xref: /openbmc/linux/net/ipv4/udp.c (revision f94909ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/types.h>
82 #include <linux/fcntl.h>
83 #include <linux/module.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/igmp.h>
87 #include <linux/inetdevice.h>
88 #include <linux/in.h>
89 #include <linux/errno.h>
90 #include <linux/timer.h>
91 #include <linux/mm.h>
92 #include <linux/inet.h>
93 #include <linux/netdevice.h>
94 #include <linux/slab.h>
95 #include <net/tcp_states.h>
96 #include <linux/skbuff.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <net/net_namespace.h>
100 #include <net/icmp.h>
101 #include <net/inet_hashtables.h>
102 #include <net/ip_tunnels.h>
103 #include <net/route.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <trace/events/udp.h>
107 #include <linux/static_key.h>
108 #include <linux/btf_ids.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 #if IS_ENABLED(CONFIG_IPV6)
116 #include <net/ipv6_stubs.h>
117 #endif
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 static int udp_lib_lport_inuse(struct net *net, __u16 num,
132 			       const struct udp_hslot *hslot,
133 			       unsigned long *bitmap,
134 			       struct sock *sk, unsigned int log)
135 {
136 	struct sock *sk2;
137 	kuid_t uid = sock_i_uid(sk);
138 
139 	sk_for_each(sk2, &hslot->head) {
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    inet_rcv_saddr_equal(sk, sk2, true)) {
147 			if (sk2->sk_reuseport && sk->sk_reuseport &&
148 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
149 			    uid_eq(uid, sock_i_uid(sk2))) {
150 				if (!bitmap)
151 					return 0;
152 			} else {
153 				if (!bitmap)
154 					return 1;
155 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
156 					  bitmap);
157 			}
158 		}
159 	}
160 	return 0;
161 }
162 
163 /*
164  * Note: we still hold spinlock of primary hash chain, so no other writer
165  * can insert/delete a socket with local_port == num
166  */
167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 				struct udp_hslot *hslot2,
169 				struct sock *sk)
170 {
171 	struct sock *sk2;
172 	kuid_t uid = sock_i_uid(sk);
173 	int res = 0;
174 
175 	spin_lock(&hslot2->lock);
176 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
177 		if (net_eq(sock_net(sk2), net) &&
178 		    sk2 != sk &&
179 		    (udp_sk(sk2)->udp_port_hash == num) &&
180 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
181 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
182 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
183 		    inet_rcv_saddr_equal(sk, sk2, true)) {
184 			if (sk2->sk_reuseport && sk->sk_reuseport &&
185 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
186 			    uid_eq(uid, sock_i_uid(sk2))) {
187 				res = 0;
188 			} else {
189 				res = 1;
190 			}
191 			break;
192 		}
193 	}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
199 {
200 	struct net *net = sock_net(sk);
201 	kuid_t uid = sock_i_uid(sk);
202 	struct sock *sk2;
203 
204 	sk_for_each(sk2, &hslot->head) {
205 		if (net_eq(sock_net(sk2), net) &&
206 		    sk2 != sk &&
207 		    sk2->sk_family == sk->sk_family &&
208 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
209 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
210 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
211 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
212 		    inet_rcv_saddr_equal(sk, sk2, false)) {
213 			return reuseport_add_sock(sk, sk2,
214 						  inet_rcv_saddr_any(sk));
215 		}
216 	}
217 
218 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
219 }
220 
221 /**
222  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
223  *
224  *  @sk:          socket struct in question
225  *  @snum:        port number to look up
226  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
227  *                   with NULL address
228  */
229 int udp_lib_get_port(struct sock *sk, unsigned short snum,
230 		     unsigned int hash2_nulladdr)
231 {
232 	struct udp_hslot *hslot, *hslot2;
233 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
234 	int    error = 1;
235 	struct net *net = sock_net(sk);
236 
237 	if (!snum) {
238 		int low, high, remaining;
239 		unsigned int rand;
240 		unsigned short first, last;
241 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
242 
243 		inet_get_local_port_range(net, &low, &high);
244 		remaining = (high - low) + 1;
245 
246 		rand = prandom_u32();
247 		first = reciprocal_scale(rand, remaining) + low;
248 		/*
249 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
250 		 */
251 		rand = (rand | 1) * (udptable->mask + 1);
252 		last = first + udptable->mask + 1;
253 		do {
254 			hslot = udp_hashslot(udptable, net, first);
255 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
256 			spin_lock_bh(&hslot->lock);
257 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
258 					    udptable->log);
259 
260 			snum = first;
261 			/*
262 			 * Iterate on all possible values of snum for this hash.
263 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
264 			 * give us randomization and full range coverage.
265 			 */
266 			do {
267 				if (low <= snum && snum <= high &&
268 				    !test_bit(snum >> udptable->log, bitmap) &&
269 				    !inet_is_local_reserved_port(net, snum))
270 					goto found;
271 				snum += rand;
272 			} while (snum != first);
273 			spin_unlock_bh(&hslot->lock);
274 			cond_resched();
275 		} while (++first != last);
276 		goto fail;
277 	} else {
278 		hslot = udp_hashslot(udptable, net, snum);
279 		spin_lock_bh(&hslot->lock);
280 		if (hslot->count > 10) {
281 			int exist;
282 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
283 
284 			slot2          &= udptable->mask;
285 			hash2_nulladdr &= udptable->mask;
286 
287 			hslot2 = udp_hashslot2(udptable, slot2);
288 			if (hslot->count < hslot2->count)
289 				goto scan_primary_hash;
290 
291 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
292 			if (!exist && (hash2_nulladdr != slot2)) {
293 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
294 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
295 							     sk);
296 			}
297 			if (exist)
298 				goto fail_unlock;
299 			else
300 				goto found;
301 		}
302 scan_primary_hash:
303 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
304 			goto fail_unlock;
305 	}
306 found:
307 	inet_sk(sk)->inet_num = snum;
308 	udp_sk(sk)->udp_port_hash = snum;
309 	udp_sk(sk)->udp_portaddr_hash ^= snum;
310 	if (sk_unhashed(sk)) {
311 		if (sk->sk_reuseport &&
312 		    udp_reuseport_add_sock(sk, hslot)) {
313 			inet_sk(sk)->inet_num = 0;
314 			udp_sk(sk)->udp_port_hash = 0;
315 			udp_sk(sk)->udp_portaddr_hash ^= snum;
316 			goto fail_unlock;
317 		}
318 
319 		sk_add_node_rcu(sk, &hslot->head);
320 		hslot->count++;
321 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
322 
323 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
324 		spin_lock(&hslot2->lock);
325 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
326 		    sk->sk_family == AF_INET6)
327 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		else
330 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		hslot2->count++;
333 		spin_unlock(&hslot2->lock);
334 	}
335 	sock_set_flag(sk, SOCK_RCU_FREE);
336 	error = 0;
337 fail_unlock:
338 	spin_unlock_bh(&hslot->lock);
339 fail:
340 	return error;
341 }
342 EXPORT_SYMBOL(udp_lib_get_port);
343 
344 int udp_v4_get_port(struct sock *sk, unsigned short snum)
345 {
346 	unsigned int hash2_nulladdr =
347 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
348 	unsigned int hash2_partial =
349 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
350 
351 	/* precompute partial secondary hash */
352 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
353 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
354 }
355 
356 static int compute_score(struct sock *sk, struct net *net,
357 			 __be32 saddr, __be16 sport,
358 			 __be32 daddr, unsigned short hnum,
359 			 int dif, int sdif)
360 {
361 	int score;
362 	struct inet_sock *inet;
363 	bool dev_match;
364 
365 	if (!net_eq(sock_net(sk), net) ||
366 	    udp_sk(sk)->udp_port_hash != hnum ||
367 	    ipv6_only_sock(sk))
368 		return -1;
369 
370 	if (sk->sk_rcv_saddr != daddr)
371 		return -1;
372 
373 	score = (sk->sk_family == PF_INET) ? 2 : 1;
374 
375 	inet = inet_sk(sk);
376 	if (inet->inet_daddr) {
377 		if (inet->inet_daddr != saddr)
378 			return -1;
379 		score += 4;
380 	}
381 
382 	if (inet->inet_dport) {
383 		if (inet->inet_dport != sport)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
389 					dif, sdif);
390 	if (!dev_match)
391 		return -1;
392 	if (sk->sk_bound_dev_if)
393 		score += 4;
394 
395 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
396 		score++;
397 	return score;
398 }
399 
400 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
401 		       const __u16 lport, const __be32 faddr,
402 		       const __be16 fport)
403 {
404 	static u32 udp_ehash_secret __read_mostly;
405 
406 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
407 
408 	return __inet_ehashfn(laddr, lport, faddr, fport,
409 			      udp_ehash_secret + net_hash_mix(net));
410 }
411 
412 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
413 				     struct sk_buff *skb,
414 				     __be32 saddr, __be16 sport,
415 				     __be32 daddr, unsigned short hnum)
416 {
417 	struct sock *reuse_sk = NULL;
418 	u32 hash;
419 
420 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
421 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
422 		reuse_sk = reuseport_select_sock(sk, hash, skb,
423 						 sizeof(struct udphdr));
424 	}
425 	return reuse_sk;
426 }
427 
428 /* called with rcu_read_lock() */
429 static struct sock *udp4_lib_lookup2(struct net *net,
430 				     __be32 saddr, __be16 sport,
431 				     __be32 daddr, unsigned int hnum,
432 				     int dif, int sdif,
433 				     struct udp_hslot *hslot2,
434 				     struct sk_buff *skb)
435 {
436 	struct sock *sk, *result;
437 	int score, badness;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif);
444 		if (score > badness) {
445 			result = lookup_reuseport(net, sk, skb,
446 						  saddr, sport, daddr, hnum);
447 			/* Fall back to scoring if group has connections */
448 			if (result && !reuseport_has_conns(sk, false))
449 				return result;
450 
451 			result = result ? : sk;
452 			badness = score;
453 		}
454 	}
455 	return result;
456 }
457 
458 static struct sock *udp4_lookup_run_bpf(struct net *net,
459 					struct udp_table *udptable,
460 					struct sk_buff *skb,
461 					__be32 saddr, __be16 sport,
462 					__be32 daddr, u16 hnum)
463 {
464 	struct sock *sk, *reuse_sk;
465 	bool no_reuseport;
466 
467 	if (udptable != &udp_table)
468 		return NULL; /* only UDP is supported */
469 
470 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
471 					    saddr, sport, daddr, hnum, &sk);
472 	if (no_reuseport || IS_ERR_OR_NULL(sk))
473 		return sk;
474 
475 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
476 	if (reuse_sk)
477 		sk = reuse_sk;
478 	return sk;
479 }
480 
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482  * harder than this. -DaveM
483  */
484 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
485 		__be16 sport, __be32 daddr, __be16 dport, int dif,
486 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
487 {
488 	unsigned short hnum = ntohs(dport);
489 	unsigned int hash2, slot2;
490 	struct udp_hslot *hslot2;
491 	struct sock *result, *sk;
492 
493 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 	slot2 = hash2 & udptable->mask;
495 	hslot2 = &udptable->hash2[slot2];
496 
497 	/* Lookup connected or non-wildcard socket */
498 	result = udp4_lib_lookup2(net, saddr, sport,
499 				  daddr, hnum, dif, sdif,
500 				  hslot2, skb);
501 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 		goto done;
503 
504 	/* Lookup redirect from BPF */
505 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
506 		sk = udp4_lookup_run_bpf(net, udptable, skb,
507 					 saddr, sport, daddr, hnum);
508 		if (sk) {
509 			result = sk;
510 			goto done;
511 		}
512 	}
513 
514 	/* Got non-wildcard socket or error on first lookup */
515 	if (result)
516 		goto done;
517 
518 	/* Lookup wildcard sockets */
519 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 	slot2 = hash2 & udptable->mask;
521 	hslot2 = &udptable->hash2[slot2];
522 
523 	result = udp4_lib_lookup2(net, saddr, sport,
524 				  htonl(INADDR_ANY), hnum, dif, sdif,
525 				  hslot2, skb);
526 done:
527 	if (IS_ERR(result))
528 		return NULL;
529 	return result;
530 }
531 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
532 
533 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
534 						 __be16 sport, __be16 dport,
535 						 struct udp_table *udptable)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 
539 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
540 				 iph->daddr, dport, inet_iif(skb),
541 				 inet_sdif(skb), udptable, skb);
542 }
543 
544 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
545 				 __be16 sport, __be16 dport)
546 {
547 	const struct iphdr *iph = ip_hdr(skb);
548 
549 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
550 				 iph->daddr, dport, inet_iif(skb),
551 				 inet_sdif(skb), &udp_table, NULL);
552 }
553 
554 /* Must be called under rcu_read_lock().
