1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 548 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 549 __be32 daddr, __be16 dport, int dif) 550 { 551 struct sock *sk; 552 553 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 554 dif, 0, &udp_table, NULL); 555 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 556 sk = NULL; 557 return sk; 558 } 559 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 560 #endif 561 562 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 563 __be16 loc_port, __be32 loc_addr, 564 __be16 rmt_port, __be32 rmt_addr, 565 int dif, int sdif, unsigned short hnum) 566 { 567 struct inet_sock *inet = inet_sk(sk); 568 569 if (!net_eq(sock_net(sk), net) || 570 udp_sk(sk)->udp_port_hash != hnum || 571 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 572 (inet->inet_dport != rmt_port && inet->inet_dport) || 573 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 574 ipv6_only_sock(sk) || 575 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 576 sk->sk_bound_dev_if != sdif)) 577 return false; 578 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 579 return false; 580 return true; 581 } 582 583 /* 584 * This routine is called by the ICMP module when it gets some 585 * sort of error condition. If err < 0 then the socket should 586 * be closed and the error returned to the user. If err > 0 587 * it's just the icmp type << 8 | icmp code. 588 * Header points to the ip header of the error packet. We move 589 * on past this. Then (as it used to claim before adjustment) 590 * header points to the first 8 bytes of the udp header. We need 591 * to find the appropriate port. 592 */ 593 594 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 595 { 596 struct inet_sock *inet; 597 const struct iphdr *iph = (const struct iphdr *)skb->data; 598 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 599 const int type = icmp_hdr(skb)->type; 600 const int code = icmp_hdr(skb)->code; 601 struct sock *sk; 602 int harderr; 603 int err; 604 struct net *net = dev_net(skb->dev); 605 606 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 607 iph->saddr, uh->source, skb->dev->ifindex, 0, 608 udptable, NULL); 609 if (!sk) { 610 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 611 return; /* No socket for error */ 612 } 613 614 err = 0; 615 harderr = 0; 616 inet = inet_sk(sk); 617 618 switch (type) { 619 default: 620 case ICMP_TIME_EXCEEDED: 621 err = EHOSTUNREACH; 622 break; 623 case ICMP_SOURCE_QUENCH: 624 goto out; 625 case ICMP_PARAMETERPROB: 626 err = EPROTO; 627 harderr = 1; 628 break; 629 case ICMP_DEST_UNREACH: 630 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 631 ipv4_sk_update_pmtu(skb, sk, info); 632 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 633 err = EMSGSIZE; 634 harderr = 1; 635 break; 636 } 637 goto out; 638 } 639 err = EHOSTUNREACH; 640 if (code <= NR_ICMP_UNREACH) { 641 harderr = icmp_err_convert[code].fatal; 642 err = icmp_err_convert[code].errno; 643 } 644 break; 645 case ICMP_REDIRECT: 646 ipv4_sk_redirect(skb, sk); 647 goto out; 648 } 649 650 /* 651 * RFC1122: OK. Passes ICMP errors back to application, as per 652 * 4.1.3.3. 653 */ 654 if (!inet->recverr) { 655 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 656 goto out; 657 } else 658 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 659 660 sk->sk_err = err; 661 sk->sk_error_report(sk); 662 out: 663 return; 664 } 665 666 void udp_err(struct sk_buff *skb, u32 info) 667 { 668 __udp4_lib_err(skb, info, &udp_table); 669 } 670 671 /* 672 * Throw away all pending data and cancel the corking. Socket is locked. 673 */ 674 void udp_flush_pending_frames(struct sock *sk) 675 { 676 struct udp_sock *up = udp_sk(sk); 677 678 if (up->pending) { 679 up->len = 0; 680 up->pending = 0; 681 ip_flush_pending_frames(sk); 682 } 683 } 684 EXPORT_SYMBOL(udp_flush_pending_frames); 685 686 /** 687 * udp4_hwcsum - handle outgoing HW checksumming 688 * @skb: sk_buff containing the filled-in UDP header 689 * (checksum field must be zeroed out) 690 * @src: source IP address 691 * @dst: destination IP address 692 */ 693 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 694 { 695 struct udphdr *uh = udp_hdr(skb); 696 int offset = skb_transport_offset(skb); 697 int len = skb->len - offset; 698 int hlen = len; 699 __wsum csum = 0; 700 701 if (!skb_has_frag_list(skb)) { 702 /* 703 * Only one fragment on the socket. 704 */ 705 skb->csum_start = skb_transport_header(skb) - skb->head; 706 skb->csum_offset = offsetof(struct udphdr, check); 707 uh->check = ~csum_tcpudp_magic(src, dst, len, 708 IPPROTO_UDP, 0); 709 } else { 710 struct sk_buff *frags; 711 712 /* 713 * HW-checksum won't work as there are two or more 714 * fragments on the socket so that all csums of sk_buffs 715 * should be together 716 */ 717 skb_walk_frags(skb, frags) { 718 csum = csum_add(csum, frags->csum); 719 hlen -= frags->len; 720 } 721 722 csum = skb_checksum(skb, offset, hlen, csum); 723 skb->ip_summed = CHECKSUM_NONE; 724 725 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 726 if (uh->check == 0) 727 uh->check = CSUM_MANGLED_0; 728 } 729 } 730 EXPORT_SYMBOL_GPL(udp4_hwcsum); 731 732 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 733 * for the simple case like when setting the checksum for a UDP tunnel. 734 */ 735 void udp_set_csum(bool nocheck, struct sk_buff *skb, 736 __be32 saddr, __be32 daddr, int len) 737 { 738 struct udphdr *uh = udp_hdr(skb); 739 740 if (nocheck) { 741 uh->check = 0; 742 } else if (skb_is_gso(skb)) { 743 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 744 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 745 uh->check = 0; 746 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 747 if (uh->check == 0) 748 uh->check = CSUM_MANGLED_0; 749 } else { 750 skb->ip_summed = CHECKSUM_PARTIAL; 751 skb->csum_start = skb_transport_header(skb) - skb->head; 752 skb->csum_offset = offsetof(struct udphdr, check); 753 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 754 } 755 } 756 EXPORT_SYMBOL(udp_set_csum); 757 758 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 759 struct inet_cork *cork) 760 { 761 struct sock *sk = skb->sk; 762 struct inet_sock *inet = inet_sk(sk); 763 struct udphdr *uh; 764 int err = 0; 765 int is_udplite = IS_UDPLITE(sk); 766 int offset = skb_transport_offset(skb); 767 int len = skb->len - offset; 768 __wsum csum = 0; 769 770 /* 771 * Create a UDP header 772 */ 773 uh = udp_hdr(skb); 774 uh->source = inet->inet_sport; 775 uh->dest = fl4->fl4_dport; 776 uh->len = htons(len); 777 uh->check = 0; 778 779 if (cork->gso_size) { 780 const int hlen = skb_network_header_len(skb) + 781 sizeof(struct udphdr); 782 783 if (hlen + cork->gso_size > cork->fragsize) 784 return -EINVAL; 785 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 786 return -EINVAL; 787 if (sk->sk_no_check_tx) 788 return -EINVAL; 789 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 790 dst_xfrm(skb_dst(skb))) 791 return -EIO; 792 793 skb_shinfo(skb)->gso_size = cork->gso_size; 794 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 795 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 796 cork->gso_size); 797 goto csum_partial; 798 } 799 800 if (is_udplite) /* UDP-Lite */ 801 csum = udplite_csum(skb); 802 803 else if (sk->sk_no_check_tx) { /* UDP csum off */ 804 805 skb->ip_summed = CHECKSUM_NONE; 806 goto send; 807 808 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 809 csum_partial: 810 811 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 812 goto send; 813 814 } else 815 csum = udp_csum(skb); 816 817 /* add protocol-dependent pseudo-header */ 818 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 819 sk->sk_protocol, csum); 820 if (uh->check == 0) 821 uh->check = CSUM_MANGLED_0; 822 823 send: 824 err = ip_send_skb(sock_net(sk), skb); 825 if (err) { 826 if (err == -ENOBUFS && !inet->recverr) { 827 UDP_INC_STATS(sock_net(sk), 828 UDP_MIB_SNDBUFERRORS, is_udplite); 829 err = 0; 830 } 831 } else 832 UDP_INC_STATS(sock_net(sk), 833 UDP_MIB_OUTDATAGRAMS, is_udplite); 834 return err; 835 } 836 837 /* 838 * Push out all pending data as one UDP datagram. Socket is locked. 