1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/memblock.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_hslot *hslot, *hslot2; 244 struct udp_table *udptable = sk->sk_prot->h.udp_table; 245 int error = 1; 246 struct net *net = sock_net(sk); 247 248 if (!snum) { 249 int low, high, remaining; 250 unsigned int rand; 251 unsigned short first, last; 252 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 253 254 inet_get_local_port_range(net, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = prandom_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sk_add_node_rcu(sk, &hslot->head); 331 hslot->count++; 332 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 333 334 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 335 spin_lock(&hslot2->lock); 336 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 337 sk->sk_family == AF_INET6) 338 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 else 341 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 hslot2->count++; 344 spin_unlock(&hslot2->lock); 345 } 346 sock_set_flag(sk, SOCK_RCU_FREE); 347 error = 0; 348 fail_unlock: 349 spin_unlock_bh(&hslot->lock); 350 fail: 351 return error; 352 } 353 EXPORT_SYMBOL(udp_lib_get_port); 354 355 int udp_v4_get_port(struct sock *sk, unsigned short snum) 356 { 357 unsigned int hash2_nulladdr = 358 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 359 unsigned int hash2_partial = 360 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 361 362 /* precompute partial secondary hash */ 363 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 364 return udp_lib_get_port(sk, snum, hash2_nulladdr); 365 } 366 367 static int compute_score(struct sock *sk, struct net *net, 368 __be32 saddr, __be16 sport, 369 __be32 daddr, unsigned short hnum, 370 int dif, int sdif, bool exact_dif) 371 { 372 int score; 373 struct inet_sock *inet; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 score = (sk->sk_family == PF_INET) ? 2 : 1; 381 inet = inet_sk(sk); 382 383 if (inet->inet_rcv_saddr) { 384 if (inet->inet_rcv_saddr != daddr) 385 return -1; 386 score += 4; 387 } 388 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 if (sk->sk_bound_dev_if || exact_dif) { 402 bool dev_match = (sk->sk_bound_dev_if == dif || 403 sk->sk_bound_dev_if == sdif); 404 405 if (!dev_match) 406 return -1; 407 if (sk->sk_bound_dev_if) 408 score += 4; 409 } 410 411 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 412 score++; 413 return score; 414 } 415 416 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 417 const __u16 lport, const __be32 faddr, 418 const __be16 fport) 419 { 420 static u32 udp_ehash_secret __read_mostly; 421 422 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 423 424 return __inet_ehashfn(laddr, lport, faddr, fport, 425 udp_ehash_secret + net_hash_mix(net)); 426 } 427 428 /* called with rcu_read_lock() */ 429 static struct sock *udp4_lib_lookup2(struct net *net, 430 __be32 saddr, __be16 sport, 431 __be32 daddr, unsigned int hnum, 432 int dif, int sdif, bool exact_dif, 433 struct udp_hslot *hslot2, 434 struct sk_buff *skb) 435 { 436 struct sock *sk, *result; 437 int score, badness; 438 u32 hash = 0; 439 440 result = NULL; 441 badness = 0; 442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 443 score = compute_score(sk, net, saddr, sport, 444 daddr, hnum, dif, sdif, exact_dif); 445 if (score > badness) { 446 if (sk->sk_reuseport) { 447 hash = udp_ehashfn(net, daddr, hnum, 448 saddr, sport); 449 result = reuseport_select_sock(sk, hash, skb, 450 sizeof(struct udphdr)); 451 if (result) 452 return result; 453 } 454 badness = score; 455 result = sk; 456 } 457 } 458 return result; 459 } 460 461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 462 * harder than this. -DaveM 463 */ 464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 465 __be16 sport, __be32 daddr, __be16 dport, int dif, 466 int sdif, struct udp_table *udptable, struct sk_buff *skb) 467 { 468 struct sock *sk, *result; 469 unsigned short hnum = ntohs(dport); 470 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 471 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 472 bool exact_dif = udp_lib_exact_dif_match(net, skb); 473 int score, badness; 474 u32 hash = 0; 475 476 if (hslot->count > 10) { 477 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 478 slot2 = hash2 & udptable->mask; 479 hslot2 = &udptable->hash2[slot2]; 480 if (hslot->count < hslot2->count) 481 goto begin; 482 483 result = udp4_lib_lookup2(net, saddr, sport, 484 daddr, hnum, dif, sdif, 485 exact_dif, hslot2, skb); 486 if (!result) { 487 unsigned int old_slot2 = slot2; 488 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 489 slot2 = hash2 & udptable->mask; 490 /* avoid searching the same slot again. */ 491 if (unlikely(slot2 == old_slot2)) 492 return result; 493 494 hslot2 = &udptable->hash2[slot2]; 495 if (hslot->count < hslot2->count) 496 goto begin; 497 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 exact_dif, hslot2, skb); 501 } 502 if (unlikely(IS_ERR(result))) 503 return NULL; 504 return result; 505 } 506 begin: 507 result = NULL; 508 badness = 0; 509 sk_for_each_rcu(sk, &hslot->head) { 510 score = compute_score(sk, net, saddr, sport, 511 daddr, hnum, dif, sdif, exact_dif); 512 if (score > badness) { 513 if (sk->sk_reuseport) { 514 hash = udp_ehashfn(net, daddr, hnum, 515 saddr, sport); 516 result = reuseport_select_sock(sk, hash, skb, 517 sizeof(struct udphdr)); 518 if (unlikely(IS_ERR(result))) 519 return NULL; 520 if (result) 521 return result; 522 } 523 result = sk; 524 badness = score; 525 } 526 } 527 return result; 528 } 529 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 530 531 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 532 __be16 sport, __be16 dport, 533 struct udp_table *udptable) 534 { 535 const struct iphdr *iph = ip_hdr(skb); 536 537 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 538 iph->daddr, dport, inet_iif(skb), 539 inet_sdif(skb), udptable, skb); 540 } 541 542 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 543 __be16 sport, __be16 dport) 544 { 545 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 546 } 547 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 548 549 /* Must be called under rcu_read_lock(). 550 * Does increment socket refcount. 551 */ 552 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 553 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 554 __be32 daddr, __be16 dport, int dif) 555 { 556 struct sock *sk; 557 558 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 559 dif, 0, &udp_table, NULL); 560 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 561 sk = NULL; 562 return sk; 563 } 564 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 565 #endif 566 567 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 568 __be16 loc_port, __be32 loc_addr, 569 __be16 rmt_port, __be32 rmt_addr, 570 int dif, int sdif, unsigned short hnum) 571 { 572 struct inet_sock *inet = inet_sk(sk); 573 574 if (!net_eq(sock_net(sk), net) || 575 udp_sk(sk)->udp_port_hash != hnum || 576 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 577 (inet->inet_dport != rmt_port && inet->inet_dport) || 578 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 579 ipv6_only_sock(sk) || 580 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 581 sk->sk_bound_dev_if != sdif)) 582 return false; 583 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 584 return false; 585 return true; 586 } 587 588 /* 589 * This routine is called by the ICMP module when it gets some 590 * sort of error condition. If err < 0 then the socket should 591 * be closed and the error returned to the user. If err > 0 592 * it's just the icmp type << 8 | icmp code. 593 * Header points to the ip header of the error packet. We move 594 * on past this. Then (as it used to claim before adjustment) 595 * header points to the first 8 bytes of the udp header. We need 596 * to find the appropriate port. 597 */ 598 599 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 600 { 601 struct inet_sock *inet; 602 const struct iphdr *iph = (const struct iphdr *)skb->data; 603 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 604 const int type = icmp_hdr(skb)->type; 605 const int code = icmp_hdr(skb)->code; 606 struct sock *sk; 607 int harderr; 608 int err; 609 struct net *net = dev_net(skb->dev); 610 611 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 612 iph->saddr, uh->source, skb->dev->ifindex, 613 inet_sdif(skb), udptable, NULL); 614 if (!sk) { 615 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 616 return; /* No socket for error */ 617 } 618 619 err = 0; 620 harderr = 0; 621 inet = inet_sk(sk); 622 623 switch (type) { 624 default: 625 case ICMP_TIME_EXCEEDED: 626 err = EHOSTUNREACH; 627 break; 628 case ICMP_SOURCE_QUENCH: 629 goto out; 630 case ICMP_PARAMETERPROB: 631 err = EPROTO; 632 harderr = 1; 633 break; 634 case ICMP_DEST_UNREACH: 635 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 636 ipv4_sk_update_pmtu(skb, sk, info); 637 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 638 err = EMSGSIZE; 639 harderr = 1; 640 break; 641 } 642 goto out; 643 } 644 err = EHOSTUNREACH; 645 if (code <= NR_ICMP_UNREACH) { 646 harderr = icmp_err_convert[code].fatal; 647 err = icmp_err_convert[code].errno; 648 } 649 break; 650 case ICMP_REDIRECT: 651 ipv4_sk_redirect(skb, sk); 652 goto out; 653 } 654 655 /* 656 * RFC1122: OK. Passes ICMP errors back to application, as per 657 * 4.1.3.3. 