555  * Does increment socket refcount.
556  */
557 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
558 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
559 			     __be32 daddr, __be16 dport, int dif)
560 {
561 	struct sock *sk;
562 
563 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
564 			       dif, 0, &udp_table, NULL);
565 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
566 		sk = NULL;
567 	return sk;
568 }
569 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
570 #endif
571 
572 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
573 				       __be16 loc_port, __be32 loc_addr,
574 				       __be16 rmt_port, __be32 rmt_addr,
575 				       int dif, int sdif, unsigned short hnum)
576 {
577 	struct inet_sock *inet = inet_sk(sk);
578 
579 	if (!net_eq(sock_net(sk), net) ||
580 	    udp_sk(sk)->udp_port_hash != hnum ||
581 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
582 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
583 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
584 	    ipv6_only_sock(sk) ||
585 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
586 		return false;
587 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
588 		return false;
589 	return true;
590 }
591 
592 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
593 void udp_encap_enable(void)
594 {
595 	static_branch_inc(&udp_encap_needed_key);
596 }
597 EXPORT_SYMBOL(udp_encap_enable);
598 
599 void udp_encap_disable(void)
600 {
601 	static_branch_dec(&udp_encap_needed_key);
602 }
603 EXPORT_SYMBOL(udp_encap_disable);
604 
605 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
606  * through error handlers in encapsulations looking for a match.
607  */
608 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
609 {
610 	int i;
611 
612 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
613 		int (*handler)(struct sk_buff *skb, u32 info);
614 		const struct ip_tunnel_encap_ops *encap;
615 
616 		encap = rcu_dereference(iptun_encaps[i]);
617 		if (!encap)
618 			continue;
619 		handler = encap->err_handler;
620 		if (handler && !handler(skb, info))
621 			return 0;
622 	}
623 
624 	return -ENOENT;
625 }
626 
627 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
628  * reversing source and destination port: this will match tunnels that force the
629  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
630  * lwtunnels might actually break this assumption by being configured with
631  * different destination ports on endpoints, in this case we won't be able to
632  * trace ICMP messages back to them.
633  *
634  * If this doesn't match any socket, probe tunnels with arbitrary destination
635  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
636  * we've sent packets to won't necessarily match the local destination port.
637  *
638  * Then ask the tunnel implementation to match the error against a valid
639  * association.
640  *
641  * Return an error if we can't find a match, the socket if we need further
642  * processing, zero otherwise.
643  */
644 static struct sock *__udp4_lib_err_encap(struct net *net,
645 					 const struct iphdr *iph,
646 					 struct udphdr *uh,
647 					 struct udp_table *udptable,
648 					 struct sock *sk,
649 					 struct sk_buff *skb, u32 info)
650 {
651 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
652 	int network_offset, transport_offset;
653 	struct udp_sock *up;
654 
655 	network_offset = skb_network_offset(skb);
656 	transport_offset = skb_transport_offset(skb);
657 
658 	/* Network header needs to point to the outer IPv4 header inside ICMP */
659 	skb_reset_network_header(skb);
660 
661 	/* Transport header needs to point to the UDP header */
662 	skb_set_transport_header(skb, iph->ihl << 2);
663 
664 	if (sk) {
665 		up = udp_sk(sk);
666 
667 		lookup = READ_ONCE(up->encap_err_lookup);
668 		if (lookup && lookup(sk, skb))
669 			sk = NULL;
670 
671 		goto out;
672 	}
673 
674 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
675 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
676 			       udptable, NULL);
677 	if (sk) {
678 		up = udp_sk(sk);
679 
680 		lookup = READ_ONCE(up->encap_err_lookup);
681 		if (!lookup || lookup(sk, skb))
682 			sk = NULL;
683 	}
684 
685 out:
686 	if (!sk)
687 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
688 
689 	skb_set_transport_header(skb, transport_offset);
690 	skb_set_network_header(skb, network_offset);
691 
692 	return sk;
693 }
694 
695 /*
696  * This routine is called by the ICMP module when it gets some
697  * sort of error condition.  If err < 0 then the socket should
698  * be closed and the error returned to the user.  If err > 0
699  * it's just the icmp type << 8 | icmp code.
700  * Header points to the ip header of the error packet. We move
701  * on past this. Then (as it used to claim before adjustment)
702  * header points to the first 8 bytes of the udp header.  We need
703  * to find the appropriate port.
704  */
705 
706 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
707 {
708 	struct inet_sock *inet;
709 	const struct iphdr *iph = (const struct iphdr *)skb->data;
710 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
711 	const int type = icmp_hdr(skb)->type;
712 	const int code = icmp_hdr(skb)->code;
713 	bool tunnel = false;
714 	struct sock *sk;
715 	int harderr;
716 	int err;
717 	struct net *net = dev_net(skb->dev);
718 
719 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
720 			       iph->saddr, uh->source, skb->dev->ifindex,
721 			       inet_sdif(skb), udptable, NULL);
722 
723 	if (!sk || udp_sk(sk)->encap_type) {
724 		/* No socket for error: try tunnels before discarding */
725 		if (static_branch_unlikely(&udp_encap_needed_key)) {
726 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
727 						  info);
728 			if (!sk)
729 				return 0;
730 		} else
731 			sk = ERR_PTR(-ENOENT);
732 
733 		if (IS_ERR(sk)) {
734 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
735 			return PTR_ERR(sk);
736 		}
737 
738 		tunnel = true;
739 	}
740 
741 	err = 0;
742 	harderr = 0;
743 	inet = inet_sk(sk);
744 
745 	switch (type) {
746 	default:
747 	case ICMP_TIME_EXCEEDED:
748 		err = EHOSTUNREACH;
749 		break;
750 	case ICMP_SOURCE_QUENCH:
751 		goto out;
752 	case ICMP_PARAMETERPROB:
753 		err = EPROTO;
754 		harderr = 1;
755 		break;
756 	case ICMP_DEST_UNREACH:
757 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
758 			ipv4_sk_update_pmtu(skb, sk, info);
759 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
760 				err = EMSGSIZE;
761 				harderr = 1;
762 				break;
763 			}
764 			goto out;
765 		}
766 		err = EHOSTUNREACH;
767 		if (code <= NR_ICMP_UNREACH) {
768 			harderr = icmp_err_convert[code].fatal;
769 			err = icmp_err_convert[code].errno;
770 		}
771 		break;
772 	case ICMP_REDIRECT:
773 		ipv4_sk_redirect(skb, sk);
774 		goto out;
775 	}
776 
777 	/*
778 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
779 	 *	4.1.3.3.
780 	 */
781 	if (tunnel) {
782 		/* ...not for tunnels though: we don't have a sending socket */
783 		goto out;
784 	}
785 	if (!inet->recverr) {
786 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
787 			goto out;
788 	} else
789 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
790 
791 	sk->sk_err = err;
792 	sk_error_report(sk);
793 out:
794 	return 0;
795 }
796 
797 int udp_err(struct sk_buff *skb, u32 info)
798 {
799 	return __udp4_lib_err(skb, info, &udp_table);
800 }
801 
802 /*
803  * Throw away all pending data and cancel the corking. Socket is locked.
804  */
805 void udp_flush_pending_frames(struct sock *sk)
806 {
807 	struct udp_sock *up = udp_sk(sk);
808 
809 	if (up->pending) {
810 		up->len = 0;
811 		up->pending = 0;
812 		ip_flush_pending_frames(sk);
813 	}
814 }
815 EXPORT_SYMBOL(udp_flush_pending_frames);
816 
817 /**
818  * 	udp4_hwcsum  -  handle outgoing HW checksumming
819  * 	@skb: 	sk_buff containing the filled-in UDP header
820  * 	        (checksum field must be zeroed out)
821  *	@src:	source IP address
822  *	@dst:	destination IP address
823  */
824 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
825 {
826 	struct udphdr *uh = udp_hdr(skb);
827 	int offset = skb_transport_offset(skb);
828 	int len = skb->len - offset;
829 	int hlen = len;
830 	__wsum csum = 0;
831 
832 	if (!skb_has_frag_list(skb)) {
833 		/*
834 		 * Only one fragment on the socket.
835 		 */
836 		skb->csum_start = skb_transport_header(skb) - skb->head;
837 		skb->csum_offset = offsetof(struct udphdr, check);
838 		uh->check = ~csum_tcpudp_magic(src, dst, len,
839 					       IPPROTO_UDP, 0);
840 	} else {
841 		struct sk_buff *frags;
842 
843 		/*
844 		 * HW-checksum won't work as there are two or more
845 		 * fragments on the socket so that all csums of sk_buffs
846 		 * should be together
847 		 */
848 		skb_walk_frags(skb, frags) {
849 			csum = csum_add(csum, frags->csum);
850 			hlen -= frags->len;
851 		}
852 
853 		csum = skb_checksum(skb, offset, hlen, csum);
854 		skb->ip_summed = CHECKSUM_NONE;
855 
856 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
857 		if (uh->check == 0)
858 			uh->check = CSUM_MANGLED_0;
859 	}
860 }
861 EXPORT_SYMBOL_GPL(udp4_hwcsum);
862 
863 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
864  * for the simple case like when setting the checksum for a UDP tunnel.
865  */
866 void udp_set_csum(bool nocheck, struct sk_buff *skb,
867 		  __be32 saddr, __be32 daddr, int len)
868 {
869 	struct udphdr *uh = udp_hdr(skb);
870 
871 	if (nocheck) {
872 		uh->check = 0;
873 	} else if (skb_is_gso(skb)) {
874 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
875 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
876 		uh->check = 0;
877 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
878 		if (uh->check == 0)
879 			uh->check = CSUM_MANGLED_0;
880 	} else {
881 		skb->ip_summed = CHECKSUM_PARTIAL;
882 		skb->csum_start = skb_transport_header(skb) - skb->head;
883 		skb->csum_offset = offsetof(struct udphdr, check);
884 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
885 	}
886 }
887 EXPORT_SYMBOL(udp_set_csum);
888 
889 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
890 			struct inet_cork *cork)
891 {
892 	struct sock *sk = skb->sk;
893 	struct inet_sock *inet = inet_sk(sk);
894 	struct udphdr *uh;
895 	int err;
896 	int is_udplite = IS_UDPLITE(sk);
897 	int offset = skb_transport_offset(skb);
898 	int len = skb->len - offset;
899 	int datalen = len - sizeof(*uh);
900 	__wsum csum = 0;
901 
902 	/*
903 	 * Create a UDP header
904 	 */
905 	uh = udp_hdr(skb);
906 	uh->source = inet->inet_sport;
907 	uh->dest = fl4->fl4_dport;
908 	uh->len = htons(len);
909 	uh->check = 0;
910 
911 	if (cork->gso_size) {
912 		const int hlen = skb_network_header_len(skb) +
913 				 sizeof(struct udphdr);
914 
915 		if (hlen + cork->gso_size > cork->fragsize) {
916 			kfree_skb(skb);
917 			return -EINVAL;
918 		}
919 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
920 			kfree_skb(skb);
921 			return -EINVAL;
922 		}
923 		if (sk->sk_no_check_tx) {
924 			kfree_skb(skb);
925 			return -EINVAL;
926 		}
927 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
928 		    dst_xfrm(skb_dst(skb))) {
929 			kfree_skb(skb);
930 			return -EIO;
931 		}
932 
933 		if (datalen > cork->gso_size) {
934 			skb_shinfo(skb)->gso_size = cork->gso_size;
935 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
936 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
937 								 cork->gso_size);
938 		}
939 		goto csum_partial;
940 	}
941 
942 	if (is_udplite)  				 /*     UDP-Lite      */
943 		csum = udplite_csum(skb);
944 
945 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
946 
947 		skb->ip_summed = CHECKSUM_NONE;
948 		goto send;
949 
950 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
951 csum_partial:
952 
953 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
954 		goto send;
955 
956 	} else
957 		csum = udp_csum(skb);
958 
959 	/* add protocol-dependent pseudo-header */
960 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
961 				      sk->sk_protocol, csum);
962 	if (uh->check == 0)
963 		uh->check = CSUM_MANGLED_0;
964 
965 send:
966 	err = ip_send_skb(sock_net(sk), skb);
967 	if (err) {
968 		if (err == -ENOBUFS && !inet->recverr) {
969 			UDP_INC_STATS(sock_net(sk),
970 				      UDP_MIB_SNDBUFERRORS, is_udplite);
971 			err = 0;
972 		}
973 	} else
974 		UDP_INC_STATS(sock_net(sk),
975 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
976 	return err;
977 }
978 
979 /*
980  * Push out all pending data as one UDP datagram. Socket is locked.