839 */ 840 int udp_push_pending_frames(struct sock *sk) 841 { 842 struct udp_sock *up = udp_sk(sk); 843 struct inet_sock *inet = inet_sk(sk); 844 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 845 struct sk_buff *skb; 846 int err = 0; 847 848 skb = ip_finish_skb(sk, fl4); 849 if (!skb) 850 goto out; 851 852 err = udp_send_skb(skb, fl4, &inet->cork.base); 853 854 out: 855 up->len = 0; 856 up->pending = 0; 857 return err; 858 } 859 EXPORT_SYMBOL(udp_push_pending_frames); 860 861 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 862 { 863 switch (cmsg->cmsg_type) { 864 case UDP_SEGMENT: 865 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 866 return -EINVAL; 867 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 868 return 0; 869 default: 870 return -EINVAL; 871 } 872 } 873 874 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 875 { 876 struct cmsghdr *cmsg; 877 bool need_ip = false; 878 int err; 879 880 for_each_cmsghdr(cmsg, msg) { 881 if (!CMSG_OK(msg, cmsg)) 882 return -EINVAL; 883 884 if (cmsg->cmsg_level != SOL_UDP) { 885 need_ip = true; 886 continue; 887 } 888 889 err = __udp_cmsg_send(cmsg, gso_size); 890 if (err) 891 return err; 892 } 893 894 return need_ip; 895 } 896 EXPORT_SYMBOL_GPL(udp_cmsg_send); 897 898 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 899 { 900 struct inet_sock *inet = inet_sk(sk); 901 struct udp_sock *up = udp_sk(sk); 902 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 903 struct flowi4 fl4_stack; 904 struct flowi4 *fl4; 905 int ulen = len; 906 struct ipcm_cookie ipc; 907 struct rtable *rt = NULL; 908 int free = 0; 909 int connected = 0; 910 __be32 daddr, faddr, saddr; 911 __be16 dport; 912 u8 tos; 913 int err, is_udplite = IS_UDPLITE(sk); 914 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 915 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 916 struct sk_buff *skb; 917 struct ip_options_data opt_copy; 918 919 if (len > 0xFFFF) 920 return -EMSGSIZE; 921 922 /* 923 * Check the flags. 924 */ 925 926 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 927 return -EOPNOTSUPP; 928 929 ipc.opt = NULL; 930 ipc.tx_flags = 0; 931 ipc.ttl = 0; 932 ipc.tos = -1; 933 934 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 935 936 fl4 = &inet->cork.fl.u.ip4; 937 if (up->pending) { 938 /* 939 * There are pending frames. 940 * The socket lock must be held while it's corked. 941 */ 942 lock_sock(sk); 943 if (likely(up->pending)) { 944 if (unlikely(up->pending != AF_INET)) { 945 release_sock(sk); 946 return -EINVAL; 947 } 948 goto do_append_data; 949 } 950 release_sock(sk); 951 } 952 ulen += sizeof(struct udphdr); 953 954 /* 955 * Get and verify the address. 956 */ 957 if (usin) { 958 if (msg->msg_namelen < sizeof(*usin)) 959 return -EINVAL; 960 if (usin->sin_family != AF_INET) { 961 if (usin->sin_family != AF_UNSPEC) 962 return -EAFNOSUPPORT; 963 } 964 965 daddr = usin->sin_addr.s_addr; 966 dport = usin->sin_port; 967 if (dport == 0) 968 return -EINVAL; 969 } else { 970 if (sk->sk_state != TCP_ESTABLISHED) 971 return -EDESTADDRREQ; 972 daddr = inet->inet_daddr; 973 dport = inet->inet_dport; 974 /* Open fast path for connected socket. 975 Route will not be used, if at least one option is set. 976 */ 977 connected = 1; 978 } 979 980 ipc.sockc.tsflags = sk->sk_tsflags; 981 ipc.addr = inet->inet_saddr; 982 ipc.oif = sk->sk_bound_dev_if; 983 ipc.gso_size = up->gso_size; 984 985 if (msg->msg_controllen) { 986 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 987 if (err > 0) 988 err = ip_cmsg_send(sk, msg, &ipc, 989 sk->sk_family == AF_INET6); 990 if (unlikely(err < 0)) { 991 kfree(ipc.opt); 992 return err; 993 } 994 if (ipc.opt) 995 free = 1; 996 connected = 0; 997 } 998 if (!ipc.opt) { 999 struct ip_options_rcu *inet_opt; 1000 1001 rcu_read_lock(); 1002 inet_opt = rcu_dereference(inet->inet_opt); 1003 if (inet_opt) { 1004 memcpy(&opt_copy, inet_opt, 1005 sizeof(*inet_opt) + inet_opt->opt.optlen); 1006 ipc.opt = &opt_copy.opt; 1007 } 1008 rcu_read_unlock(); 1009 } 1010 1011 if (cgroup_bpf_enabled && !connected) { 1012 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1013 (struct sockaddr *)usin, &ipc.addr); 1014 if (err) 1015 goto out_free; 1016 if (usin) { 1017 if (usin->sin_port == 0) { 1018 /* BPF program set invalid port. Reject it. */ 1019 err = -EINVAL; 1020 goto out_free; 1021 } 1022 daddr = usin->sin_addr.s_addr; 1023 dport = usin->sin_port; 1024 } 1025 } 1026 1027 saddr = ipc.addr; 1028 ipc.addr = faddr = daddr; 1029 1030 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1031 1032 if (ipc.opt && ipc.opt->opt.srr) { 1033 if (!daddr) { 1034 err = -EINVAL; 1035 goto out_free; 1036 } 1037 faddr = ipc.opt->opt.faddr; 1038 connected = 0; 1039 } 1040 tos = get_rttos(&ipc, inet); 1041 if (sock_flag(sk, SOCK_LOCALROUTE) || 1042 (msg->msg_flags & MSG_DONTROUTE) || 1043 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1044 tos |= RTO_ONLINK; 1045 connected = 0; 1046 } 1047 1048 if (ipv4_is_multicast(daddr)) { 1049 if (!ipc.oif) 1050 ipc.oif = inet->mc_index; 1051 if (!saddr) 1052 saddr = inet->mc_addr; 1053 connected = 0; 1054 } else if (!ipc.oif) { 1055 ipc.oif = inet->uc_index; 1056 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1057 /* oif is set, packet is to local broadcast and 1058 * and uc_index is set. oif is most likely set 1059 * by sk_bound_dev_if. If uc_index != oif check if the 1060 * oif is an L3 master and uc_index is an L3 slave. 1061 * If so, we want to allow the send using the uc_index. 1062 */ 1063 if (ipc.oif != inet->uc_index && 1064 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1065 inet->uc_index)) { 1066 ipc.oif = inet->uc_index; 1067 } 1068 } 1069 1070 if (connected) 1071 rt = (struct rtable *)sk_dst_check(sk, 0); 1072 1073 if (!rt) { 1074 struct net *net = sock_net(sk); 1075 __u8 flow_flags = inet_sk_flowi_flags(sk); 1076 1077 fl4 = &fl4_stack; 1078 1079 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1080 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1081 flow_flags, 1082 faddr, saddr, dport, inet->inet_sport, 1083 sk->sk_uid); 1084 1085 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1086 rt = ip_route_output_flow(net, fl4, sk); 1087 if (IS_ERR(rt)) { 1088 err = PTR_ERR(rt); 1089 rt = NULL; 1090 if (err == -ENETUNREACH) 1091 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1092 goto out; 1093 } 1094 1095 err = -EACCES; 1096 if ((rt->rt_flags & RTCF_BROADCAST) && 1097 !sock_flag(sk, SOCK_BROADCAST)) 1098 goto out; 1099 if (connected) 1100 sk_dst_set(sk, dst_clone(&rt->dst)); 1101 } 1102 1103 if (msg->msg_flags&MSG_CONFIRM) 1104 goto do_confirm; 1105 back_from_confirm: 1106 1107 saddr = fl4->saddr; 1108 if (!ipc.addr) 1109 daddr = ipc.addr = fl4->daddr; 1110 1111 /* Lockless fast path for the non-corking case. */ 1112 if (!corkreq) { 1113 struct inet_cork cork; 1114 1115 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1116 sizeof(struct udphdr), &ipc, &rt, 1117 &cork, msg->msg_flags); 1118 err = PTR_ERR(skb); 1119 if (!IS_ERR_OR_NULL(skb)) 1120 err = udp_send_skb(skb, fl4, &cork); 1121 goto out; 1122 } 1123 1124 lock_sock(sk); 1125 if (unlikely(up->pending)) { 1126 /* The socket is already corked while preparing it. */ 1127 /* ... which is an evident application bug. --ANK */ 1128 release_sock(sk); 1129 1130 net_dbg_ratelimited("socket already corked\n"); 1131 err = -EINVAL; 1132 goto out; 1133 } 1134 /* 1135 * Now cork the socket to pend data. 1136 */ 1137 fl4 = &inet->cork.fl.u.ip4; 1138 fl4->daddr = daddr; 1139 fl4->saddr = saddr; 1140 fl4->fl4_dport = dport; 1141 fl4->fl4_sport = inet->inet_sport; 1142 up->pending = AF_INET; 1143 1144 do_append_data: 1145 up->len += ulen; 1146 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1147 sizeof(struct udphdr), &ipc, &rt, 1148 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1149 if (err) 1150 udp_flush_pending_frames(sk); 1151 else if (!corkreq) 1152 err = udp_push_pending_frames(sk); 1153 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1154 up->pending = 0; 1155 release_sock(sk); 1156 1157 out: 1158 ip_rt_put(rt); 1159 out_free: 1160 if (free) 1161 kfree(ipc.opt); 1162 if (!err) 1163 return len; 1164 /* 1165 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1166 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1167 * we don't have a good statistic (IpOutDiscards but it can be too many 1168 * things). We could add another new stat but at least for now that 1169 * seems like overkill. 