xref: /openbmc/linux/net/ipv4/udp.c (revision f220d3eb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_hslot *hslot, *hslot2;
244 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
245 	int    error = 1;
246 	struct net *net = sock_net(sk);
247 
248 	if (!snum) {
249 		int low, high, remaining;
250 		unsigned int rand;
251 		unsigned short first, last;
252 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
253 
254 		inet_get_local_port_range(net, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = prandom_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sk_add_node_rcu(sk, &hslot->head);
331 		hslot->count++;
332 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
333 
334 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
335 		spin_lock(&hslot2->lock);
336 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
337 		    sk->sk_family == AF_INET6)
338 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		else
341 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		hslot2->count++;
344 		spin_unlock(&hslot2->lock);
345 	}
346 	sock_set_flag(sk, SOCK_RCU_FREE);
347 	error = 0;
348 fail_unlock:
349 	spin_unlock_bh(&hslot->lock);
350 fail:
351 	return error;
352 }
353 EXPORT_SYMBOL(udp_lib_get_port);
354 
355 int udp_v4_get_port(struct sock *sk, unsigned short snum)
356 {
357 	unsigned int hash2_nulladdr =
358 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
359 	unsigned int hash2_partial =
360 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
361 
362 	/* precompute partial secondary hash */
363 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
364 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
365 }
366 
367 static int compute_score(struct sock *sk, struct net *net,
368 			 __be32 saddr, __be16 sport,
369 			 __be32 daddr, unsigned short hnum,
370 			 int dif, int sdif, bool exact_dif)
371 {
372 	int score;
373 	struct inet_sock *inet;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	score = (sk->sk_family == PF_INET) ? 2 : 1;
381 	inet = inet_sk(sk);
382 
383 	if (inet->inet_rcv_saddr) {
384 		if (inet->inet_rcv_saddr != daddr)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	if (sk->sk_bound_dev_if || exact_dif) {
402 		bool dev_match = (sk->sk_bound_dev_if == dif ||
403 				  sk->sk_bound_dev_if == sdif);
404 
405 		if (!dev_match)
406 			return -1;
407 		if (sk->sk_bound_dev_if)
408 			score += 4;
409 	}
410 
411 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
412 		score++;
413 	return score;
414 }
415 
416 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
417 		       const __u16 lport, const __be32 faddr,
418 		       const __be16 fport)
419 {
420 	static u32 udp_ehash_secret __read_mostly;
421 
422 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
423 
424 	return __inet_ehashfn(laddr, lport, faddr, fport,
425 			      udp_ehash_secret + net_hash_mix(net));
426 }
427 
428 /* called with rcu_read_lock() */
429 static struct sock *udp4_lib_lookup2(struct net *net,
430 				     __be32 saddr, __be16 sport,
431 				     __be32 daddr, unsigned int hnum,
432 				     int dif, int sdif, bool exact_dif,
433 				     struct udp_hslot *hslot2,
434 				     struct sk_buff *skb)
435 {
436 	struct sock *sk, *result;
437 	int score, badness;
438 	u32 hash = 0;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif, exact_dif);
445 		if (score > badness) {
446 			if (sk->sk_reuseport) {
447 				hash = udp_ehashfn(net, daddr, hnum,
448 						   saddr, sport);
449 				result = reuseport_select_sock(sk, hash, skb,
450 							sizeof(struct udphdr));
451 				if (result)
452 					return result;
453 			}
454 			badness = score;
455 			result = sk;
456 		}
457 	}
458 	return result;
459 }
460 
461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
462  * harder than this. -DaveM
463  */
464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
465 		__be16 sport, __be32 daddr, __be16 dport, int dif,
466 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
467 {
468 	struct sock *sk, *result;
469 	unsigned short hnum = ntohs(dport);
470 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
471 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
472 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
473 	int score, badness;
474 	u32 hash = 0;
475 
476 	if (hslot->count > 10) {
477 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
478 		slot2 = hash2 & udptable->mask;
479 		hslot2 = &udptable->hash2[slot2];
480 		if (hslot->count < hslot2->count)
481 			goto begin;
482 
483 		result = udp4_lib_lookup2(net, saddr, sport,
484 					  daddr, hnum, dif, sdif,
485 					  exact_dif, hslot2, skb);
486 		if (!result) {
487 			unsigned int old_slot2 = slot2;
488 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
489 			slot2 = hash2 & udptable->mask;
490 			/* avoid searching the same slot again. */
491 			if (unlikely(slot2 == old_slot2))
492 				return result;
493 
494 			hslot2 = &udptable->hash2[slot2];
495 			if (hslot->count < hslot2->count)
496 				goto begin;
497 
498 			result = udp4_lib_lookup2(net, saddr, sport,
499 						  daddr, hnum, dif, sdif,
500 						  exact_dif, hslot2, skb);
501 		}
502 		if (unlikely(IS_ERR(result)))
503 			return NULL;
504 		return result;
505 	}
506 begin:
507 	result = NULL;
508 	badness = 0;
509 	sk_for_each_rcu(sk, &hslot->head) {
510 		score = compute_score(sk, net, saddr, sport,
511 				      daddr, hnum, dif, sdif, exact_dif);
512 		if (score > badness) {
513 			if (sk->sk_reuseport) {
514 				hash = udp_ehashfn(net, daddr, hnum,
515 						   saddr, sport);
516 				result = reuseport_select_sock(sk, hash, skb,
517 							sizeof(struct udphdr));
518 				if (unlikely(IS_ERR(result)))
519 					return NULL;
520 				if (result)
521 					return result;
522 			}
523 			result = sk;
524 			badness = score;
525 		}
526 	}
527 	return result;
528 }
529 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
530 
531 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
532 						 __be16 sport, __be16 dport,
533 						 struct udp_table *udptable)
534 {
535 	const struct iphdr *iph = ip_hdr(skb);
536 
537 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
538 				 iph->daddr, dport, inet_iif(skb),
539 				 inet_sdif(skb), udptable, skb);
540 }
541 
542 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
543 				 __be16 sport, __be16 dport)
544 {
545 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
546 }
547 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
548 
549 /* Must be called under rcu_read_lock().
550  * Does increment socket refcount.
551  */
552 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
553 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
554 			     __be32 daddr, __be16 dport, int dif)
555 {
556 	struct sock *sk;
557 
558 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
559 			       dif, 0, &udp_table, NULL);
560 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
561 		sk = NULL;
562 	return sk;
563 }
564 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
565 #endif
566 
567 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
568 				       __be16 loc_port, __be32 loc_addr,
569 				       __be16 rmt_port, __be32 rmt_addr,
570 				       int dif, int sdif, unsigned short hnum)
571 {
572 	struct inet_sock *inet = inet_sk(sk);
573 
574 	if (!net_eq(sock_net(sk), net) ||
575 	    udp_sk(sk)->udp_port_hash != hnum ||
576 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
577 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
578 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
579 	    ipv6_only_sock(sk) ||
580 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
581 	     sk->sk_bound_dev_if != sdif))
582 		return false;
583 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
584 		return false;
585 	return true;
586 }
587 
588 /*
589  * This routine is called by the ICMP module when it gets some
590  * sort of error condition.  If err < 0 then the socket should
591  * be closed and the error returned to the user.  If err > 0
592  * it's just the icmp type << 8 | icmp code.
593  * Header points to the ip header of the error packet. We move
594  * on past this. Then (as it used to claim before adjustment)
595  * header points to the first 8 bytes of the udp header.  We need
596  * to find the appropriate port.
597  */
598 
599 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
600 {
601 	struct inet_sock *inet;
602 	const struct iphdr *iph = (const struct iphdr *)skb->data;
603 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
604 	const int type = icmp_hdr(skb)->type;
605 	const int code = icmp_hdr(skb)->code;
606 	struct sock *sk;
607 	int harderr;
608 	int err;
609 	struct net *net = dev_net(skb->dev);
610 
611 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
612 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
613 			       udptable, NULL);
614 	if (!sk) {
615 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
616 		return;	/* No socket for error */
617 	}
618 
619 	err = 0;
620 	harderr = 0;
621 	inet = inet_sk(sk);
622 
623 	switch (type) {
624 	default:
625 	case ICMP_TIME_EXCEEDED:
626 		err = EHOSTUNREACH;
627 		break;
628 	case ICMP_SOURCE_QUENCH:
629 		goto out;
630 	case ICMP_PARAMETERPROB:
631 		err = EPROTO;
632 		harderr = 1;
633 		break;
634 	case ICMP_DEST_UNREACH:
635 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
636 			ipv4_sk_update_pmtu(skb, sk, info);
637 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
638 				err = EMSGSIZE;
639 				harderr = 1;
640 				break;
641 			}
642 			goto out;
643 		}
644 		err = EHOSTUNREACH;
645 		if (code <= NR_ICMP_UNREACH) {
646 			harderr = icmp_err_convert[code].fatal;
647 			err = icmp_err_convert[code].errno;
648 		}
649 		break;
650 	case ICMP_REDIRECT:
651 		ipv4_sk_redirect(skb, sk);
652 		goto out;
653 	}
654 
655 	/*
656 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
657 	 *	4.1.3.3.
658 	 */
659 	if (!inet->recverr) {
660 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
661 			goto out;
662 	} else
663 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
664 
665 	sk->sk_err = err;
666 	sk->sk_error_report(sk);
667 out:
668 	return;
669 }
670 
671 void udp_err(struct sk_buff *skb, u32 info)
672 {
673 	__udp4_lib_err(skb, info, &udp_table);
674 }
675 
676 /*
677  * Throw away all pending data and cancel the corking. Socket is locked.