981  */
982 int udp_push_pending_frames(struct sock *sk)
983 {
984 	struct udp_sock  *up = udp_sk(sk);
985 	struct inet_sock *inet = inet_sk(sk);
986 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
987 	struct sk_buff *skb;
988 	int err = 0;
989 
990 	skb = ip_finish_skb(sk, fl4);
991 	if (!skb)
992 		goto out;
993 
994 	err = udp_send_skb(skb, fl4, &inet->cork.base);
995 
996 out:
997 	up->len = 0;
998 	up->pending = 0;
999 	return err;
1000 }
1001 EXPORT_SYMBOL(udp_push_pending_frames);
1002 
1003 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1004 {
1005 	switch (cmsg->cmsg_type) {
1006 	case UDP_SEGMENT:
1007 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1008 			return -EINVAL;
1009 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1010 		return 0;
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 }
1015 
1016 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1017 {
1018 	struct cmsghdr *cmsg;
1019 	bool need_ip = false;
1020 	int err;
1021 
1022 	for_each_cmsghdr(cmsg, msg) {
1023 		if (!CMSG_OK(msg, cmsg))
1024 			return -EINVAL;
1025 
1026 		if (cmsg->cmsg_level != SOL_UDP) {
1027 			need_ip = true;
1028 			continue;
1029 		}
1030 
1031 		err = __udp_cmsg_send(cmsg, gso_size);
1032 		if (err)
1033 			return err;
1034 	}
1035 
1036 	return need_ip;
1037 }
1038 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1039 
1040 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1041 {
1042 	struct inet_sock *inet = inet_sk(sk);
1043 	struct udp_sock *up = udp_sk(sk);
1044 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1045 	struct flowi4 fl4_stack;
1046 	struct flowi4 *fl4;
1047 	int ulen = len;
1048 	struct ipcm_cookie ipc;
1049 	struct rtable *rt = NULL;
1050 	int free = 0;
1051 	int connected = 0;
1052 	__be32 daddr, faddr, saddr;
1053 	__be16 dport;
1054 	u8  tos;
1055 	int err, is_udplite = IS_UDPLITE(sk);
1056 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1057 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1058 	struct sk_buff *skb;
1059 	struct ip_options_data opt_copy;
1060 
1061 	if (len > 0xFFFF)
1062 		return -EMSGSIZE;
1063 
1064 	/*
1065 	 *	Check the flags.
1066 	 */
1067 
1068 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1069 		return -EOPNOTSUPP;
1070 
1071 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1072 
1073 	fl4 = &inet->cork.fl.u.ip4;
1074 	if (up->pending) {
1075 		/*
1076 		 * There are pending frames.
1077 		 * The socket lock must be held while it's corked.
1078 		 */
1079 		lock_sock(sk);
1080 		if (likely(up->pending)) {
1081 			if (unlikely(up->pending != AF_INET)) {
1082 				release_sock(sk);
1083 				return -EINVAL;
1084 			}
1085 			goto do_append_data;
1086 		}
1087 		release_sock(sk);
1088 	}
1089 	ulen += sizeof(struct udphdr);
1090 
1091 	/*
1092 	 *	Get and verify the address.
1093 	 */
1094 	if (usin) {
1095 		if (msg->msg_namelen < sizeof(*usin))
1096 			return -EINVAL;
1097 		if (usin->sin_family != AF_INET) {
1098 			if (usin->sin_family != AF_UNSPEC)
1099 				return -EAFNOSUPPORT;
1100 		}
1101 
1102 		daddr = usin->sin_addr.s_addr;
1103 		dport = usin->sin_port;
1104 		if (dport == 0)
1105 			return -EINVAL;
1106 	} else {
1107 		if (sk->sk_state != TCP_ESTABLISHED)
1108 			return -EDESTADDRREQ;
1109 		daddr = inet->inet_daddr;
1110 		dport = inet->inet_dport;
1111 		/* Open fast path for connected socket.
1112 		   Route will not be used, if at least one option is set.
1113 		 */
1114 		connected = 1;
1115 	}
1116 
1117 	ipcm_init_sk(&ipc, inet);
1118 	ipc.gso_size = READ_ONCE(up->gso_size);
1119 
1120 	if (msg->msg_controllen) {
1121 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1122 		if (err > 0)
1123 			err = ip_cmsg_send(sk, msg, &ipc,
1124 					   sk->sk_family == AF_INET6);
1125 		if (unlikely(err < 0)) {
1126 			kfree(ipc.opt);
1127 			return err;
1128 		}
1129 		if (ipc.opt)
1130 			free = 1;
1131 		connected = 0;
1132 	}
1133 	if (!ipc.opt) {
1134 		struct ip_options_rcu *inet_opt;
1135 
1136 		rcu_read_lock();
1137 		inet_opt = rcu_dereference(inet->inet_opt);
1138 		if (inet_opt) {
1139 			memcpy(&opt_copy, inet_opt,
1140 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1141 			ipc.opt = &opt_copy.opt;
1142 		}
1143 		rcu_read_unlock();
1144 	}
1145 
1146 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1147 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1148 					    (struct sockaddr *)usin, &ipc.addr);
1149 		if (err)
1150 			goto out_free;
1151 		if (usin) {
1152 			if (usin->sin_port == 0) {
1153 				/* BPF program set invalid port. Reject it. */
1154 				err = -EINVAL;
1155 				goto out_free;
1156 			}
1157 			daddr = usin->sin_addr.s_addr;
1158 			dport = usin->sin_port;
1159 		}
1160 	}
1161 
1162 	saddr = ipc.addr;
1163 	ipc.addr = faddr = daddr;
1164 
1165 	if (ipc.opt && ipc.opt->opt.srr) {
1166 		if (!daddr) {
1167 			err = -EINVAL;
1168 			goto out_free;
1169 		}
1170 		faddr = ipc.opt->opt.faddr;
1171 		connected = 0;
1172 	}
1173 	tos = get_rttos(&ipc, inet);
1174 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1175 	    (msg->msg_flags & MSG_DONTROUTE) ||
1176 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1177 		tos |= RTO_ONLINK;
1178 		connected = 0;
1179 	}
1180 
1181 	if (ipv4_is_multicast(daddr)) {
1182 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1183 			ipc.oif = inet->mc_index;
1184 		if (!saddr)
1185 			saddr = inet->mc_addr;
1186 		connected = 0;
1187 	} else if (!ipc.oif) {
1188 		ipc.oif = inet->uc_index;
1189 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1190 		/* oif is set, packet is to local broadcast and
1191 		 * uc_index is set. oif is most likely set
1192 		 * by sk_bound_dev_if. If uc_index != oif check if the
1193 		 * oif is an L3 master and uc_index is an L3 slave.
1194 		 * If so, we want to allow the send using the uc_index.
1195 		 */
1196 		if (ipc.oif != inet->uc_index &&
1197 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1198 							      inet->uc_index)) {
1199 			ipc.oif = inet->uc_index;
1200 		}
1201 	}
1202 
1203 	if (connected)
1204 		rt = (struct rtable *)sk_dst_check(sk, 0);
1205 
1206 	if (!rt) {
1207 		struct net *net = sock_net(sk);
1208 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1209 
1210 		fl4 = &fl4_stack;
1211 
1212 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1213 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1214 				   flow_flags,
1215 				   faddr, saddr, dport, inet->inet_sport,
1216 				   sk->sk_uid);
1217 
1218 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1219 		rt = ip_route_output_flow(net, fl4, sk);
1220 		if (IS_ERR(rt)) {
1221 			err = PTR_ERR(rt);
1222 			rt = NULL;
1223 			if (err == -ENETUNREACH)
1224 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1225 			goto out;
1226 		}
1227 
1228 		err = -EACCES;
1229 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1230 		    !sock_flag(sk, SOCK_BROADCAST))
1231 			goto out;
1232 		if (connected)
1233 			sk_dst_set(sk, dst_clone(&rt->dst));
1234 	}
1235 
1236 	if (msg->msg_flags&MSG_CONFIRM)
1237 		goto do_confirm;
1238 back_from_confirm:
1239 
1240 	saddr = fl4->saddr;
1241 	if (!ipc.addr)
1242 		daddr = ipc.addr = fl4->daddr;
1243 
1244 	/* Lockless fast path for the non-corking case. */
1245 	if (!corkreq) {
1246 		struct inet_cork cork;
1247 
1248 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1249 				  sizeof(struct udphdr), &ipc, &rt,
1250 				  &cork, msg->msg_flags);
1251 		err = PTR_ERR(skb);
1252 		if (!IS_ERR_OR_NULL(skb))
1253 			err = udp_send_skb(skb, fl4, &cork);
1254 		goto out;
1255 	}
1256 
1257 	lock_sock(sk);
1258 	if (unlikely(up->pending)) {
1259 		/* The socket is already corked while preparing it. */
1260 		/* ... which is an evident application bug. --ANK */
1261 		release_sock(sk);
1262 
1263 		net_dbg_ratelimited("socket already corked\n");
1264 		err = -EINVAL;
1265 		goto out;
1266 	}
1267 	/*
1268 	 *	Now cork the socket to pend data.
1269 	 */
1270 	fl4 = &inet->cork.fl.u.ip4;
1271 	fl4->daddr = daddr;
1272 	fl4->saddr = saddr;
1273 	fl4->fl4_dport = dport;
1274 	fl4->fl4_sport = inet->inet_sport;
1275 	up->pending = AF_INET;
1276 
1277 do_append_data:
1278 	up->len += ulen;
1279 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1280 			     sizeof(struct udphdr), &ipc, &rt,
1281 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1282 	if (err)
1283 		udp_flush_pending_frames(sk);
1284 	else if (!corkreq)
1285 		err = udp_push_pending_frames(sk);
1286 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1287 		up->pending = 0;
1288 	release_sock(sk);
1289 
1290 out:
1291 	ip_rt_put(rt);
1292 out_free:
1293 	if (free)
1294 		kfree(ipc.opt);
1295 	if (!err)
1296 		return len;
1297 	/*
1298 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1299 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1300 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1301 	 * things).  We could add another new stat but at least for now that
1302 	 * seems like overkill.
1303 	 */
1304 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1305 		UDP_INC_STATS(sock_net(sk),
1306 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1307 	}
1308 	return err;
1309 
1310 do_confirm:
1311 	if (msg->msg_flags & MSG_PROBE)
1312 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1313 	if (!(msg->msg_flags&MSG_PROBE) || len)
1314 		goto back_from_confirm;
1315 	err = 0;
1316 	goto out;
1317 }
1318 EXPORT_SYMBOL(udp_sendmsg);
1319 
1320 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1321 		 size_t size, int flags)
1322 {
1323 	struct inet_sock *inet = inet_sk(sk);
1324 	struct udp_sock *up = udp_sk(sk);
1325 	int ret;
1326 
1327 	if (flags & MSG_SENDPAGE_NOTLAST)
1328 		flags |= MSG_MORE;
1329 
1330 	if (!up->pending) {
1331 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1332 
1333 		/* Call udp_sendmsg to specify destination address which
1334 		 * sendpage interface can't pass.
1335 		 * This will succeed only when the socket is connected.
1336 		 */
1337 		ret = udp_sendmsg(sk, &msg, 0);
1338 		if (ret < 0)
1339 			return ret;
1340 	}
1341 
1342 	lock_sock(sk);
1343 
1344 	if (unlikely(!up->pending)) {
1345 		release_sock(sk);
1346 
1347 		net_dbg_ratelimited("cork failed\n");
1348 		return -EINVAL;
1349 	}
1350 
1351 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1352 			     page, offset, size, flags);
1353 	if (ret == -EOPNOTSUPP) {
1354 		release_sock(sk);
1355 		return sock_no_sendpage(sk->sk_socket, page, offset,
1356 					size, flags);
1357 	}
1358 	if (ret < 0) {
1359 		udp_flush_pending_frames(sk);
1360 		goto out;
1361 	}
1362 
1363 	up->len += size;
1364 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1365 		ret = udp_push_pending_frames(sk);
1366 	if (!ret)
1367 		ret = size;
1368 out:
1369 	release_sock(sk);
1370 	return ret;
1371 }
1372 
1373 #define UDP_SKB_IS_STATELESS 0x80000000
1374 
1375 /* all head states (dst, sk, nf conntrack) except skb extensions are
1376  * cleared by udp_rcv().
