xref: /openbmc/linux/net/ipv4/udp.c (revision f3a8b664)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 			       const struct udp_hslot *hslot,
139 			       unsigned long *bitmap,
140 			       struct sock *sk,
141 			       int (*saddr_comp)(const struct sock *sk1,
142 						 const struct sock *sk2,
143 						 bool match_wildcard),
144 			       unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 		     !uid_eq(uid, sock_i_uid(sk2))) &&
159 		    saddr_comp(sk, sk2, true)) {
160 			if (!bitmap)
161 				return 1;
162 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 		}
164 	}
165 	return 0;
166 }
167 
168 /*
169  * Note: we still hold spinlock of primary hash chain, so no other writer
170  * can insert/delete a socket with local_port == num
171  */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 				struct udp_hslot *hslot2,
174 				struct sock *sk,
175 				int (*saddr_comp)(const struct sock *sk1,
176 						  const struct sock *sk2,
177 						  bool match_wildcard))
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
193 		     !uid_eq(uid, sock_i_uid(sk2))) &&
194 		    saddr_comp(sk, sk2, true)) {
195 			res = 1;
196 			break;
197 		}
198 	}
199 	spin_unlock(&hslot2->lock);
200 	return res;
201 }
202 
203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 				  int (*saddr_same)(const struct sock *sk1,
205 						    const struct sock *sk2,
206 						    bool match_wildcard))
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    (*saddr_same)(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2);
222 		}
223 	}
224 
225 	/* Initial allocation may have already happened via setsockopt */
226 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
227 		return reuseport_alloc(sk);
228 	return 0;
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     int (*saddr_comp)(const struct sock *sk1,
242 				       const struct sock *sk2,
243 				       bool match_wildcard),
244 		     unsigned int hash2_nulladdr)
245 {
246 	struct udp_hslot *hslot, *hslot2;
247 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
248 	int    error = 1;
249 	struct net *net = sock_net(sk);
250 
251 	if (!snum) {
252 		int low, high, remaining;
253 		unsigned int rand;
254 		unsigned short first, last;
255 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
256 
257 		inet_get_local_port_range(net, &low, &high);
258 		remaining = (high - low) + 1;
259 
260 		rand = prandom_u32();
261 		first = reciprocal_scale(rand, remaining) + low;
262 		/*
263 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
264 		 */
265 		rand = (rand | 1) * (udptable->mask + 1);
266 		last = first + udptable->mask + 1;
267 		do {
268 			hslot = udp_hashslot(udptable, net, first);
269 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
270 			spin_lock_bh(&hslot->lock);
271 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
272 					    saddr_comp, udptable->log);
273 
274 			snum = first;
275 			/*
276 			 * Iterate on all possible values of snum for this hash.
277 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
278 			 * give us randomization and full range coverage.
279 			 */
280 			do {
281 				if (low <= snum && snum <= high &&
282 				    !test_bit(snum >> udptable->log, bitmap) &&
283 				    !inet_is_local_reserved_port(net, snum))
284 					goto found;
285 				snum += rand;
286 			} while (snum != first);
287 			spin_unlock_bh(&hslot->lock);
288 		} while (++first != last);
289 		goto fail;
290 	} else {
291 		hslot = udp_hashslot(udptable, net, snum);
292 		spin_lock_bh(&hslot->lock);
293 		if (hslot->count > 10) {
294 			int exist;
295 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296 
297 			slot2          &= udptable->mask;
298 			hash2_nulladdr &= udptable->mask;
299 
300 			hslot2 = udp_hashslot2(udptable, slot2);
301 			if (hslot->count < hslot2->count)
302 				goto scan_primary_hash;
303 
304 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 						     sk, saddr_comp);
306 			if (!exist && (hash2_nulladdr != slot2)) {
307 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
308 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
309 							     sk, saddr_comp);
310 			}
311 			if (exist)
312 				goto fail_unlock;
313 			else
314 				goto found;
315 		}
316 scan_primary_hash:
317 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
318 					saddr_comp, 0))
319 			goto fail_unlock;
320 	}
321 found:
322 	inet_sk(sk)->inet_num = snum;
323 	udp_sk(sk)->udp_port_hash = snum;
324 	udp_sk(sk)->udp_portaddr_hash ^= snum;
325 	if (sk_unhashed(sk)) {
326 		if (sk->sk_reuseport &&
327 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
328 			inet_sk(sk)->inet_num = 0;
329 			udp_sk(sk)->udp_port_hash = 0;
330 			udp_sk(sk)->udp_portaddr_hash ^= snum;
331 			goto fail_unlock;
332 		}
333 
334 		sk_add_node_rcu(sk, &hslot->head);
335 		hslot->count++;
336 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
337 
338 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
339 		spin_lock(&hslot2->lock);
340 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
341 		    sk->sk_family == AF_INET6)
342 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		else
345 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
346 					   &hslot2->head);
347 		hslot2->count++;
348 		spin_unlock(&hslot2->lock);
349 	}
350 	sock_set_flag(sk, SOCK_RCU_FREE);
351 	error = 0;
352 fail_unlock:
353 	spin_unlock_bh(&hslot->lock);
354 fail:
355 	return error;
356 }
357 EXPORT_SYMBOL(udp_lib_get_port);
358 
359 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
360  * match_wildcard == false: addresses must be exactly the same, i.e.
361  *                          0.0.0.0 only equals to 0.0.0.0
362  */
363 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
364 			 bool match_wildcard)
365 {
366 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
367 
368 	if (!ipv6_only_sock(sk2)) {
369 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
370 			return 1;
371 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
372 			return match_wildcard;
373 	}
374 	return 0;
375 }
376 
377 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
378 			      unsigned int port)
379 {
380 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
381 }
382 
383 int udp_v4_get_port(struct sock *sk, unsigned short snum)
384 {
385 	unsigned int hash2_nulladdr =
386 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
387 	unsigned int hash2_partial =
388 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
389 
390 	/* precompute partial secondary hash */
391 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
392 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
393 }
394 
395 static int compute_score(struct sock *sk, struct net *net,
396 			 __be32 saddr, __be16 sport,
397 			 __be32 daddr, unsigned short hnum, int dif)
398 {
399 	int score;
400 	struct inet_sock *inet;
401 
402 	if (!net_eq(sock_net(sk), net) ||
403 	    udp_sk(sk)->udp_port_hash != hnum ||
404 	    ipv6_only_sock(sk))
405 		return -1;
406 
407 	score = (sk->sk_family == PF_INET) ? 2 : 1;
408 	inet = inet_sk(sk);
409 
410 	if (inet->inet_rcv_saddr) {
411 		if (inet->inet_rcv_saddr != daddr)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (inet->inet_daddr) {
417 		if (inet->inet_daddr != saddr)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	if (inet->inet_dport) {
423 		if (inet->inet_dport != sport)
424 			return -1;
425 		score += 4;
426 	}
427 
428 	if (sk->sk_bound_dev_if) {
429 		if (sk->sk_bound_dev_if != dif)
430 			return -1;
431 		score += 4;
432 	}
433 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
434 		score++;
435 	return score;
436 }
437 
438 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
439 		       const __u16 lport, const __be32 faddr,
440 		       const __be16 fport)
441 {
442 	static u32 udp_ehash_secret __read_mostly;
443 
444 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
445 
446 	return __inet_ehashfn(laddr, lport, faddr, fport,
447 			      udp_ehash_secret + net_hash_mix(net));
448 }
449 
450 /* called with rcu_read_lock() */
451 static struct sock *udp4_lib_lookup2(struct net *net,
452 		__be32 saddr, __be16 sport,
453 		__be32 daddr, unsigned int hnum, int dif,
454 		struct udp_hslot *hslot2,
455 		struct sk_buff *skb)
456 {
457 	struct sock *sk, *result;
458 	int score, badness, matches = 0, reuseport = 0;
459 	u32 hash = 0;
460 
461 	result = NULL;
462 	badness = 0;
463 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
464 		score = compute_score(sk, net, saddr, sport,
465 				      daddr, hnum, dif);
466 		if (score > badness) {
467 			reuseport = sk->sk_reuseport;
468 			if (reuseport) {
469 				hash = udp_ehashfn(net, daddr, hnum,
470 						   saddr, sport);
471 				result = reuseport_select_sock(sk, hash, skb,
472 							sizeof(struct udphdr));
473 				if (result)
474 					return result;
475 				matches = 1;
476 			}
477 			badness = score;
478 			result = sk;
479 		} else if (score == badness && reuseport) {
480 			matches++;
481 			if (reciprocal_scale(hash, matches) == 0)
482 				result = sk;
483 			hash = next_pseudo_random32(hash);
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 	struct sock *sk, *result;
497 	unsigned short hnum = ntohs(dport);
498 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 	int score, badness, matches = 0, reuseport = 0;
501 	u32 hash = 0;
502 
503 	if (hslot->count > 10) {
504 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
505 		slot2 = hash2 & udptable->mask;
506 		hslot2 = &udptable->hash2[slot2];
507 		if (hslot->count < hslot2->count)
508 			goto begin;
509 
510 		result = udp4_lib_lookup2(net, saddr, sport,
511 					  daddr, hnum, dif,
512 					  hslot2, skb);
513 		if (!result) {
514 			unsigned int old_slot2 = slot2;
515 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 			slot2 = hash2 & udptable->mask;
517 			/* avoid searching the same slot again. */
518 			if (unlikely(slot2 == old_slot2))
519 				return result;
520 
521 			hslot2 = &udptable->hash2[slot2];
522 			if (hslot->count < hslot2->count)
523 				goto begin;
524 
525 			result = udp4_lib_lookup2(net, saddr, sport,
526 						  daddr, hnum, dif,
527 						  hslot2, skb);
528 		}
529 		return result;
530 	}
531 begin:
532 	result = NULL;
533 	badness = 0;
534 	sk_for_each_rcu(sk, &hslot->head) {
535 		score = compute_score(sk, net, saddr, sport,
536 				      daddr, hnum, dif);
537 		if (score > badness) {
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				result = reuseport_select_sock(sk, hash, skb,
543 							sizeof(struct udphdr));
544 				if (result)
545 					return result;
546 				matches = 1;
547 			}
548 			result = sk;
549 			badness = score;
550 		} else if (score == badness && reuseport) {
551 			matches++;
552 			if (reciprocal_scale(hash, matches) == 0)
553 				result = sk;
554 			hash = next_pseudo_random32(hash);
555 		}
556 	}
557 	return result;
558 }
559 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
560 
561 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
562 						 __be16 sport, __be16 dport,
563 						 struct udp_table *udptable)
564 {
565 	const struct iphdr *iph = ip_hdr(skb);
566 
567 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
568 				 iph->daddr, dport, inet_iif(skb),
569 				 udptable, skb);
570 }
571 
572 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
573 				 __be16 sport, __be16 dport)
574 {
575 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
578 
579 /* Must be called under rcu_read_lock().
