1172 	int dif;
1173 
1174 	spin_lock(&hslot->lock);
1175 	sk = sk_nulls_head(&hslot->head);
1176 	dif = skb->dev->ifindex;
1177 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1178 	if (sk) {
1179 		struct sock *sknext = NULL;
1180 
1181 		do {
1182 			struct sk_buff *skb1 = skb;
1183 
1184 			sknext = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1185 						   daddr, uh->source, saddr,
1186 						   dif);
1187 			if (sknext)
1188 				skb1 = skb_clone(skb, GFP_ATOMIC);
1189 
1190 			if (skb1) {
1191 				int ret = udp_queue_rcv_skb(sk, skb1);
1192 				if (ret > 0)
1193 					/* we should probably re-process instead
1194 					 * of dropping packets here. */
1195 					kfree_skb(skb1);
1196 			}
1197 			sk = sknext;
1198 		} while (sknext);
1199 	} else
1200 		consume_skb(skb);
1201 	spin_unlock(&hslot->lock);
1202 	return 0;
1203 }
1204 
1205 /* Initialize UDP checksum. If exited with zero value (success),
1206  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1207  * Otherwise, csum completion requires chacksumming packet body,
1208  * including udp header and folding it to skb->csum.
1209  */
1210 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1211 				 int proto)
1212 {
1213 	const struct iphdr *iph;
1214 	int err;
1215 
1216 	UDP_SKB_CB(skb)->partial_cov = 0;
1217 	UDP_SKB_CB(skb)->cscov = skb->len;
1218 
1219 	if (proto == IPPROTO_UDPLITE) {
1220 		err = udplite_checksum_init(skb, uh);
1221 		if (err)
1222 			return err;
1223 	}
1224 
1225 	iph = ip_hdr(skb);
1226 	if (uh->check == 0) {
1227 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1228 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1229 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1230 				      proto, skb->csum))
1231 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1232 	}
1233 	if (!skb_csum_unnecessary(skb))
1234 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1235 					       skb->len, proto, 0);
1236 	/* Probably, we should checksum udp header (it should be in cache
1237 	 * in any case) and data in tiny packets (< rx copybreak).
1238 	 */
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  *	All we need to do is get the socket, and then do a checksum.
1245  */
1246 
1247 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1248 		   int proto)
1249 {
1250 	struct sock *sk;
1251 	struct udphdr *uh;
1252 	unsigned short ulen;
1253 	struct rtable *rt = skb_rtable(skb);
1254 	__be32 saddr, daddr;
1255 	struct net *net = dev_net(skb->dev);
1256 
1257 	/*
1258 	 *  Validate the packet.
1259 	 */
1260 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1261 		goto drop;		/* No space for header. */
1262 
1263 	uh   = udp_hdr(skb);
1264 	ulen = ntohs(uh->len);
1265 	if (ulen > skb->len)
1266 		goto short_packet;
1267 
1268 	if (proto == IPPROTO_UDP) {
1269 		/* UDP validates ulen. */
1270 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1271 			goto short_packet;
1272 		uh = udp_hdr(skb);
1273 	}
1274 
1275 	if (udp4_csum_init(skb, uh, proto))
1276 		goto csum_error;
1277 
1278 	saddr = ip_hdr(skb)->saddr;
1279 	daddr = ip_hdr(skb)->daddr;
1280 
1281 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1282 		return __udp4_lib_mcast_deliver(net, skb, uh,
1283 				saddr, daddr, udptable);
1284 
1285 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1286 
1287 	if (sk != NULL) {
1288 		int ret = udp_queue_rcv_skb(sk, skb);
1289 		sock_put(sk);
1290 
1291 		/* a return value > 0 means to resubmit the input, but
1292 		 * it wants the return to be -protocol, or 0
1293 		 */
1294 		if (ret > 0)
1295 			return -ret;
1296 		return 0;
1297 	}
1298 
1299 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1300 		goto drop;
1301 	nf_reset(skb);
1302 
1303 	/* No socket. Drop packet silently, if checksum is wrong */
1304 	if (udp_lib_checksum_complete(skb))
1305 		goto csum_error;
1306 
1307 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1308 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1309 
1310 	/*
1311 	 * Hmm.  We got an UDP packet to a port to which we
1312 	 * don't wanna listen.  Ignore it.