1170 */ 1171 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1172 UDP_INC_STATS(sock_net(sk), 1173 UDP_MIB_SNDBUFERRORS, is_udplite); 1174 } 1175 return err; 1176 1177 do_confirm: 1178 if (msg->msg_flags & MSG_PROBE) 1179 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1180 if (!(msg->msg_flags&MSG_PROBE) || len) 1181 goto back_from_confirm; 1182 err = 0; 1183 goto out; 1184 } 1185 EXPORT_SYMBOL(udp_sendmsg); 1186 1187 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1188 size_t size, int flags) 1189 { 1190 struct inet_sock *inet = inet_sk(sk); 1191 struct udp_sock *up = udp_sk(sk); 1192 int ret; 1193 1194 if (flags & MSG_SENDPAGE_NOTLAST) 1195 flags |= MSG_MORE; 1196 1197 if (!up->pending) { 1198 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1199 1200 /* Call udp_sendmsg to specify destination address which 1201 * sendpage interface can't pass. 1202 * This will succeed only when the socket is connected. 1203 */ 1204 ret = udp_sendmsg(sk, &msg, 0); 1205 if (ret < 0) 1206 return ret; 1207 } 1208 1209 lock_sock(sk); 1210 1211 if (unlikely(!up->pending)) { 1212 release_sock(sk); 1213 1214 net_dbg_ratelimited("cork failed\n"); 1215 return -EINVAL; 1216 } 1217 1218 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1219 page, offset, size, flags); 1220 if (ret == -EOPNOTSUPP) { 1221 release_sock(sk); 1222 return sock_no_sendpage(sk->sk_socket, page, offset, 1223 size, flags); 1224 } 1225 if (ret < 0) { 1226 udp_flush_pending_frames(sk); 1227 goto out; 1228 } 1229 1230 up->len += size; 1231 if (!(up->corkflag || (flags&MSG_MORE))) 1232 ret = udp_push_pending_frames(sk); 1233 if (!ret) 1234 ret = size; 1235 out: 1236 release_sock(sk); 1237 return ret; 1238 } 1239 1240 #define UDP_SKB_IS_STATELESS 0x80000000 1241 1242 static void udp_set_dev_scratch(struct sk_buff *skb) 1243 { 1244 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1245 1246 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1247 scratch->_tsize_state = skb->truesize; 1248 #if BITS_PER_LONG == 64 1249 scratch->len = skb->len; 1250 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1251 scratch->is_linear = !skb_is_nonlinear(skb); 1252 #endif 1253 /* all head states execept sp (dst, sk, nf) are always cleared by 1254 * udp_rcv() and we need to preserve secpath, if present, to eventually 1255 * process IP_CMSG_PASSSEC at recvmsg() time 1256 */ 1257 if (likely(!skb_sec_path(skb))) 1258 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1259 } 1260 1261 static int udp_skb_truesize(struct sk_buff *skb) 1262 { 1263 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1264 } 1265 1266 static bool udp_skb_has_head_state(struct sk_buff *skb) 1267 { 1268 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1269 } 1270 1271 /* fully reclaim rmem/fwd memory allocated for skb */ 1272 static void udp_rmem_release(struct sock *sk, int size, int partial, 1273 bool rx_queue_lock_held) 1274 { 1275 struct udp_sock *up = udp_sk(sk); 1276 struct sk_buff_head *sk_queue; 1277 int amt; 1278 1279 if (likely(partial)) { 1280 up->forward_deficit += size; 1281 size = up->forward_deficit; 1282 if (size < (sk->sk_rcvbuf >> 2)) 1283 return; 1284 } else { 1285 size += up->forward_deficit; 1286 } 1287 up->forward_deficit = 0; 1288 1289 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1290 * if the called don't held it already 1291 */ 1292 sk_queue = &sk->sk_receive_queue; 1293 if (!rx_queue_lock_held) 1294 spin_lock(&sk_queue->lock); 1295 1296 1297 sk->sk_forward_alloc += size; 1298 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1299 sk->sk_forward_alloc -= amt; 1300 1301 if (amt) 1302 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1303 1304 atomic_sub(size, &sk->sk_rmem_alloc); 1305 1306 /* this can save us from acquiring the rx queue lock on next receive */ 1307 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1308 1309 if (!rx_queue_lock_held) 1310 spin_unlock(&sk_queue->lock); 1311 } 1312 1313 /* Note: called with reader_queue.lock held. 1314 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1315 * This avoids a cache line miss while receive_queue lock is held. 1316 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1317 */ 1318 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1319 { 1320 prefetch(&skb->data); 1321 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1322 } 1323 EXPORT_SYMBOL(udp_skb_destructor); 1324 1325 /* as above, but the caller held the rx queue lock, too */ 1326 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1327 { 1328 prefetch(&skb->data); 1329 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1330 } 1331 1332 /* Idea of busylocks is to let producers grab an extra spinlock 1333 * to relieve pressure on the receive_queue spinlock shared by consumer. 1334 * Under flood, this means that only one producer can be in line 1335 * trying to acquire the receive_queue spinlock. 1336 * These busylock can be allocated on a per cpu manner, instead of a 1337 * per socket one (that would consume a cache line per socket) 1338 */ 1339 static int udp_busylocks_log __read_mostly; 1340 static spinlock_t *udp_busylocks __read_mostly; 1341 1342 static spinlock_t *busylock_acquire(void *ptr) 1343 { 1344 spinlock_t *busy; 1345 1346 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1347 spin_lock(busy); 1348 return busy; 1349 } 1350 1351 static void busylock_release(spinlock_t *busy) 1352 { 1353 if (busy) 1354 spin_unlock(busy); 1355 } 1356 1357 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1358 { 1359 struct sk_buff_head *list = &sk->sk_receive_queue; 1360 int rmem, delta, amt, err = -ENOMEM; 1361 spinlock_t *busy = NULL; 1362 int size; 1363 1364 /* try to avoid the costly atomic add/sub pair when the receive 1365 * queue is full; always allow at least a packet 1366 */ 1367 rmem = atomic_read(&sk->sk_rmem_alloc); 1368 if (rmem > sk->sk_rcvbuf) 1369 goto drop; 1370 1371 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1372 * having linear skbs : 1373 * - Reduce memory overhead and thus increase receive queue capacity 1374 * - Less cache line misses at copyout() time 1375 * - Less work at consume_skb() (less alien page frag freeing) 1376 */ 1377 if (rmem > (sk->sk_rcvbuf >> 1)) { 1378 skb_condense(skb); 1379 1380 busy = busylock_acquire(sk); 1381 } 1382 size = skb->truesize; 1383 udp_set_dev_scratch(skb); 1384 1385 /* we drop only if the receive buf is full and the receive 1386 * queue contains some other skb 1387 */ 1388 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1389 if (rmem > (size + sk->sk_rcvbuf)) 1390 goto uncharge_drop; 1391 1392 spin_lock(&list->lock); 1393 if (size >= sk->sk_forward_alloc) { 1394 amt = sk_mem_pages(size); 1395 delta = amt << SK_MEM_QUANTUM_SHIFT; 1396 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1397 err = -ENOBUFS; 1398 spin_unlock(&list->lock); 1399 goto uncharge_drop; 1400 } 1401 1402 sk->sk_forward_alloc += delta; 1403 } 1404 1405 sk->sk_forward_alloc -= size; 1406 1407 /* no need to setup a destructor, we will explicitly release the 1408 * forward allocated memory on dequeue 1409 */ 1410 sock_skb_set_dropcount(sk, skb); 1411 1412 __skb_queue_tail(list, skb); 1413 spin_unlock(&list->lock); 1414 1415 if (!sock_flag(sk, SOCK_DEAD)) 1416 sk->sk_data_ready(sk); 1417 1418 busylock_release(busy); 1419 return 0; 1420 1421 uncharge_drop: 1422 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1423 1424 drop: 1425 atomic_inc(&sk->sk_drops); 1426 busylock_release(busy); 1427 return err; 1428 } 1429 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1430 1431 void udp_destruct_sock(struct sock *sk) 1432 { 1433 /* reclaim completely the forward allocated memory */ 1434 struct udp_sock *up = udp_sk(sk); 1435 unsigned int total = 0; 1436 struct sk_buff *skb; 1437 1438 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1439 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1440 total += skb->truesize; 1441 kfree_skb(skb); 1442 } 1443 udp_rmem_release(sk, total, 0, true); 1444 1445 inet_sock_destruct(sk); 1446 } 1447 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1448 1449 int udp_init_sock(struct sock *sk) 1450 { 1451 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1452 sk->sk_destruct = udp_destruct_sock; 1453 return 0; 1454 } 1455 EXPORT_SYMBOL_GPL(udp_init_sock); 1456 1457 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1458 { 1459 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1460 bool slow = lock_sock_fast(sk); 1461 1462 sk_peek_offset_bwd(sk, len); 1463 unlock_sock_fast(sk, slow); 1464 } 1465 1466 if (!skb_unref(skb)) 1467 return; 1468 1469 /* In the more common cases we cleared the head states previously, 1470 * see __udp_queue_rcv_skb(). 