580  * Does increment socket refcount.
581  */
582 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
583     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 			     __be32 daddr, __be16 dport, int dif)
586 {
587 	struct sock *sk;
588 
589 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
590 			       dif, &udp_table, NULL);
591 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
592 		sk = NULL;
593 	return sk;
594 }
595 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
596 #endif
597 
598 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
599 				       __be16 loc_port, __be32 loc_addr,
600 				       __be16 rmt_port, __be32 rmt_addr,
601 				       int dif, unsigned short hnum)
602 {
603 	struct inet_sock *inet = inet_sk(sk);
604 
605 	if (!net_eq(sock_net(sk), net) ||
606 	    udp_sk(sk)->udp_port_hash != hnum ||
607 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
608 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
609 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
610 	    ipv6_only_sock(sk) ||
611 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
612 		return false;
613 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
614 		return false;
615 	return true;
616 }
617 
618 /*
619  * This routine is called by the ICMP module when it gets some
620  * sort of error condition.  If err < 0 then the socket should
621  * be closed and the error returned to the user.  If err > 0
622  * it's just the icmp type << 8 | icmp code.
623  * Header points to the ip header of the error packet. We move
624  * on past this. Then (as it used to claim before adjustment)
625  * header points to the first 8 bytes of the udp header.  We need
626  * to find the appropriate port.
627  */
628 
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 	struct inet_sock *inet;
632 	const struct iphdr *iph = (const struct iphdr *)skb->data;
633 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 	const int type = icmp_hdr(skb)->type;
635 	const int code = icmp_hdr(skb)->code;
636 	struct sock *sk;
637 	int harderr;
638 	int err;
639 	struct net *net = dev_net(skb->dev);
640 
641 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
643 			NULL);
644 	if (!sk) {
645 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
646 		return;	/* No socket for error */
647 	}
648 
649 	err = 0;
650 	harderr = 0;
651 	inet = inet_sk(sk);
652 
653 	switch (type) {
654 	default:
655 	case ICMP_TIME_EXCEEDED:
656 		err = EHOSTUNREACH;
657 		break;
658 	case ICMP_SOURCE_QUENCH:
659 		goto out;
660 	case ICMP_PARAMETERPROB:
661 		err = EPROTO;
662 		harderr = 1;
663 		break;
664 	case ICMP_DEST_UNREACH:
665 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
666 			ipv4_sk_update_pmtu(skb, sk, info);
667 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
668 				err = EMSGSIZE;
669 				harderr = 1;
670 				break;
671 			}
672 			goto out;
673 		}
674 		err = EHOSTUNREACH;
675 		if (code <= NR_ICMP_UNREACH) {
676 			harderr = icmp_err_convert[code].fatal;
677 			err = icmp_err_convert[code].errno;
678 		}
679 		break;
680 	case ICMP_REDIRECT:
681 		ipv4_sk_redirect(skb, sk);
682 		goto out;
683 	}
684 
685 	/*
686 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
687 	 *	4.1.3.3.
688 	 */
689 	if (!inet->recverr) {
690 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
691 			goto out;
692 	} else
693 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
694 
695 	sk->sk_err = err;
696 	sk->sk_error_report(sk);
697 out:
698 	return;
699 }
700 
701 void udp_err(struct sk_buff *skb, u32 info)
702 {
703 	__udp4_lib_err(skb, info, &udp_table);
704 }
705 
706 /*
707  * Throw away all pending data and cancel the corking. Socket is locked.
708  */
709 void udp_flush_pending_frames(struct sock *sk)
710 {
711 	struct udp_sock *up = udp_sk(sk);
712 
713 	if (up->pending) {
714 		up->len = 0;
715 		up->pending = 0;
716 		ip_flush_pending_frames(sk);
717 	}
718 }
719 EXPORT_SYMBOL(udp_flush_pending_frames);
720 
721 /**
722  * 	udp4_hwcsum  -  handle outgoing HW checksumming
723  * 	@skb: 	sk_buff containing the filled-in UDP header
724  * 	        (checksum field must be zeroed out)
725  *	@src:	source IP address
726  *	@dst:	destination IP address
727  */
728 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
729 {
730 	struct udphdr *uh = udp_hdr(skb);
731 	int offset = skb_transport_offset(skb);
732 	int len = skb->len - offset;
733 	int hlen = len;
734 	__wsum csum = 0;
735 
736 	if (!skb_has_frag_list(skb)) {
737 		/*
738 		 * Only one fragment on the socket.
739 		 */
740 		skb->csum_start = skb_transport_header(skb) - skb->head;
741 		skb->csum_offset = offsetof(struct udphdr, check);
742 		uh->check = ~csum_tcpudp_magic(src, dst, len,
743 					       IPPROTO_UDP, 0);
744 	} else {
745 		struct sk_buff *frags;
746 
747 		/*
748 		 * HW-checksum won't work as there are two or more
749 		 * fragments on the socket so that all csums of sk_buffs
750 		 * should be together
751 		 */
752 		skb_walk_frags(skb, frags) {
753 			csum = csum_add(csum, frags->csum);
754 			hlen -= frags->len;
755 		}
756 
757 		csum = skb_checksum(skb, offset, hlen, csum);
758 		skb->ip_summed = CHECKSUM_NONE;
759 
760 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
761 		if (uh->check == 0)
762 			uh->check = CSUM_MANGLED_0;
763 	}
764 }
765 EXPORT_SYMBOL_GPL(udp4_hwcsum);
766 
767 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
768  * for the simple case like when setting the checksum for a UDP tunnel.
769  */
770 void udp_set_csum(bool nocheck, struct sk_buff *skb,
771 		  __be32 saddr, __be32 daddr, int len)
772 {
773 	struct udphdr *uh = udp_hdr(skb);
774 
775 	if (nocheck) {
776 		uh->check = 0;
777 	} else if (skb_is_gso(skb)) {
778 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
779 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
780 		uh->check = 0;
781 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
782 		if (uh->check == 0)
783 			uh->check = CSUM_MANGLED_0;
784 	} else {
785 		skb->ip_summed = CHECKSUM_PARTIAL;
786 		skb->csum_start = skb_transport_header(skb) - skb->head;
787 		skb->csum_offset = offsetof(struct udphdr, check);
788 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
789 	}
790 }
791 EXPORT_SYMBOL(udp_set_csum);
792 
793 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
794 {
795 	struct sock *sk = skb->sk;
796 	struct inet_sock *inet = inet_sk(sk);
797 	struct udphdr *uh;
798 	int err = 0;
799 	int is_udplite = IS_UDPLITE(sk);
800 	int offset = skb_transport_offset(skb);
801 	int len = skb->len - offset;
802 	__wsum csum = 0;
803 
804 	/*
805 	 * Create a UDP header
806 	 */
807 	uh = udp_hdr(skb);
808 	uh->source = inet->inet_sport;
809 	uh->dest = fl4->fl4_dport;
810 	uh->len = htons(len);
811 	uh->check = 0;
812 
813 	if (is_udplite)  				 /*     UDP-Lite      */
814 		csum = udplite_csum(skb);
815 
816 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
817 
818 		skb->ip_summed = CHECKSUM_NONE;
819 		goto send;
820 
821 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
822 
823 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
824 		goto send;
825 
826 	} else
827 		csum = udp_csum(skb);
828 
829 	/* add protocol-dependent pseudo-header */
830 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
831 				      sk->sk_protocol, csum);
832 	if (uh->check == 0)
833 		uh->check = CSUM_MANGLED_0;
834 
835 send:
836 	err = ip_send_skb(sock_net(sk), skb);
837 	if (err) {
838 		if (err == -ENOBUFS && !inet->recverr) {
839 			UDP_INC_STATS(sock_net(sk),
840 				      UDP_MIB_SNDBUFERRORS, is_udplite);
841 			err = 0;
842 		}
843 	} else
844 		UDP_INC_STATS(sock_net(sk),
845 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
846 	return err;
847 }
848 
849 /*
850  * Push out all pending data as one UDP datagram. Socket is locked.