678  */
679 void udp_flush_pending_frames(struct sock *sk)
680 {
681 	struct udp_sock *up = udp_sk(sk);
682 
683 	if (up->pending) {
684 		up->len = 0;
685 		up->pending = 0;
686 		ip_flush_pending_frames(sk);
687 	}
688 }
689 EXPORT_SYMBOL(udp_flush_pending_frames);
690 
691 /**
692  * 	udp4_hwcsum  -  handle outgoing HW checksumming
693  * 	@skb: 	sk_buff containing the filled-in UDP header
694  * 	        (checksum field must be zeroed out)
695  *	@src:	source IP address
696  *	@dst:	destination IP address
697  */
698 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
699 {
700 	struct udphdr *uh = udp_hdr(skb);
701 	int offset = skb_transport_offset(skb);
702 	int len = skb->len - offset;
703 	int hlen = len;
704 	__wsum csum = 0;
705 
706 	if (!skb_has_frag_list(skb)) {
707 		/*
708 		 * Only one fragment on the socket.
709 		 */
710 		skb->csum_start = skb_transport_header(skb) - skb->head;
711 		skb->csum_offset = offsetof(struct udphdr, check);
712 		uh->check = ~csum_tcpudp_magic(src, dst, len,
713 					       IPPROTO_UDP, 0);
714 	} else {
715 		struct sk_buff *frags;
716 
717 		/*
718 		 * HW-checksum won't work as there are two or more
719 		 * fragments on the socket so that all csums of sk_buffs
720 		 * should be together
721 		 */
722 		skb_walk_frags(skb, frags) {
723 			csum = csum_add(csum, frags->csum);
724 			hlen -= frags->len;
725 		}
726 
727 		csum = skb_checksum(skb, offset, hlen, csum);
728 		skb->ip_summed = CHECKSUM_NONE;
729 
730 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
731 		if (uh->check == 0)
732 			uh->check = CSUM_MANGLED_0;
733 	}
734 }
735 EXPORT_SYMBOL_GPL(udp4_hwcsum);
736 
737 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
738  * for the simple case like when setting the checksum for a UDP tunnel.
739  */
740 void udp_set_csum(bool nocheck, struct sk_buff *skb,
741 		  __be32 saddr, __be32 daddr, int len)
742 {
743 	struct udphdr *uh = udp_hdr(skb);
744 
745 	if (nocheck) {
746 		uh->check = 0;
747 	} else if (skb_is_gso(skb)) {
748 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
749 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
750 		uh->check = 0;
751 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
752 		if (uh->check == 0)
753 			uh->check = CSUM_MANGLED_0;
754 	} else {
755 		skb->ip_summed = CHECKSUM_PARTIAL;
756 		skb->csum_start = skb_transport_header(skb) - skb->head;
757 		skb->csum_offset = offsetof(struct udphdr, check);
758 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
759 	}
760 }
761 EXPORT_SYMBOL(udp_set_csum);
762 
763 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
764 			struct inet_cork *cork)
765 {
766 	struct sock *sk = skb->sk;
767 	struct inet_sock *inet = inet_sk(sk);
768 	struct udphdr *uh;
769 	int err = 0;
770 	int is_udplite = IS_UDPLITE(sk);
771 	int offset = skb_transport_offset(skb);
772 	int len = skb->len - offset;
773 	__wsum csum = 0;
774 
775 	/*
776 	 * Create a UDP header
777 	 */
778 	uh = udp_hdr(skb);
779 	uh->source = inet->inet_sport;
780 	uh->dest = fl4->fl4_dport;
781 	uh->len = htons(len);
782 	uh->check = 0;
783 
784 	if (cork->gso_size) {
785 		const int hlen = skb_network_header_len(skb) +
786 				 sizeof(struct udphdr);
787 
788 		if (hlen + cork->gso_size > cork->fragsize)
789 			return -EINVAL;
790 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
791 			return -EINVAL;
792 		if (sk->sk_no_check_tx)
793 			return -EINVAL;
794 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
795 		    dst_xfrm(skb_dst(skb)))
796 			return -EIO;
797 
798 		skb_shinfo(skb)->gso_size = cork->gso_size;
799 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
800 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
801 							 cork->gso_size);
802 		goto csum_partial;
803 	}
804 
805 	if (is_udplite)  				 /*     UDP-Lite      */
806 		csum = udplite_csum(skb);
807 
808 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
809 
810 		skb->ip_summed = CHECKSUM_NONE;
811 		goto send;
812 
813 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
814 csum_partial:
815 
816 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
817 		goto send;
818 
819 	} else
820 		csum = udp_csum(skb);
821 
822 	/* add protocol-dependent pseudo-header */
823 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
824 				      sk->sk_protocol, csum);
825 	if (uh->check == 0)
826 		uh->check = CSUM_MANGLED_0;
827 
828 send:
829 	err = ip_send_skb(sock_net(sk), skb);
830 	if (err) {
831 		if (err == -ENOBUFS && !inet->recverr) {
832 			UDP_INC_STATS(sock_net(sk),
833 				      UDP_MIB_SNDBUFERRORS, is_udplite);
834 			err = 0;
835 		}
836 	} else
837 		UDP_INC_STATS(sock_net(sk),
838 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
839 	return err;
840 }
841 
842 /*
843  * Push out all pending data as one UDP datagram. Socket is locked.
844  */
845 int udp_push_pending_frames(struct sock *sk)
846 {
847 	struct udp_sock  *up = udp_sk(sk);
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
850 	struct sk_buff *skb;
851 	int err = 0;
852 
853 	skb = ip_finish_skb(sk, fl4);
854 	if (!skb)
855 		goto out;
856 
857 	err = udp_send_skb(skb, fl4, &inet->cork.base);
858 
859 out:
860 	up->len = 0;
861 	up->pending = 0;
862 	return err;
863 }
864 EXPORT_SYMBOL(udp_push_pending_frames);
865 
866 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
867 {
868 	switch (cmsg->cmsg_type) {
869 	case UDP_SEGMENT:
870 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
871 			return -EINVAL;
872 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
873 		return 0;
874 	default:
875 		return -EINVAL;
876 	}
877 }
878 
879 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
880 {
881 	struct cmsghdr *cmsg;
882 	bool need_ip = false;
883 	int err;
884 
885 	for_each_cmsghdr(cmsg, msg) {
886 		if (!CMSG_OK(msg, cmsg))
887 			return -EINVAL;
888 
889 		if (cmsg->cmsg_level != SOL_UDP) {
890 			need_ip = true;
891 			continue;
892 		}
893 
894 		err = __udp_cmsg_send(cmsg, gso_size);
895 		if (err)
896 			return err;
897 	}
898 
899 	return need_ip;
900 }
901 EXPORT_SYMBOL_GPL(udp_cmsg_send);
902 
903 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
904 {
905 	struct inet_sock *inet = inet_sk(sk);
906 	struct udp_sock *up = udp_sk(sk);
907 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
908 	struct flowi4 fl4_stack;
909 	struct flowi4 *fl4;
910 	int ulen = len;
911 	struct ipcm_cookie ipc;
912 	struct rtable *rt = NULL;
913 	int free = 0;
914 	int connected = 0;
915 	__be32 daddr, faddr, saddr;
916 	__be16 dport;
917 	u8  tos;
918 	int err, is_udplite = IS_UDPLITE(sk);
919 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
920 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
921 	struct sk_buff *skb;
922 	struct ip_options_data opt_copy;
923 
924 	if (len > 0xFFFF)
925 		return -EMSGSIZE;
926 
927 	/*
928 	 *	Check the flags.
929 	 */
930 
931 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
932 		return -EOPNOTSUPP;
933 
934 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
935 
936 	fl4 = &inet->cork.fl.u.ip4;
937 	if (up->pending) {
938 		/*
939 		 * There are pending frames.
940 		 * The socket lock must be held while it's corked.
941 		 */
942 		lock_sock(sk);
943 		if (likely(up->pending)) {
944 			if (unlikely(up->pending != AF_INET)) {
945 				release_sock(sk);
946 				return -EINVAL;
947 			}
948 			goto do_append_data;
949 		}
950 		release_sock(sk);
951 	}
952 	ulen += sizeof(struct udphdr);
953 
954 	/*
955 	 *	Get and verify the address.
956 	 */
957 	if (usin) {
958 		if (msg->msg_namelen < sizeof(*usin))
959 			return -EINVAL;
960 		if (usin->sin_family != AF_INET) {
961 			if (usin->sin_family != AF_UNSPEC)
962 				return -EAFNOSUPPORT;
963 		}
964 
965 		daddr = usin->sin_addr.s_addr;
966 		dport = usin->sin_port;
967 		if (dport == 0)
968 			return -EINVAL;
969 	} else {
970 		if (sk->sk_state != TCP_ESTABLISHED)
971 			return -EDESTADDRREQ;
972 		daddr = inet->inet_daddr;
973 		dport = inet->inet_dport;
974 		/* Open fast path for connected socket.