1377  *
1378  * We need to preserve secpath, if present, to eventually process
1379  * IP_CMSG_PASSSEC at recvmsg() time.
1380  *
1381  * Other extensions can be cleared.
1382  */
1383 static bool udp_try_make_stateless(struct sk_buff *skb)
1384 {
1385 	if (!skb_has_extensions(skb))
1386 		return true;
1387 
1388 	if (!secpath_exists(skb)) {
1389 		skb_ext_reset(skb);
1390 		return true;
1391 	}
1392 
1393 	return false;
1394 }
1395 
1396 static void udp_set_dev_scratch(struct sk_buff *skb)
1397 {
1398 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1399 
1400 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1401 	scratch->_tsize_state = skb->truesize;
1402 #if BITS_PER_LONG == 64
1403 	scratch->len = skb->len;
1404 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1405 	scratch->is_linear = !skb_is_nonlinear(skb);
1406 #endif
1407 	if (udp_try_make_stateless(skb))
1408 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1409 }
1410 
1411 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1412 {
1413 	/* We come here after udp_lib_checksum_complete() returned 0.
1414 	 * This means that __skb_checksum_complete() might have
1415 	 * set skb->csum_valid to 1.
1416 	 * On 64bit platforms, we can set csum_unnecessary
1417 	 * to true, but only if the skb is not shared.
1418 	 */
1419 #if BITS_PER_LONG == 64
1420 	if (!skb_shared(skb))
1421 		udp_skb_scratch(skb)->csum_unnecessary = true;
1422 #endif
1423 }
1424 
1425 static int udp_skb_truesize(struct sk_buff *skb)
1426 {
1427 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1428 }
1429 
1430 static bool udp_skb_has_head_state(struct sk_buff *skb)
1431 {
1432 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1433 }
1434 
1435 /* fully reclaim rmem/fwd memory allocated for skb */
1436 static void udp_rmem_release(struct sock *sk, int size, int partial,
1437 			     bool rx_queue_lock_held)
1438 {
1439 	struct udp_sock *up = udp_sk(sk);
1440 	struct sk_buff_head *sk_queue;
1441 	int amt;
1442 
1443 	if (likely(partial)) {
1444 		up->forward_deficit += size;
1445 		size = up->forward_deficit;
1446 		if (size < (sk->sk_rcvbuf >> 2) &&
1447 		    !skb_queue_empty(&up->reader_queue))
1448 			return;
1449 	} else {
1450 		size += up->forward_deficit;
1451 	}
1452 	up->forward_deficit = 0;
1453 
1454 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1455 	 * if the called don't held it already
1456 	 */
1457 	sk_queue = &sk->sk_receive_queue;
1458 	if (!rx_queue_lock_held)
1459 		spin_lock(&sk_queue->lock);
1460 
1461 
1462 	sk->sk_forward_alloc += size;
1463 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1464 	sk->sk_forward_alloc -= amt;
1465 
1466 	if (amt)
1467 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1468 
1469 	atomic_sub(size, &sk->sk_rmem_alloc);
1470 
1471 	/* this can save us from acquiring the rx queue lock on next receive */
1472 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1473 
1474 	if (!rx_queue_lock_held)
1475 		spin_unlock(&sk_queue->lock);
1476 }
1477 
1478 /* Note: called with reader_queue.lock held.
1479  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1480  * This avoids a cache line miss while receive_queue lock is held.
1481  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1482  */
1483 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1484 {
1485 	prefetch(&skb->data);
1486 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1487 }
1488 EXPORT_SYMBOL(udp_skb_destructor);
1489 
1490 /* as above, but the caller held the rx queue lock, too */
1491 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1492 {
1493 	prefetch(&skb->data);
1494 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1495 }
1496 
1497 /* Idea of busylocks is to let producers grab an extra spinlock
1498  * to relieve pressure on the receive_queue spinlock shared by consumer.
1499  * Under flood, this means that only one producer can be in line
1500  * trying to acquire the receive_queue spinlock.
1501  * These busylock can be allocated on a per cpu manner, instead of a
1502  * per socket one (that would consume a cache line per socket)
1503  */
1504 static int udp_busylocks_log __read_mostly;
1505 static spinlock_t *udp_busylocks __read_mostly;
1506 
1507 static spinlock_t *busylock_acquire(void *ptr)
1508 {
1509 	spinlock_t *busy;
1510 
1511 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1512 	spin_lock(busy);
1513 	return busy;
1514 }
1515 
1516 static void busylock_release(spinlock_t *busy)
1517 {
1518 	if (busy)
1519 		spin_unlock(busy);
1520 }
1521 
1522 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1523 {
1524 	struct sk_buff_head *list = &sk->sk_receive_queue;
1525 	int rmem, delta, amt, err = -ENOMEM;
1526 	spinlock_t *busy = NULL;
1527 	int size;
1528 
1529 	/* try to avoid the costly atomic add/sub pair when the receive
1530 	 * queue is full; always allow at least a packet
1531 	 */
1532 	rmem = atomic_read(&sk->sk_rmem_alloc);
1533 	if (rmem > sk->sk_rcvbuf)
1534 		goto drop;
1535 
1536 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1537 	 * having linear skbs :
1538 	 * - Reduce memory overhead and thus increase receive queue capacity
1539 	 * - Less cache line misses at copyout() time
1540 	 * - Less work at consume_skb() (less alien page frag freeing)
1541 	 */
1542 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1543 		skb_condense(skb);
1544 
1545 		busy = busylock_acquire(sk);
1546 	}
1547 	size = skb->truesize;
1548 	udp_set_dev_scratch(skb);
1549 
1550 	/* we drop only if the receive buf is full and the receive
1551 	 * queue contains some other skb
1552 	 */
1553 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1554 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1555 		goto uncharge_drop;
1556 
1557 	spin_lock(&list->lock);
1558 	if (size >= sk->sk_forward_alloc) {
1559 		amt = sk_mem_pages(size);
1560 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1561 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1562 			err = -ENOBUFS;
1563 			spin_unlock(&list->lock);
1564 			goto uncharge_drop;
1565 		}
1566 
1567 		sk->sk_forward_alloc += delta;
1568 	}
1569 
1570 	sk->sk_forward_alloc -= size;
1571 
1572 	/* no need to setup a destructor, we will explicitly release the
1573 	 * forward allocated memory on dequeue
1574 	 */
1575 	sock_skb_set_dropcount(sk, skb);
1576 
1577 	__skb_queue_tail(list, skb);
1578 	spin_unlock(&list->lock);
1579 
1580 	if (!sock_flag(sk, SOCK_DEAD))
1581 		sk->sk_data_ready(sk);
1582 
1583 	busylock_release(busy);
1584 	return 0;
1585 
1586 uncharge_drop:
1587 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1588 
1589 drop:
1590 	atomic_inc(&sk->sk_drops);
1591 	busylock_release(busy);
1592 	return err;
1593 }
1594 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1595 
1596 void udp_destruct_sock(struct sock *sk)
1597 {
1598 	/* reclaim completely the forward allocated memory */
1599 	struct udp_sock *up = udp_sk(sk);
1600 	unsigned int total = 0;
1601 	struct sk_buff *skb;
1602 
1603 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1604 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1605 		total += skb->truesize;
1606 		kfree_skb(skb);
1607 	}
1608 	udp_rmem_release(sk, total, 0, true);
1609 
1610 	inet_sock_destruct(sk);
1611 }
1612 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1613 
1614 int udp_init_sock(struct sock *sk)
1615 {
1616 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1617 	sk->sk_destruct = udp_destruct_sock;
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL_GPL(udp_init_sock);
1621 
1622 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1623 {
1624 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1625 		bool slow = lock_sock_fast(sk);
1626 
1627 		sk_peek_offset_bwd(sk, len);
1628 		unlock_sock_fast(sk, slow);
1629 	}
1630 
1631 	if (!skb_unref(skb))
1632 		return;
1633 
1634 	/* In the more common cases we cleared the head states previously,
1635 	 * see __udp_queue_rcv_skb().
1636 	 */
1637 	if (unlikely(udp_skb_has_head_state(skb)))
1638 		skb_release_head_state(skb);
1639 	__consume_stateless_skb(skb);
1640 }
1641 EXPORT_SYMBOL_GPL(skb_consume_udp);
1642 
1643 static struct sk_buff *__first_packet_length(struct sock *sk,
1644 					     struct sk_buff_head *rcvq,
1645 					     int *total)
1646 {
1647 	struct sk_buff *skb;
1648 
1649 	while ((skb = skb_peek(rcvq)) != NULL) {
1650 		if (udp_lib_checksum_complete(skb)) {
1651 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1652 					IS_UDPLITE(sk));
1653 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1654 					IS_UDPLITE(sk));
1655 			atomic_inc(&sk->sk_drops);
1656 			__skb_unlink(skb, rcvq);
1657 			*total += skb->truesize;
1658 			kfree_skb(skb);
1659 		} else {
1660 			udp_skb_csum_unnecessary_set(skb);
1661 			break;
1662 		}
1663 	}
1664 	return skb;
1665 }
1666 
1667 /**
1668  *	first_packet_length	- return length of first packet in receive queue
1669  *	@sk: socket
1670  *
1671  *	Drops all bad checksum frames, until a valid one is found.
1672  *	Returns the length of found skb, or -1 if none is found.
1673  */
1674 static int first_packet_length(struct sock *sk)
1675 {
1676 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1677 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1678 	struct sk_buff *skb;
1679 	int total = 0;
1680 	int res;
1681 
1682 	spin_lock_bh(&rcvq->lock);
1683 	skb = __first_packet_length(sk, rcvq, &total);
1684 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1685 		spin_lock(&sk_queue->lock);
1686 		skb_queue_splice_tail_init(sk_queue, rcvq);
1687 		spin_unlock(&sk_queue->lock);
1688 
1689 		skb = __first_packet_length(sk, rcvq, &total);
1690 	}
1691 	res = skb ? skb->len : -1;
1692 	if (total)
1693 		udp_rmem_release(sk, total, 1, false);
1694 	spin_unlock_bh(&rcvq->lock);
1695 	return res;
1696 }
1697 
1698 /*
1699  *	IOCTL requests applicable to the UDP protocol
1700  */
1701 
1702 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1703 {
1704 	switch (cmd) {
1705 	case SIOCOUTQ:
1706 	{
1707 		int amount = sk_wmem_alloc_get(sk);
1708 
1709 		return put_user(amount, (int __user *)arg);
1710 	}
1711 
1712 	case SIOCINQ:
1713 	{
1714 		int amount = max_t(int, 0, first_packet_length(sk));
1715 
1716 		return put_user(amount, (int __user *)arg);
1717 	}
1718 
1719 	default:
1720 		return -ENOIOCTLCMD;
1721 	}
1722 
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(udp_ioctl);
1726 
1727 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1728 			       int noblock, int *off, int *err)
1729 {
1730 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1731 	struct sk_buff_head *queue;
1732 	struct sk_buff *last;
1733 	long timeo;
1734 	int error;
1735 
1736 	queue = &udp_sk(sk)->reader_queue;
1737 	flags |= noblock ? MSG_DONTWAIT : 0;
1738 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1739 	do {
1740 		struct sk_buff *skb;
1741 
1742 		error = sock_error(sk);
1743 		if (error)
1744 			break;
1745 
1746 		error = -EAGAIN;
1747 		do {
1748 			spin_lock_bh(&queue->lock);
1749 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1750 							err, &last);
1751 			if (skb) {
1752 				if (!(flags & MSG_PEEK))
1753 					udp_skb_destructor(sk, skb);
1754 				spin_unlock_bh(&queue->lock);
1755 				return skb;
1756 			}
1757 
1758 			if (skb_queue_empty_lockless(sk_queue)) {
1759 				spin_unlock_bh(&queue->lock);
1760 				goto busy_check;
1761 			}
1762 
1763 			/* refill the reader queue and walk it again
1764 			 * keep both queues locked to avoid re-acquiring
1765 			 * the sk_receive_queue lock if fwd memory scheduling
1766 			 * is needed.