851  */
852 int udp_push_pending_frames(struct sock *sk)
853 {
854 	struct udp_sock  *up = udp_sk(sk);
855 	struct inet_sock *inet = inet_sk(sk);
856 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
857 	struct sk_buff *skb;
858 	int err = 0;
859 
860 	skb = ip_finish_skb(sk, fl4);
861 	if (!skb)
862 		goto out;
863 
864 	err = udp_send_skb(skb, fl4);
865 
866 out:
867 	up->len = 0;
868 	up->pending = 0;
869 	return err;
870 }
871 EXPORT_SYMBOL(udp_push_pending_frames);
872 
873 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
874 {
875 	struct inet_sock *inet = inet_sk(sk);
876 	struct udp_sock *up = udp_sk(sk);
877 	struct flowi4 fl4_stack;
878 	struct flowi4 *fl4;
879 	int ulen = len;
880 	struct ipcm_cookie ipc;
881 	struct rtable *rt = NULL;
882 	int free = 0;
883 	int connected = 0;
884 	__be32 daddr, faddr, saddr;
885 	__be16 dport;
886 	u8  tos;
887 	int err, is_udplite = IS_UDPLITE(sk);
888 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
889 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
890 	struct sk_buff *skb;
891 	struct ip_options_data opt_copy;
892 
893 	if (len > 0xFFFF)
894 		return -EMSGSIZE;
895 
896 	/*
897 	 *	Check the flags.
898 	 */
899 
900 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
901 		return -EOPNOTSUPP;
902 
903 	ipc.opt = NULL;
904 	ipc.tx_flags = 0;
905 	ipc.ttl = 0;
906 	ipc.tos = -1;
907 
908 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
909 
910 	fl4 = &inet->cork.fl.u.ip4;
911 	if (up->pending) {
912 		/*
913 		 * There are pending frames.
914 		 * The socket lock must be held while it's corked.
915 		 */
916 		lock_sock(sk);
917 		if (likely(up->pending)) {
918 			if (unlikely(up->pending != AF_INET)) {
919 				release_sock(sk);
920 				return -EINVAL;
921 			}
922 			goto do_append_data;
923 		}
924 		release_sock(sk);
925 	}
926 	ulen += sizeof(struct udphdr);
927 
928 	/*
929 	 *	Get and verify the address.
930 	 */
931 	if (msg->msg_name) {
932 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
933 		if (msg->msg_namelen < sizeof(*usin))
934 			return -EINVAL;
935 		if (usin->sin_family != AF_INET) {
936 			if (usin->sin_family != AF_UNSPEC)
937 				return -EAFNOSUPPORT;
938 		}
939 
940 		daddr = usin->sin_addr.s_addr;
941 		dport = usin->sin_port;
942 		if (dport == 0)
943 			return -EINVAL;
944 	} else {
945 		if (sk->sk_state != TCP_ESTABLISHED)
946 			return -EDESTADDRREQ;
947 		daddr = inet->inet_daddr;
948 		dport = inet->inet_dport;
949 		/* Open fast path for connected socket.
950 		   Route will not be used, if at least one option is set.
951 		 */
952 		connected = 1;
953 	}
954 
955 	ipc.sockc.tsflags = sk->sk_tsflags;
956 	ipc.addr = inet->inet_saddr;
957 	ipc.oif = sk->sk_bound_dev_if;
958 
959 	if (msg->msg_controllen) {
960 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
961 		if (unlikely(err)) {
962 			kfree(ipc.opt);
963 			return err;
964 		}
965 		if (ipc.opt)
966 			free = 1;
967 		connected = 0;
968 	}
969 	if (!ipc.opt) {
970 		struct ip_options_rcu *inet_opt;
971 
972 		rcu_read_lock();
973 		inet_opt = rcu_dereference(inet->inet_opt);
974 		if (inet_opt) {
975 			memcpy(&opt_copy, inet_opt,
976 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
977 			ipc.opt = &opt_copy.opt;
978 		}
979 		rcu_read_unlock();
980 	}
981 
982 	saddr = ipc.addr;
983 	ipc.addr = faddr = daddr;
984 
985 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
986 
987 	if (ipc.opt && ipc.opt->opt.srr) {
988 		if (!daddr)
989 			return -EINVAL;
990 		faddr = ipc.opt->opt.faddr;
991 		connected = 0;
992 	}
993 	tos = get_rttos(&ipc, inet);
994 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
995 	    (msg->msg_flags & MSG_DONTROUTE) ||
996 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
997 		tos |= RTO_ONLINK;
998 		connected = 0;
999 	}
1000 
1001 	if (ipv4_is_multicast(daddr)) {
1002 		if (!ipc.oif)
1003 			ipc.oif = inet->mc_index;
1004 		if (!saddr)
1005 			saddr = inet->mc_addr;
1006 		connected = 0;
1007 	} else if (!ipc.oif)
1008 		ipc.oif = inet->uc_index;
1009 
1010 	if (connected)
1011 		rt = (struct rtable *)sk_dst_check(sk, 0);
1012 
1013 	if (!rt) {
1014 		struct net *net = sock_net(sk);
1015 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1016 
1017 		fl4 = &fl4_stack;
1018 
1019 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1020 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1021 				   flow_flags,
1022 				   faddr, saddr, dport, inet->inet_sport);
1023 
1024 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1025 		rt = ip_route_output_flow(net, fl4, sk);
1026 		if (IS_ERR(rt)) {
1027 			err = PTR_ERR(rt);
1028 			rt = NULL;
1029 			if (err == -ENETUNREACH)
1030 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1031 			goto out;
1032 		}
1033 
1034 		err = -EACCES;
1035 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1036 		    !sock_flag(sk, SOCK_BROADCAST))
1037 			goto out;
1038 		if (connected)
1039 			sk_dst_set(sk, dst_clone(&rt->dst));
1040 	}
1041 
1042 	if (msg->msg_flags&MSG_CONFIRM)
1043 		goto do_confirm;
1044 back_from_confirm:
1045 
1046 	saddr = fl4->saddr;
1047 	if (!ipc.addr)
1048 		daddr = ipc.addr = fl4->daddr;
1049 
1050 	/* Lockless fast path for the non-corking case. */
1051 	if (!corkreq) {
1052 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1053 				  sizeof(struct udphdr), &ipc, &rt,
1054 				  msg->msg_flags);
1055 		err = PTR_ERR(skb);
1056 		if (!IS_ERR_OR_NULL(skb))
1057 			err = udp_send_skb(skb, fl4);
1058 		goto out;
1059 	}
1060 
1061 	lock_sock(sk);
1062 	if (unlikely(up->pending)) {
1063 		/* The socket is already corked while preparing it. */
1064 		/* ... which is an evident application bug. --ANK */
1065 		release_sock(sk);
1066 
1067 		net_dbg_ratelimited("cork app bug 2\n");
1068 		err = -EINVAL;
1069 		goto out;
1070 	}
1071 	/*
1072 	 *	Now cork the socket to pend data.
1073 	 */
1074 	fl4 = &inet->cork.fl.u.ip4;
1075 	fl4->daddr = daddr;
1076 	fl4->saddr = saddr;
1077 	fl4->fl4_dport = dport;
1078 	fl4->fl4_sport = inet->inet_sport;
1079 	up->pending = AF_INET;
1080 
1081 do_append_data:
1082 	up->len += ulen;
1083 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1084 			     sizeof(struct udphdr), &ipc, &rt,
1085 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1086 	if (err)
1087 		udp_flush_pending_frames(sk);
1088 	else if (!corkreq)
1089 		err = udp_push_pending_frames(sk);
1090 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1091 		up->pending = 0;
1092 	release_sock(sk);
1093 
1094 out:
1095 	ip_rt_put(rt);
1096 	if (free)
1097 		kfree(ipc.opt);
1098 	if (!err)
1099 		return len;
1100 	/*
1101 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1102 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1103 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1104 	 * things).  We could add another new stat but at least for now that
1105 	 * seems like overkill.