1313 	 */
1314 	kfree_skb(skb);
1315 	return 0;
1316 
1317 short_packet:
1318 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1319 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1320 		       &saddr,
1321 		       ntohs(uh->source),
1322 		       ulen,
1323 		       skb->len,
1324 		       &daddr,
1325 		       ntohs(uh->dest));
1326 	goto drop;
1327 
1328 csum_error:
1329 	/*
1330 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1331 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1332 	 */
1333 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1334 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1335 		       &saddr,
1336 		       ntohs(uh->source),
1337 		       &daddr,
1338 		       ntohs(uh->dest),
1339 		       ulen);
1340 drop:
1341 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1342 	kfree_skb(skb);
1343 	return 0;
1344 }
1345 
1346 int udp_rcv(struct sk_buff *skb)
1347 {
1348 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1349 }
1350 
1351 void udp_destroy_sock(struct sock *sk)
1352 {
1353 	lock_sock(sk);
1354 	udp_flush_pending_frames(sk);
1355 	release_sock(sk);
1356 }
1357 
1358 /*
1359  *	Socket option code for UDP
1360  */
1361 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1362 		       char __user *optval, int optlen,
1363 		       int (*push_pending_frames)(struct sock *))
1364 {
1365 	struct udp_sock *up = udp_sk(sk);
1366 	int val;
1367 	int err = 0;
1368 	int is_udplite = IS_UDPLITE(sk);
1369 
1370 	if (optlen < sizeof(int))
1371 		return -EINVAL;
1372 
1373 	if (get_user(val, (int __user *)optval))
1374 		return -EFAULT;
1375 
1376 	switch (optname) {
1377 	case UDP_CORK:
1378 		if (val != 0) {
1379 			up->corkflag = 1;
1380 		} else {
1381 			up->corkflag = 0;
1382 			lock_sock(sk);
1383 			(*push_pending_frames)(sk);
1384 			release_sock(sk);
1385 		}
1386 		break;
1387 
1388 	case UDP_ENCAP:
1389 		switch (val) {
1390 		case 0:
1391 		case UDP_ENCAP_ESPINUDP:
1392 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1393 			up->encap_rcv = xfrm4_udp_encap_rcv;
1394 			/* FALLTHROUGH */
1395 		case UDP_ENCAP_L2TPINUDP:
1396 			up->encap_type = val;
1397 			break;
1398 		default:
1399 			err = -ENOPROTOOPT;
1400 			break;
1401 		}
1402 		break;
1403 
1404 	/*
1405 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1406 	 */
1407 	/* The sender sets actual checksum coverage length via this option.
1408 	 * The case coverage > packet length is handled by send module. */
1409 	case UDPLITE_SEND_CSCOV:
1410 		if (!is_udplite)         /* Disable the option on UDP sockets */
1411 			return -ENOPROTOOPT;
1412 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1413 			val = 8;
1414 		else if (val > USHORT_MAX)
1415 			val = USHORT_MAX;
1416 		up->pcslen = val;
1417 		up->pcflag |= UDPLITE_SEND_CC;
1418 		break;
1419 
1420 	/* The receiver specifies a minimum checksum coverage value. To make
1421 	 * sense, this should be set to at least 8 (as done below). If zero is
1422 	 * used, this again means full checksum coverage.                     */
1423 	case UDPLITE_RECV_CSCOV:
1424 		if (!is_udplite)         /* Disable the option on UDP sockets */
1425 			return -ENOPROTOOPT;
1426 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1427 			val = 8;
1428 		else if (val > USHORT_MAX)
1429 			val = USHORT_MAX;
1430 		up->pcrlen = val;
1431 		up->pcflag |= UDPLITE_RECV_CC;
1432 		break;
1433 
1434 	default:
1435 		err = -ENOPROTOOPT;
1436 		break;
1437 	}
1438 
1439 	return err;
1440 }
1441 EXPORT_SYMBOL(udp_lib_setsockopt);
1442 
1443 int udp_setsockopt(struct sock *sk, int level, int optname,
1444 		   char __user *optval, int optlen)
1445 {
1446 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1447 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1448 					  udp_push_pending_frames);
1449 	return ip_setsockopt(sk, level, optname, optval, optlen);
1450 }
1451 
1452 #ifdef CONFIG_COMPAT
1453 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1454 			  char __user *optval, int optlen)
1455 {
1456 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1457 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1458 					  udp_push_pending_frames);
1459 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1460 }
1461 #endif
1462 
1463 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1464 		       char __user *optval, int __user *optlen)
1465 {
1466 	struct udp_sock *up = udp_sk(sk);
1467 	int val, len;
1468 
1469 	if (get_user(len, optlen))
1470 		return -EFAULT;
1471 
1472 	len = min_t(unsigned int, len, sizeof(int));
1473 
1474 	if (len < 0)
1475 		return -EINVAL;
1476 
1477 	switch (optname) {
1478 	case UDP_CORK:
1479 		val = up->corkflag;
1480 		break;
1481 
1482 	case UDP_ENCAP:
1483 		val = up->encap_type;
1484 		break;
1485 
1486 	/* The following two cannot be changed on UDP sockets, the return is
1487 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1488 	case UDPLITE_SEND_CSCOV:
1489 		val = up->pcslen;
1490 		break;
1491 
1492 	case UDPLITE_RECV_CSCOV:
1493 		val = up->pcrlen;
1494 		break;
1495 
1496 	default:
1497 		return -ENOPROTOOPT;
1498 	}
1499 
1500 	if (put_user(len, optlen))
1501 		return -EFAULT;
1502 	if (copy_to_user(optval, &val, len))
1503 		return -EFAULT;
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL(udp_lib_getsockopt);
1507 
1508 int udp_getsockopt(struct sock *sk, int level, int optname,
1509 		   char __user *optval, int __user *optlen)
1510 {
1511 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1512 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1513 	return ip_getsockopt(sk, level, optname, optval, optlen);
1514 }
1515 
1516 #ifdef CONFIG_COMPAT
1517 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1518 				 char __user *optval, int __user *optlen)
1519 {
1520 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1521 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1522 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1523 }
1524 #endif
1525 /**
1526  * 	udp_poll - wait for a UDP event.