1767 			 */
1768 			spin_lock(&sk_queue->lock);
1769 			skb_queue_splice_tail_init(sk_queue, queue);
1770 
1771 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1772 							err, &last);
1773 			if (skb && !(flags & MSG_PEEK))
1774 				udp_skb_dtor_locked(sk, skb);
1775 			spin_unlock(&sk_queue->lock);
1776 			spin_unlock_bh(&queue->lock);
1777 			if (skb)
1778 				return skb;
1779 
1780 busy_check:
1781 			if (!sk_can_busy_loop(sk))
1782 				break;
1783 
1784 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1785 		} while (!skb_queue_empty_lockless(sk_queue));
1786 
1787 		/* sk_queue is empty, reader_queue may contain peeked packets */
1788 	} while (timeo &&
1789 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1790 					      &error, &timeo,
1791 					      (struct sk_buff *)sk_queue));
1792 
1793 	*err = error;
1794 	return NULL;
1795 }
1796 EXPORT_SYMBOL(__skb_recv_udp);
1797 
1798 int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1799 		  sk_read_actor_t recv_actor)
1800 {
1801 	int copied = 0;
1802 
1803 	while (1) {
1804 		struct sk_buff *skb;
1805 		int err, used;
1806 
1807 		skb = skb_recv_udp(sk, 0, 1, &err);
1808 		if (!skb)
1809 			return err;
1810 
1811 		if (udp_lib_checksum_complete(skb)) {
1812 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1813 					IS_UDPLITE(sk));
1814 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1815 					IS_UDPLITE(sk));
1816 			atomic_inc(&sk->sk_drops);
1817 			kfree_skb(skb);
1818 			continue;
1819 		}
1820 
1821 		used = recv_actor(desc, skb, 0, skb->len);
1822 		if (used <= 0) {
1823 			if (!copied)
1824 				copied = used;
1825 			kfree_skb(skb);
1826 			break;
1827 		} else if (used <= skb->len) {
1828 			copied += used;
1829 		}
1830 
1831 		kfree_skb(skb);
1832 		if (!desc->count)
1833 			break;
1834 	}
1835 
1836 	return copied;
1837 }
1838 EXPORT_SYMBOL(udp_read_sock);
1839 
1840 /*
1841  * 	This should be easy, if there is something there we
1842  * 	return it, otherwise we block.
1843  */
1844 
1845 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1846 		int flags, int *addr_len)
1847 {
1848 	struct inet_sock *inet = inet_sk(sk);
1849 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1850 	struct sk_buff *skb;
1851 	unsigned int ulen, copied;
1852 	int off, err, peeking = flags & MSG_PEEK;
1853 	int is_udplite = IS_UDPLITE(sk);
1854 	bool checksum_valid = false;
1855 
1856 	if (flags & MSG_ERRQUEUE)
1857 		return ip_recv_error(sk, msg, len, addr_len);
1858 
1859 try_again:
1860 	off = sk_peek_offset(sk, flags);
1861 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1862 	if (!skb)
1863 		return err;
1864 
1865 	ulen = udp_skb_len(skb);
1866 	copied = len;
1867 	if (copied > ulen - off)
1868 		copied = ulen - off;
1869 	else if (copied < ulen)
1870 		msg->msg_flags |= MSG_TRUNC;
1871 
1872 	/*
1873 	 * If checksum is needed at all, try to do it while copying the
1874 	 * data.  If the data is truncated, or if we only want a partial
1875 	 * coverage checksum (UDP-Lite), do it before the copy.
1876 	 */
1877 
1878 	if (copied < ulen || peeking ||
1879 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1880 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1881 				!__udp_lib_checksum_complete(skb);
1882 		if (!checksum_valid)
1883 			goto csum_copy_err;
1884 	}
1885 
1886 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1887 		if (udp_skb_is_linear(skb))
1888 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1889 		else
1890 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1891 	} else {
1892 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1893 
1894 		if (err == -EINVAL)
1895 			goto csum_copy_err;
1896 	}
1897 
1898 	if (unlikely(err)) {
1899 		if (!peeking) {
1900 			atomic_inc(&sk->sk_drops);
1901 			UDP_INC_STATS(sock_net(sk),
1902 				      UDP_MIB_INERRORS, is_udplite);
1903 		}
1904 		kfree_skb(skb);
1905 		return err;
1906 	}
1907 
1908 	if (!peeking)
1909 		UDP_INC_STATS(sock_net(sk),
1910 			      UDP_MIB_INDATAGRAMS, is_udplite);
1911 
1912 	sock_recv_ts_and_drops(msg, sk, skb);
1913 
1914 	/* Copy the address. */
1915 	if (sin) {
1916 		sin->sin_family = AF_INET;
1917 		sin->sin_port = udp_hdr(skb)->source;
1918 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1919 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1920 		*addr_len = sizeof(*sin);
1921 
1922 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1923 						      (struct sockaddr *)sin);
1924 	}
1925 
1926 	if (udp_sk(sk)->gro_enabled)
1927 		udp_cmsg_recv(msg, sk, skb);
1928 
1929 	if (inet->cmsg_flags)
1930 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1931 
1932 	err = copied;
1933 	if (flags & MSG_TRUNC)
1934 		err = ulen;
1935 
1936 	skb_consume_udp(sk, skb, peeking ? -err : err);
1937 	return err;
1938 
1939 csum_copy_err:
1940 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1941 				 udp_skb_destructor)) {
1942 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1943 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1944 	}
1945 	kfree_skb(skb);
1946 
1947 	/* starting over for a new packet, but check if we need to yield */
1948 	cond_resched();
1949 	msg->msg_flags &= ~MSG_TRUNC;
1950 	goto try_again;
1951 }
1952 
1953 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1954 {
1955 	/* This check is replicated from __ip4_datagram_connect() and
1956 	 * intended to prevent BPF program called below from accessing bytes
1957 	 * that are out of the bound specified by user in addr_len.
1958 	 */
1959 	if (addr_len < sizeof(struct sockaddr_in))
1960 		return -EINVAL;
1961 
1962 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1963 }
1964 EXPORT_SYMBOL(udp_pre_connect);
1965 
1966 int __udp_disconnect(struct sock *sk, int flags)
1967 {
1968 	struct inet_sock *inet = inet_sk(sk);
1969 	/*
1970 	 *	1003.1g - break association.
1971 	 */
1972 
1973 	sk->sk_state = TCP_CLOSE;
1974 	inet->inet_daddr = 0;
1975 	inet->inet_dport = 0;
1976 	sock_rps_reset_rxhash(sk);
1977 	sk->sk_bound_dev_if = 0;
1978 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1979 		inet_reset_saddr(sk);
1980 		if (sk->sk_prot->rehash &&
1981 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1982 			sk->sk_prot->rehash(sk);
1983 	}
1984 
1985 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1986 		sk->sk_prot->unhash(sk);
1987 		inet->inet_sport = 0;
1988 	}
1989 	sk_dst_reset(sk);
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(__udp_disconnect);
1993 
1994 int udp_disconnect(struct sock *sk, int flags)
1995 {
1996 	lock_sock(sk);
1997 	__udp_disconnect(sk, flags);
1998 	release_sock(sk);
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL(udp_disconnect);
2002 
2003 void udp_lib_unhash(struct sock *sk)
2004 {
2005 	if (sk_hashed(sk)) {
2006 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2007 		struct udp_hslot *hslot, *hslot2;
2008 
2009 		hslot  = udp_hashslot(udptable, sock_net(sk),
2010 				      udp_sk(sk)->udp_port_hash);
2011 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2012 
2013 		spin_lock_bh(&hslot->lock);
2014 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2015 			reuseport_detach_sock(sk);
2016 		if (sk_del_node_init_rcu(sk)) {
2017 			hslot->count--;
2018 			inet_sk(sk)->inet_num = 0;
2019 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2020 
2021 			spin_lock(&hslot2->lock);
2022 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2023 			hslot2->count--;
2024 			spin_unlock(&hslot2->lock);
2025 		}
2026 		spin_unlock_bh(&hslot->lock);
2027 	}
2028 }
2029 EXPORT_SYMBOL(udp_lib_unhash);
2030 
2031 /*
2032  * inet_rcv_saddr was changed, we must rehash secondary hash
2033  */
2034 void udp_lib_rehash(struct sock *sk, u16 newhash)
2035 {
2036 	if (sk_hashed(sk)) {
2037 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2038 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2039 
2040 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2041 		nhslot2 = udp_hashslot2(udptable, newhash);
2042 		udp_sk(sk)->udp_portaddr_hash = newhash;
2043 
2044 		if (hslot2 != nhslot2 ||
2045 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2046 			hslot = udp_hashslot(udptable, sock_net(sk),
2047 					     udp_sk(sk)->udp_port_hash);
2048 			/* we must lock primary chain too */
2049 			spin_lock_bh(&hslot->lock);
2050 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2051 				reuseport_detach_sock(sk);
2052 
2053 			if (hslot2 != nhslot2) {
2054 				spin_lock(&hslot2->lock);
2055 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2056 				hslot2->count--;
2057 				spin_unlock(&hslot2->lock);
2058 
2059 				spin_lock(&nhslot2->lock);
2060 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2061 							 &nhslot2->head);
2062 				nhslot2->count++;
2063 				spin_unlock(&nhslot2->lock);
2064 			}
2065 
2066 			spin_unlock_bh(&hslot->lock);
2067 		}
2068 	}
2069 }
2070 EXPORT_SYMBOL(udp_lib_rehash);
2071 
2072 void udp_v4_rehash(struct sock *sk)
2073 {
2074 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2075 					  inet_sk(sk)->inet_rcv_saddr,
2076 					  inet_sk(sk)->inet_num);
2077 	udp_lib_rehash(sk, new_hash);
2078 }
2079 
2080 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2081 {
2082 	int rc;
2083 
2084 	if (inet_sk(sk)->inet_daddr) {
2085 		sock_rps_save_rxhash(sk, skb);
2086 		sk_mark_napi_id(sk, skb);
2087 		sk_incoming_cpu_update(sk);
2088 	} else {
2089 		sk_mark_napi_id_once(sk, skb);
2090 	}
2091 
2092 	rc = __udp_enqueue_schedule_skb(sk, skb);
2093 	if (rc < 0) {
2094 		int is_udplite = IS_UDPLITE(sk);
2095 
2096 		/* Note that an ENOMEM error is charged twice */
2097 		if (rc == -ENOMEM)
2098 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2099 					is_udplite);
2100 		else
2101 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2102 				      is_udplite);
2103 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2104 		kfree_skb(skb);
2105 		trace_udp_fail_queue_rcv_skb(rc, sk);
2106 		return -1;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 /* returns:
2113  *  -1: error
2114  *   0: success
2115  *  >0: "udp encap" protocol resubmission
2116  *
2117  * Note that in the success and error cases, the skb is assumed to
2118  * have either been requeued or freed.
2119  */
2120 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2121 {
2122 	struct udp_sock *up = udp_sk(sk);
2123 	int is_udplite = IS_UDPLITE(sk);
2124 
2125 	/*
2126 	 *	Charge it to the socket, dropping if the queue is full.
2127 	 */
2128 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2129 		goto drop;
2130 	nf_reset_ct(skb);
2131 
2132 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2133 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2134 
2135 		/*
2136 		 * This is an encapsulation socket so pass the skb to
2137 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2138 		 * fall through and pass this up the UDP socket.
2139 		 * up->encap_rcv() returns the following value:
2140 		 * =0 if skb was successfully passed to the encap
2141 		 *    handler or was discarded by it.
2142 		 * >0 if skb should be passed on to UDP.
2143 		 * <0 if skb should be resubmitted as proto -N
2144 		 */
2145 
2146 		/* if we're overly short, let UDP handle it */
2147 		encap_rcv = READ_ONCE(up->encap_rcv);
2148 		if (encap_rcv) {
2149 			int ret;
2150 
2151 			/* Verify checksum before giving to encap */
2152 			if (udp_lib_checksum_complete(skb))
2153 				goto csum_error;
2154 
2155 			ret = encap_rcv(sk, skb);
2156 			if (ret <= 0) {
2157 				__UDP_INC_STATS(sock_net(sk),
2158 						UDP_MIB_INDATAGRAMS,
2159 						is_udplite);
2160 				return -ret;
2161 			}
2162 		}
2163 
2164 		/* FALLTHROUGH -- it's a UDP Packet */
2165 	}
2166 
2167 	/*
2168 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2169 	 */
2170 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2171 
2172 		/*
2173 		 * MIB statistics other than incrementing the error count are
2174 		 * disabled for the following two types of errors: these depend
2175 		 * on the application settings, not on the functioning of the
2176 		 * protocol stack as such.