1106 	 */
1107 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1108 		UDP_INC_STATS(sock_net(sk),
1109 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1110 	}
1111 	return err;
1112 
1113 do_confirm:
1114 	dst_confirm(&rt->dst);
1115 	if (!(msg->msg_flags&MSG_PROBE) || len)
1116 		goto back_from_confirm;
1117 	err = 0;
1118 	goto out;
1119 }
1120 EXPORT_SYMBOL(udp_sendmsg);
1121 
1122 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1123 		 size_t size, int flags)
1124 {
1125 	struct inet_sock *inet = inet_sk(sk);
1126 	struct udp_sock *up = udp_sk(sk);
1127 	int ret;
1128 
1129 	if (flags & MSG_SENDPAGE_NOTLAST)
1130 		flags |= MSG_MORE;
1131 
1132 	if (!up->pending) {
1133 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1134 
1135 		/* Call udp_sendmsg to specify destination address which
1136 		 * sendpage interface can't pass.
1137 		 * This will succeed only when the socket is connected.
1138 		 */
1139 		ret = udp_sendmsg(sk, &msg, 0);
1140 		if (ret < 0)
1141 			return ret;
1142 	}
1143 
1144 	lock_sock(sk);
1145 
1146 	if (unlikely(!up->pending)) {
1147 		release_sock(sk);
1148 
1149 		net_dbg_ratelimited("udp cork app bug 3\n");
1150 		return -EINVAL;
1151 	}
1152 
1153 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1154 			     page, offset, size, flags);
1155 	if (ret == -EOPNOTSUPP) {
1156 		release_sock(sk);
1157 		return sock_no_sendpage(sk->sk_socket, page, offset,
1158 					size, flags);
1159 	}
1160 	if (ret < 0) {
1161 		udp_flush_pending_frames(sk);
1162 		goto out;
1163 	}
1164 
1165 	up->len += size;
1166 	if (!(up->corkflag || (flags&MSG_MORE)))
1167 		ret = udp_push_pending_frames(sk);
1168 	if (!ret)
1169 		ret = size;
1170 out:
1171 	release_sock(sk);
1172 	return ret;
1173 }
1174 
1175 /**
1176  *	first_packet_length	- return length of first packet in receive queue
1177  *	@sk: socket
1178  *
1179  *	Drops all bad checksum frames, until a valid one is found.
1180  *	Returns the length of found skb, or -1 if none is found.
1181  */
1182 static int first_packet_length(struct sock *sk)
1183 {
1184 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1185 	struct sk_buff *skb;
1186 	int res;
1187 
1188 	__skb_queue_head_init(&list_kill);
1189 
1190 	spin_lock_bh(&rcvq->lock);
1191 	while ((skb = skb_peek(rcvq)) != NULL &&
1192 		udp_lib_checksum_complete(skb)) {
1193 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1194 				IS_UDPLITE(sk));
1195 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1196 				IS_UDPLITE(sk));
1197 		atomic_inc(&sk->sk_drops);
1198 		__skb_unlink(skb, rcvq);
1199 		__skb_queue_tail(&list_kill, skb);
1200 	}
1201 	res = skb ? skb->len : -1;
1202 	spin_unlock_bh(&rcvq->lock);
1203 
1204 	if (!skb_queue_empty(&list_kill)) {
1205 		bool slow = lock_sock_fast(sk);
1206 
1207 		__skb_queue_purge(&list_kill);
1208 		sk_mem_reclaim_partial(sk);
1209 		unlock_sock_fast(sk, slow);
1210 	}
1211 	return res;
1212 }
1213 
1214 /*
1215  *	IOCTL requests applicable to the UDP protocol
1216  */
1217 
1218 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1219 {
1220 	switch (cmd) {
1221 	case SIOCOUTQ:
1222 	{
1223 		int amount = sk_wmem_alloc_get(sk);
1224 
1225 		return put_user(amount, (int __user *)arg);
1226 	}
1227 
1228 	case SIOCINQ:
1229 	{
1230 		int amount = max_t(int, 0, first_packet_length(sk));
1231 
1232 		return put_user(amount, (int __user *)arg);
1233 	}
1234 
1235 	default:
1236 		return -ENOIOCTLCMD;
1237 	}
1238 
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL(udp_ioctl);
1242 
1243 /*
1244  * 	This should be easy, if there is something there we
1245  * 	return it, otherwise we block.
1246  */
1247 
1248 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1249 		int flags, int *addr_len)
1250 {
1251 	struct inet_sock *inet = inet_sk(sk);
1252 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1253 	struct sk_buff *skb;
1254 	unsigned int ulen, copied;
1255 	int peeked, peeking, off;
1256 	int err;
1257 	int is_udplite = IS_UDPLITE(sk);
1258 	bool checksum_valid = false;
1259 	bool slow;
1260 
1261 	if (flags & MSG_ERRQUEUE)
1262 		return ip_recv_error(sk, msg, len, addr_len);
1263 
1264 try_again:
1265 	peeking = off = sk_peek_offset(sk, flags);
1266 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1267 				  &peeked, &off, &err);
1268 	if (!skb)
1269 		return err;
1270 
1271 	ulen = skb->len;
1272 	copied = len;
1273 	if (copied > ulen - off)
1274 		copied = ulen - off;
1275 	else if (copied < ulen)
1276 		msg->msg_flags |= MSG_TRUNC;
1277 
1278 	/*
1279 	 * If checksum is needed at all, try to do it while copying the
1280 	 * data.  If the data is truncated, or if we only want a partial
1281 	 * coverage checksum (UDP-Lite), do it before the copy.
1282 	 */
1283 
1284 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1285 		checksum_valid = !udp_lib_checksum_complete(skb);
1286 		if (!checksum_valid)
1287 			goto csum_copy_err;
1288 	}
1289 
1290 	if (checksum_valid || skb_csum_unnecessary(skb))
1291 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1292 	else {
1293 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1294 
1295 		if (err == -EINVAL)
1296 			goto csum_copy_err;
1297 	}
1298 
1299 	if (unlikely(err)) {
1300 		trace_kfree_skb(skb, udp_recvmsg);
1301 		if (!peeked) {
1302 			atomic_inc(&sk->sk_drops);
1303 			UDP_INC_STATS(sock_net(sk),
1304 				      UDP_MIB_INERRORS, is_udplite);
1305 		}
1306 		skb_free_datagram_locked(sk, skb);
1307 		return err;
1308 	}
1309 
1310 	if (!peeked)
1311 		UDP_INC_STATS(sock_net(sk),
1312 			      UDP_MIB_INDATAGRAMS, is_udplite);
1313 
1314 	sock_recv_ts_and_drops(msg, sk, skb);
1315 
1316 	/* Copy the address. */
1317 	if (sin) {
1318 		sin->sin_family = AF_INET;
1319 		sin->sin_port = udp_hdr(skb)->source;
1320 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1321 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1322 		*addr_len = sizeof(*sin);
1323 	}
1324 	if (inet->cmsg_flags)
1325 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr), off);
1326 
1327 	err = copied;
1328 	if (flags & MSG_TRUNC)
1329 		err = ulen;
1330 
1331 	__skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1332 	return err;
1333 
1334 csum_copy_err:
1335 	slow = lock_sock_fast(sk);
1336 	if (!skb_kill_datagram(sk, skb, flags)) {
1337 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1338 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1339 	}
1340 	unlock_sock_fast(sk, slow);
1341 
1342 	/* starting over for a new packet, but check if we need to yield */
1343 	cond_resched();
1344 	msg->msg_flags &= ~MSG_TRUNC;
1345 	goto try_again;
1346 }
1347 
1348 int __udp_disconnect(struct sock *sk, int flags)
1349 {
1350 	struct inet_sock *inet = inet_sk(sk);
1351 	/*
1352 	 *	1003.1g - break association.