1471 */ 1472 if (unlikely(udp_skb_has_head_state(skb))) 1473 skb_release_head_state(skb); 1474 __consume_stateless_skb(skb); 1475 } 1476 EXPORT_SYMBOL_GPL(skb_consume_udp); 1477 1478 static struct sk_buff *__first_packet_length(struct sock *sk, 1479 struct sk_buff_head *rcvq, 1480 int *total) 1481 { 1482 struct sk_buff *skb; 1483 1484 while ((skb = skb_peek(rcvq)) != NULL) { 1485 if (udp_lib_checksum_complete(skb)) { 1486 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1487 IS_UDPLITE(sk)); 1488 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1489 IS_UDPLITE(sk)); 1490 atomic_inc(&sk->sk_drops); 1491 __skb_unlink(skb, rcvq); 1492 *total += skb->truesize; 1493 kfree_skb(skb); 1494 } else { 1495 /* the csum related bits could be changed, refresh 1496 * the scratch area 1497 */ 1498 udp_set_dev_scratch(skb); 1499 break; 1500 } 1501 } 1502 return skb; 1503 } 1504 1505 /** 1506 * first_packet_length - return length of first packet in receive queue 1507 * @sk: socket 1508 * 1509 * Drops all bad checksum frames, until a valid one is found. 1510 * Returns the length of found skb, or -1 if none is found. 1511 */ 1512 static int first_packet_length(struct sock *sk) 1513 { 1514 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1515 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1516 struct sk_buff *skb; 1517 int total = 0; 1518 int res; 1519 1520 spin_lock_bh(&rcvq->lock); 1521 skb = __first_packet_length(sk, rcvq, &total); 1522 if (!skb && !skb_queue_empty(sk_queue)) { 1523 spin_lock(&sk_queue->lock); 1524 skb_queue_splice_tail_init(sk_queue, rcvq); 1525 spin_unlock(&sk_queue->lock); 1526 1527 skb = __first_packet_length(sk, rcvq, &total); 1528 } 1529 res = skb ? skb->len : -1; 1530 if (total) 1531 udp_rmem_release(sk, total, 1, false); 1532 spin_unlock_bh(&rcvq->lock); 1533 return res; 1534 } 1535 1536 /* 1537 * IOCTL requests applicable to the UDP protocol 1538 */ 1539 1540 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1541 { 1542 switch (cmd) { 1543 case SIOCOUTQ: 1544 { 1545 int amount = sk_wmem_alloc_get(sk); 1546 1547 return put_user(amount, (int __user *)arg); 1548 } 1549 1550 case SIOCINQ: 1551 { 1552 int amount = max_t(int, 0, first_packet_length(sk)); 1553 1554 return put_user(amount, (int __user *)arg); 1555 } 1556 1557 default: 1558 return -ENOIOCTLCMD; 1559 } 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL(udp_ioctl); 1564 1565 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1566 int noblock, int *peeked, int *off, int *err) 1567 { 1568 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1569 struct sk_buff_head *queue; 1570 struct sk_buff *last; 1571 long timeo; 1572 int error; 1573 1574 queue = &udp_sk(sk)->reader_queue; 1575 flags |= noblock ? MSG_DONTWAIT : 0; 1576 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1577 do { 1578 struct sk_buff *skb; 1579 1580 error = sock_error(sk); 1581 if (error) 1582 break; 1583 1584 error = -EAGAIN; 1585 *peeked = 0; 1586 do { 1587 spin_lock_bh(&queue->lock); 1588 skb = __skb_try_recv_from_queue(sk, queue, flags, 1589 udp_skb_destructor, 1590 peeked, off, err, 1591 &last); 1592 if (skb) { 1593 spin_unlock_bh(&queue->lock); 1594 return skb; 1595 } 1596 1597 if (skb_queue_empty(sk_queue)) { 1598 spin_unlock_bh(&queue->lock); 1599 goto busy_check; 1600 } 1601 1602 /* refill the reader queue and walk it again 1603 * keep both queues locked to avoid re-acquiring 1604 * the sk_receive_queue lock if fwd memory scheduling 1605 * is needed. 1606 */ 1607 spin_lock(&sk_queue->lock); 1608 skb_queue_splice_tail_init(sk_queue, queue); 1609 1610 skb = __skb_try_recv_from_queue(sk, queue, flags, 1611 udp_skb_dtor_locked, 1612 peeked, off, err, 1613 &last); 1614 spin_unlock(&sk_queue->lock); 1615 spin_unlock_bh(&queue->lock); 1616 if (skb) 1617 return skb; 1618 1619 busy_check: 1620 if (!sk_can_busy_loop(sk)) 1621 break; 1622 1623 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1624 } while (!skb_queue_empty(sk_queue)); 1625 1626 /* sk_queue is empty, reader_queue may contain peeked packets */ 1627 } while (timeo && 1628 !__skb_wait_for_more_packets(sk, &error, &timeo, 1629 (struct sk_buff *)sk_queue)); 1630 1631 *err = error; 1632 return NULL; 1633 } 1634 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1635 1636 /* 1637 * This should be easy, if there is something there we 1638 * return it, otherwise we block. 1639 */ 1640 1641 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1642 int flags, int *addr_len) 1643 { 1644 struct inet_sock *inet = inet_sk(sk); 1645 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1646 struct sk_buff *skb; 1647 unsigned int ulen, copied; 1648 int peeked, peeking, off; 1649 int err; 1650 int is_udplite = IS_UDPLITE(sk); 1651 bool checksum_valid = false; 1652 1653 if (flags & MSG_ERRQUEUE) 1654 return ip_recv_error(sk, msg, len, addr_len); 1655 1656 try_again: 1657 peeking = flags & MSG_PEEK; 1658 off = sk_peek_offset(sk, flags); 1659 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1660 if (!skb) 1661 return err; 1662 1663 ulen = udp_skb_len(skb); 1664 copied = len; 1665 if (copied > ulen - off) 1666 copied = ulen - off; 1667 else if (copied < ulen) 1668 msg->msg_flags |= MSG_TRUNC; 1669 1670 /* 1671 * If checksum is needed at all, try to do it while copying the 1672 * data. If the data is truncated, or if we only want a partial 1673 * coverage checksum (UDP-Lite), do it before the copy. 1674 */ 1675 1676 if (copied < ulen || peeking || 1677 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1678 checksum_valid = udp_skb_csum_unnecessary(skb) || 1679 !__udp_lib_checksum_complete(skb); 1680 if (!checksum_valid) 1681 goto csum_copy_err; 1682 } 1683 1684 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1685 if (udp_skb_is_linear(skb)) 1686 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1687 else 1688 err = skb_copy_datagram_msg(skb, off, msg, copied); 1689 } else { 1690 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1691 1692 if (err == -EINVAL) 1693 goto csum_copy_err; 1694 } 1695 1696 if (unlikely(err)) { 1697 if (!peeked) { 1698 atomic_inc(&sk->sk_drops); 1699 UDP_INC_STATS(sock_net(sk), 1700 UDP_MIB_INERRORS, is_udplite); 1701 } 1702 kfree_skb(skb); 1703 return err; 1704 } 1705 1706 if (!peeked) 1707 UDP_INC_STATS(sock_net(sk), 1708 UDP_MIB_INDATAGRAMS, is_udplite); 1709 1710 sock_recv_ts_and_drops(msg, sk, skb); 1711 1712 /* Copy the address. */ 1713 if (sin) { 1714 sin->sin_family = AF_INET; 1715 sin->sin_port = udp_hdr(skb)->source; 1716 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1717 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1718 *addr_len = sizeof(*sin); 1719 } 1720 if (inet->cmsg_flags) 1721 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1722 1723 err = copied; 1724 if (flags & MSG_TRUNC) 1725 err = ulen; 1726 1727 skb_consume_udp(sk, skb, peeking ? -err : err); 1728 return err; 1729 1730 csum_copy_err: 1731 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1732 udp_skb_destructor)) { 1733 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1734 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1735 } 1736 kfree_skb(skb); 1737 1738 /* starting over for a new packet, but check if we need to yield */ 1739 cond_resched(); 1740 msg->msg_flags &= ~MSG_TRUNC; 1741 goto try_again; 1742 } 1743 1744 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1745 { 1746 /* This check is replicated from __ip4_datagram_connect() and 1747 * intended to prevent BPF program called below from accessing bytes 1748 * that are out of the bound specified by user in addr_len. 1749 */ 1750 if (addr_len < sizeof(struct sockaddr_in)) 1751 return -EINVAL; 1752 1753 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1754 } 1755 EXPORT_SYMBOL(udp_pre_connect); 1756 1757 int __udp_disconnect(struct sock *sk, int flags) 1758 { 1759 struct inet_sock *inet = inet_sk(sk); 1760 /* 1761 * 1003.1g - break association. 