2177 		 *
2178 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2179 		 * way ... to ... at least let the receiving application block
2180 		 * delivery of packets with coverage values less than a value
2181 		 * provided by the application."
2182 		 */
2183 		if (up->pcrlen == 0) {          /* full coverage was set  */
2184 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2185 					    UDP_SKB_CB(skb)->cscov, skb->len);
2186 			goto drop;
2187 		}
2188 		/* The next case involves violating the min. coverage requested
2189 		 * by the receiver. This is subtle: if receiver wants x and x is
2190 		 * greater than the buffersize/MTU then receiver will complain
2191 		 * that it wants x while sender emits packets of smaller size y.
2192 		 * Therefore the above ...()->partial_cov statement is essential.
2193 		 */
2194 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2195 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2196 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2197 			goto drop;
2198 		}
2199 	}
2200 
2201 	prefetch(&sk->sk_rmem_alloc);
2202 	if (rcu_access_pointer(sk->sk_filter) &&
2203 	    udp_lib_checksum_complete(skb))
2204 			goto csum_error;
2205 
2206 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2207 		goto drop;
2208 
2209 	udp_csum_pull_header(skb);
2210 
2211 	ipv4_pktinfo_prepare(sk, skb);
2212 	return __udp_queue_rcv_skb(sk, skb);
2213 
2214 csum_error:
2215 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2216 drop:
2217 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2218 	atomic_inc(&sk->sk_drops);
2219 	kfree_skb(skb);
2220 	return -1;
2221 }
2222 
2223 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2224 {
2225 	struct sk_buff *next, *segs;
2226 	int ret;
2227 
2228 	if (likely(!udp_unexpected_gso(sk, skb)))
2229 		return udp_queue_rcv_one_skb(sk, skb);
2230 
2231 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2232 	__skb_push(skb, -skb_mac_offset(skb));
2233 	segs = udp_rcv_segment(sk, skb, true);
2234 	skb_list_walk_safe(segs, skb, next) {
2235 		__skb_pull(skb, skb_transport_offset(skb));
2236 
2237 		udp_post_segment_fix_csum(skb);
2238 		ret = udp_queue_rcv_one_skb(sk, skb);
2239 		if (ret > 0)
2240 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2241 	}
2242 	return 0;
2243 }
2244 
2245 /* For TCP sockets, sk_rx_dst is protected by socket lock
2246  * For UDP, we use xchg() to guard against concurrent changes.
2247  */
2248 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2249 {
2250 	struct dst_entry *old;
2251 
2252 	if (dst_hold_safe(dst)) {
2253 		old = xchg(&sk->sk_rx_dst, dst);
2254 		dst_release(old);
2255 		return old != dst;
2256 	}
2257 	return false;
2258 }
2259 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2260 
2261 /*
2262  *	Multicasts and broadcasts go to each listener.
2263  *
2264  *	Note: called only from the BH handler context.
2265  */
2266 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2267 				    struct udphdr  *uh,
2268 				    __be32 saddr, __be32 daddr,
2269 				    struct udp_table *udptable,
2270 				    int proto)
2271 {
2272 	struct sock *sk, *first = NULL;
2273 	unsigned short hnum = ntohs(uh->dest);
2274 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2275 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2276 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2277 	int dif = skb->dev->ifindex;
2278 	int sdif = inet_sdif(skb);
2279 	struct hlist_node *node;
2280 	struct sk_buff *nskb;
2281 
2282 	if (use_hash2) {
2283 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2284 			    udptable->mask;
2285 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2286 start_lookup:
2287 		hslot = &udptable->hash2[hash2];
2288 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2289 	}
2290 
2291 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2292 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2293 					 uh->source, saddr, dif, sdif, hnum))
2294 			continue;
2295 
2296 		if (!first) {
2297 			first = sk;
2298 			continue;
2299 		}
2300 		nskb = skb_clone(skb, GFP_ATOMIC);
2301 
2302 		if (unlikely(!nskb)) {
2303 			atomic_inc(&sk->sk_drops);
2304 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2305 					IS_UDPLITE(sk));
2306 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2307 					IS_UDPLITE(sk));
2308 			continue;
2309 		}
2310 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2311 			consume_skb(nskb);
2312 	}
2313 
2314 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2315 	if (use_hash2 && hash2 != hash2_any) {
2316 		hash2 = hash2_any;
2317 		goto start_lookup;
2318 	}
2319 
2320 	if (first) {
2321 		if (udp_queue_rcv_skb(first, skb) > 0)
2322 			consume_skb(skb);
2323 	} else {
2324 		kfree_skb(skb);
2325 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2326 				proto == IPPROTO_UDPLITE);
2327 	}
2328 	return 0;
2329 }
2330 
2331 /* Initialize UDP checksum. If exited with zero value (success),
2332  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2333  * Otherwise, csum completion requires checksumming packet body,
2334  * including udp header and folding it to skb->csum.
2335  */
2336 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2337 				 int proto)
2338 {
2339 	int err;
2340 
2341 	UDP_SKB_CB(skb)->partial_cov = 0;
2342 	UDP_SKB_CB(skb)->cscov = skb->len;
2343 
2344 	if (proto == IPPROTO_UDPLITE) {
2345 		err = udplite_checksum_init(skb, uh);
2346 		if (err)
2347 			return err;
2348 
2349 		if (UDP_SKB_CB(skb)->partial_cov) {
2350 			skb->csum = inet_compute_pseudo(skb, proto);
2351 			return 0;
2352 		}
2353 	}
2354 
2355 	/* Note, we are only interested in != 0 or == 0, thus the
2356 	 * force to int.
2357 	 */
2358 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2359 							inet_compute_pseudo);
2360 	if (err)
2361 		return err;
2362 
2363 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2364 		/* If SW calculated the value, we know it's bad */
2365 		if (skb->csum_complete_sw)
2366 			return 1;
2367 
2368 		/* HW says the value is bad. Let's validate that.
2369 		 * skb->csum is no longer the full packet checksum,
2370 		 * so don't treat it as such.
2371 		 */
2372 		skb_checksum_complete_unset(skb);
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2379  * return code conversion for ip layer consumption
2380  */
2381 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2382 			       struct udphdr *uh)
2383 {
2384 	int ret;
2385 
2386 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2387 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2388 
2389 	ret = udp_queue_rcv_skb(sk, skb);
2390 
2391 	/* a return value > 0 means to resubmit the input, but
2392 	 * it wants the return to be -protocol, or 0
2393 	 */
2394 	if (ret > 0)
2395 		return -ret;
2396 	return 0;
2397 }
2398 
2399 /*
2400  *	All we need to do is get the socket, and then do a checksum.
2401  */
2402 
2403 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2404 		   int proto)
2405 {
2406 	struct sock *sk;
2407 	struct udphdr *uh;
2408 	unsigned short ulen;
2409 	struct rtable *rt = skb_rtable(skb);
2410 	__be32 saddr, daddr;
2411 	struct net *net = dev_net(skb->dev);
2412 	bool refcounted;
2413 
2414 	/*
2415 	 *  Validate the packet.
2416 	 */
2417 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2418 		goto drop;		/* No space for header. */
2419 
2420 	uh   = udp_hdr(skb);
2421 	ulen = ntohs(uh->len);
2422 	saddr = ip_hdr(skb)->saddr;
2423 	daddr = ip_hdr(skb)->daddr;
2424 
2425 	if (ulen > skb->len)
2426 		goto short_packet;
2427 
2428 	if (proto == IPPROTO_UDP) {
2429 		/* UDP validates ulen. */
2430 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2431 			goto short_packet;
2432 		uh = udp_hdr(skb);
2433 	}
2434 
2435 	if (udp4_csum_init(skb, uh, proto))
2436 		goto csum_error;
2437 
2438 	sk = skb_steal_sock(skb, &refcounted);
2439 	if (sk) {
2440 		struct dst_entry *dst = skb_dst(skb);
2441 		int ret;
2442 
2443 		if (unlikely(sk->sk_rx_dst != dst))
2444 			udp_sk_rx_dst_set(sk, dst);
2445 
2446 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2447 		if (refcounted)
2448 			sock_put(sk);
2449 		return ret;
2450 	}
2451 
2452 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2453 		return __udp4_lib_mcast_deliver(net, skb, uh,
2454 						saddr, daddr, udptable, proto);
2455 
2456 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2457 	if (sk)
2458 		return udp_unicast_rcv_skb(sk, skb, uh);
2459 
2460 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2461 		goto drop;
2462 	nf_reset_ct(skb);
2463 
2464 	/* No socket. Drop packet silently, if checksum is wrong */
2465 	if (udp_lib_checksum_complete(skb))
2466 		goto csum_error;
2467 
2468 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2469 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2470 
2471 	/*
2472 	 * Hmm.  We got an UDP packet to a port to which we
2473 	 * don't wanna listen.  Ignore it.
2474 	 */
2475 	kfree_skb(skb);
2476 	return 0;
2477 
2478 short_packet:
2479 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2480 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2481 			    &saddr, ntohs(uh->source),
2482 			    ulen, skb->len,
2483 			    &daddr, ntohs(uh->dest));
2484 	goto drop;
2485 
2486 csum_error:
2487 	/*
2488 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2489 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2490 	 */
2491 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2492 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2493 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2494 			    ulen);
2495 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2496 drop:
2497 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2498 	kfree_skb(skb);
2499 	return 0;
2500 }
2501 
2502 /* We can only early demux multicast if there is a single matching socket.
2503  * If more than one socket found returns NULL
2504  */
2505 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2506 						  __be16 loc_port, __be32 loc_addr,
2507 						  __be16 rmt_port, __be32 rmt_addr,
2508 						  int dif, int sdif)
2509 {
2510 	struct sock *sk, *result;
2511 	unsigned short hnum = ntohs(loc_port);
2512 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2513 	struct udp_hslot *hslot = &udp_table.hash[slot];
2514 
2515 	/* Do not bother scanning a too big list */
2516 	if (hslot->count > 10)
2517 		return NULL;
2518 
2519 	result = NULL;
2520 	sk_for_each_rcu(sk, &hslot->head) {
2521 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2522 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2523 			if (result)
2524 				return NULL;
2525 			result = sk;
2526 		}
2527 	}
2528 
2529 	return result;
2530 }
2531 
2532 /* For unicast we should only early demux connected sockets or we can
2533  * break forwarding setups.  The chains here can be long so only check
2534  * if the first socket is an exact match and if not move on.
2535  */
2536 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2537 					    __be16 loc_port, __be32 loc_addr,
2538 					    __be16 rmt_port, __be32 rmt_addr,
2539 					    int dif, int sdif)
2540 {
2541 	unsigned short hnum = ntohs(loc_port);
2542 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2543 	unsigned int slot2 = hash2 & udp_table.mask;
2544 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2545 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2546 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2547 	struct sock *sk;
2548 
2549 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2550 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2551 			       loc_addr, ports, dif, sdif))
2552 			return sk;
2553 		/* Only check first socket in chain */
2554 		break;
2555 	}
2556 	return NULL;
2557 }
2558 
2559 int udp_v4_early_demux(struct sk_buff *skb)
2560 {
2561 	struct net *net = dev_net(skb->dev);
2562 	struct in_device *in_dev = NULL;
2563 	const struct iphdr *iph;
2564 	const struct udphdr *uh;
2565 	struct sock *sk = NULL;
2566 	struct dst_entry *dst;
2567 	int dif = skb->dev->ifindex;
2568 	int sdif = inet_sdif(skb);
2569 	int ours;
2570 
2571 	/* validate the packet */
2572 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2573 		return 0;
2574 
2575 	iph = ip_hdr(skb);
2576 	uh = udp_hdr(skb);
2577 
2578 	if (skb->pkt_type == PACKET_MULTICAST) {
2579 		in_dev = __in_dev_get_rcu(skb->dev);
2580 
2581 		if (!in_dev)
2582 			return 0;
2583 
2584 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2585 				       iph->protocol);
2586 		if (!ours)
2587 			return 0;
2588 
2589 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2590 						   uh->source, iph->saddr,
2591 						   dif, sdif);
2592 	} else if (skb->pkt_type == PACKET_HOST) {
2593 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2594 					     uh->source, iph->saddr, dif, sdif);
2595 	}
2596 
2597 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2598 		return 0;
2599 
2600 	skb->sk = sk;
2601 	skb->destructor = sock_efree;
2602 	dst = READ_ONCE(sk->sk_rx_dst);
2603 
2604 	if (dst)
2605 		dst = dst_check(dst, 0);
2606 	if (dst) {
2607 		u32 itag = 0;
2608 
2609 		/* set noref for now.