1353 	 */
1354 
1355 	sk->sk_state = TCP_CLOSE;
1356 	inet->inet_daddr = 0;
1357 	inet->inet_dport = 0;
1358 	sock_rps_reset_rxhash(sk);
1359 	sk->sk_bound_dev_if = 0;
1360 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1361 		inet_reset_saddr(sk);
1362 
1363 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1364 		sk->sk_prot->unhash(sk);
1365 		inet->inet_sport = 0;
1366 	}
1367 	sk_dst_reset(sk);
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL(__udp_disconnect);
1371 
1372 int udp_disconnect(struct sock *sk, int flags)
1373 {
1374 	lock_sock(sk);
1375 	__udp_disconnect(sk, flags);
1376 	release_sock(sk);
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(udp_disconnect);
1380 
1381 void udp_lib_unhash(struct sock *sk)
1382 {
1383 	if (sk_hashed(sk)) {
1384 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1385 		struct udp_hslot *hslot, *hslot2;
1386 
1387 		hslot  = udp_hashslot(udptable, sock_net(sk),
1388 				      udp_sk(sk)->udp_port_hash);
1389 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390 
1391 		spin_lock_bh(&hslot->lock);
1392 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1393 			reuseport_detach_sock(sk);
1394 		if (sk_del_node_init_rcu(sk)) {
1395 			hslot->count--;
1396 			inet_sk(sk)->inet_num = 0;
1397 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1398 
1399 			spin_lock(&hslot2->lock);
1400 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1401 			hslot2->count--;
1402 			spin_unlock(&hslot2->lock);
1403 		}
1404 		spin_unlock_bh(&hslot->lock);
1405 	}
1406 }
1407 EXPORT_SYMBOL(udp_lib_unhash);
1408 
1409 /*
1410  * inet_rcv_saddr was changed, we must rehash secondary hash
1411  */
1412 void udp_lib_rehash(struct sock *sk, u16 newhash)
1413 {
1414 	if (sk_hashed(sk)) {
1415 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1416 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1417 
1418 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1419 		nhslot2 = udp_hashslot2(udptable, newhash);
1420 		udp_sk(sk)->udp_portaddr_hash = newhash;
1421 
1422 		if (hslot2 != nhslot2 ||
1423 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1424 			hslot = udp_hashslot(udptable, sock_net(sk),
1425 					     udp_sk(sk)->udp_port_hash);
1426 			/* we must lock primary chain too */
1427 			spin_lock_bh(&hslot->lock);
1428 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1429 				reuseport_detach_sock(sk);
1430 
1431 			if (hslot2 != nhslot2) {
1432 				spin_lock(&hslot2->lock);
1433 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1434 				hslot2->count--;
1435 				spin_unlock(&hslot2->lock);
1436 
1437 				spin_lock(&nhslot2->lock);
1438 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1439 							 &nhslot2->head);
1440 				nhslot2->count++;
1441 				spin_unlock(&nhslot2->lock);
1442 			}
1443 
1444 			spin_unlock_bh(&hslot->lock);
1445 		}
1446 	}
1447 }
1448 EXPORT_SYMBOL(udp_lib_rehash);
1449 
1450 static void udp_v4_rehash(struct sock *sk)
1451 {
1452 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1453 					  inet_sk(sk)->inet_rcv_saddr,
1454 					  inet_sk(sk)->inet_num);
1455 	udp_lib_rehash(sk, new_hash);
1456 }
1457 
1458 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1459 {
1460 	int rc;
1461 
1462 	if (inet_sk(sk)->inet_daddr) {
1463 		sock_rps_save_rxhash(sk, skb);
1464 		sk_mark_napi_id(sk, skb);
1465 		sk_incoming_cpu_update(sk);
1466 	}
1467 
1468 	rc = __sock_queue_rcv_skb(sk, skb);
1469 	if (rc < 0) {
1470 		int is_udplite = IS_UDPLITE(sk);
1471 
1472 		/* Note that an ENOMEM error is charged twice */
1473 		if (rc == -ENOMEM)
1474 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1475 					is_udplite);
1476 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1477 		kfree_skb(skb);
1478 		trace_udp_fail_queue_rcv_skb(rc, sk);
1479 		return -1;
1480 	}
1481 
1482 	return 0;
1483 
1484 }
1485 
1486 static struct static_key udp_encap_needed __read_mostly;
1487 void udp_encap_enable(void)
1488 {
1489 	if (!static_key_enabled(&udp_encap_needed))
1490 		static_key_slow_inc(&udp_encap_needed);
1491 }
1492 EXPORT_SYMBOL(udp_encap_enable);
1493 
1494 /* returns:
1495  *  -1: error
1496  *   0: success
1497  *  >0: "udp encap" protocol resubmission
1498  *
1499  * Note that in the success and error cases, the skb is assumed to
1500  * have either been requeued or freed.
1501  */
1502 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1503 {
1504 	struct udp_sock *up = udp_sk(sk);
1505 	int rc;
1506 	int is_udplite = IS_UDPLITE(sk);
1507 
1508 	/*
1509 	 *	Charge it to the socket, dropping if the queue is full.
1510 	 */
1511 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1512 		goto drop;
1513 	nf_reset(skb);
1514 
1515 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1516 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1517 
1518 		/*
1519 		 * This is an encapsulation socket so pass the skb to
1520 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1521 		 * fall through and pass this up the UDP socket.
1522 		 * up->encap_rcv() returns the following value:
1523 		 * =0 if skb was successfully passed to the encap
1524 		 *    handler or was discarded by it.
1525 		 * >0 if skb should be passed on to UDP.
1526 		 * <0 if skb should be resubmitted as proto -N
1527 		 */
1528 
1529 		/* if we're overly short, let UDP handle it */
1530 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1531 		if (encap_rcv) {
1532 			int ret;
1533 
1534 			/* Verify checksum before giving to encap */
1535 			if (udp_lib_checksum_complete(skb))
1536 				goto csum_error;
1537 
1538 			ret = encap_rcv(sk, skb);
1539 			if (ret <= 0) {
1540 				__UDP_INC_STATS(sock_net(sk),
1541 						UDP_MIB_INDATAGRAMS,
1542 						is_udplite);
1543 				return -ret;
1544 			}
1545 		}
1546 
1547 		/* FALLTHROUGH -- it's a UDP Packet */
1548 	}
1549 
1550 	/*
1551 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1552 	 */
1553 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1554 
1555 		/*
1556 		 * MIB statistics other than incrementing the error count are
1557 		 * disabled for the following two types of errors: these depend
1558 		 * on the application settings, not on the functioning of the
1559 		 * protocol stack as such.
1560 		 *
1561 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1562 		 * way ... to ... at least let the receiving application block
1563 		 * delivery of packets with coverage values less than a value
1564 		 * provided by the application."
1565 		 */
1566 		if (up->pcrlen == 0) {          /* full coverage was set  */
1567 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1568 					    UDP_SKB_CB(skb)->cscov, skb->len);
1569 			goto drop;
1570 		}
1571 		/* The next case involves violating the min. coverage requested
1572 		 * by the receiver. This is subtle: if receiver wants x and x is
1573 		 * greater than the buffersize/MTU then receiver will complain
1574 		 * that it wants x while sender emits packets of smaller size y.
1575 		 * Therefore the above ...()->partial_cov statement is essential.
1576 		 */
1577 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1578 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1579 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1580 			goto drop;
1581 		}
1582 	}
1583 
1584 	if (rcu_access_pointer(sk->sk_filter) &&
1585 	    udp_lib_checksum_complete(skb))
1586 			goto csum_error;
1587 
1588 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1589 		goto drop;
1590 
1591 	udp_csum_pull_header(skb);
1592 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1593 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1594 				is_udplite);
1595 		goto drop;
1596 	}
1597 
1598 	rc = 0;
1599 
1600 	ipv4_pktinfo_prepare(sk, skb);
1601 	bh_lock_sock(sk);
1602 	if (!sock_owned_by_user(sk))
1603 		rc = __udp_queue_rcv_skb(sk, skb);
1604 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1605 		bh_unlock_sock(sk);
1606 		goto drop;
1607 	}
1608 	bh_unlock_sock(sk);
1609 
1610 	return rc;
1611 
1612 csum_error:
1613 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1614 drop:
1615 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1616 	atomic_inc(&sk->sk_drops);
1617 	kfree_skb(skb);
1618 	return -1;
1619 }
1620 
1621 /* For TCP sockets, sk_rx_dst is protected by socket lock
1622  * For UDP, we use xchg() to guard against concurrent changes.
1623  */
1624 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1625 {
1626 	struct dst_entry *old;
1627 
1628 	dst_hold(dst);
1629 	old = xchg(&sk->sk_rx_dst, dst);
1630 	dst_release(old);
1631 }
1632 
1633 /*
1634  *	Multicasts and broadcasts go to each listener.
1635  *
1636  *	Note: called only from the BH handler context.