975 		   Route will not be used, if at least one option is set.
976 		 */
977 		connected = 1;
978 	}
979 
980 	ipcm_init_sk(&ipc, inet);
981 	ipc.gso_size = up->gso_size;
982 
983 	if (msg->msg_controllen) {
984 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
985 		if (err > 0)
986 			err = ip_cmsg_send(sk, msg, &ipc,
987 					   sk->sk_family == AF_INET6);
988 		if (unlikely(err < 0)) {
989 			kfree(ipc.opt);
990 			return err;
991 		}
992 		if (ipc.opt)
993 			free = 1;
994 		connected = 0;
995 	}
996 	if (!ipc.opt) {
997 		struct ip_options_rcu *inet_opt;
998 
999 		rcu_read_lock();
1000 		inet_opt = rcu_dereference(inet->inet_opt);
1001 		if (inet_opt) {
1002 			memcpy(&opt_copy, inet_opt,
1003 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1004 			ipc.opt = &opt_copy.opt;
1005 		}
1006 		rcu_read_unlock();
1007 	}
1008 
1009 	if (cgroup_bpf_enabled && !connected) {
1010 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1011 					    (struct sockaddr *)usin, &ipc.addr);
1012 		if (err)
1013 			goto out_free;
1014 		if (usin) {
1015 			if (usin->sin_port == 0) {
1016 				/* BPF program set invalid port. Reject it. */
1017 				err = -EINVAL;
1018 				goto out_free;
1019 			}
1020 			daddr = usin->sin_addr.s_addr;
1021 			dport = usin->sin_port;
1022 		}
1023 	}
1024 
1025 	saddr = ipc.addr;
1026 	ipc.addr = faddr = daddr;
1027 
1028 	if (ipc.opt && ipc.opt->opt.srr) {
1029 		if (!daddr) {
1030 			err = -EINVAL;
1031 			goto out_free;
1032 		}
1033 		faddr = ipc.opt->opt.faddr;
1034 		connected = 0;
1035 	}
1036 	tos = get_rttos(&ipc, inet);
1037 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1038 	    (msg->msg_flags & MSG_DONTROUTE) ||
1039 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1040 		tos |= RTO_ONLINK;
1041 		connected = 0;
1042 	}
1043 
1044 	if (ipv4_is_multicast(daddr)) {
1045 		if (!ipc.oif)
1046 			ipc.oif = inet->mc_index;
1047 		if (!saddr)
1048 			saddr = inet->mc_addr;
1049 		connected = 0;
1050 	} else if (!ipc.oif) {
1051 		ipc.oif = inet->uc_index;
1052 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1053 		/* oif is set, packet is to local broadcast and
1054 		 * and uc_index is set. oif is most likely set
1055 		 * by sk_bound_dev_if. If uc_index != oif check if the
1056 		 * oif is an L3 master and uc_index is an L3 slave.
1057 		 * If so, we want to allow the send using the uc_index.
1058 		 */
1059 		if (ipc.oif != inet->uc_index &&
1060 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1061 							      inet->uc_index)) {
1062 			ipc.oif = inet->uc_index;
1063 		}
1064 	}
1065 
1066 	if (connected)
1067 		rt = (struct rtable *)sk_dst_check(sk, 0);
1068 
1069 	if (!rt) {
1070 		struct net *net = sock_net(sk);
1071 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1072 
1073 		fl4 = &fl4_stack;
1074 
1075 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1076 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1077 				   flow_flags,
1078 				   faddr, saddr, dport, inet->inet_sport,
1079 				   sk->sk_uid);
1080 
1081 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1082 		rt = ip_route_output_flow(net, fl4, sk);
1083 		if (IS_ERR(rt)) {
1084 			err = PTR_ERR(rt);
1085 			rt = NULL;
1086 			if (err == -ENETUNREACH)
1087 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1088 			goto out;
1089 		}
1090 
1091 		err = -EACCES;
1092 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1093 		    !sock_flag(sk, SOCK_BROADCAST))
1094 			goto out;
1095 		if (connected)
1096 			sk_dst_set(sk, dst_clone(&rt->dst));
1097 	}
1098 
1099 	if (msg->msg_flags&MSG_CONFIRM)
1100 		goto do_confirm;
1101 back_from_confirm:
1102 
1103 	saddr = fl4->saddr;
1104 	if (!ipc.addr)
1105 		daddr = ipc.addr = fl4->daddr;
1106 
1107 	/* Lockless fast path for the non-corking case. */
1108 	if (!corkreq) {
1109 		struct inet_cork cork;
1110 
1111 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1112 				  sizeof(struct udphdr), &ipc, &rt,
1113 				  &cork, msg->msg_flags);
1114 		err = PTR_ERR(skb);
1115 		if (!IS_ERR_OR_NULL(skb))
1116 			err = udp_send_skb(skb, fl4, &cork);
1117 		goto out;
1118 	}
1119 
1120 	lock_sock(sk);
1121 	if (unlikely(up->pending)) {
1122 		/* The socket is already corked while preparing it. */
1123 		/* ... which is an evident application bug. --ANK */
1124 		release_sock(sk);
1125 
1126 		net_dbg_ratelimited("socket already corked\n");
1127 		err = -EINVAL;
1128 		goto out;
1129 	}
1130 	/*
1131 	 *	Now cork the socket to pend data.
1132 	 */
1133 	fl4 = &inet->cork.fl.u.ip4;
1134 	fl4->daddr = daddr;
1135 	fl4->saddr = saddr;
1136 	fl4->fl4_dport = dport;
1137 	fl4->fl4_sport = inet->inet_sport;
1138 	up->pending = AF_INET;
1139 
1140 do_append_data:
1141 	up->len += ulen;
1142 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1143 			     sizeof(struct udphdr), &ipc, &rt,
1144 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1145 	if (err)
1146 		udp_flush_pending_frames(sk);
1147 	else if (!corkreq)
1148 		err = udp_push_pending_frames(sk);
1149 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1150 		up->pending = 0;
1151 	release_sock(sk);
1152 
1153 out:
1154 	ip_rt_put(rt);
1155 out_free:
1156 	if (free)
1157 		kfree(ipc.opt);
1158 	if (!err)
1159 		return len;
1160 	/*
1161 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1162 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1163 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1164 	 * things).  We could add another new stat but at least for now that
1165 	 * seems like overkill.
1166 	 */
1167 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1168 		UDP_INC_STATS(sock_net(sk),
1169 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1170 	}
1171 	return err;
1172 
1173 do_confirm:
1174 	if (msg->msg_flags & MSG_PROBE)
1175 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1176 	if (!(msg->msg_flags&MSG_PROBE) || len)
1177 		goto back_from_confirm;
1178 	err = 0;
1179 	goto out;
1180 }
1181 EXPORT_SYMBOL(udp_sendmsg);
1182 
1183 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1184 		 size_t size, int flags)
1185 {
1186 	struct inet_sock *inet = inet_sk(sk);
1187 	struct udp_sock *up = udp_sk(sk);
1188 	int ret;
1189 
1190 	if (flags & MSG_SENDPAGE_NOTLAST)
1191 		flags |= MSG_MORE;
1192 
1193 	if (!up->pending) {
1194 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1195 
1196 		/* Call udp_sendmsg to specify destination address which
1197 		 * sendpage interface can't pass.
1198 		 * This will succeed only when the socket is connected.
1199 		 */
1200 		ret = udp_sendmsg(sk, &msg, 0);
1201 		if (ret < 0)
1202 			return ret;
1203 	}
1204 
1205 	lock_sock(sk);
1206 
1207 	if (unlikely(!up->pending)) {
1208 		release_sock(sk);
1209 
1210 		net_dbg_ratelimited("cork failed\n");
1211 		return -EINVAL;
1212 	}
1213 
1214 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1215 			     page, offset, size, flags);
1216 	if (ret == -EOPNOTSUPP) {
1217 		release_sock(sk);
1218 		return sock_no_sendpage(sk->sk_socket, page, offset,
1219 					size, flags);
1220 	}
1221 	if (ret < 0) {
1222 		udp_flush_pending_frames(sk);
1223 		goto out;
1224 	}
1225 
1226 	up->len += size;
1227 	if (!(up->corkflag || (flags&MSG_MORE)))
1228 		ret = udp_push_pending_frames(sk);
1229 	if (!ret)
1230 		ret = size;
1231 out:
1232 	release_sock(sk);
1233 	return ret;
1234 }
1235 
1236 #define UDP_SKB_IS_STATELESS 0x80000000
1237 
1238 static void udp_set_dev_scratch(struct sk_buff *skb)
1239 {
1240 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1241 
1242 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1243 	scratch->_tsize_state = skb->truesize;
1244 #if BITS_PER_LONG == 64
1245 	scratch->len = skb->len;
1246 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1247 	scratch->is_linear = !skb_is_nonlinear(skb);
1248 #endif
1249 	/* all head states execept sp (dst, sk, nf) are always cleared by
1250 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1251 	 * process IP_CMSG_PASSSEC at recvmsg() time
1252 	 */
1253 	if (likely(!skb_sec_path(skb)))
1254 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1255 }
1256 
1257 static int udp_skb_truesize(struct sk_buff *skb)
1258 {
1259 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1260 }
1261 
1262 static bool udp_skb_has_head_state(struct sk_buff *skb)
1263 {
1264 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1265 }
1266 
1267 /* fully reclaim rmem/fwd memory allocated for skb */
1268 static void udp_rmem_release(struct sock *sk, int size, int partial,
1269 			     bool rx_queue_lock_held)
1270 {
1271 	struct udp_sock *up = udp_sk(sk);
1272 	struct sk_buff_head *sk_queue;
1273 	int amt;
1274 
1275 	if (likely(partial)) {
1276 		up->forward_deficit += size;
1277 		size = up->forward_deficit;
1278 		if (size < (sk->sk_rcvbuf >> 2))
1279 			return;
1280 	} else {
1281 		size += up->forward_deficit;
1282 	}
1283 	up->forward_deficit = 0;
1284 
1285 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1286 	 * if the called don't held it already
1287 	 */
1288 	sk_queue = &sk->sk_receive_queue;
1289 	if (!rx_queue_lock_held)
1290 		spin_lock(&sk_queue->lock);
1291 
1292 
1293 	sk->sk_forward_alloc += size;
1294 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1295 	sk->sk_forward_alloc -= amt;
1296 
1297 	if (amt)
1298 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1299 
1300 	atomic_sub(size, &sk->sk_rmem_alloc);
1301 
1302 	/* this can save us from acquiring the rx queue lock on next receive */
1303 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1304 
1305 	if (!rx_queue_lock_held)
1306 		spin_unlock(&sk_queue->lock);
1307 }
1308 
1309 /* Note: called with reader_queue.lock held.
1310  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1311  * This avoids a cache line miss while receive_queue lock is held.
1312  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1313  */
1314 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1315 {
1316 	prefetch(&skb->data);
1317 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1318 }
1319 EXPORT_SYMBOL(udp_skb_destructor);
1320 
1321 /* as above, but the caller held the rx queue lock, too */
1322 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1323 {
1324 	prefetch(&skb->data);
1325 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1326 }
1327 
1328 /* Idea of busylocks is to let producers grab an extra spinlock
1329  * to relieve pressure on the receive_queue spinlock shared by consumer.