1762 */ 1763 1764 sk->sk_state = TCP_CLOSE; 1765 inet->inet_daddr = 0; 1766 inet->inet_dport = 0; 1767 sock_rps_reset_rxhash(sk); 1768 sk->sk_bound_dev_if = 0; 1769 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1770 inet_reset_saddr(sk); 1771 1772 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1773 sk->sk_prot->unhash(sk); 1774 inet->inet_sport = 0; 1775 } 1776 sk_dst_reset(sk); 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(__udp_disconnect); 1780 1781 int udp_disconnect(struct sock *sk, int flags) 1782 { 1783 lock_sock(sk); 1784 __udp_disconnect(sk, flags); 1785 release_sock(sk); 1786 return 0; 1787 } 1788 EXPORT_SYMBOL(udp_disconnect); 1789 1790 void udp_lib_unhash(struct sock *sk) 1791 { 1792 if (sk_hashed(sk)) { 1793 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1794 struct udp_hslot *hslot, *hslot2; 1795 1796 hslot = udp_hashslot(udptable, sock_net(sk), 1797 udp_sk(sk)->udp_port_hash); 1798 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1799 1800 spin_lock_bh(&hslot->lock); 1801 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1802 reuseport_detach_sock(sk); 1803 if (sk_del_node_init_rcu(sk)) { 1804 hslot->count--; 1805 inet_sk(sk)->inet_num = 0; 1806 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1807 1808 spin_lock(&hslot2->lock); 1809 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1810 hslot2->count--; 1811 spin_unlock(&hslot2->lock); 1812 } 1813 spin_unlock_bh(&hslot->lock); 1814 } 1815 } 1816 EXPORT_SYMBOL(udp_lib_unhash); 1817 1818 /* 1819 * inet_rcv_saddr was changed, we must rehash secondary hash 1820 */ 1821 void udp_lib_rehash(struct sock *sk, u16 newhash) 1822 { 1823 if (sk_hashed(sk)) { 1824 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1825 struct udp_hslot *hslot, *hslot2, *nhslot2; 1826 1827 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1828 nhslot2 = udp_hashslot2(udptable, newhash); 1829 udp_sk(sk)->udp_portaddr_hash = newhash; 1830 1831 if (hslot2 != nhslot2 || 1832 rcu_access_pointer(sk->sk_reuseport_cb)) { 1833 hslot = udp_hashslot(udptable, sock_net(sk), 1834 udp_sk(sk)->udp_port_hash); 1835 /* we must lock primary chain too */ 1836 spin_lock_bh(&hslot->lock); 1837 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1838 reuseport_detach_sock(sk); 1839 1840 if (hslot2 != nhslot2) { 1841 spin_lock(&hslot2->lock); 1842 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1843 hslot2->count--; 1844 spin_unlock(&hslot2->lock); 1845 1846 spin_lock(&nhslot2->lock); 1847 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1848 &nhslot2->head); 1849 nhslot2->count++; 1850 spin_unlock(&nhslot2->lock); 1851 } 1852 1853 spin_unlock_bh(&hslot->lock); 1854 } 1855 } 1856 } 1857 EXPORT_SYMBOL(udp_lib_rehash); 1858 1859 static void udp_v4_rehash(struct sock *sk) 1860 { 1861 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1862 inet_sk(sk)->inet_rcv_saddr, 1863 inet_sk(sk)->inet_num); 1864 udp_lib_rehash(sk, new_hash); 1865 } 1866 1867 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1868 { 1869 int rc; 1870 1871 if (inet_sk(sk)->inet_daddr) { 1872 sock_rps_save_rxhash(sk, skb); 1873 sk_mark_napi_id(sk, skb); 1874 sk_incoming_cpu_update(sk); 1875 } else { 1876 sk_mark_napi_id_once(sk, skb); 1877 } 1878 1879 rc = __udp_enqueue_schedule_skb(sk, skb); 1880 if (rc < 0) { 1881 int is_udplite = IS_UDPLITE(sk); 1882 1883 /* Note that an ENOMEM error is charged twice */ 1884 if (rc == -ENOMEM) 1885 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1886 is_udplite); 1887 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1888 kfree_skb(skb); 1889 trace_udp_fail_queue_rcv_skb(rc, sk); 1890 return -1; 1891 } 1892 1893 return 0; 1894 } 1895 1896 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1897 void udp_encap_enable(void) 1898 { 1899 static_branch_enable(&udp_encap_needed_key); 1900 } 1901 EXPORT_SYMBOL(udp_encap_enable); 1902 1903 /* returns: 1904 * -1: error 1905 * 0: success 1906 * >0: "udp encap" protocol resubmission 1907 * 1908 * Note that in the success and error cases, the skb is assumed to 1909 * have either been requeued or freed. 1910 */ 1911 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1912 { 1913 struct udp_sock *up = udp_sk(sk); 1914 int is_udplite = IS_UDPLITE(sk); 1915 1916 /* 1917 * Charge it to the socket, dropping if the queue is full. 1918 */ 1919 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1920 goto drop; 1921 nf_reset(skb); 1922 1923 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1924 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1925 1926 /* 1927 * This is an encapsulation socket so pass the skb to 1928 * the socket's udp_encap_rcv() hook. Otherwise, just 1929 * fall through and pass this up the UDP socket. 1930 * up->encap_rcv() returns the following value: 1931 * =0 if skb was successfully passed to the encap 1932 * handler or was discarded by it. 1933 * >0 if skb should be passed on to UDP. 1934 * <0 if skb should be resubmitted as proto -N 1935 */ 1936 1937 /* if we're overly short, let UDP handle it */ 1938 encap_rcv = READ_ONCE(up->encap_rcv); 1939 if (encap_rcv) { 1940 int ret; 1941 1942 /* Verify checksum before giving to encap */ 1943 if (udp_lib_checksum_complete(skb)) 1944 goto csum_error; 1945 1946 ret = encap_rcv(sk, skb); 1947 if (ret <= 0) { 1948 __UDP_INC_STATS(sock_net(sk), 1949 UDP_MIB_INDATAGRAMS, 1950 is_udplite); 1951 return -ret; 1952 } 1953 } 1954 1955 /* FALLTHROUGH -- it's a UDP Packet */ 1956 } 1957 1958 /* 1959 * UDP-Lite specific tests, ignored on UDP sockets 1960 */ 1961 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1962 1963 /* 1964 * MIB statistics other than incrementing the error count are 1965 * disabled for the following two types of errors: these depend 1966 * on the application settings, not on the functioning of the 1967 * protocol stack as such. 1968 * 1969 * RFC 3828 here recommends (sec 3.3): "There should also be a 1970 * way ... to ... at least let the receiving application block 1971 * delivery of packets with coverage values less than a value 1972 * provided by the application." 1973 */ 1974 if (up->pcrlen == 0) { /* full coverage was set */ 1975 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1976 UDP_SKB_CB(skb)->cscov, skb->len); 1977 goto drop; 1978 } 1979 /* The next case involves violating the min. coverage requested 1980 * by the receiver. This is subtle: if receiver wants x and x is 1981 * greater than the buffersize/MTU then receiver will complain 1982 * that it wants x while sender emits packets of smaller size y. 1983 * Therefore the above ...()->partial_cov statement is essential. 1984 */ 1985 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1986 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1987 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1988 goto drop; 1989 } 1990 } 1991 1992 prefetch(&sk->sk_rmem_alloc); 1993 if (rcu_access_pointer(sk->sk_filter) && 1994 udp_lib_checksum_complete(skb)) 1995 goto csum_error; 1996 1997 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1998 goto drop; 1999 2000 udp_csum_pull_header(skb); 2001 2002 ipv4_pktinfo_prepare(sk, skb); 2003 return __udp_queue_rcv_skb(sk, skb); 2004 2005 csum_error: 2006 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2007 drop: 2008 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2009 atomic_inc(&sk->sk_drops); 2010 kfree_skb(skb); 2011 return -1; 2012 } 2013 2014 /* For TCP sockets, sk_rx_dst is protected by socket lock 2015 * For UDP, we use xchg() to guard against concurrent changes. 2016 */ 2017 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2018 { 2019 struct dst_entry *old; 2020 2021 if (dst_hold_safe(dst)) { 2022 old = xchg(&sk->sk_rx_dst, dst); 2023 dst_release(old); 2024 return old != dst; 2025 } 2026 return false; 2027 } 2028 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2029 2030 /* 2031 * Multicasts and broadcasts go to each listener. 2032 * 2033 * Note: called only from the BH handler context. 