2610 		 * any place which wants to hold dst has to call
2611 		 * dst_hold_safe()
2612 		 */
2613 		skb_dst_set_noref(skb, dst);
2614 
2615 		/* for unconnected multicast sockets we need to validate
2616 		 * the source on each packet
2617 		 */
2618 		if (!inet_sk(sk)->inet_daddr && in_dev)
2619 			return ip_mc_validate_source(skb, iph->daddr,
2620 						     iph->saddr,
2621 						     iph->tos & IPTOS_RT_MASK,
2622 						     skb->dev, in_dev, &itag);
2623 	}
2624 	return 0;
2625 }
2626 
2627 int udp_rcv(struct sk_buff *skb)
2628 {
2629 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2630 }
2631 
2632 void udp_destroy_sock(struct sock *sk)
2633 {
2634 	struct udp_sock *up = udp_sk(sk);
2635 	bool slow = lock_sock_fast(sk);
2636 
2637 	/* protects from races with udp_abort() */
2638 	sock_set_flag(sk, SOCK_DEAD);
2639 	udp_flush_pending_frames(sk);
2640 	unlock_sock_fast(sk, slow);
2641 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2642 		if (up->encap_type) {
2643 			void (*encap_destroy)(struct sock *sk);
2644 			encap_destroy = READ_ONCE(up->encap_destroy);
2645 			if (encap_destroy)
2646 				encap_destroy(sk);
2647 		}
2648 		if (up->encap_enabled)
2649 			static_branch_dec(&udp_encap_needed_key);
2650 	}
2651 }
2652 
2653 /*
2654  *	Socket option code for UDP
2655  */
2656 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2657 		       sockptr_t optval, unsigned int optlen,
2658 		       int (*push_pending_frames)(struct sock *))
2659 {
2660 	struct udp_sock *up = udp_sk(sk);
2661 	int val, valbool;
2662 	int err = 0;
2663 	int is_udplite = IS_UDPLITE(sk);
2664 
2665 	if (optlen < sizeof(int))
2666 		return -EINVAL;
2667 
2668 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2669 		return -EFAULT;
2670 
2671 	valbool = val ? 1 : 0;
2672 
2673 	switch (optname) {
2674 	case UDP_CORK:
2675 		if (val != 0) {
2676 			WRITE_ONCE(up->corkflag, 1);
2677 		} else {
2678 			WRITE_ONCE(up->corkflag, 0);
2679 			lock_sock(sk);
2680 			push_pending_frames(sk);
2681 			release_sock(sk);
2682 		}
2683 		break;
2684 
2685 	case UDP_ENCAP:
2686 		switch (val) {
2687 		case 0:
2688 #ifdef CONFIG_XFRM
2689 		case UDP_ENCAP_ESPINUDP:
2690 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2691 #if IS_ENABLED(CONFIG_IPV6)
2692 			if (sk->sk_family == AF_INET6)
2693 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2694 			else
2695 #endif
2696 				up->encap_rcv = xfrm4_udp_encap_rcv;
2697 #endif
2698 			fallthrough;
2699 		case UDP_ENCAP_L2TPINUDP:
2700 			up->encap_type = val;
2701 			lock_sock(sk);
2702 			udp_tunnel_encap_enable(sk->sk_socket);
2703 			release_sock(sk);
2704 			break;
2705 		default:
2706 			err = -ENOPROTOOPT;
2707 			break;
2708 		}
2709 		break;
2710 
2711 	case UDP_NO_CHECK6_TX:
2712 		up->no_check6_tx = valbool;
2713 		break;
2714 
2715 	case UDP_NO_CHECK6_RX:
2716 		up->no_check6_rx = valbool;
2717 		break;
2718 
2719 	case UDP_SEGMENT:
2720 		if (val < 0 || val > USHRT_MAX)
2721 			return -EINVAL;
2722 		WRITE_ONCE(up->gso_size, val);
2723 		break;
2724 
2725 	case UDP_GRO:
2726 		lock_sock(sk);
2727 
2728 		/* when enabling GRO, accept the related GSO packet type */
2729 		if (valbool)
2730 			udp_tunnel_encap_enable(sk->sk_socket);
2731 		up->gro_enabled = valbool;
2732 		up->accept_udp_l4 = valbool;
2733 		release_sock(sk);
2734 		break;
2735 
2736 	/*
2737 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2738 	 */
2739 	/* The sender sets actual checksum coverage length via this option.
2740 	 * The case coverage > packet length is handled by send module. */
2741 	case UDPLITE_SEND_CSCOV:
2742 		if (!is_udplite)         /* Disable the option on UDP sockets */
2743 			return -ENOPROTOOPT;
2744 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2745 			val = 8;
2746 		else if (val > USHRT_MAX)
2747 			val = USHRT_MAX;
2748 		up->pcslen = val;
2749 		up->pcflag |= UDPLITE_SEND_CC;
2750 		break;
2751 
2752 	/* The receiver specifies a minimum checksum coverage value. To make
2753 	 * sense, this should be set to at least 8 (as done below). If zero is
2754 	 * used, this again means full checksum coverage.                     */
2755 	case UDPLITE_RECV_CSCOV:
2756 		if (!is_udplite)         /* Disable the option on UDP sockets */
2757 			return -ENOPROTOOPT;
2758 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2759 			val = 8;
2760 		else if (val > USHRT_MAX)
2761 			val = USHRT_MAX;
2762 		up->pcrlen = val;
2763 		up->pcflag |= UDPLITE_RECV_CC;
2764 		break;
2765 
2766 	default:
2767 		err = -ENOPROTOOPT;
2768 		break;
2769 	}
2770 
2771 	return err;
2772 }
2773 EXPORT_SYMBOL(udp_lib_setsockopt);
2774 
2775 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2776 		   unsigned int optlen)
2777 {
2778 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2779 		return udp_lib_setsockopt(sk, level, optname,
2780 					  optval, optlen,
2781 					  udp_push_pending_frames);
2782 	return ip_setsockopt(sk, level, optname, optval, optlen);
2783 }
2784 
2785 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2786 		       char __user *optval, int __user *optlen)
2787 {
2788 	struct udp_sock *up = udp_sk(sk);
2789 	int val, len;
2790 
2791 	if (get_user(len, optlen))
2792 		return -EFAULT;
2793 
2794 	len = min_t(unsigned int, len, sizeof(int));
2795 
2796 	if (len < 0)
2797 		return -EINVAL;
2798 
2799 	switch (optname) {
2800 	case UDP_CORK:
2801 		val = READ_ONCE(up->corkflag);
2802 		break;
2803 
2804 	case UDP_ENCAP:
2805 		val = up->encap_type;
2806 		break;
2807 
2808 	case UDP_NO_CHECK6_TX:
2809 		val = up->no_check6_tx;
2810 		break;
2811 
2812 	case UDP_NO_CHECK6_RX:
2813 		val = up->no_check6_rx;
2814 		break;
2815 
2816 	case UDP_SEGMENT:
2817 		val = READ_ONCE(up->gso_size);
2818 		break;
2819 
2820 	case UDP_GRO:
2821 		val = up->gro_enabled;
2822 		break;
2823 
2824 	/* The following two cannot be changed on UDP sockets, the return is
2825 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2826 	case UDPLITE_SEND_CSCOV:
2827 		val = up->pcslen;
2828 		break;
2829 
2830 	case UDPLITE_RECV_CSCOV:
2831 		val = up->pcrlen;
2832 		break;
2833 
2834 	default:
2835 		return -ENOPROTOOPT;
2836 	}
2837 
2838 	if (put_user(len, optlen))
2839 		return -EFAULT;
2840 	if (copy_to_user(optval, &val, len))
2841 		return -EFAULT;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(udp_lib_getsockopt);
2845 
2846 int udp_getsockopt(struct sock *sk, int level, int optname,
2847 		   char __user *optval, int __user *optlen)
2848 {
2849 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2850 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2851 	return ip_getsockopt(sk, level, optname, optval, optlen);
2852 }
2853 
2854 /**
2855  * 	udp_poll - wait for a UDP event.
2856  *	@file: - file struct
2857  *	@sock: - socket
2858  *	@wait: - poll table
2859  *
2860  *	This is same as datagram poll, except for the special case of
2861  *	blocking sockets. If application is using a blocking fd
2862  *	and a packet with checksum error is in the queue;
2863  *	then it could get return from select indicating data available
2864  *	but then block when reading it. Add special case code
2865  *	to work around these arguably broken applications.