1330  * Under flood, this means that only one producer can be in line
1331  * trying to acquire the receive_queue spinlock.
1332  * These busylock can be allocated on a per cpu manner, instead of a
1333  * per socket one (that would consume a cache line per socket)
1334  */
1335 static int udp_busylocks_log __read_mostly;
1336 static spinlock_t *udp_busylocks __read_mostly;
1337 
1338 static spinlock_t *busylock_acquire(void *ptr)
1339 {
1340 	spinlock_t *busy;
1341 
1342 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1343 	spin_lock(busy);
1344 	return busy;
1345 }
1346 
1347 static void busylock_release(spinlock_t *busy)
1348 {
1349 	if (busy)
1350 		spin_unlock(busy);
1351 }
1352 
1353 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1354 {
1355 	struct sk_buff_head *list = &sk->sk_receive_queue;
1356 	int rmem, delta, amt, err = -ENOMEM;
1357 	spinlock_t *busy = NULL;
1358 	int size;
1359 
1360 	/* try to avoid the costly atomic add/sub pair when the receive
1361 	 * queue is full; always allow at least a packet
1362 	 */
1363 	rmem = atomic_read(&sk->sk_rmem_alloc);
1364 	if (rmem > sk->sk_rcvbuf)
1365 		goto drop;
1366 
1367 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1368 	 * having linear skbs :
1369 	 * - Reduce memory overhead and thus increase receive queue capacity
1370 	 * - Less cache line misses at copyout() time
1371 	 * - Less work at consume_skb() (less alien page frag freeing)
1372 	 */
1373 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1374 		skb_condense(skb);
1375 
1376 		busy = busylock_acquire(sk);
1377 	}
1378 	size = skb->truesize;
1379 	udp_set_dev_scratch(skb);
1380 
1381 	/* we drop only if the receive buf is full and the receive
1382 	 * queue contains some other skb
1383 	 */
1384 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1385 	if (rmem > (size + sk->sk_rcvbuf))
1386 		goto uncharge_drop;
1387 
1388 	spin_lock(&list->lock);
1389 	if (size >= sk->sk_forward_alloc) {
1390 		amt = sk_mem_pages(size);
1391 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1392 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1393 			err = -ENOBUFS;
1394 			spin_unlock(&list->lock);
1395 			goto uncharge_drop;
1396 		}
1397 
1398 		sk->sk_forward_alloc += delta;
1399 	}
1400 
1401 	sk->sk_forward_alloc -= size;
1402 
1403 	/* no need to setup a destructor, we will explicitly release the
1404 	 * forward allocated memory on dequeue
1405 	 */
1406 	sock_skb_set_dropcount(sk, skb);
1407 
1408 	__skb_queue_tail(list, skb);
1409 	spin_unlock(&list->lock);
1410 
1411 	if (!sock_flag(sk, SOCK_DEAD))
1412 		sk->sk_data_ready(sk);
1413 
1414 	busylock_release(busy);
1415 	return 0;
1416 
1417 uncharge_drop:
1418 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1419 
1420 drop:
1421 	atomic_inc(&sk->sk_drops);
1422 	busylock_release(busy);
1423 	return err;
1424 }
1425 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1426 
1427 void udp_destruct_sock(struct sock *sk)
1428 {
1429 	/* reclaim completely the forward allocated memory */
1430 	struct udp_sock *up = udp_sk(sk);
1431 	unsigned int total = 0;
1432 	struct sk_buff *skb;
1433 
1434 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1435 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1436 		total += skb->truesize;
1437 		kfree_skb(skb);
1438 	}
1439 	udp_rmem_release(sk, total, 0, true);
1440 
1441 	inet_sock_destruct(sk);
1442 }
1443 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1444 
1445 int udp_init_sock(struct sock *sk)
1446 {
1447 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1448 	sk->sk_destruct = udp_destruct_sock;
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(udp_init_sock);
1452 
1453 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1454 {
1455 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1456 		bool slow = lock_sock_fast(sk);
1457 
1458 		sk_peek_offset_bwd(sk, len);
1459 		unlock_sock_fast(sk, slow);
1460 	}
1461 
1462 	if (!skb_unref(skb))
1463 		return;
1464 
1465 	/* In the more common cases we cleared the head states previously,
1466 	 * see __udp_queue_rcv_skb().
1467 	 */
1468 	if (unlikely(udp_skb_has_head_state(skb)))
1469 		skb_release_head_state(skb);
1470 	__consume_stateless_skb(skb);
1471 }
1472 EXPORT_SYMBOL_GPL(skb_consume_udp);
1473 
1474 static struct sk_buff *__first_packet_length(struct sock *sk,
1475 					     struct sk_buff_head *rcvq,
1476 					     int *total)
1477 {
1478 	struct sk_buff *skb;
1479 
1480 	while ((skb = skb_peek(rcvq)) != NULL) {
1481 		if (udp_lib_checksum_complete(skb)) {
1482 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1483 					IS_UDPLITE(sk));
1484 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1485 					IS_UDPLITE(sk));
1486 			atomic_inc(&sk->sk_drops);
1487 			__skb_unlink(skb, rcvq);
1488 			*total += skb->truesize;
1489 			kfree_skb(skb);
1490 		} else {
1491 			/* the csum related bits could be changed, refresh
1492 			 * the scratch area
1493 			 */
1494 			udp_set_dev_scratch(skb);
1495 			break;
1496 		}
1497 	}
1498 	return skb;
1499 }
1500 
1501 /**
1502  *	first_packet_length	- return length of first packet in receive queue
1503  *	@sk: socket
1504  *
1505  *	Drops all bad checksum frames, until a valid one is found.
1506  *	Returns the length of found skb, or -1 if none is found.
1507  */
1508 static int first_packet_length(struct sock *sk)
1509 {
1510 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1511 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1512 	struct sk_buff *skb;
1513 	int total = 0;
1514 	int res;
1515 
1516 	spin_lock_bh(&rcvq->lock);
1517 	skb = __first_packet_length(sk, rcvq, &total);
1518 	if (!skb && !skb_queue_empty(sk_queue)) {
1519 		spin_lock(&sk_queue->lock);
1520 		skb_queue_splice_tail_init(sk_queue, rcvq);
1521 		spin_unlock(&sk_queue->lock);
1522 
1523 		skb = __first_packet_length(sk, rcvq, &total);
1524 	}
1525 	res = skb ? skb->len : -1;
1526 	if (total)
1527 		udp_rmem_release(sk, total, 1, false);
1528 	spin_unlock_bh(&rcvq->lock);
1529 	return res;
1530 }
1531 
1532 /*
1533  *	IOCTL requests applicable to the UDP protocol
1534  */
1535 
1536 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1537 {
1538 	switch (cmd) {
1539 	case SIOCOUTQ:
1540 	{
1541 		int amount = sk_wmem_alloc_get(sk);
1542 
1543 		return put_user(amount, (int __user *)arg);
1544 	}
1545 
1546 	case SIOCINQ:
1547 	{
1548 		int amount = max_t(int, 0, first_packet_length(sk));
1549 
1550 		return put_user(amount, (int __user *)arg);
1551 	}
1552 
1553 	default:
1554 		return -ENOIOCTLCMD;
1555 	}
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL(udp_ioctl);
1560 
1561 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1562 			       int noblock, int *peeked, int *off, int *err)
1563 {
1564 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1565 	struct sk_buff_head *queue;
1566 	struct sk_buff *last;
1567 	long timeo;
1568 	int error;
1569 
1570 	queue = &udp_sk(sk)->reader_queue;
1571 	flags |= noblock ? MSG_DONTWAIT : 0;
1572 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1573 	do {
1574 		struct sk_buff *skb;
1575 
1576 		error = sock_error(sk);
1577 		if (error)
1578 			break;
1579 
1580 		error = -EAGAIN;
1581 		*peeked = 0;
1582 		do {
1583 			spin_lock_bh(&queue->lock);
1584 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1585 							udp_skb_destructor,
1586 							peeked, off, err,
1587 							&last);
1588 			if (skb) {
1589 				spin_unlock_bh(&queue->lock);
1590 				return skb;
1591 			}
1592 
1593 			if (skb_queue_empty(sk_queue)) {
1594 				spin_unlock_bh(&queue->lock);
1595 				goto busy_check;
1596 			}
1597 
1598 			/* refill the reader queue and walk it again
1599 			 * keep both queues locked to avoid re-acquiring
1600 			 * the sk_receive_queue lock if fwd memory scheduling
1601 			 * is needed.
1602 			 */
1603 			spin_lock(&sk_queue->lock);
1604 			skb_queue_splice_tail_init(sk_queue, queue);
1605 
1606 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1607 							udp_skb_dtor_locked,
1608 							peeked, off, err,
1609 							&last);
1610 			spin_unlock(&sk_queue->lock);
1611 			spin_unlock_bh(&queue->lock);
1612 			if (skb)
1613 				return skb;
1614 
1615 busy_check:
1616 			if (!sk_can_busy_loop(sk))
1617 				break;
1618 
1619 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1620 		} while (!skb_queue_empty(sk_queue));
1621 
1622 		/* sk_queue is empty, reader_queue may contain peeked packets */
1623 	} while (timeo &&
1624 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1625 					      (struct sk_buff *)sk_queue));
1626 
1627 	*err = error;
1628 	return NULL;
1629 }
1630 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1631 
1632 /*
1633  * 	This should be easy, if there is something there we
1634  * 	return it, otherwise we block.