2034 */ 2035 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2036 struct udphdr *uh, 2037 __be32 saddr, __be32 daddr, 2038 struct udp_table *udptable, 2039 int proto) 2040 { 2041 struct sock *sk, *first = NULL; 2042 unsigned short hnum = ntohs(uh->dest); 2043 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2044 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2045 unsigned int offset = offsetof(typeof(*sk), sk_node); 2046 int dif = skb->dev->ifindex; 2047 int sdif = inet_sdif(skb); 2048 struct hlist_node *node; 2049 struct sk_buff *nskb; 2050 2051 if (use_hash2) { 2052 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2053 udptable->mask; 2054 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2055 start_lookup: 2056 hslot = &udptable->hash2[hash2]; 2057 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2058 } 2059 2060 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2061 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2062 uh->source, saddr, dif, sdif, hnum)) 2063 continue; 2064 2065 if (!first) { 2066 first = sk; 2067 continue; 2068 } 2069 nskb = skb_clone(skb, GFP_ATOMIC); 2070 2071 if (unlikely(!nskb)) { 2072 atomic_inc(&sk->sk_drops); 2073 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2074 IS_UDPLITE(sk)); 2075 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2076 IS_UDPLITE(sk)); 2077 continue; 2078 } 2079 if (udp_queue_rcv_skb(sk, nskb) > 0) 2080 consume_skb(nskb); 2081 } 2082 2083 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2084 if (use_hash2 && hash2 != hash2_any) { 2085 hash2 = hash2_any; 2086 goto start_lookup; 2087 } 2088 2089 if (first) { 2090 if (udp_queue_rcv_skb(first, skb) > 0) 2091 consume_skb(skb); 2092 } else { 2093 kfree_skb(skb); 2094 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2095 proto == IPPROTO_UDPLITE); 2096 } 2097 return 0; 2098 } 2099 2100 /* Initialize UDP checksum. If exited with zero value (success), 2101 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2102 * Otherwise, csum completion requires chacksumming packet body, 2103 * including udp header and folding it to skb->csum. 2104 */ 2105 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2106 int proto) 2107 { 2108 int err; 2109 2110 UDP_SKB_CB(skb)->partial_cov = 0; 2111 UDP_SKB_CB(skb)->cscov = skb->len; 2112 2113 if (proto == IPPROTO_UDPLITE) { 2114 err = udplite_checksum_init(skb, uh); 2115 if (err) 2116 return err; 2117 2118 if (UDP_SKB_CB(skb)->partial_cov) { 2119 skb->csum = inet_compute_pseudo(skb, proto); 2120 return 0; 2121 } 2122 } 2123 2124 /* Note, we are only interested in != 0 or == 0, thus the 2125 * force to int. 2126 */ 2127 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2128 inet_compute_pseudo); 2129 } 2130 2131 /* 2132 * All we need to do is get the socket, and then do a checksum. 2133 */ 2134 2135 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2136 int proto) 2137 { 2138 struct sock *sk; 2139 struct udphdr *uh; 2140 unsigned short ulen; 2141 struct rtable *rt = skb_rtable(skb); 2142 __be32 saddr, daddr; 2143 struct net *net = dev_net(skb->dev); 2144 2145 /* 2146 * Validate the packet. 2147 */ 2148 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2149 goto drop; /* No space for header. */ 2150 2151 uh = udp_hdr(skb); 2152 ulen = ntohs(uh->len); 2153 saddr = ip_hdr(skb)->saddr; 2154 daddr = ip_hdr(skb)->daddr; 2155 2156 if (ulen > skb->len) 2157 goto short_packet; 2158 2159 if (proto == IPPROTO_UDP) { 2160 /* UDP validates ulen. */ 2161 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2162 goto short_packet; 2163 uh = udp_hdr(skb); 2164 } 2165 2166 if (udp4_csum_init(skb, uh, proto)) 2167 goto csum_error; 2168 2169 sk = skb_steal_sock(skb); 2170 if (sk) { 2171 struct dst_entry *dst = skb_dst(skb); 2172 int ret; 2173 2174 if (unlikely(sk->sk_rx_dst != dst)) 2175 udp_sk_rx_dst_set(sk, dst); 2176 2177 ret = udp_queue_rcv_skb(sk, skb); 2178 sock_put(sk); 2179 /* a return value > 0 means to resubmit the input, but 2180 * it wants the return to be -protocol, or 0 2181 */ 2182 if (ret > 0) 2183 return -ret; 2184 return 0; 2185 } 2186 2187 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2188 return __udp4_lib_mcast_deliver(net, skb, uh, 2189 saddr, daddr, udptable, proto); 2190 2191 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2192 if (sk) { 2193 int ret; 2194 2195 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2196 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2197 inet_compute_pseudo); 2198 2199 ret = udp_queue_rcv_skb(sk, skb); 2200 2201 /* a return value > 0 means to resubmit the input, but 2202 * it wants the return to be -protocol, or 0 2203 */ 2204 if (ret > 0) 2205 return -ret; 2206 return 0; 2207 } 2208 2209 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2210 goto drop; 2211 nf_reset(skb); 2212 2213 /* No socket. Drop packet silently, if checksum is wrong */ 2214 if (udp_lib_checksum_complete(skb)) 2215 goto csum_error; 2216 2217 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2218 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2219 2220 /* 2221 * Hmm. We got an UDP packet to a port to which we 2222 * don't wanna listen. Ignore it. 2223 */ 2224 kfree_skb(skb); 2225 return 0; 2226 2227 short_packet: 2228 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2229 proto == IPPROTO_UDPLITE ? "Lite" : "", 2230 &saddr, ntohs(uh->source), 2231 ulen, skb->len, 2232 &daddr, ntohs(uh->dest)); 2233 goto drop; 2234 2235 csum_error: 2236 /* 2237 * RFC1122: OK. Discards the bad packet silently (as far as 2238 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2239 */ 2240 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2241 proto == IPPROTO_UDPLITE ? "Lite" : "", 2242 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2243 ulen); 2244 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2245 drop: 2246 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2247 kfree_skb(skb); 2248 return 0; 2249 } 2250 2251 /* We can only early demux multicast if there is a single matching socket. 2252 * If more than one socket found returns NULL 2253 */ 2254 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2255 __be16 loc_port, __be32 loc_addr, 2256 __be16 rmt_port, __be32 rmt_addr, 2257 int dif, int sdif) 2258 { 2259 struct sock *sk, *result; 2260 unsigned short hnum = ntohs(loc_port); 2261 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2262 struct udp_hslot *hslot = &udp_table.hash[slot]; 2263 2264 /* Do not bother scanning a too big list */ 2265 if (hslot->count > 10) 2266 return NULL; 2267 2268 result = NULL; 2269 sk_for_each_rcu(sk, &hslot->head) { 2270 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2271 rmt_port, rmt_addr, dif, sdif, hnum)) { 2272 if (result) 2273 return NULL; 2274 result = sk; 2275 } 2276 } 2277 2278 return result; 2279 } 2280 2281 /* For unicast we should only early demux connected sockets or we can 2282 * break forwarding setups. The chains here can be long so only check 2283 * if the first socket is an exact match and if not move on. 2284 */ 2285 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2286 __be16 loc_port, __be32 loc_addr, 2287 __be16 rmt_port, __be32 rmt_addr, 2288 int dif, int sdif) 2289 { 2290 unsigned short hnum = ntohs(loc_port); 2291 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2292 unsigned int slot2 = hash2 & udp_table.mask; 2293 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2294 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2295 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2296 struct sock *sk; 2297 2298 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2299 if (INET_MATCH(sk, net, acookie, rmt_addr, 2300 loc_addr, ports, dif, sdif)) 2301 return sk; 2302 /* Only check first socket in chain */ 2303 break; 2304 } 2305 return NULL; 2306 } 2307 2308 int udp_v4_early_demux(struct sk_buff *skb) 2309 { 2310 struct net *net = dev_net(skb->dev); 2311 struct in_device *in_dev = NULL; 2312 const struct iphdr *iph; 2313 const struct udphdr *uh; 2314 struct sock *sk = NULL; 2315 struct dst_entry *dst; 2316 int dif = skb->dev->ifindex; 2317 int sdif = inet_sdif(skb); 2318 int ours; 2319 2320 /* validate the packet */ 2321 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2322 return 0; 2323 2324 iph = ip_hdr(skb); 2325 uh = udp_hdr(skb); 2326 2327 if (skb->pkt_type == PACKET_MULTICAST) { 2328 in_dev = __in_dev_get_rcu(skb->dev); 2329 2330 if (!in_dev) 2331 return 0; 2332 2333 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2334 iph->protocol); 2335 if (!ours) 2336 return 