1637  */
1638 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1639 				    struct udphdr  *uh,
1640 				    __be32 saddr, __be32 daddr,
1641 				    struct udp_table *udptable,
1642 				    int proto)
1643 {
1644 	struct sock *sk, *first = NULL;
1645 	unsigned short hnum = ntohs(uh->dest);
1646 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1647 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1648 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1649 	int dif = skb->dev->ifindex;
1650 	struct hlist_node *node;
1651 	struct sk_buff *nskb;
1652 
1653 	if (use_hash2) {
1654 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1655 			    udp_table.mask;
1656 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1657 start_lookup:
1658 		hslot = &udp_table.hash2[hash2];
1659 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1660 	}
1661 
1662 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1663 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1664 					 uh->source, saddr, dif, hnum))
1665 			continue;
1666 
1667 		if (!first) {
1668 			first = sk;
1669 			continue;
1670 		}
1671 		nskb = skb_clone(skb, GFP_ATOMIC);
1672 
1673 		if (unlikely(!nskb)) {
1674 			atomic_inc(&sk->sk_drops);
1675 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1676 					IS_UDPLITE(sk));
1677 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1678 					IS_UDPLITE(sk));
1679 			continue;
1680 		}
1681 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1682 			consume_skb(nskb);
1683 	}
1684 
1685 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1686 	if (use_hash2 && hash2 != hash2_any) {
1687 		hash2 = hash2_any;
1688 		goto start_lookup;
1689 	}
1690 
1691 	if (first) {
1692 		if (udp_queue_rcv_skb(first, skb) > 0)
1693 			consume_skb(skb);
1694 	} else {
1695 		kfree_skb(skb);
1696 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1697 				proto == IPPROTO_UDPLITE);
1698 	}
1699 	return 0;
1700 }
1701 
1702 /* Initialize UDP checksum. If exited with zero value (success),
1703  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1704  * Otherwise, csum completion requires chacksumming packet body,
1705  * including udp header and folding it to skb->csum.
1706  */
1707 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1708 				 int proto)
1709 {
1710 	int err;
1711 
1712 	UDP_SKB_CB(skb)->partial_cov = 0;
1713 	UDP_SKB_CB(skb)->cscov = skb->len;
1714 
1715 	if (proto == IPPROTO_UDPLITE) {
1716 		err = udplite_checksum_init(skb, uh);
1717 		if (err)
1718 			return err;
1719 	}
1720 
1721 	/* Note, we are only interested in != 0 or == 0, thus the
1722 	 * force to int.
1723 	 */
1724 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1725 							 inet_compute_pseudo);
1726 }
1727 
1728 /*
1729  *	All we need to do is get the socket, and then do a checksum.
1730  */
1731 
1732 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1733 		   int proto)
1734 {
1735 	struct sock *sk;
1736 	struct udphdr *uh;
1737 	unsigned short ulen;
1738 	struct rtable *rt = skb_rtable(skb);
1739 	__be32 saddr, daddr;
1740 	struct net *net = dev_net(skb->dev);
1741 
1742 	/*
1743 	 *  Validate the packet.
1744 	 */
1745 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1746 		goto drop;		/* No space for header. */
1747 
1748 	uh   = udp_hdr(skb);
1749 	ulen = ntohs(uh->len);
1750 	saddr = ip_hdr(skb)->saddr;
1751 	daddr = ip_hdr(skb)->daddr;
1752 
1753 	if (ulen > skb->len)
1754 		goto short_packet;
1755 
1756 	if (proto == IPPROTO_UDP) {
1757 		/* UDP validates ulen. */
1758 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1759 			goto short_packet;
1760 		uh = udp_hdr(skb);
1761 	}
1762 
1763 	if (udp4_csum_init(skb, uh, proto))
1764 		goto csum_error;
1765 
1766 	sk = skb_steal_sock(skb);
1767 	if (sk) {
1768 		struct dst_entry *dst = skb_dst(skb);
1769 		int ret;
1770 
1771 		if (unlikely(sk->sk_rx_dst != dst))
1772 			udp_sk_rx_dst_set(sk, dst);
1773 
1774 		ret = udp_queue_rcv_skb(sk, skb);
1775 		sock_put(sk);
1776 		/* a return value > 0 means to resubmit the input, but
1777 		 * it wants the return to be -protocol, or 0
1778 		 */
1779 		if (ret > 0)
1780 			return -ret;
1781 		return 0;
1782 	}
1783 
1784 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1785 		return __udp4_lib_mcast_deliver(net, skb, uh,
1786 						saddr, daddr, udptable, proto);
1787 
1788 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1789 	if (sk) {
1790 		int ret;
1791 
1792 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1793 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1794 						 inet_compute_pseudo);
1795 
1796 		ret = udp_queue_rcv_skb(sk, skb);
1797 
1798 		/* a return value > 0 means to resubmit the input, but
1799 		 * it wants the return to be -protocol, or 0
1800 		 */
1801 		if (ret > 0)
1802 			return -ret;
1803 		return 0;
1804 	}
1805 
1806 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1807 		goto drop;
1808 	nf_reset(skb);
1809 
1810 	/* No socket. Drop packet silently, if checksum is wrong */
1811 	if (udp_lib_checksum_complete(skb))
1812 		goto csum_error;
1813 
1814 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1815 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1816 
1817 	/*
1818 	 * Hmm.  We got an UDP packet to a port to which we
1819 	 * don't wanna listen.  Ignore it.
1820 	 */
1821 	kfree_skb(skb);
1822 	return 0;
1823 
1824 short_packet:
1825 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1826 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1827 			    &saddr, ntohs(uh->source),
1828 			    ulen, skb->len,
1829 			    &daddr, ntohs(uh->dest));
1830 	goto drop;
1831 
1832 csum_error:
1833 	/*
1834 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1835 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1836 	 */
1837 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1838 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1839 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1840 			    ulen);
1841 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1842 drop:
1843 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1844 	kfree_skb(skb);
1845 	return 0;
1846 }
1847 
1848 /* We can only early demux multicast if there is a single matching socket.
1849  * If more than one socket found returns NULL
1850  */
1851 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1852 						  __be16 loc_port, __be32 loc_addr,
1853 						  __be16 rmt_port, __be32 rmt_addr,
1854 						  int dif)
1855 {
1856 	struct sock *sk, *result;
1857 	unsigned short hnum = ntohs(loc_port);
1858 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1859 	struct udp_hslot *hslot = &udp_table.hash[slot];
1860 
1861 	/* Do not bother scanning a too big list */
1862 	if (hslot->count > 10)
1863 		return NULL;
1864 
1865 	result = NULL;
1866 	sk_for_each_rcu(sk, &hslot->head) {
1867 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1868 					rmt_port, rmt_addr, dif, hnum)) {
1869 			if (result)
1870 				return NULL;
1871 			result = sk;
1872 		}
1873 	}
1874 
1875 	return result;
1876 }
1877 
1878 /* For unicast we should only early demux connected sockets or we can
1879  * break forwarding setups.  The chains here can be long so only check
1880  * if the first socket is an exact match and if not move on.
1881  */
1882 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1883 					    __be16 loc_port, __be32 loc_addr,
1884 					    __be16 rmt_port, __be32 rmt_addr,
1885 					    int dif)
1886 {
1887 	unsigned short hnum = ntohs(loc_port);
1888 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1889 	unsigned int slot2 = hash2 & udp_table.mask;
1890 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1891 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1892 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1893 	struct sock *sk;
1894 
1895 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1896 		if (INET_MATCH(sk, net, acookie, rmt_addr,
1897 			       loc_addr, ports, dif))
1898 			return sk;
1899 		/* Only check first socket in chain */
1900 		break;
1901 	}
1902 	return NULL;
1903 }
1904 
1905 void udp_v4_early_demux(struct sk_buff *skb)
1906 {
1907 	struct net *net = dev_net(skb->dev);
1908 	const struct iphdr *iph;
1909 	const struct udphdr *uh;
1910 	struct sock *sk = NULL;
1911 	struct dst_entry *dst;
1912 	int dif = skb->dev->ifindex;
1913 	int ours;
1914 
1915 	/* validate the packet */
1916 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1917 		return;
1918 
1919 	iph = ip_hdr(skb);
1920 	uh = udp_hdr(skb);
1921 
1922 	if (skb->pkt_type == PACKET_BROADCAST ||
1923 	    skb->pkt_type == PACKET_MULTICAST) {
1924 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1925 
1926 		if (!in_dev)
1927 			return;
1928 
1929 		/* we are supposed to accept bcast packets */
1930 		if (skb->pkt_type == PACKET_MULTICAST) {
1931 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1932 					       iph->protocol);
1933 			if (!ours)
1934 				return;
1935 		}
1936 
1937 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1938 						   uh->source, iph->saddr, dif);
1939 	} else if (skb->pkt_type == PACKET_HOST) {
1940 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1941 					     uh->source, iph->saddr, dif);
1942 	}
1943 
1944 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1945 		return;
1946 
1947 	skb->sk = sk;
1948 	skb->destructor = sock_efree;
1949 	dst = READ_ONCE(sk->sk_rx_dst);
1950 
1951 	if (dst)
1952 		dst = dst_check(dst, 0);
1953 	if (dst) {
1954 		/* DST_NOCACHE can not be used without taking a reference */
1955 		if (dst->flags & DST_NOCACHE) {
1956 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1957 				skb_dst_set(skb, dst);
1958 		} else {
1959 			skb_dst_set_noref(skb, dst);
1960 		}
1961 	}
1962 }
1963 
1964 int udp_rcv(struct sk_buff *skb)
1965 {
1966 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1967 }
1968 
1969 void udp_destroy_sock(struct sock *sk)
1970 {
1971 	struct udp_sock *up = udp_sk(sk);
1972 	bool slow = lock_sock_fast(sk);
1973 	udp_flush_pending_frames(sk);
1974 	unlock_sock_fast(sk, slow);
1975 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1976 		void (*encap_destroy)(struct sock *sk);
1977 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1978 		if (encap_destroy)
1979 			encap_destroy(sk);
1980 	}
1981 }
1982 
1983 /*
1984  *	Socket option code for UDP
1985  */
1986 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1987 		       char __user *optval, unsigned int optlen,
1988 		       int (*push_pending_frames)(struct sock *))
1989 {
1990 	struct udp_sock *up = udp_sk(sk);
1991 	int val, valbool;
1992 	int err = 0;
1993 	int is_udplite = IS_UDPLITE(sk);
1994 
1995 	if (optlen < sizeof(int))
1996 		return -EINVAL;
1997 
1998 	if (get_user(val, (int __user *)optval))
1999 		return -EFAULT;
2000 
2001 	valbool = val ? 1 : 0;
2002 
2003 	switch (optname) {
2004 	case UDP_CORK:
2005 		if (val != 0) {
2006 			up->corkflag = 1;
2007 		} else {
2008 			up->corkflag = 0;
2009 			lock_sock(sk);
2010 			push_pending_frames(sk);
2011 			release_sock(sk);
2012 		}
2013 		break;
2014 
2015 	case UDP_ENCAP:
2016 		switch (val) {
2017 		case 0:
2018 		case UDP_ENCAP_ESPINUDP:
2019 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2020 			up->encap_rcv = xfrm4_udp_encap_rcv;
2021 			/* FALLTHROUGH */
2022 		case UDP_ENCAP_L2TPINUDP:
2023 			up->encap_type = val;
2024 			udp_encap_enable();
2025 			break;
2026 		default:
2027 			err = -ENOPROTOOPT;
2028 			break;
2029 		}
2030 		break;
2031 
2032 	case UDP_NO_CHECK6_TX:
2033 		up->no_check6_tx = valbool;
2034 		break;
2035 
2036 	case UDP_NO_CHECK6_RX:
2037 		up->no_check6_rx = valbool;
2038 		break;
2039 
2040 	/*
2041 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2042 	 */
2043 	/* The sender sets actual checksum coverage length via this option.