1635  */
1636 
1637 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1638 		int flags, int *addr_len)
1639 {
1640 	struct inet_sock *inet = inet_sk(sk);
1641 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1642 	struct sk_buff *skb;
1643 	unsigned int ulen, copied;
1644 	int peeked, peeking, off;
1645 	int err;
1646 	int is_udplite = IS_UDPLITE(sk);
1647 	bool checksum_valid = false;
1648 
1649 	if (flags & MSG_ERRQUEUE)
1650 		return ip_recv_error(sk, msg, len, addr_len);
1651 
1652 try_again:
1653 	peeking = flags & MSG_PEEK;
1654 	off = sk_peek_offset(sk, flags);
1655 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1656 	if (!skb)
1657 		return err;
1658 
1659 	ulen = udp_skb_len(skb);
1660 	copied = len;
1661 	if (copied > ulen - off)
1662 		copied = ulen - off;
1663 	else if (copied < ulen)
1664 		msg->msg_flags |= MSG_TRUNC;
1665 
1666 	/*
1667 	 * If checksum is needed at all, try to do it while copying the
1668 	 * data.  If the data is truncated, or if we only want a partial
1669 	 * coverage checksum (UDP-Lite), do it before the copy.
1670 	 */
1671 
1672 	if (copied < ulen || peeking ||
1673 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1674 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1675 				!__udp_lib_checksum_complete(skb);
1676 		if (!checksum_valid)
1677 			goto csum_copy_err;
1678 	}
1679 
1680 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1681 		if (udp_skb_is_linear(skb))
1682 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1683 		else
1684 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1685 	} else {
1686 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1687 
1688 		if (err == -EINVAL)
1689 			goto csum_copy_err;
1690 	}
1691 
1692 	if (unlikely(err)) {
1693 		if (!peeked) {
1694 			atomic_inc(&sk->sk_drops);
1695 			UDP_INC_STATS(sock_net(sk),
1696 				      UDP_MIB_INERRORS, is_udplite);
1697 		}
1698 		kfree_skb(skb);
1699 		return err;
1700 	}
1701 
1702 	if (!peeked)
1703 		UDP_INC_STATS(sock_net(sk),
1704 			      UDP_MIB_INDATAGRAMS, is_udplite);
1705 
1706 	sock_recv_ts_and_drops(msg, sk, skb);
1707 
1708 	/* Copy the address. */
1709 	if (sin) {
1710 		sin->sin_family = AF_INET;
1711 		sin->sin_port = udp_hdr(skb)->source;
1712 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1713 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1714 		*addr_len = sizeof(*sin);
1715 	}
1716 	if (inet->cmsg_flags)
1717 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1718 
1719 	err = copied;
1720 	if (flags & MSG_TRUNC)
1721 		err = ulen;
1722 
1723 	skb_consume_udp(sk, skb, peeking ? -err : err);
1724 	return err;
1725 
1726 csum_copy_err:
1727 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1728 				 udp_skb_destructor)) {
1729 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1730 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1731 	}
1732 	kfree_skb(skb);
1733 
1734 	/* starting over for a new packet, but check if we need to yield */
1735 	cond_resched();
1736 	msg->msg_flags &= ~MSG_TRUNC;
1737 	goto try_again;
1738 }
1739 
1740 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1741 {
1742 	/* This check is replicated from __ip4_datagram_connect() and
1743 	 * intended to prevent BPF program called below from accessing bytes
1744 	 * that are out of the bound specified by user in addr_len.
1745 	 */
1746 	if (addr_len < sizeof(struct sockaddr_in))
1747 		return -EINVAL;
1748 
1749 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1750 }
1751 EXPORT_SYMBOL(udp_pre_connect);
1752 
1753 int __udp_disconnect(struct sock *sk, int flags)
1754 {
1755 	struct inet_sock *inet = inet_sk(sk);
1756 	/*
1757 	 *	1003.1g - break association.
1758 	 */
1759 
1760 	sk->sk_state = TCP_CLOSE;
1761 	inet->inet_daddr = 0;
1762 	inet->inet_dport = 0;
1763 	sock_rps_reset_rxhash(sk);
1764 	sk->sk_bound_dev_if = 0;
1765 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1766 		inet_reset_saddr(sk);
1767 
1768 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1769 		sk->sk_prot->unhash(sk);
1770 		inet->inet_sport = 0;
1771 	}
1772 	sk_dst_reset(sk);
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(__udp_disconnect);
1776 
1777 int udp_disconnect(struct sock *sk, int flags)
1778 {
1779 	lock_sock(sk);
1780 	__udp_disconnect(sk, flags);
1781 	release_sock(sk);
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(udp_disconnect);
1785 
1786 void udp_lib_unhash(struct sock *sk)
1787 {
1788 	if (sk_hashed(sk)) {
1789 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1790 		struct udp_hslot *hslot, *hslot2;
1791 
1792 		hslot  = udp_hashslot(udptable, sock_net(sk),
1793 				      udp_sk(sk)->udp_port_hash);
1794 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1795 
1796 		spin_lock_bh(&hslot->lock);
1797 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1798 			reuseport_detach_sock(sk);
1799 		if (sk_del_node_init_rcu(sk)) {
1800 			hslot->count--;
1801 			inet_sk(sk)->inet_num = 0;
1802 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1803 
1804 			spin_lock(&hslot2->lock);
1805 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1806 			hslot2->count--;
1807 			spin_unlock(&hslot2->lock);
1808 		}
1809 		spin_unlock_bh(&hslot->lock);
1810 	}
1811 }
1812 EXPORT_SYMBOL(udp_lib_unhash);
1813 
1814 /*
1815  * inet_rcv_saddr was changed, we must rehash secondary hash
1816  */
1817 void udp_lib_rehash(struct sock *sk, u16 newhash)
1818 {
1819 	if (sk_hashed(sk)) {
1820 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1821 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1822 
1823 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1824 		nhslot2 = udp_hashslot2(udptable, newhash);
1825 		udp_sk(sk)->udp_portaddr_hash = newhash;
1826 
1827 		if (hslot2 != nhslot2 ||
1828 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1829 			hslot = udp_hashslot(udptable, sock_net(sk),
1830 					     udp_sk(sk)->udp_port_hash);
1831 			/* we must lock primary chain too */
1832 			spin_lock_bh(&hslot->lock);
1833 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1834 				reuseport_detach_sock(sk);
1835 
1836 			if (hslot2 != nhslot2) {
1837 				spin_lock(&hslot2->lock);
1838 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1839 				hslot2->count--;
1840 				spin_unlock(&hslot2->lock);
1841 
1842 				spin_lock(&nhslot2->lock);
1843 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1844 							 &nhslot2->head);
1845 				nhslot2->count++;
1846 				spin_unlock(&nhslot2->lock);
1847 			}
1848 
1849 			spin_unlock_bh(&hslot->lock);
1850 		}
1851 	}
1852 }
1853 EXPORT_SYMBOL(udp_lib_rehash);
1854 
1855 static void udp_v4_rehash(struct sock *sk)
1856 {
1857 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1858 					  inet_sk(sk)->inet_rcv_saddr,
1859 					  inet_sk(sk)->inet_num);
1860 	udp_lib_rehash(sk, new_hash);
1861 }
1862 
1863 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1864 {
1865 	int rc;
1866 
1867 	if (inet_sk(sk)->inet_daddr) {
1868 		sock_rps_save_rxhash(sk, skb);
1869 		sk_mark_napi_id(sk, skb);
1870 		sk_incoming_cpu_update(sk);
1871 	} else {
1872 		sk_mark_napi_id_once(sk, skb);
1873 	}
1874 
1875 	rc = __udp_enqueue_schedule_skb(sk, skb);
1876 	if (rc < 0) {
1877 		int is_udplite = IS_UDPLITE(sk);
1878 
1879 		/* Note that an ENOMEM error is charged twice */
1880 		if (rc == -ENOMEM)
1881 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1882 					is_udplite);
1883 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1884 		kfree_skb(skb);
1885 		trace_udp_fail_queue_rcv_skb(rc, sk);
1886 		return -1;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1893 void udp_encap_enable(void)
1894 {
1895 	static_branch_enable(&udp_encap_needed_key);
1896 }
1897 EXPORT_SYMBOL(udp_encap_enable);
1898 
1899 /* returns:
1900  *  -1: error
1901  *   0: success
1902  *  >0: "udp encap" protocol resubmission
1903  *
1904  * Note that in the success and error cases, the skb is assumed to
1905  * have either been requeued or freed.
1906  */
1907 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1908 {
1909 	struct udp_sock *up = udp_sk(sk);
1910 	int is_udplite = IS_UDPLITE(sk);
1911 
1912 	/*
1913 	 *	Charge it to the socket, dropping if the queue is full.
1914 	 */
1915 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1916 		goto drop;
1917 	nf_reset(skb);
1918 
1919 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1920 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1921 
1922 		/*
1923 		 * This is an encapsulation socket so pass the skb to
1924 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1925 		 * fall through and pass this up the UDP socket.
1926 		 * up->encap_rcv() returns the following value:
1927 		 * =0 if skb was successfully passed to the encap
1928 		 *    handler or was discarded by it.
1929 		 * >0 if skb should be passed on to UDP.
1930 		 * <0 if skb should be resubmitted as proto -N
1931 		 */
1932 
1933 		/* if we're overly short, let UDP handle it */
1934 		encap_rcv = READ_ONCE(up->encap_rcv);
1935 		if (encap_rcv) {
1936 			int ret;
1937 
1938 			/* Verify checksum before giving to encap */
1939 			if (udp_lib_checksum_complete(skb))
1940 				goto csum_error;
1941 
1942 			ret = encap_rcv(sk, skb);
1943 			if (ret <= 0) {
1944 				__UDP_INC_STATS(sock_net(sk),
1945 						UDP_MIB_INDATAGRAMS,
1946 						is_udplite);
1947 				return -ret;
1948 			}
1949 		}
1950 
1951 		/* FALLTHROUGH -- it's a UDP Packet */
1952 	}
1953 
1954 	/*
1955 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1956 	 */
1957 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1958 
1959 		/*
1960 		 * MIB statistics other than incrementing the error count are
1961 		 * disabled for the following two types of errors: these depend
1962 		 * on the application settings, not on the functioning of the
1963 		 * protocol stack as such.
1964 		 *
1965 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1966 		 * way ... to ... at least let the receiving application block
1967 		 * delivery of packets with coverage values less than a value
1968 		 * provided by the application."