0; 2337 2338 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2339 uh->source, iph->saddr, 2340 dif, sdif); 2341 } else if (skb->pkt_type == PACKET_HOST) { 2342 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2343 uh->source, iph->saddr, dif, sdif); 2344 } 2345 2346 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2347 return 0; 2348 2349 skb->sk = sk; 2350 skb->destructor = sock_efree; 2351 dst = READ_ONCE(sk->sk_rx_dst); 2352 2353 if (dst) 2354 dst = dst_check(dst, 0); 2355 if (dst) { 2356 u32 itag = 0; 2357 2358 /* set noref for now. 2359 * any place which wants to hold dst has to call 2360 * dst_hold_safe() 2361 */ 2362 skb_dst_set_noref(skb, dst); 2363 2364 /* for unconnected multicast sockets we need to validate 2365 * the source on each packet 2366 */ 2367 if (!inet_sk(sk)->inet_daddr && in_dev) 2368 return ip_mc_validate_source(skb, iph->daddr, 2369 iph->saddr, iph->tos, 2370 skb->dev, in_dev, &itag); 2371 } 2372 return 0; 2373 } 2374 2375 int udp_rcv(struct sk_buff *skb) 2376 { 2377 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2378 } 2379 2380 void udp_destroy_sock(struct sock *sk) 2381 { 2382 struct udp_sock *up = udp_sk(sk); 2383 bool slow = lock_sock_fast(sk); 2384 udp_flush_pending_frames(sk); 2385 unlock_sock_fast(sk, slow); 2386 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2387 void (*encap_destroy)(struct sock *sk); 2388 encap_destroy = READ_ONCE(up->encap_destroy); 2389 if (encap_destroy) 2390 encap_destroy(sk); 2391 } 2392 } 2393 2394 /* 2395 * Socket option code for UDP 2396 */ 2397 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2398 char __user *optval, unsigned int optlen, 2399 int (*push_pending_frames)(struct sock *)) 2400 { 2401 struct udp_sock *up = udp_sk(sk); 2402 int val, valbool; 2403 int err = 0; 2404 int is_udplite = IS_UDPLITE(sk); 2405 2406 if (optlen < sizeof(int)) 2407 return -EINVAL; 2408 2409 if (get_user(val, (int __user *)optval)) 2410 return -EFAULT; 2411 2412 valbool = val ? 1 : 0; 2413 2414 switch (optname) { 2415 case UDP_CORK: 2416 if (val != 0) { 2417 up->corkflag = 1; 2418 } else { 2419 up->corkflag = 0; 2420 lock_sock(sk); 2421 push_pending_frames(sk); 2422 release_sock(sk); 2423 } 2424 break; 2425 2426 case UDP_ENCAP: 2427 switch (val) { 2428 case 0: 2429 case UDP_ENCAP_ESPINUDP: 2430 case UDP_ENCAP_ESPINUDP_NON_IKE: 2431 up->encap_rcv = xfrm4_udp_encap_rcv; 2432 /* FALLTHROUGH */ 2433 case UDP_ENCAP_L2TPINUDP: 2434 up->encap_type = val; 2435 udp_encap_enable(); 2436 break; 2437 default: 2438 err = -ENOPROTOOPT; 2439 break; 2440 } 2441 break; 2442 2443 case UDP_NO_CHECK6_TX: 2444 up->no_check6_tx = valbool; 2445 break; 2446 2447 case UDP_NO_CHECK6_RX: 2448 up->no_check6_rx = valbool; 2449 break; 2450 2451 case UDP_SEGMENT: 2452 if (val < 0 || val > USHRT_MAX) 2453 return -EINVAL; 2454 up->gso_size = val; 2455 break; 2456 2457 /* 2458 * UDP-Lite's partial checksum coverage (RFC 3828). 2459 */ 2460 /* The sender sets actual checksum coverage length via this option. 2461 * The case coverage > packet length is handled by send module. */ 2462 case UDPLITE_SEND_CSCOV: 2463 if (!is_udplite) /* Disable the option on UDP sockets */ 2464 return -ENOPROTOOPT; 2465 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2466 val = 8; 2467 else if (val > USHRT_MAX) 2468 val = USHRT_MAX; 2469 up->pcslen = val; 2470 up->pcflag |= UDPLITE_SEND_CC; 2471 break; 2472 2473 /* The receiver specifies a minimum checksum coverage value. To make 2474 * sense, this should be set to at least 8 (as done below). If zero is 2475 * used, this again means full checksum coverage. */ 2476 case UDPLITE_RECV_CSCOV: 2477 if (!is_udplite) /* Disable the option on UDP sockets */ 2478 return -ENOPROTOOPT; 2479 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2480 val = 8; 2481 else if (val > USHRT_MAX) 2482 val = USHRT_MAX; 2483 up->pcrlen = val; 2484 up->pcflag |= UDPLITE_RECV_CC; 2485 break; 2486 2487 default: 2488 err = -ENOPROTOOPT; 2489 break; 2490 } 2491 2492 return err; 2493 } 2494 EXPORT_SYMBOL(udp_lib_setsockopt); 2495 2496 int udp_setsockopt(struct sock *sk, int level, int optname, 2497 char __user *optval, unsigned int optlen) 2498 { 2499 if (level == SOL_UDP || level == SOL_UDPLITE) 2500 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2501 udp_push_pending_frames); 2502 return ip_setsockopt(sk, level, optname, optval, optlen); 2503 } 2504 2505 #ifdef CONFIG_COMPAT 2506 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2507 char __user *optval, unsigned int optlen) 2508 { 2509 if (level == SOL_UDP || level == SOL_UDPLITE) 2510 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2511 udp_push_pending_frames); 2512 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2513 } 2514 #endif 2515 2516 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2517 char __user *optval, int __user *optlen) 2518 { 2519 struct udp_sock *up = udp_sk(sk); 2520 int val, len; 2521 2522 if (get_user(len, optlen)) 2523 return -EFAULT; 2524 2525 len = min_t(unsigned int, len, sizeof(int)); 2526 2527 if (len < 0) 2528 return -EINVAL; 2529 2530 switch (optname) { 2531 case UDP_CORK: 2532 val = up->corkflag; 2533 break; 2534 2535 case UDP_ENCAP: 2536 val = up->encap_type; 2537 break; 2538 2539 case UDP_NO_CHECK6_TX: 2540 val = up->no_check6_tx; 2541 break; 2542 2543 case UDP_NO_CHECK6_RX: 2544 val = up->no_check6_rx; 2545 break; 2546 2547 case UDP_SEGMENT: 2548 val = up->gso_size; 2549 break; 2550 2551 /* The following two cannot be changed on UDP sockets, the return is 2552 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2553 case UDPLITE_SEND_CSCOV: 2554 val = up->pcslen; 2555 break; 2556 2557 case UDPLITE_RECV_CSCOV: 2558 val = up->pcrlen; 2559 break; 2560 2561 default: 2562 return -ENOPROTOOPT; 2563 } 2564 2565 if (put_user(len, optlen)) 2566 return -EFAULT; 2567 if (copy_to_user(optval, &val, len)) 2568 return -EFAULT; 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(udp_lib_getsockopt); 2572 2573 int udp_getsockopt(struct sock *sk, int level, int optname, 2574 char __user *optval, int __user *optlen) 2575 { 2576 if (level == SOL_UDP || level == SOL_UDPLITE) 2577 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2578 return ip_getsockopt(sk, level, optname, optval, optlen); 2579 } 2580 2581 #ifdef CONFIG_COMPAT 2582 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2583 char __user *optval, int __user *optlen) 2584 { 2585 if (level == SOL_UDP || level == SOL_UDPLITE) 2586 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2587 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2588 } 2589 #endif 2590 /** 2591 * udp_poll - wait for a UDP event. 2592 * @file - file struct 2593 * @sock - socket 2594 * @events - events to wait for 2595 * 2596 * This is same as datagram poll, except for the special case of 2597 * blocking sockets. If application is using a blocking fd 2598 * and a packet with checksum error is in the queue; 2599 * then it could get return from select indicating data available 2600 * but then block when reading it. Add special case code 2601 * to work around these arguably broken applications. 2602 */ 2603 __poll_t udp_poll_mask(struct socket *sock, __poll_t events) 2604 { 2605 __poll_t mask = datagram_poll_mask(sock, events); 2606 struct sock *sk = sock->sk; 2607 2608 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2609 mask |= EPOLLIN | EPOLLRDNORM; 2610 2611 /* Check for false positives due to checksum errors */ 2612 if ((mask & EPOLLRDNORM) && !