2866  */
2867 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2868 {
2869 	__poll_t mask = datagram_poll(file, sock, wait);
2870 	struct sock *sk = sock->sk;
2871 
2872 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2873 		mask |= EPOLLIN | EPOLLRDNORM;
2874 
2875 	/* Check for false positives due to checksum errors */
2876 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2877 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2878 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2879 
2880 	/* psock ingress_msg queue should not contain any bad checksum frames */
2881 	if (sk_is_readable(sk))
2882 		mask |= EPOLLIN | EPOLLRDNORM;
2883 	return mask;
2884 
2885 }
2886 EXPORT_SYMBOL(udp_poll);
2887 
2888 int udp_abort(struct sock *sk, int err)
2889 {
2890 	lock_sock(sk);
2891 
2892 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2893 	 * with close()
2894 	 */
2895 	if (sock_flag(sk, SOCK_DEAD))
2896 		goto out;
2897 
2898 	sk->sk_err = err;
2899 	sk_error_report(sk);
2900 	__udp_disconnect(sk, 0);
2901 
2902 out:
2903 	release_sock(sk);
2904 
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL_GPL(udp_abort);
2908 
2909 struct proto udp_prot = {
2910 	.name			= "UDP",
2911 	.owner			= THIS_MODULE,
2912 	.close			= udp_lib_close,
2913 	.pre_connect		= udp_pre_connect,
2914 	.connect		= ip4_datagram_connect,
2915 	.disconnect		= udp_disconnect,
2916 	.ioctl			= udp_ioctl,
2917 	.init			= udp_init_sock,
2918 	.destroy		= udp_destroy_sock,
2919 	.setsockopt		= udp_setsockopt,
2920 	.getsockopt		= udp_getsockopt,
2921 	.sendmsg		= udp_sendmsg,
2922 	.recvmsg		= udp_recvmsg,
2923 	.sendpage		= udp_sendpage,
2924 	.release_cb		= ip4_datagram_release_cb,
2925 	.hash			= udp_lib_hash,
2926 	.unhash			= udp_lib_unhash,
2927 	.rehash			= udp_v4_rehash,
2928 	.get_port		= udp_v4_get_port,
2929 #ifdef CONFIG_BPF_SYSCALL
2930 	.psock_update_sk_prot	= udp_bpf_update_proto,
2931 #endif
2932 	.memory_allocated	= &udp_memory_allocated,
2933 	.sysctl_mem		= sysctl_udp_mem,
2934 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2935 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2936 	.obj_size		= sizeof(struct udp_sock),
2937 	.h.udp_table		= &udp_table,
2938 	.diag_destroy		= udp_abort,
2939 };
2940 EXPORT_SYMBOL(udp_prot);
2941 
2942 /* ------------------------------------------------------------------------ */
2943 #ifdef CONFIG_PROC_FS
2944 
2945 static struct sock *udp_get_first(struct seq_file *seq, int start)
2946 {
2947 	struct sock *sk;
2948 	struct udp_seq_afinfo *afinfo;
2949 	struct udp_iter_state *state = seq->private;
2950 	struct net *net = seq_file_net(seq);
2951 
2952 	if (state->bpf_seq_afinfo)
2953 		afinfo = state->bpf_seq_afinfo;
2954 	else
2955 		afinfo = PDE_DATA(file_inode(seq->file));
2956 
2957 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2958 	     ++state->bucket) {
2959 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2960 
2961 		if (hlist_empty(&hslot->head))
2962 			continue;
2963 
2964 		spin_lock_bh(&hslot->lock);
2965 		sk_for_each(sk, &hslot->head) {
2966 			if (!net_eq(sock_net(sk), net))
2967 				continue;
2968 			if (afinfo->family == AF_UNSPEC ||
2969 			    sk->sk_family == afinfo->family)
2970 				goto found;
2971 		}
2972 		spin_unlock_bh(&hslot->lock);
2973 	}
2974 	sk = NULL;
2975 found:
2976 	return sk;
2977 }
2978 
2979 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2980 {
2981 	struct udp_seq_afinfo *afinfo;
2982 	struct udp_iter_state *state = seq->private;
2983 	struct net *net = seq_file_net(seq);
2984 
2985 	if (state->bpf_seq_afinfo)
2986 		afinfo = state->bpf_seq_afinfo;
2987 	else
2988 		afinfo = PDE_DATA(file_inode(seq->file));
2989 
2990 	do {
2991 		sk = sk_next(sk);
2992 	} while (sk && (!net_eq(sock_net(sk), net) ||
2993 			(afinfo->family != AF_UNSPEC &&
2994 			 sk->sk_family != afinfo->family)));
2995 
2996 	if (!sk) {
2997 		if (state->bucket <= afinfo->udp_table->mask)
2998 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2999 		return udp_get_first(seq, state->bucket + 1);
3000 	}
3001 	return sk;
3002 }
3003 
3004 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3005 {
3006 	struct sock *sk = udp_get_first(seq, 0);
3007 
3008 	if (sk)
3009 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3010 			--pos;
3011 	return pos ? NULL : sk;
3012 }
3013 
3014 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3015 {
3016 	struct udp_iter_state *state = seq->private;
3017 	state->bucket = MAX_UDP_PORTS;
3018 
3019 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3020 }
3021 EXPORT_SYMBOL(udp_seq_start);
3022 
3023 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3024 {
3025 	struct sock *sk;
3026 
3027 	if (v == SEQ_START_TOKEN)
3028 		sk = udp_get_idx(seq, 0);
3029 	else
3030 		sk = udp_get_next(seq, v);
3031 
3032 	++*pos;
3033 	return sk;
3034 }
3035 EXPORT_SYMBOL(udp_seq_next);
3036 
3037 void udp_seq_stop(struct seq_file *seq, void *v)
3038 {
3039 	struct udp_seq_afinfo *afinfo;
3040 	struct udp_iter_state *state = seq->private;
3041 
3042 	if (state->bpf_seq_afinfo)
3043 		afinfo = state->bpf_seq_afinfo;
3044 	else
3045 		afinfo = PDE_DATA(file_inode(seq->file));
3046 
3047 	if (state->bucket <= afinfo->udp_table->mask)
3048 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3049 }
3050 EXPORT_SYMBOL(udp_seq_stop);
3051 
3052 /* ------------------------------------------------------------------------ */
3053 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3054 		int bucket)
3055 {
3056 	struct inet_sock *inet = inet_sk(sp);
3057 	__be32 dest = inet->inet_daddr;
3058 	__be32 src  = inet->inet_rcv_saddr;
3059 	__u16 destp	  = ntohs(inet->inet_dport);
3060 	__u16 srcp	  = ntohs(inet->inet_sport);
3061 
3062 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3063 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3064 		bucket, src, srcp, dest, destp, sp->sk_state,
3065 		sk_wmem_alloc_get(sp),
3066 		udp_rqueue_get(sp),
3067 		0, 0L, 0,
3068 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3069 		0, sock_i_ino(sp),
3070 		refcount_read(&sp->sk_refcnt), sp,
3071 		atomic_read(&sp->sk_drops));
3072 }
3073 
3074 int udp4_seq_show(struct seq_file *seq, void *v)
3075 {
3076 	seq_setwidth(seq, 127);
3077 	if (v == SEQ_START_TOKEN)
3078 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
3079 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3080 			   "inode ref pointer drops");
3081 	else {
3082 		struct udp_iter_state *state = seq->private;
3083 
3084 		udp4_format_sock(v, seq, state->bucket);
3085 	}
3086 	seq_pad(seq, '\n');
3087 	return 0;
3088 }
3089 
3090 #ifdef CONFIG_BPF_SYSCALL
3091 struct bpf_iter__udp {
3092 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3093 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3094 	uid_t uid __aligned(8);
3095 	int bucket __aligned(8);
3096 };
3097 
3098 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3099 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3100 {
3101 	struct bpf_iter__udp ctx;
3102 
3103 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3104 	ctx.meta = meta;
3105 	ctx.udp_sk = udp_sk;
3106 	ctx.uid = uid;
3107 	ctx.bucket = bucket;
3108 	return bpf_iter_run_prog(prog, &ctx);
3109 }
3110 
3111 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3112 {
3113 	struct udp_iter_state *state = seq->private;
3114 	struct bpf_iter_meta meta;
3115 	struct bpf_prog *prog;
3116 	struct sock *sk = v;
3117 	uid_t uid;
3118 
3119 	if (v == SEQ_START_TOKEN)
3120 		return 0;
3121 
3122 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3123 	meta.seq = seq;
3124 	prog = bpf_iter_get_info(&meta, false);
3125 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3126 }
3127 
3128 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3129 {
3130 	struct bpf_iter_meta meta;
3131 	struct bpf_prog *prog;
3132 
3133 	if (!v) {
3134 		meta.seq = seq;
3135 		prog = bpf_iter_get_info(&meta, true);
3136 		if (prog)
3137 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3138 	}
3139 
3140 	udp_seq_stop(seq, v);
3141 }
3142 
3143 static const struct seq_operations bpf_iter_udp_seq_ops = {
3144 	.start		= udp_seq_start,
3145 	.next		= udp_seq_next,
3146 	.stop		= bpf_iter_udp_seq_stop,
3147 	.show		= bpf_iter_udp_seq_show,
3148 };
3149 #endif
3150 
3151 const struct seq_operations udp_seq_ops = {
3152 	.start		= udp_seq_start,
3153 	.next		= udp_seq_next,
3154 	.stop		= udp_seq_stop,
3155 	.show		= udp4_seq_show,
3156 };
3157 EXPORT_SYMBOL(udp_seq_ops);
3158 
3159 static struct udp_seq_afinfo udp4_seq_afinfo = {
3160 	.family		= AF_INET,
3161 	.udp_table	= &udp_table,
3162 };
3163 
3164 static int __net_init udp4_proc_init_net(struct net *net)
3165 {
3166 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3167 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3168 		return -ENOMEM;
3169 	return 0;
3170 }
3171 
3172 static void __net_exit udp4_proc_exit_net(struct net *net)
3173 {
3174 	remove_proc_entry("udp", net->proc_net);
3175 }
3176 
3177 static struct pernet_operations udp4_net_ops = {
3178 	.init = udp4_proc_init_net,
3179 	.exit = udp4_proc_exit_net,
3180 };
3181 
3182 int __init udp4_proc_init(void)
3183 {
3184 	return register_pernet_subsys(&udp4_net_ops);
3185 }
3186 
3187 void udp4_proc_exit(void)
3188 {
3189 	unregister_pernet_subsys(&udp4_net_ops);
3190 }
3191 #endif /* CONFIG_PROC_FS */
3192 
3193 static __initdata unsigned long uhash_entries;
3194 static int __init set_uhash_entries(char *str)
3195 {
3196 	ssize_t ret;
3197 
3198 	if (!str)
3199 		return 0;
3200 
3201 	ret = kstrtoul(str, 0, &uhash_entries);
3202 	if (ret)
3203 		return 0;
3204 
3205 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3206 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3207 	return 1;
3208 }
3209 __setup("uhash_entries=", set_uhash_entries);
3210 
3211 void __init udp_table_init(struct udp_table *table, const char *name)
3212 {
3213 	unsigned int i;
3214 
3215 	table->hash = alloc_large_system_hash(name,
3216 					      2 * sizeof(struct udp_hslot),
3217 					      uhash_entries,
3218 					      21, /* one slot per 2 MB */
3219 					      0,
3220 					      &table->log,
3221 					      &table->mask,
3222 					      UDP_HTABLE_SIZE_MIN,
3223 					      64 * 1024);
3224 
3225 	table->hash2 = table->hash + (table->mask + 1);
3226 	for (i = 0; i <= table->mask; i++) {
3227 		INIT_HLIST_HEAD(&table->hash[i].head);
3228 		table->hash[i].count = 0;
3229 		spin_lock_init(&table->hash[i].lock);
3230 	}
3231 	for (i = 0; i <= table->mask; i++) {
3232 		INIT_HLIST_HEAD(&table->hash2[i].head);
3233 		table->hash2[i].count = 0;
3234 		spin_lock_init(&table->hash2[i].lock);
3235 	}
3236 }
3237 
3238 u32 udp_flow_hashrnd(void)
3239 {
3240 	static u32 hashrnd __read_mostly;
3241 
3242 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3243 
3244 	return hashrnd;
3245 }
3246 EXPORT_SYMBOL(udp_flow_hashrnd);
3247 
3248 static void __udp_sysctl_init(struct net *net)
3249 {
3250 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3251 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3252 
3253 #ifdef CONFIG_NET_L3_MASTER_DEV
3254 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3255 #endif
3256 }
3257 
3258 static int __net_init udp_sysctl_init(struct net *net)
3259 {
3260 	__udp_sysctl_init(net);
3261 	return 0;
3262 }
3263 
3264 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3265 	.init	= udp_sysctl_init,
3266 };
3267 
3268 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3269 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3270 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3271 
3272 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3273 {
3274 	struct udp_iter_state *st = priv_data;
3275 	struct udp_seq_afinfo *afinfo;
3276 	int ret;
3277 
3278 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3279 	if (!afinfo)
3280 		return -ENOMEM;
3281 
3282 	afinfo->family = AF_UNSPEC;
3283 	afinfo->udp_table = &udp_table;
3284 	st->bpf_seq_afinfo = afinfo;
3285 	ret = bpf_iter_init_seq_net(priv_data, aux);
3286 	if (ret)
3287 		kfree(afinfo);
3288 	return ret;
3289 }
3290 
3291 static void bpf_iter_fini_udp(void *priv_data)
3292 {
3293 	struct udp_iter_state *st = priv_data;
3294 
3295 	kfree(st->bpf_seq_afinfo);
3296 	bpf_iter_fini_seq_net(priv_data);
3297 }
3298 
3299 static const struct bpf_iter_seq_info udp_seq_info = {
3300 	.seq_ops		= &bpf_iter_udp_seq_ops,
3301 	.init_seq_private	= bpf_iter_init_udp,
3302 	.fini_seq_private	= bpf_iter_fini_udp,
3303 	.seq_priv_size		= sizeof(struct udp_iter_state),
3304 };
3305 
3306 static struct bpf_iter_reg udp_reg_info = {
3307 	.target			= "udp",
3308 	.ctx_arg_info_size	= 1,
3309 	.ctx_arg_info		= {
3310 		{ offsetof(struct bpf_iter__udp, udp_sk),
3311 		  PTR_TO_BTF_ID_OR_NULL },
3312 	},
3313 	.seq_info		= &udp_seq_info,
3314 };
3315 
3316 static void __init bpf_iter_register(void)
3317 {
3318 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3319 	if (bpf_iter_reg_target(&udp_reg_info))
3320 		pr_warn("Warning: could not register bpf iterator udp\n");
3321 }
3322 #endif
3323 
3324 void __init udp_init(void)
3325 {
3326 	unsigned long limit;
3327 	unsigned int i;
3328 
3329 	udp_table_init(&udp_table, "UDP");
3330 	limit = nr_free_buffer_pages() / 8;
3331 	limit = max(limit, 128UL);
3332 	sysctl_udp_mem[0] = limit / 4 * 3;
3333 	sysctl_udp_mem[1] = limit;
3334 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3335 
3336 	__udp_sysctl_init(&init_net);
3337 
3338 	/* 16 spinlocks per cpu */
3339 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3340 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3341 				GFP_KERNEL);
3342 	if (!udp_busylocks)
3343 		panic("UDP: failed to alloc udp_busylocks\n");
3344 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3345 		spin_lock_init(udp_busylocks + i);
3346 
3347 	if (register_pernet_subsys(&udp_sysctl_ops))
3348 		panic("UDP: failed to init sysctl parameters.\n");
3349 
3350 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3351 	bpf_iter_register();
3352 #endif
3353 }
3354