1527  *	@file - file struct
1528  *	@sock - socket
1529  *	@wait - poll table
1530  *
1531  *	This is same as datagram poll, except for the special case of
1532  *	blocking sockets. If application is using a blocking fd
1533  *	and a packet with checksum error is in the queue;
1534  *	then it could get return from select indicating data available
1535  *	but then block when reading it. Add special case code
1536  *	to work around these arguably broken applications.
1537  */
1538 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1539 {
1540 	unsigned int mask = datagram_poll(file, sock, wait);
1541 	struct sock *sk = sock->sk;
1542 	int 	is_lite = IS_UDPLITE(sk);
1543 
1544 	/* Check for false positives due to checksum errors */
1545 	if ((mask & POLLRDNORM) &&
1546 	    !(file->f_flags & O_NONBLOCK) &&
1547 	    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1548 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1549 		struct sk_buff *skb;
1550 
1551 		spin_lock_bh(&rcvq->lock);
1552 		while ((skb = skb_peek(rcvq)) != NULL &&
1553 		       udp_lib_checksum_complete(skb)) {
1554 			UDP_INC_STATS_BH(sock_net(sk),
1555 					UDP_MIB_INERRORS, is_lite);
1556 			__skb_unlink(skb, rcvq);
1557 			kfree_skb(skb);
1558 		}
1559 		spin_unlock_bh(&rcvq->lock);
1560 
1561 		/* nothing to see, move along */
1562 		if (skb == NULL)
1563 			mask &= ~(POLLIN | POLLRDNORM);
1564 	}
1565 
1566 	return mask;
1567 
1568 }
1569 EXPORT_SYMBOL(udp_poll);
1570 
1571 struct proto udp_prot = {
1572 	.name		   = "UDP",
1573 	.owner		   = THIS_MODULE,
1574 	.close		   = udp_lib_close,
1575 	.connect	   = ip4_datagram_connect,
1576 	.disconnect	   = udp_disconnect,
1577 	.ioctl		   = udp_ioctl,
1578 	.destroy	   = udp_destroy_sock,
1579 	.setsockopt	   = udp_setsockopt,
1580 	.getsockopt	   = udp_getsockopt,
1581 	.sendmsg	   = udp_sendmsg,
1582 	.recvmsg	   = udp_recvmsg,
1583 	.sendpage	   = udp_sendpage,
1584 	.backlog_rcv	   = __udp_queue_rcv_skb,
1585 	.hash		   = udp_lib_hash,
1586 	.unhash		   = udp_lib_unhash,
1587 	.get_port	   = udp_v4_get_port,
1588 	.memory_allocated  = &udp_memory_allocated,
1589 	.sysctl_mem	   = sysctl_udp_mem,
1590 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1591 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1592 	.obj_size	   = sizeof(struct udp_sock),
1593 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1594 	.h.udp_table	   = &udp_table,
1595 #ifdef CONFIG_COMPAT
1596 	.compat_setsockopt = compat_udp_setsockopt,
1597 	.compat_getsockopt = compat_udp_getsockopt,
1598 #endif
1599 };
1600 EXPORT_SYMBOL(udp_prot);
1601 
1602 /* ------------------------------------------------------------------------ */
1603 #ifdef CONFIG_PROC_FS
1604 
1605 static struct sock *udp_get_first(struct seq_file *seq, int start)
1606 {
1607 	struct sock *sk;
1608 	struct udp_iter_state *state = seq->private;
1609 	struct net *net = seq_file_net(seq);
1610 
1611 	for (state->bucket = start; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1612 		struct hlist_nulls_node *node;
1613 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1614 		spin_lock_bh(&hslot->lock);
1615 		sk_nulls_for_each(sk, node, &hslot->head) {
1616 			if (!net_eq(sock_net(sk), net))
1617 				continue;
1618 			if (sk->sk_family == state->family)
1619 				goto found;
1620 		}
1621 		spin_unlock_bh(&hslot->lock);
1622 	}
1623 	sk = NULL;
1624 found:
1625 	return sk;
1626 }
1627 
1628 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1629 {
1630 	struct udp_iter_state *state = seq->private;
1631 	struct net *net = seq_file_net(seq);
1632 
1633 	do {
1634 		sk = sk_nulls_next(sk);
1635 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1636 
1637 	if (!sk) {
1638 		if (state->bucket < UDP_HTABLE_SIZE)