(sock->file->f_flags & O_NONBLOCK) && 2613 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2614 mask &= ~(EPOLLIN | EPOLLRDNORM); 2615 2616 return mask; 2617 2618 } 2619 EXPORT_SYMBOL(udp_poll_mask); 2620 2621 int udp_abort(struct sock *sk, int err) 2622 { 2623 lock_sock(sk); 2624 2625 sk->sk_err = err; 2626 sk->sk_error_report(sk); 2627 __udp_disconnect(sk, 0); 2628 2629 release_sock(sk); 2630 2631 return 0; 2632 } 2633 EXPORT_SYMBOL_GPL(udp_abort); 2634 2635 struct proto udp_prot = { 2636 .name = "UDP", 2637 .owner = THIS_MODULE, 2638 .close = udp_lib_close, 2639 .pre_connect = udp_pre_connect, 2640 .connect = ip4_datagram_connect, 2641 .disconnect = udp_disconnect, 2642 .ioctl = udp_ioctl, 2643 .init = udp_init_sock, 2644 .destroy = udp_destroy_sock, 2645 .setsockopt = udp_setsockopt, 2646 .getsockopt = udp_getsockopt, 2647 .sendmsg = udp_sendmsg, 2648 .recvmsg = udp_recvmsg, 2649 .sendpage = udp_sendpage, 2650 .release_cb = ip4_datagram_release_cb, 2651 .hash = udp_lib_hash, 2652 .unhash = udp_lib_unhash, 2653 .rehash = udp_v4_rehash, 2654 .get_port = udp_v4_get_port, 2655 .memory_allocated = &udp_memory_allocated, 2656 .sysctl_mem = sysctl_udp_mem, 2657 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2658 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2659 .obj_size = sizeof(struct udp_sock), 2660 .h.udp_table = &udp_table, 2661 #ifdef CONFIG_COMPAT 2662 .compat_setsockopt = compat_udp_setsockopt, 2663 .compat_getsockopt = compat_udp_getsockopt, 2664 #endif 2665 .diag_destroy = udp_abort, 2666 }; 2667 EXPORT_SYMBOL(udp_prot); 2668 2669 /* ------------------------------------------------------------------------ */ 2670 #ifdef CONFIG_PROC_FS 2671 2672 static struct sock *udp_get_first(struct seq_file *seq, int start) 2673 { 2674 struct sock *sk; 2675 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2676 struct udp_iter_state *state = seq->private; 2677 struct net *net = seq_file_net(seq); 2678 2679 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2680 ++state->bucket) { 2681 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2682 2683 if (hlist_empty(&hslot->head)) 2684 continue; 2685 2686 spin_lock_bh(&hslot->lock); 2687 sk_for_each(sk, &hslot->head) { 2688 if (!net_eq(sock_net(sk), net)) 2689 continue; 2690 if (sk->sk_family == afinfo->family) 2691 goto found; 2692 } 2693 spin_unlock_bh(&hslot->lock); 2694 } 2695 sk = NULL; 2696 found: 2697 return sk; 2698 } 2699 2700 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2701 { 2702 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2703 struct udp_iter_state *state = seq->private; 2704 struct net *net = seq_file_net(seq); 2705 2706 do { 2707 sk = sk_next(sk); 2708 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2709 2710 if (!sk) { 2711 if (state->bucket <= afinfo->udp_table->mask) 2712 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2713 return udp_get_first(seq, state->bucket + 1); 2714 } 2715 return sk; 2716 } 2717 2718 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2719 { 2720 struct sock *sk = udp_get_first(seq, 0); 2721 2722 if (sk) 2723 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2724 --pos; 2725 return pos ? NULL : sk; 2726 } 2727 2728 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2729 { 2730 struct udp_iter_state *state = seq->private; 2731 state->bucket = MAX_UDP_PORTS; 2732 2733 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2734 } 2735 EXPORT_SYMBOL(udp_seq_start); 2736 2737 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2738 { 2739 struct sock *sk; 2740 2741 if (v == SEQ_START_TOKEN) 2742 sk = udp_get_idx(seq, 0); 2743 else 2744 sk = udp_get_next(seq, v); 2745 2746 ++*pos; 2747 return sk; 2748 } 2749 EXPORT_SYMBOL(udp_seq_next); 2750 2751 void udp_seq_stop(struct seq_file *seq, void *v) 2752 { 2753 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2754 struct udp_iter_state *state = seq->private; 2755 2756 if (state->bucket <= afinfo->udp_table->mask) 2757 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2758 } 2759 EXPORT_SYMBOL(udp_seq_stop); 2760 2761 /* ------------------------------------------------------------------------ */ 2762 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2763 int bucket) 2764 { 2765 struct inet_sock *inet = inet_sk(sp); 2766 __be32 dest = inet->inet_daddr; 2767 __be32 src = inet->inet_rcv_saddr; 2768 __u16 destp = ntohs(inet->inet_dport); 2769 __u16 srcp = ntohs(inet->inet_sport); 2770 2771 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2772 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2773 bucket, src, srcp, dest, destp, sp->sk_state, 2774 sk_wmem_alloc_get(sp), 2775 udp_rqueue_get(sp), 2776 0, 0L, 0, 2777 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2778 0, sock_i_ino(sp), 2779 refcount_read(&sp->sk_refcnt), sp, 2780 atomic_read(&sp->sk_drops)); 2781 } 2782 2783 int udp4_seq_show(struct seq_file *seq, void *v) 2784 { 2785 seq_setwidth(seq, 127); 2786 if (v == SEQ_START_TOKEN) 2787 seq_puts(seq, " sl local_address rem_address st tx_queue " 2788 "rx_queue tr tm->when retrnsmt uid timeout " 2789 "inode ref pointer drops"); 2790 else { 2791 struct udp_iter_state *state = seq->private; 2792 2793 udp4_format_sock(v, seq, state->bucket); 2794 } 2795 seq_pad(seq, '\n'); 2796 return 0; 2797 } 2798 2799 const struct seq_operations udp_seq_ops = { 2800 .start = udp_seq_start, 2801 .next = udp_seq_next, 2802 .stop = udp_seq_stop, 2803 .show = udp4_seq_show, 2804 }; 2805 EXPORT_SYMBOL(udp_seq_ops); 2806 2807 static struct udp_seq_afinfo udp4_seq_afinfo = { 2808 .family = AF_INET, 2809 .udp_table = &udp_table, 2810 }; 2811 2812 static int __net_init udp4_proc_init_net(struct net *net) 2813 { 2814 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2815 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2816 return -ENOMEM; 2817 return 0; 2818 } 2819 2820 static void __net_exit udp4_proc_exit_net(struct net *net) 2821 { 2822 remove_proc_entry("udp", net->proc_net); 2823 } 2824 2825 static struct pernet_operations udp4_net_ops = { 2826 .init = udp4_proc_init_net, 2827 .exit = udp4_proc_exit_net, 2828 }; 2829 2830 int __init udp4_proc_init(void) 2831 { 2832 return register_pernet_subsys(&udp4_net_ops); 2833 } 2834 2835 void udp4_proc_exit(void) 2836 { 2837 unregister_pernet_subsys(&udp4_net_ops); 2838 } 2839 #endif /* CONFIG_PROC_FS */ 2840 2841 static __initdata unsigned long uhash_entries; 2842 static int __init set_uhash_entries(char *str) 2843 { 2844 ssize_t ret; 2845 2846 if (!str) 2847 return 0; 2848 2849 ret = kstrtoul(str, 0, &uhash_entries); 2850 if (ret) 2851 return 0; 2852 2853 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2854 uhash_entries = UDP_HTABLE_SIZE_MIN; 2855 return 1; 2856 } 2857 __setup("uhash_entries=", set_uhash_entries); 2858 2859 void __init udp_table_init(struct udp_table *table, const char *name) 2860 { 2861 unsigned int i; 2862 2863 table->hash = alloc_large_system_hash(name, 2864 2 * sizeof(struct udp_hslot), 2865 uhash_entries, 2866 21, /* one slot per 2 MB */ 2867 0, 2868 &table->log, 2869 &table->mask, 2870 UDP_HTABLE_SIZE_MIN, 2871 64 * 1024); 2872 2873 table->hash2 = table->hash + (table->mask + 1); 2874 for (i = 0; i <= table->mask; i++) { 2875 INIT_HLIST_HEAD(&table->hash[i].head); 2876 table->hash[i].count = 0; 2877 spin_lock_init(&table->hash[i].lock); 2878 } 2879 for (i = 0; i <= table->mask; i++) { 2880 INIT_HLIST_HEAD(&table->hash2[i].head); 2881 table->hash2[i].count = 0; 2882 spin_lock_init(&table->hash2[i].lock); 2883 } 2884 } 2885 2886 u32 udp_flow_hashrnd(void) 2887 { 2888 static u32 hashrnd __read_mostly; 2889 2890 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2891 2892 return hashrnd; 2893 } 2894 EXPORT_SYMBOL(udp_flow_hashrnd); 2895 2896 static void __udp_sysctl_init(struct net *net) 2897 { 2898 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2899 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2900 2901 #ifdef CONFIG_NET_L3_MASTER_DEV 2902 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2903 #endif 2904 } 2905 2906 static int __net_init udp_sysctl_init(struct net *net) 2907 { 2908 __udp_sysctl_init(net); 2909 return 0; 2910 } 2911 2912 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2913 .init = udp_sysctl_init, 2914 }; 2915 2916 void __init udp_init(void) 2917 { 2918 unsigned long limit; 2919 unsigned int i; 2920 2921 udp_table_init(&udp_table, "UDP"); 2922 limit = nr_free_buffer_pages() / 8; 2923 limit = max(limit, 128UL); 2924 sysctl_udp_mem[0] = limit / 4 * 3; 2925 sysctl_udp_mem[1] = limit; 2926 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2927 2928 __udp_sysctl_init(&init_net); 2929 2930 /* 16 spinlocks per cpu */ 2931 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2932 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2933 GFP_KERNEL); 2934 if (!udp_busylocks) 2935 panic("UDP: failed to alloc udp_busylocks\n"); 2936 for (i = 0; i < (1U << udp_busylocks_log); i++) 2937 spin_lock_init(udp_busylocks + i); 2938 2939 if (register_pernet_subsys(&udp_sysctl_ops)) 2940 panic("UDP: failed to init sysctl parameters.\n"); 2941 } 2942