1969 		 */
1970 		if (up->pcrlen == 0) {          /* full coverage was set  */
1971 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1972 					    UDP_SKB_CB(skb)->cscov, skb->len);
1973 			goto drop;
1974 		}
1975 		/* The next case involves violating the min. coverage requested
1976 		 * by the receiver. This is subtle: if receiver wants x and x is
1977 		 * greater than the buffersize/MTU then receiver will complain
1978 		 * that it wants x while sender emits packets of smaller size y.
1979 		 * Therefore the above ...()->partial_cov statement is essential.
1980 		 */
1981 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1982 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1983 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1984 			goto drop;
1985 		}
1986 	}
1987 
1988 	prefetch(&sk->sk_rmem_alloc);
1989 	if (rcu_access_pointer(sk->sk_filter) &&
1990 	    udp_lib_checksum_complete(skb))
1991 			goto csum_error;
1992 
1993 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1994 		goto drop;
1995 
1996 	udp_csum_pull_header(skb);
1997 
1998 	ipv4_pktinfo_prepare(sk, skb);
1999 	return __udp_queue_rcv_skb(sk, skb);
2000 
2001 csum_error:
2002 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2003 drop:
2004 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2005 	atomic_inc(&sk->sk_drops);
2006 	kfree_skb(skb);
2007 	return -1;
2008 }
2009 
2010 /* For TCP sockets, sk_rx_dst is protected by socket lock
2011  * For UDP, we use xchg() to guard against concurrent changes.
2012  */
2013 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2014 {
2015 	struct dst_entry *old;
2016 
2017 	if (dst_hold_safe(dst)) {
2018 		old = xchg(&sk->sk_rx_dst, dst);
2019 		dst_release(old);
2020 		return old != dst;
2021 	}
2022 	return false;
2023 }
2024 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2025 
2026 /*
2027  *	Multicasts and broadcasts go to each listener.
2028  *
2029  *	Note: called only from the BH handler context.
2030  */
2031 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2032 				    struct udphdr  *uh,
2033 				    __be32 saddr, __be32 daddr,
2034 				    struct udp_table *udptable,
2035 				    int proto)
2036 {
2037 	struct sock *sk, *first = NULL;
2038 	unsigned short hnum = ntohs(uh->dest);
2039 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2040 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2041 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2042 	int dif = skb->dev->ifindex;
2043 	int sdif = inet_sdif(skb);
2044 	struct hlist_node *node;
2045 	struct sk_buff *nskb;
2046 
2047 	if (use_hash2) {
2048 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2049 			    udptable->mask;
2050 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2051 start_lookup:
2052 		hslot = &udptable->hash2[hash2];
2053 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2054 	}
2055 
2056 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2057 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2058 					 uh->source, saddr, dif, sdif, hnum))
2059 			continue;
2060 
2061 		if (!first) {
2062 			first = sk;
2063 			continue;
2064 		}
2065 		nskb = skb_clone(skb, GFP_ATOMIC);
2066 
2067 		if (unlikely(!nskb)) {
2068 			atomic_inc(&sk->sk_drops);
2069 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2070 					IS_UDPLITE(sk));
2071 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2072 					IS_UDPLITE(sk));
2073 			continue;
2074 		}
2075 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2076 			consume_skb(nskb);
2077 	}
2078 
2079 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2080 	if (use_hash2 && hash2 != hash2_any) {
2081 		hash2 = hash2_any;
2082 		goto start_lookup;
2083 	}
2084 
2085 	if (first) {
2086 		if (udp_queue_rcv_skb(first, skb) > 0)
2087 			consume_skb(skb);
2088 	} else {
2089 		kfree_skb(skb);
2090 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2091 				proto == IPPROTO_UDPLITE);
2092 	}
2093 	return 0;
2094 }
2095 
2096 /* Initialize UDP checksum. If exited with zero value (success),
2097  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2098  * Otherwise, csum completion requires chacksumming packet body,
2099  * including udp header and folding it to skb->csum.
2100  */
2101 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2102 				 int proto)
2103 {
2104 	int err;
2105 
2106 	UDP_SKB_CB(skb)->partial_cov = 0;
2107 	UDP_SKB_CB(skb)->cscov = skb->len;
2108 
2109 	if (proto == IPPROTO_UDPLITE) {
2110 		err = udplite_checksum_init(skb, uh);
2111 		if (err)
2112 			return err;
2113 
2114 		if (UDP_SKB_CB(skb)->partial_cov) {
2115 			skb->csum = inet_compute_pseudo(skb, proto);
2116 			return 0;
2117 		}
2118 	}
2119 
2120 	/* Note, we are only interested in != 0 or == 0, thus the
2121 	 * force to int.
2122 	 */
2123 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2124 							 inet_compute_pseudo);
2125 }
2126 
2127 /*
2128  *	All we need to do is get the socket, and then do a checksum.
2129  */
2130 
2131 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2132 		   int proto)
2133 {
2134 	struct sock *sk;
2135 	struct udphdr *uh;
2136 	unsigned short ulen;
2137 	struct rtable *rt = skb_rtable(skb);
2138 	__be32 saddr, daddr;
2139 	struct net *net = dev_net(skb->dev);
2140 
2141 	/*
2142 	 *  Validate the packet.
2143 	 */
2144 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2145 		goto drop;		/* No space for header. */
2146 
2147 	uh   = udp_hdr(skb);
2148 	ulen = ntohs(uh->len);
2149 	saddr = ip_hdr(skb)->saddr;
2150 	daddr = ip_hdr(skb)->daddr;
2151 
2152 	if (ulen > skb->len)
2153 		goto short_packet;
2154 
2155 	if (proto == IPPROTO_UDP) {
2156 		/* UDP validates ulen. */
2157 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2158 			goto short_packet;
2159 		uh = udp_hdr(skb);
2160 	}
2161 
2162 	if (udp4_csum_init(skb, uh, proto))
2163 		goto csum_error;
2164 
2165 	sk = skb_steal_sock(skb);
2166 	if (sk) {
2167 		struct dst_entry *dst = skb_dst(skb);
2168 		int ret;
2169 
2170 		if (unlikely(sk->sk_rx_dst != dst))
2171 			udp_sk_rx_dst_set(sk, dst);
2172 
2173 		ret = udp_queue_rcv_skb(sk, skb);
2174 		sock_put(sk);
2175 		/* a return value > 0 means to resubmit the input, but
2176 		 * it wants the return to be -protocol, or 0
2177 		 */
2178 		if (ret > 0)
2179 			return -ret;
2180 		return 0;
2181 	}
2182 
2183 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2184 		return __udp4_lib_mcast_deliver(net, skb, uh,
2185 						saddr, daddr, udptable, proto);
2186 
2187 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2188 	if (sk) {
2189 		int ret;
2190 
2191 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2192 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2193 						 inet_compute_pseudo);
2194 
2195 		ret = udp_queue_rcv_skb(sk, skb);
2196 
2197 		/* a return value > 0 means to resubmit the input, but
2198 		 * it wants the return to be -protocol, or 0
2199 		 */
2200 		if (ret > 0)
2201 			return -ret;
2202 		return 0;
2203 	}
2204 
2205 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2206 		goto drop;
2207 	nf_reset(skb);
2208 
2209 	/* No socket. Drop packet silently, if checksum is wrong */
2210 	if (udp_lib_checksum_complete(skb))
2211 		goto csum_error;
2212 
2213 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2214 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2215 
2216 	/*
2217 	 * Hmm.  We got an UDP packet to a port to which we
2218 	 * don't wanna listen.  Ignore it.
2219 	 */
2220 	kfree_skb(skb);
2221 	return 0;
2222 
2223 short_packet:
2224 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2225 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2226 			    &saddr, ntohs(uh->source),
2227 			    ulen, skb->len,
2228 			    &daddr, ntohs(uh->dest));
2229 	goto drop;
2230 
2231 csum_error:
2232 	/*
2233 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2234 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2235 	 */
2236 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2237 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2238 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2239 			    ulen);
2240 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2241 drop:
2242 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2243 	kfree_skb(skb);
2244 	return 0;
2245 }
2246 
2247 /* We can only early demux multicast if there is a single matching socket.
2248  * If more than one socket found returns NULL
2249  */
2250 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2251 						  __be16 loc_port, __be32 loc_addr,
2252 						  __be16 rmt_port, __be32 rmt_addr,
2253 						  int dif, int sdif)
2254 {
2255 	struct sock *sk, *result;
2256 	unsigned short hnum = ntohs(loc_port);
2257 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2258 	struct udp_hslot *hslot = &udp_table.hash[slot];
2259 
2260 	/* Do not bother scanning a too big list */
2261 	if (hslot->count > 10)
2262 		return NULL;
2263 
2264 	result = NULL;
2265 	sk_for_each_rcu(sk, &hslot->head) {
2266 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2267 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2268 			if (result)
2269 				return NULL;
2270 			result = sk;
2271 		}
2272 	}
2273 
2274 	return result;
2275 }
2276 
2277 /* For unicast we should only early demux connected sockets or we can
2278  * break forwarding setups.  The chains here can be long so only check
2279  * if the first socket is an exact match and if not move on.