1639 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1640 		return udp_get_first(seq, state->bucket + 1);
1641 	}
1642 	return sk;
1643 }
1644 
1645 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1646 {
1647 	struct sock *sk = udp_get_first(seq, 0);
1648 
1649 	if (sk)
1650 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1651 			--pos;
1652 	return pos ? NULL : sk;
1653 }
1654 
1655 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1656 {
1657 	struct udp_iter_state *state = seq->private;
1658 	state->bucket = UDP_HTABLE_SIZE;
1659 
1660 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1661 }
1662 
1663 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1664 {
1665 	struct sock *sk;
1666 
1667 	if (v == SEQ_START_TOKEN)
1668 		sk = udp_get_idx(seq, 0);
1669 	else
1670 		sk = udp_get_next(seq, v);
1671 
1672 	++*pos;
1673 	return sk;
1674 }
1675 
1676 static void udp_seq_stop(struct seq_file *seq, void *v)
1677 {
1678 	struct udp_iter_state *state = seq->private;
1679 
1680 	if (state->bucket < UDP_HTABLE_SIZE)
1681 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1682 }
1683 
1684 static int udp_seq_open(struct inode *inode, struct file *file)
1685 {
1686 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1687 	struct udp_iter_state *s;
1688 	int err;
1689 
1690 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1691 			   sizeof(struct udp_iter_state));
1692 	if (err < 0)
1693 		return err;
1694 
1695 	s = ((struct seq_file *)file->private_data)->private;
1696 	s->family		= afinfo->family;
1697 	s->udp_table		= afinfo->udp_table;
1698 	return err;
1699 }
1700 
1701 /* ------------------------------------------------------------------------ */
1702 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1703 {
1704 	struct proc_dir_entry *p;
1705 	int rc = 0;
1706 
1707 	afinfo->seq_fops.open		= udp_seq_open;
1708 	afinfo->seq_fops.read		= seq_read;
1709 	afinfo->seq_fops.llseek		= seq_lseek;
1710 	afinfo->seq_fops.release	= seq_release_net;
1711 
1712 	afinfo->seq_ops.start		= udp_seq_start;
1713 	afinfo->seq_ops.next		= udp_seq_next;
1714 	afinfo->seq_ops.stop		= udp_seq_stop;
1715 
1716 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1717 			     &afinfo->seq_fops, afinfo);
1718 	if (!p)
1719 		rc = -ENOMEM;
1720 	return rc;
1721 }
1722 EXPORT_SYMBOL(udp_proc_register);
1723 
1724 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1725 {
1726 	proc_net_remove(net, afinfo->name);
1727 }
1728 EXPORT_SYMBOL(udp_proc_unregister);
1729 
1730 /* ------------------------------------------------------------------------ */
1731 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1732 		int bucket, int *len)
1733 {
1734 	struct inet_sock *inet = inet_sk(sp);
1735 	__be32 dest = inet->daddr;
1736 	__be32 src  = inet->rcv_saddr;
1737 	__u16 destp	  = ntohs(inet->dport);
1738 	__u16 srcp	  = ntohs(inet->sport);
1739 
1740 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1741 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1742 		bucket, src, srcp, dest, destp, sp->sk_state,
1743 		sk_wmem_alloc_get(sp),
1744 		sk_rmem_alloc_get(sp),
1745 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1746 		atomic_read(&sp->sk_refcnt), sp,
1747 		atomic_read(&sp->sk_drops), len);
1748 }
1749 
1750 int udp4_seq_show(struct seq_file *seq, void *v)
1751 {
1752 	if (v == SEQ_START_TOKEN)
1753 		seq_printf(seq, "%-127s\n",
1754 			   "  sl  local_address rem_address   st tx_queue "
1755 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1756 			   "inode ref pointer drops");
1757 	else {
1758 		struct udp_iter_state *state = seq->private;
1759 		int len;
1760 
1761 		udp4_format_sock(v, seq, state->bucket, &len);
1762 		seq_printf(seq, "%*s\n", 127 - len, "");
1763 	}
1764 	return 0;
1765 }
1766 