2044 	 * The case coverage > packet length is handled by send module. */
2045 	case UDPLITE_SEND_CSCOV:
2046 		if (!is_udplite)         /* Disable the option on UDP sockets */
2047 			return -ENOPROTOOPT;
2048 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2049 			val = 8;
2050 		else if (val > USHRT_MAX)
2051 			val = USHRT_MAX;
2052 		up->pcslen = val;
2053 		up->pcflag |= UDPLITE_SEND_CC;
2054 		break;
2055 
2056 	/* The receiver specifies a minimum checksum coverage value. To make
2057 	 * sense, this should be set to at least 8 (as done below). If zero is
2058 	 * used, this again means full checksum coverage.                     */
2059 	case UDPLITE_RECV_CSCOV:
2060 		if (!is_udplite)         /* Disable the option on UDP sockets */
2061 			return -ENOPROTOOPT;
2062 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2063 			val = 8;
2064 		else if (val > USHRT_MAX)
2065 			val = USHRT_MAX;
2066 		up->pcrlen = val;
2067 		up->pcflag |= UDPLITE_RECV_CC;
2068 		break;
2069 
2070 	default:
2071 		err = -ENOPROTOOPT;
2072 		break;
2073 	}
2074 
2075 	return err;
2076 }
2077 EXPORT_SYMBOL(udp_lib_setsockopt);
2078 
2079 int udp_setsockopt(struct sock *sk, int level, int optname,
2080 		   char __user *optval, unsigned int optlen)
2081 {
2082 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2083 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2084 					  udp_push_pending_frames);
2085 	return ip_setsockopt(sk, level, optname, optval, optlen);
2086 }
2087 
2088 #ifdef CONFIG_COMPAT
2089 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2090 			  char __user *optval, unsigned int optlen)
2091 {
2092 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2093 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2094 					  udp_push_pending_frames);
2095 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2096 }
2097 #endif
2098 
2099 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2100 		       char __user *optval, int __user *optlen)
2101 {
2102 	struct udp_sock *up = udp_sk(sk);
2103 	int val, len;
2104 
2105 	if (get_user(len, optlen))
2106 		return -EFAULT;
2107 
2108 	len = min_t(unsigned int, len, sizeof(int));
2109 
2110 	if (len < 0)
2111 		return -EINVAL;
2112 
2113 	switch (optname) {
2114 	case UDP_CORK:
2115 		val = up->corkflag;
2116 		break;
2117 
2118 	case UDP_ENCAP:
2119 		val = up->encap_type;
2120 		break;
2121 
2122 	case UDP_NO_CHECK6_TX:
2123 		val = up->no_check6_tx;
2124 		break;
2125 
2126 	case UDP_NO_CHECK6_RX:
2127 		val = up->no_check6_rx;
2128 		break;
2129 
2130 	/* The following two cannot be changed on UDP sockets, the return is
2131 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2132 	case UDPLITE_SEND_CSCOV:
2133 		val = up->pcslen;
2134 		break;
2135 
2136 	case UDPLITE_RECV_CSCOV:
2137 		val = up->pcrlen;
2138 		break;
2139 
2140 	default:
2141 		return -ENOPROTOOPT;
2142 	}
2143 
2144 	if (put_user(len, optlen))
2145 		return -EFAULT;
2146 	if (copy_to_user(optval, &val, len))
2147 		return -EFAULT;
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL(udp_lib_getsockopt);
2151 
2152 int udp_getsockopt(struct sock *sk, int level, int optname,
2153 		   char __user *optval, int __user *optlen)
2154 {
2155 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2156 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2157 	return ip_getsockopt(sk, level, optname, optval, optlen);
2158 }
2159 
2160 #ifdef CONFIG_COMPAT
2161 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2162 				 char __user *optval, int __user *optlen)
2163 {
2164 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2165 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2166 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2167 }
2168 #endif
2169 /**
2170  * 	udp_poll - wait for a UDP event.
2171  *	@file - file struct
2172  *	@sock - socket
2173  *	@wait - poll table
2174  *
2175  *	This is same as datagram poll, except for the special case of
2176  *	blocking sockets. If application is using a blocking fd
2177  *	and a packet with checksum error is in the queue;
2178  *	then it could get return from select indicating data available
2179  *	but then block when reading it. Add special case code
2180  *	to work around these arguably broken applications.