2280  */
2281 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2282 					    __be16 loc_port, __be32 loc_addr,
2283 					    __be16 rmt_port, __be32 rmt_addr,
2284 					    int dif, int sdif)
2285 {
2286 	unsigned short hnum = ntohs(loc_port);
2287 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2288 	unsigned int slot2 = hash2 & udp_table.mask;
2289 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2290 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2291 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2292 	struct sock *sk;
2293 
2294 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2295 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2296 			       loc_addr, ports, dif, sdif))
2297 			return sk;
2298 		/* Only check first socket in chain */
2299 		break;
2300 	}
2301 	return NULL;
2302 }
2303 
2304 int udp_v4_early_demux(struct sk_buff *skb)
2305 {
2306 	struct net *net = dev_net(skb->dev);
2307 	struct in_device *in_dev = NULL;
2308 	const struct iphdr *iph;
2309 	const struct udphdr *uh;
2310 	struct sock *sk = NULL;
2311 	struct dst_entry *dst;
2312 	int dif = skb->dev->ifindex;
2313 	int sdif = inet_sdif(skb);
2314 	int ours;
2315 
2316 	/* validate the packet */
2317 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2318 		return 0;
2319 
2320 	iph = ip_hdr(skb);
2321 	uh = udp_hdr(skb);
2322 
2323 	if (skb->pkt_type == PACKET_MULTICAST) {
2324 		in_dev = __in_dev_get_rcu(skb->dev);
2325 
2326 		if (!in_dev)
2327 			return 0;
2328 
2329 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2330 				       iph->protocol);
2331 		if (!ours)
2332 			return 0;
2333 
2334 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2335 						   uh->source, iph->saddr,
2336 						   dif, sdif);
2337 	} else if (skb->pkt_type == PACKET_HOST) {
2338 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2339 					     uh->source, iph->saddr, dif, sdif);
2340 	}
2341 
2342 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2343 		return 0;
2344 
2345 	skb->sk = sk;
2346 	skb->destructor = sock_efree;
2347 	dst = READ_ONCE(sk->sk_rx_dst);
2348 
2349 	if (dst)
2350 		dst = dst_check(dst, 0);
2351 	if (dst) {
2352 		u32 itag = 0;
2353 
2354 		/* set noref for now.
2355 		 * any place which wants to hold dst has to call
2356 		 * dst_hold_safe()
2357 		 */
2358 		skb_dst_set_noref(skb, dst);
2359 
2360 		/* for unconnected multicast sockets we need to validate
2361 		 * the source on each packet
2362 		 */
2363 		if (!inet_sk(sk)->inet_daddr && in_dev)
2364 			return ip_mc_validate_source(skb, iph->daddr,
2365 						     iph->saddr, iph->tos,
2366 						     skb->dev, in_dev, &itag);
2367 	}
2368 	return 0;
2369 }
2370 
2371 int udp_rcv(struct sk_buff *skb)
2372 {
2373 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2374 }
2375 
2376 void udp_destroy_sock(struct sock *sk)
2377 {
2378 	struct udp_sock *up = udp_sk(sk);
2379 	bool slow = lock_sock_fast(sk);
2380 	udp_flush_pending_frames(sk);
2381 	unlock_sock_fast(sk, slow);
2382 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2383 		void (*encap_destroy)(struct sock *sk);
2384 		encap_destroy = READ_ONCE(up->encap_destroy);
2385 		if (encap_destroy)
2386 			encap_destroy(sk);
2387 	}
2388 }
2389 
2390 /*
2391  *	Socket option code for UDP
2392  */
2393 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2394 		       char __user *optval, unsigned int optlen,
2395 		       int (*push_pending_frames)(struct sock *))
2396 {
2397 	struct udp_sock *up = udp_sk(sk);
2398 	int val, valbool;
2399 	int err = 0;
2400 	int is_udplite = IS_UDPLITE(sk);
2401 
2402 	if (optlen < sizeof(int))
2403 		return -EINVAL;
2404 
2405 	if (get_user(val, (int __user *)optval))
2406 		return -EFAULT;
2407 
2408 	valbool = val ? 1 : 0;
2409 
2410 	switch (optname) {
2411 	case UDP_CORK:
2412 		if (val != 0) {
2413 			up->corkflag = 1;
2414 		} else {
2415 			up->corkflag = 0;
2416 			lock_sock(sk);
2417 			push_pending_frames(sk);
2418 			release_sock(sk);
2419 		}
2420 		break;
2421 
2422 	case UDP_ENCAP:
2423 		switch (val) {
2424 		case 0:
2425 		case UDP_ENCAP_ESPINUDP:
2426 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2427 			up->encap_rcv = xfrm4_udp_encap_rcv;
2428 			/* FALLTHROUGH */
2429 		case UDP_ENCAP_L2TPINUDP:
2430 			up->encap_type = val;
2431 			udp_encap_enable();
2432 			break;
2433 		default:
2434 			err = -ENOPROTOOPT;
2435 			break;
2436 		}
2437 		break;
2438 
2439 	case UDP_NO_CHECK6_TX:
2440 		up->no_check6_tx = valbool;
2441 		break;
2442 
2443 	case UDP_NO_CHECK6_RX:
2444 		up->no_check6_rx = valbool;
2445 		break;
2446 
2447 	case UDP_SEGMENT:
2448 		if (val < 0 || val > USHRT_MAX)
2449 			return -EINVAL;
2450 		up->gso_size = val;
2451 		break;
2452 
2453 	/*
2454 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2455 	 */
2456 	/* The sender sets actual checksum coverage length via this option.
2457 	 * The case coverage > packet length is handled by send module. */
2458 	case UDPLITE_SEND_CSCOV:
2459 		if (!is_udplite)         /* Disable the option on UDP sockets */
2460 			return -ENOPROTOOPT;
2461 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2462 			val = 8;
2463 		else if (val > USHRT_MAX)
2464 			val = USHRT_MAX;
2465 		up->pcslen = val;
2466 		up->pcflag |= UDPLITE_SEND_CC;
2467 		break;
2468 
2469 	/* The receiver specifies a minimum checksum coverage value. To make
2470 	 * sense, this should be set to at least 8 (as done below). If zero is
2471 	 * used, this again means full checksum coverage.                     */
2472 	case UDPLITE_RECV_CSCOV:
2473 		if (!is_udplite)         /* Disable the option on UDP sockets */
2474 			return -ENOPROTOOPT;
2475 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2476 			val = 8;
2477 		else if (val > USHRT_MAX)
2478 			val = USHRT_MAX;
2479 		up->pcrlen = val;
2480 		up->pcflag |= UDPLITE_RECV_CC;
2481 		break;
2482 
2483 	default:
2484 		err = -ENOPROTOOPT;
2485 		break;
2486 	}
2487 
2488 	return err;
2489 }
2490 EXPORT_SYMBOL(udp_lib_setsockopt);
2491 
2492 int udp_setsockopt(struct sock *sk, int level, int optname,
2493 		   char __user *optval, unsigned int optlen)
2494 {
2495 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2496 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2497 					  udp_push_pending_frames);
2498 	return ip_setsockopt(sk, level, optname, optval, optlen);
2499 }
2500 
2501 #ifdef CONFIG_COMPAT
2502 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2503 			  char __user *optval, unsigned int optlen)
2504 {
2505 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2506 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2507 					  udp_push_pending_frames);
2508 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2509 }
2510 #endif
2511 
2512 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2513 		       char __user *optval, int __user *optlen)
2514 {
2515 	struct udp_sock *up = udp_sk(sk);
2516 	int val, len;
2517 
2518 	if (get_user(len, optlen))
2519 		return -EFAULT;
2520 
2521 	len = min_t(unsigned int, len, sizeof(int));
2522 
2523 	if (len < 0)
2524 		return -EINVAL;
2525 
2526 	switch (optname) {
2527 	case UDP_CORK:
2528 		val = up->corkflag;
2529 		break;
2530 
2531 	case UDP_ENCAP:
2532 		val = up->encap_type;
2533 		break;
2534 
2535 	case UDP_NO_CHECK6_TX:
2536 		val = up->no_check6_tx;
2537 		break;
2538 
2539 	case UDP_NO_CHECK6_RX:
2540 		val = up->no_check6_rx;
2541 		break;
2542 
2543 	case UDP_SEGMENT:
2544 		val = up->gso_size;
2545 		break;
2546 
2547 	/* The following two cannot be changed on UDP sockets, the return is
2548 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2549 	case UDPLITE_SEND_CSCOV:
2550 		val = up->pcslen;
2551 		break;
2552 
2553 	case UDPLITE_RECV_CSCOV:
2554 		val = up->pcrlen;
2555 		break;
2556 
2557 	default:
2558 		return -ENOPROTOOPT;
2559 	}
2560 
2561 	if (put_user(len, optlen))
2562 		return -EFAULT;
2563 	if (copy_to_user(optval, &val, len))
2564 		return -EFAULT;
2565 	return 0;
2566 }
2567 EXPORT_SYMBOL(udp_lib_getsockopt);
2568 
2569 int udp_getsockopt(struct sock *sk, int level, int optname,
2570 		   char __user *optval, int __user *optlen)
2571 {
2572 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2573 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2574 	return ip_getsockopt(sk, level, optname, optval, optlen);
2575 }
2576 
2577 #ifdef CONFIG_COMPAT
2578 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2579 				 char __user *optval, int __user *optlen)
2580 {
2581 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2582 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2583 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2584 }
2585 #endif
2586 /**
2587  * 	udp_poll - wait for a UDP event.
2588  *	@file - file struct
2589  *	@sock - socket
2590  *	@wait - poll table
2591  *
2592  *	This is same as datagram poll, except for the special case of
2593  *	blocking sockets. If application is using a blocking fd
2594  *	and a packet with checksum error is in the queue;
2595  *	then it could get return from select indicating data available
2596  *	but then block when reading it. Add special case code
2597  *	to work around these arguably broken applications.