1767 /* ------------------------------------------------------------------------ */
1768 static struct udp_seq_afinfo udp4_seq_afinfo = {
1769 	.name		= "udp",
1770 	.family		= AF_INET,
1771 	.udp_table	= &udp_table,
1772 	.seq_fops	= {
1773 		.owner	=	THIS_MODULE,
1774 	},
1775 	.seq_ops	= {
1776 		.show		= udp4_seq_show,
1777 	},
1778 };
1779 
1780 static int udp4_proc_init_net(struct net *net)
1781 {
1782 	return udp_proc_register(net, &udp4_seq_afinfo);
1783 }
1784 
1785 static void udp4_proc_exit_net(struct net *net)
1786 {
1787 	udp_proc_unregister(net, &udp4_seq_afinfo);
1788 }
1789 
1790 static struct pernet_operations udp4_net_ops = {
1791 	.init = udp4_proc_init_net,
1792 	.exit = udp4_proc_exit_net,
1793 };
1794 
1795 int __init udp4_proc_init(void)
1796 {
1797 	return register_pernet_subsys(&udp4_net_ops);
1798 }
1799 
1800 void udp4_proc_exit(void)
1801 {
1802 	unregister_pernet_subsys(&udp4_net_ops);
1803 }
1804 #endif /* CONFIG_PROC_FS */
1805 
1806 void __init udp_table_init(struct udp_table *table)
1807 {
1808 	int i;
1809 
1810 	for (i = 0; i < UDP_HTABLE_SIZE; i++) {
1811 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
1812 		spin_lock_init(&table->hash[i].lock);
1813 	}
1814 }
1815 
1816 void __init udp_init(void)
1817 {
1818 	unsigned long nr_pages, limit;
1819 
1820 	udp_table_init(&udp_table);
1821 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1822 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1823 	 * toward zero with the amount of memory, with a floor of 128 pages.
1824 	 */
1825 	nr_pages = totalram_pages - totalhigh_pages;
1826 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1827 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1828 	limit = max(limit, 128UL);
1829 	sysctl_udp_mem[0] = limit / 4 * 3;
1830 	sysctl_udp_mem[1] = limit;
1831 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1832 
1833 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1834 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1835 }
1836 
1837 int udp4_ufo_send_check(struct sk_buff *skb)
1838 {
1839 	const struct iphdr *iph;
1840 	struct udphdr *uh;
1841 
1842 	if (!pskb_may_pull(skb, sizeof(*uh)))
1843 		return -EINVAL;
1844 
1845 	iph = ip_hdr(skb);
1846 	uh = udp_hdr(skb);
1847 
1848 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1849 				       IPPROTO_UDP, 0);
1850 	skb->csum_start = skb_transport_header(skb) - skb->head;
1851 	skb->csum_offset = offsetof(struct udphdr, check);
1852 	skb->ip_summed = CHECKSUM_PARTIAL;
1853 	return 0;
1854 }
1855 
1856 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
1857 {
1858 	struct sk_buff *segs = ERR_PTR(-EINVAL);
1859 	unsigned int mss;
1860 	int offset;
1861 	__wsum csum;
1862 
1863 	mss = skb_shinfo(skb)->gso_size;
1864 	if (unlikely(skb->len <= mss))
1865 		goto out;
1866 
1867 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
1868 		/* Packet is from an untrusted source, reset gso_segs. */
1869 		int type = skb_shinfo(skb)->gso_type;
1870 
1871 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
1872 			     !(type & (SKB_GSO_UDP))))
1873 			goto out;
1874 
1875 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
1876 
1877 		segs = NULL;
1878 		goto out;
1879 	}
1880 
1881 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
1882 	 * do checksum of UDP packets sent as multiple IP fragments.
1883 	 */
1884 	offset = skb->csum_start - skb_headroom(skb);
1885 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1886 	offset += skb->csum_offset;
1887 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1888 	skb->ip_summed = CHECKSUM_NONE;
1889 
1890 	/* Fragment the skb. IP headers of the fragments are updated in
1891 	 * inet_gso_segment()
1892 	 */
1893 	segs = skb_segment(skb, features);
1894 out:
1895 	return segs;
1896 }
1897 
1898