2181  */
2182 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2183 {
2184 	unsigned int mask = datagram_poll(file, sock, wait);
2185 	struct sock *sk = sock->sk;
2186 
2187 	sock_rps_record_flow(sk);
2188 
2189 	/* Check for false positives due to checksum errors */
2190 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2191 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2192 		mask &= ~(POLLIN | POLLRDNORM);
2193 
2194 	return mask;
2195 
2196 }
2197 EXPORT_SYMBOL(udp_poll);
2198 
2199 int udp_abort(struct sock *sk, int err)
2200 {
2201 	lock_sock(sk);
2202 
2203 	sk->sk_err = err;
2204 	sk->sk_error_report(sk);
2205 	__udp_disconnect(sk, 0);
2206 
2207 	release_sock(sk);
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(udp_abort);
2212 
2213 struct proto udp_prot = {
2214 	.name		   = "UDP",
2215 	.owner		   = THIS_MODULE,
2216 	.close		   = udp_lib_close,
2217 	.connect	   = ip4_datagram_connect,
2218 	.disconnect	   = udp_disconnect,
2219 	.ioctl		   = udp_ioctl,
2220 	.destroy	   = udp_destroy_sock,
2221 	.setsockopt	   = udp_setsockopt,
2222 	.getsockopt	   = udp_getsockopt,
2223 	.sendmsg	   = udp_sendmsg,
2224 	.recvmsg	   = udp_recvmsg,
2225 	.sendpage	   = udp_sendpage,
2226 	.backlog_rcv	   = __udp_queue_rcv_skb,
2227 	.release_cb	   = ip4_datagram_release_cb,
2228 	.hash		   = udp_lib_hash,
2229 	.unhash		   = udp_lib_unhash,
2230 	.rehash		   = udp_v4_rehash,
2231 	.get_port	   = udp_v4_get_port,
2232 	.memory_allocated  = &udp_memory_allocated,
2233 	.sysctl_mem	   = sysctl_udp_mem,
2234 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2235 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2236 	.obj_size	   = sizeof(struct udp_sock),
2237 	.h.udp_table	   = &udp_table,
2238 #ifdef CONFIG_COMPAT
2239 	.compat_setsockopt = compat_udp_setsockopt,
2240 	.compat_getsockopt = compat_udp_getsockopt,
2241 #endif
2242 	.diag_destroy	   = udp_abort,
2243 };
2244 EXPORT_SYMBOL(udp_prot);
2245 
2246 /* ------------------------------------------------------------------------ */
2247 #ifdef CONFIG_PROC_FS
2248 
2249 static struct sock *udp_get_first(struct seq_file *seq, int start)
2250 {
2251 	struct sock *sk;
2252 	struct udp_iter_state *state = seq->private;
2253 	struct net *net = seq_file_net(seq);
2254 
2255 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2256 	     ++state->bucket) {
2257 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2258 
2259 		if (hlist_empty(&hslot->head))
2260 			continue;
2261 
2262 		spin_lock_bh(&hslot->lock);
2263 		sk_for_each(sk, &hslot->head) {
2264 			if (!net_eq(sock_net(sk), net))
2265 				continue;
2266 			if (sk->sk_family == state->family)
2267 				goto found;
2268 		}
2269 		spin_unlock_bh(&hslot->lock);
2270 	}
2271 	sk = NULL;
2272 found:
2273 	return sk;
2274 }
2275 
2276 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2277 {
2278 	struct udp_iter_state *state = seq->private;
2279 	struct net *net = seq_file_net(seq);
2280 
2281 	do {
2282 		sk = sk_next(sk);
2283 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2284 
2285 	if (!sk) {
2286 		if (state->bucket <= state->udp_table->mask)
2287 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2288 		return udp_get_first(seq, state->bucket + 1);
2289 	}
2290 	return sk;
2291 }
2292 
2293 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2294 {
2295 	struct sock *sk = udp_get_first(seq, 0);
2296 
2297 	if (sk)
2298 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2299 			--pos;
2300 	return pos ? NULL : sk;
2301 }
2302 
2303 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2304 {
2305 	struct udp_iter_state *state = seq->private;
2306 	state->bucket = MAX_UDP_PORTS;
2307 
2308 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2309 }
2310 
2311 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2312 {
2313 	struct sock *sk;
2314 
2315 	if (v == SEQ_START_TOKEN)
2316 		sk = udp_get_idx(seq, 0);
2317 	else
2318 		sk = udp_get_next(seq, v);
2319 
2320 	++*pos;
2321 	return sk;
2322 }
2323 
2324 static void udp_seq_stop(struct seq_file *seq, void *v)
2325 {
2326 	struct udp_iter_state *state = seq->private;
2327 
2328 	if (state->bucket <= state->udp_table->mask)
2329 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2330 }
2331 
2332 int udp_seq_open(struct inode *inode, struct file *file)
2333 {
2334 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2335 	struct udp_iter_state *s;
2336 	int err;
2337 
2338 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2339 			   sizeof(struct udp_iter_state));
2340 	if (err < 0)
2341 		return err;
2342 
2343 	s = ((struct seq_file *)file->private_data)->private;
2344 	s->family		= afinfo->family;
2345 	s->udp_table		= afinfo->udp_table;
2346 	return err;
2347 }
2348 EXPORT_SYMBOL(udp_seq_open);
2349 
2350 /* ------------------------------------------------------------------------ */
2351 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2352 {
2353 	struct proc_dir_entry *p;
2354 	int rc = 0;
2355 
2356 	afinfo->seq_ops.start		= udp_seq_start;
2357 	afinfo->seq_ops.next		= udp_seq_next;
2358 	afinfo->seq_ops.stop		= udp_seq_stop;
2359 
2360 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2361 			     afinfo->seq_fops, afinfo);
2362 	if (!p)
2363 		rc = -ENOMEM;
2364 	return rc;
2365 }
2366 EXPORT_SYMBOL(udp_proc_register);
2367 
2368 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2369 {
2370 	remove_proc_entry(afinfo->name, net->proc_net);
2371 }
2372 EXPORT_SYMBOL(udp_proc_unregister);
2373 
2374 /* ------------------------------------------------------------------------ */
2375 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2376 		int bucket)
2377 {
2378 	struct inet_sock *inet = inet_sk(sp);
2379 	__be32 dest = inet->inet_daddr;
2380 	__be32 src  = inet->inet_rcv_saddr;
2381 	__u16 destp	  = ntohs(inet->inet_dport);
2382 	__u16 srcp	  = ntohs(inet->inet_sport);
2383 
2384 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2385 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2386 		bucket, src, srcp, dest, destp, sp->sk_state,
2387 		sk_wmem_alloc_get(sp),
2388 		sk_rmem_alloc_get(sp),
2389 		0, 0L, 0,
2390 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2391 		0, sock_i_ino(sp),
2392 		atomic_read(&sp->sk_refcnt), sp,
2393 		atomic_read(&sp->sk_drops));
2394 }
2395 
2396 int udp4_seq_show(struct seq_file *seq, void *v)
2397 {
2398 	seq_setwidth(seq, 127);
2399 	if (v == SEQ_START_TOKEN)
2400 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2401 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2402 			   "inode ref pointer drops");
2403 	else {
2404 		struct udp_iter_state *state = seq->private;
2405 
2406 		udp4_format_sock(v, seq, state->bucket);
2407 	}
2408 	seq_pad(seq, '\n');
2409 	return 0;
2410 }
2411 
2412 static const struct file_operations udp_afinfo_seq_fops = {
2413 	.owner    = THIS_MODULE,
2414 	.open     = udp_seq_open,
2415 	.read     = seq_read,
2416 	.llseek   = seq_lseek,
2417 	.release  = seq_release_net
2418 };
2419 
2420 /* ------------------------------------------------------------------------ */
2421 static struct udp_seq_afinfo udp4_seq_afinfo = {
2422 	.name		= "udp",
2423 	.family		= AF_INET,
2424 	.udp_table	= &udp_table,
2425 	.seq_fops	= &udp_afinfo_seq_fops,
2426 	.seq_ops	= {
2427 		.show		= udp4_seq_show,
2428 	},
2429 };
2430 
2431 static int __net_init udp4_proc_init_net(struct net *net)
2432 {
2433 	return udp_proc_register(net, &udp4_seq_afinfo);
2434 }
2435 
2436 static void __net_exit udp4_proc_exit_net(struct net *net)
2437 {
2438 	udp_proc_unregister(net, &udp4_seq_afinfo);
2439 }
2440 
2441 static struct pernet_operations udp4_net_ops = {
2442 	.init = udp4_proc_init_net,
2443 	.exit = udp4_proc_exit_net,
2444 };
2445 
2446 int __init udp4_proc_init(void)
2447 {
2448 	return register_pernet_subsys(&udp4_net_ops);
2449 }
2450 
2451 void udp4_proc_exit(void)
2452 {
2453 	unregister_pernet_subsys(&udp4_net_ops);
2454 }
2455 #endif /* CONFIG_PROC_FS */
2456 
2457 static __initdata unsigned long uhash_entries;
2458 static int __init set_uhash_entries(char *str)
2459 {
2460 	ssize_t ret;
2461 
2462 	if (!str)
2463 		return 0;
2464 
2465 	ret = kstrtoul(str, 0, &uhash_entries);
2466 	if (ret)
2467 		return 0;
2468 
2469 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2470 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2471 	return 1;
2472 }
2473 __setup("uhash_entries=", set_uhash_entries);
2474 
2475 void __init udp_table_init(struct udp_table *table, const char *name)
2476 {
2477 	unsigned int i;
2478 
2479 	table->hash = alloc_large_system_hash(name,
2480 					      2 * sizeof(struct udp_hslot),
2481 					      uhash_entries,
2482 					      21, /* one slot per 2 MB */
2483 					      0,
2484 					      &table->log,
2485 					      &table->mask,
2486 					      UDP_HTABLE_SIZE_MIN,
2487 					      64 * 1024);
2488 
2489 	table->hash2 = table->hash + (table->mask + 1);
2490 	for (i = 0; i <= table->mask; i++) {
2491 		INIT_HLIST_HEAD(&table->hash[i].head);
2492 		table->hash[i].count = 0;
2493 		spin_lock_init(&table->hash[i].lock);
2494 	}
2495 	for (i = 0; i <= table->mask; i++) {
2496 		INIT_HLIST_HEAD(&table->hash2[i].head);
2497 		table->hash2[i].count = 0;
2498 		spin_lock_init(&table->hash2[i].lock);
2499 	}
2500 }
2501 
2502 u32 udp_flow_hashrnd(void)
2503 {
2504 	static u32 hashrnd __read_mostly;
2505 
2506 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2507 
2508 	return hashrnd;
2509 }
2510 EXPORT_SYMBOL(udp_flow_hashrnd);
2511 
2512 void __init udp_init(void)
2513 {
2514 	unsigned long limit;
2515 
2516 	udp_table_init(&udp_table, "UDP");
2517 	limit = nr_free_buffer_pages() / 8;
2518 	limit = max(limit, 128UL);
2519 	sysctl_udp_mem[0] = limit / 4 * 3;
2520 	sysctl_udp_mem[1] = limit;
2521 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2522 
2523 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2524 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2525 }
2526