2598  */
2599 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2600 {
2601 	__poll_t mask = datagram_poll(file, sock, wait);
2602 	struct sock *sk = sock->sk;
2603 
2604 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2605 		mask |= EPOLLIN | EPOLLRDNORM;
2606 
2607 	/* Check for false positives due to checksum errors */
2608 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2609 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2610 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2611 
2612 	return mask;
2613 
2614 }
2615 EXPORT_SYMBOL(udp_poll);
2616 
2617 int udp_abort(struct sock *sk, int err)
2618 {
2619 	lock_sock(sk);
2620 
2621 	sk->sk_err = err;
2622 	sk->sk_error_report(sk);
2623 	__udp_disconnect(sk, 0);
2624 
2625 	release_sock(sk);
2626 
2627 	return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(udp_abort);
2630 
2631 struct proto udp_prot = {
2632 	.name			= "UDP",
2633 	.owner			= THIS_MODULE,
2634 	.close			= udp_lib_close,
2635 	.pre_connect		= udp_pre_connect,
2636 	.connect		= ip4_datagram_connect,
2637 	.disconnect		= udp_disconnect,
2638 	.ioctl			= udp_ioctl,
2639 	.init			= udp_init_sock,
2640 	.destroy		= udp_destroy_sock,
2641 	.setsockopt		= udp_setsockopt,
2642 	.getsockopt		= udp_getsockopt,
2643 	.sendmsg		= udp_sendmsg,
2644 	.recvmsg		= udp_recvmsg,
2645 	.sendpage		= udp_sendpage,
2646 	.release_cb		= ip4_datagram_release_cb,
2647 	.hash			= udp_lib_hash,
2648 	.unhash			= udp_lib_unhash,
2649 	.rehash			= udp_v4_rehash,
2650 	.get_port		= udp_v4_get_port,
2651 	.memory_allocated	= &udp_memory_allocated,
2652 	.sysctl_mem		= sysctl_udp_mem,
2653 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2654 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2655 	.obj_size		= sizeof(struct udp_sock),
2656 	.h.udp_table		= &udp_table,
2657 #ifdef CONFIG_COMPAT
2658 	.compat_setsockopt	= compat_udp_setsockopt,
2659 	.compat_getsockopt	= compat_udp_getsockopt,
2660 #endif
2661 	.diag_destroy		= udp_abort,
2662 };
2663 EXPORT_SYMBOL(udp_prot);
2664 
2665 /* ------------------------------------------------------------------------ */
2666 #ifdef CONFIG_PROC_FS
2667 
2668 static struct sock *udp_get_first(struct seq_file *seq, int start)
2669 {
2670 	struct sock *sk;
2671 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2672 	struct udp_iter_state *state = seq->private;
2673 	struct net *net = seq_file_net(seq);
2674 
2675 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2676 	     ++state->bucket) {
2677 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2678 
2679 		if (hlist_empty(&hslot->head))
2680 			continue;
2681 
2682 		spin_lock_bh(&hslot->lock);
2683 		sk_for_each(sk, &hslot->head) {
2684 			if (!net_eq(sock_net(sk), net))
2685 				continue;
2686 			if (sk->sk_family == afinfo->family)
2687 				goto found;
2688 		}
2689 		spin_unlock_bh(&hslot->lock);
2690 	}
2691 	sk = NULL;
2692 found:
2693 	return sk;
2694 }
2695 
2696 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2697 {
2698 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2699 	struct udp_iter_state *state = seq->private;
2700 	struct net *net = seq_file_net(seq);
2701 
2702 	do {
2703 		sk = sk_next(sk);
2704 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2705 
2706 	if (!sk) {
2707 		if (state->bucket <= afinfo->udp_table->mask)
2708 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2709 		return udp_get_first(seq, state->bucket + 1);
2710 	}
2711 	return sk;
2712 }
2713 
2714 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2715 {
2716 	struct sock *sk = udp_get_first(seq, 0);
2717 
2718 	if (sk)
2719 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2720 			--pos;
2721 	return pos ? NULL : sk;
2722 }
2723 
2724 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2725 {
2726 	struct udp_iter_state *state = seq->private;
2727 	state->bucket = MAX_UDP_PORTS;
2728 
2729 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2730 }
2731 EXPORT_SYMBOL(udp_seq_start);
2732 
2733 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2734 {
2735 	struct sock *sk;
2736 
2737 	if (v == SEQ_START_TOKEN)
2738 		sk = udp_get_idx(seq, 0);
2739 	else
2740 		sk = udp_get_next(seq, v);
2741 
2742 	++*pos;
2743 	return sk;
2744 }
2745 EXPORT_SYMBOL(udp_seq_next);
2746 
2747 void udp_seq_stop(struct seq_file *seq, void *v)
2748 {
2749 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2750 	struct udp_iter_state *state = seq->private;
2751 
2752 	if (state->bucket <= afinfo->udp_table->mask)
2753 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2754 }
2755 EXPORT_SYMBOL(udp_seq_stop);
2756 
2757 /* ------------------------------------------------------------------------ */
2758 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2759 		int bucket)
2760 {
2761 	struct inet_sock *inet = inet_sk(sp);
2762 	__be32 dest = inet->inet_daddr;
2763 	__be32 src  = inet->inet_rcv_saddr;
2764 	__u16 destp	  = ntohs(inet->inet_dport);
2765 	__u16 srcp	  = ntohs(inet->inet_sport);
2766 
2767 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2768 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2769 		bucket, src, srcp, dest, destp, sp->sk_state,
2770 		sk_wmem_alloc_get(sp),
2771 		udp_rqueue_get(sp),
2772 		0, 0L, 0,
2773 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2774 		0, sock_i_ino(sp),
2775 		refcount_read(&sp->sk_refcnt), sp,
2776 		atomic_read(&sp->sk_drops));
2777 }
2778 
2779 int udp4_seq_show(struct seq_file *seq, void *v)
2780 {
2781 	seq_setwidth(seq, 127);
2782 	if (v == SEQ_START_TOKEN)
2783 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2784 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2785 			   "inode ref pointer drops");
2786 	else {
2787 		struct udp_iter_state *state = seq->private;
2788 
2789 		udp4_format_sock(v, seq, state->bucket);
2790 	}
2791 	seq_pad(seq, '\n');
2792 	return 0;
2793 }
2794 
2795 const struct seq_operations udp_seq_ops = {
2796 	.start		= udp_seq_start,
2797 	.next		= udp_seq_next,
2798 	.stop		= udp_seq_stop,
2799 	.show		= udp4_seq_show,
2800 };
2801 EXPORT_SYMBOL(udp_seq_ops);
2802 
2803 static struct udp_seq_afinfo udp4_seq_afinfo = {
2804 	.family		= AF_INET,
2805 	.udp_table	= &udp_table,
2806 };
2807 
2808 static int __net_init udp4_proc_init_net(struct net *net)
2809 {
2810 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2811 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2812 		return -ENOMEM;
2813 	return 0;
2814 }
2815 
2816 static void __net_exit udp4_proc_exit_net(struct net *net)
2817 {
2818 	remove_proc_entry("udp", net->proc_net);
2819 }
2820 
2821 static struct pernet_operations udp4_net_ops = {
2822 	.init = udp4_proc_init_net,
2823 	.exit = udp4_proc_exit_net,
2824 };
2825 
2826 int __init udp4_proc_init(void)
2827 {
2828 	return register_pernet_subsys(&udp4_net_ops);
2829 }
2830 
2831 void udp4_proc_exit(void)
2832 {
2833 	unregister_pernet_subsys(&udp4_net_ops);
2834 }
2835 #endif /* CONFIG_PROC_FS */
2836 
2837 static __initdata unsigned long uhash_entries;
2838 static int __init set_uhash_entries(char *str)
2839 {
2840 	ssize_t ret;
2841 
2842 	if (!str)
2843 		return 0;
2844 
2845 	ret = kstrtoul(str, 0, &uhash_entries);
2846 	if (ret)
2847 		return 0;
2848 
2849 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2850 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2851 	return 1;
2852 }
2853 __setup("uhash_entries=", set_uhash_entries);
2854 
2855 void __init udp_table_init(struct udp_table *table, const char *name)
2856 {
2857 	unsigned int i;
2858 
2859 	table->hash = alloc_large_system_hash(name,
2860 					      2 * sizeof(struct udp_hslot),
2861 					      uhash_entries,
2862 					      21, /* one slot per 2 MB */
2863 					      0,
2864 					      &table->log,
2865 					      &table->mask,
2866 					      UDP_HTABLE_SIZE_MIN,
2867 					      64 * 1024);
2868 
2869 	table->hash2 = table->hash + (table->mask + 1);
2870 	for (i = 0; i <= table->mask; i++) {
2871 		INIT_HLIST_HEAD(&table->hash[i].head);
2872 		table->hash[i].count = 0;
2873 		spin_lock_init(&table->hash[i].lock);
2874 	}
2875 	for (i = 0; i <= table->mask; i++) {
2876 		INIT_HLIST_HEAD(&table->hash2[i].head);
2877 		table->hash2[i].count = 0;
2878 		spin_lock_init(&table->hash2[i].lock);
2879 	}
2880 }
2881 
2882 u32 udp_flow_hashrnd(void)
2883 {
2884 	static u32 hashrnd __read_mostly;
2885 
2886 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2887 
2888 	return hashrnd;
2889 }
2890 EXPORT_SYMBOL(udp_flow_hashrnd);
2891 
2892 static void __udp_sysctl_init(struct net *net)
2893 {
2894 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2895 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2896 
2897 #ifdef CONFIG_NET_L3_MASTER_DEV
2898 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2899 #endif
2900 }
2901 
2902 static int __net_init udp_sysctl_init(struct net *net)
2903 {
2904 	__udp_sysctl_init(net);
2905 	return 0;
2906 }
2907 
2908 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2909 	.init	= udp_sysctl_init,
2910 };
2911 
2912 void __init udp_init(void)
2913 {
2914 	unsigned long limit;
2915 	unsigned int i;
2916 
2917 	udp_table_init(&udp_table, "UDP");
2918 	limit = nr_free_buffer_pages() / 8;
2919 	limit = max(limit, 128UL);
2920 	sysctl_udp_mem[0] = limit / 4 * 3;
2921 	sysctl_udp_mem[1] = limit;
2922 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2923 
2924 	__udp_sysctl_init(&init_net);
2925 
2926 	/* 16 spinlocks per cpu */
2927 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2928 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2929 				GFP_KERNEL);
2930 	if (!udp_busylocks)
2931 		panic("UDP: failed to alloc udp_busylocks\n");
2932 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2933 		spin_lock_init(udp_busylocks + i);
2934 
2935 	if (register_pernet_subsys(&udp_sysctl_ops))
2936 		panic("UDP: failed to init sysctl parameters.\n");
2937 }
2938