658 */ 659 if (!inet->recverr) { 660 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 661 goto out; 662 } else 663 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 664 665 sk->sk_err = err; 666 sk->sk_error_report(sk); 667 out: 668 return; 669 } 670 671 void udp_err(struct sk_buff *skb, u32 info) 672 { 673 __udp4_lib_err(skb, info, &udp_table); 674 } 675 676 /* 677 * Throw away all pending data and cancel the corking. Socket is locked. 678 */ 679 void udp_flush_pending_frames(struct sock *sk) 680 { 681 struct udp_sock *up = udp_sk(sk); 682 683 if (up->pending) { 684 up->len = 0; 685 up->pending = 0; 686 ip_flush_pending_frames(sk); 687 } 688 } 689 EXPORT_SYMBOL(udp_flush_pending_frames); 690 691 /** 692 * udp4_hwcsum - handle outgoing HW checksumming 693 * @skb: sk_buff containing the filled-in UDP header 694 * (checksum field must be zeroed out) 695 * @src: source IP address 696 * @dst: destination IP address 697 */ 698 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 699 { 700 struct udphdr *uh = udp_hdr(skb); 701 int offset = skb_transport_offset(skb); 702 int len = skb->len - offset; 703 int hlen = len; 704 __wsum csum = 0; 705 706 if (!skb_has_frag_list(skb)) { 707 /* 708 * Only one fragment on the socket. 709 */ 710 skb->csum_start = skb_transport_header(skb) - skb->head; 711 skb->csum_offset = offsetof(struct udphdr, check); 712 uh->check = ~csum_tcpudp_magic(src, dst, len, 713 IPPROTO_UDP, 0); 714 } else { 715 struct sk_buff *frags; 716 717 /* 718 * HW-checksum won't work as there are two or more 719 * fragments on the socket so that all csums of sk_buffs 720 * should be together 721 */ 722 skb_walk_frags(skb, frags) { 723 csum = csum_add(csum, frags->csum); 724 hlen -= frags->len; 725 } 726 727 csum = skb_checksum(skb, offset, hlen, csum); 728 skb->ip_summed = CHECKSUM_NONE; 729 730 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 731 if (uh->check == 0) 732 uh->check = CSUM_MANGLED_0; 733 } 734 } 735 EXPORT_SYMBOL_GPL(udp4_hwcsum); 736 737 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 738 * for the simple case like when setting the checksum for a UDP tunnel. 739 */ 740 void udp_set_csum(bool nocheck, struct sk_buff *skb, 741 __be32 saddr, __be32 daddr, int len) 742 { 743 struct udphdr *uh = udp_hdr(skb); 744 745 if (nocheck) { 746 uh->check = 0; 747 } else if (skb_is_gso(skb)) { 748 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 749 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 750 uh->check = 0; 751 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 752 if (uh->check == 0) 753 uh->check = CSUM_MANGLED_0; 754 } else { 755 skb->ip_summed = CHECKSUM_PARTIAL; 756 skb->csum_start = skb_transport_header(skb) - skb->head; 757 skb->csum_offset = offsetof(struct udphdr, check); 758 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 759 } 760 } 761 EXPORT_SYMBOL(udp_set_csum); 762 763 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 764 struct inet_cork *cork) 765 { 766 struct sock *sk = skb->sk; 767 struct inet_sock *inet = inet_sk(sk); 768 struct udphdr *uh; 769 int err = 0; 770 int is_udplite = IS_UDPLITE(sk); 771 int offset = skb_transport_offset(skb); 772 int len = skb->len - offset; 773 __wsum csum = 0; 774 775 /* 776 * Create a UDP header 777 */ 778 uh = udp_hdr(skb); 779 uh->source = inet->inet_sport; 780 uh->dest = fl4->fl4_dport; 781 uh->len = htons(len); 782 uh->check = 0; 783 784 if (cork->gso_size) { 785 const int hlen = skb_network_header_len(skb) + 786 sizeof(struct udphdr); 787 788 if (hlen + cork->gso_size > cork->fragsize) 789 return -EINVAL; 790 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 791 return -EINVAL; 792 if (sk->sk_no_check_tx) 793 return -EINVAL; 794 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 795 dst_xfrm(skb_dst(skb))) 796 return -EIO; 797 798 skb_shinfo(skb)->gso_size = cork->gso_size; 799 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 800 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 801 cork->gso_size); 802 goto csum_partial; 803 } 804 805 if (is_udplite) /* UDP-Lite */ 806 csum = udplite_csum(skb); 807 808 else if (sk->sk_no_check_tx) { /* UDP csum off */ 809 810 skb->ip_summed = CHECKSUM_NONE; 811 goto send; 812 813 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 814 csum_partial: 815 816 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 817 goto send; 818 819 } else 820 csum = udp_csum(skb); 821 822 /* add protocol-dependent pseudo-header */ 823 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 824 sk->sk_protocol, csum); 825 if (uh->check == 0) 826 uh->check = CSUM_MANGLED_0; 827 828 send: 829 err = ip_send_skb(sock_net(sk), skb); 830 if (err) { 831 if (err == -ENOBUFS && !inet->recverr) { 832 UDP_INC_STATS(sock_net(sk), 833 UDP_MIB_SNDBUFERRORS, is_udplite); 834 err = 0; 835 } 836 } else 837 UDP_INC_STATS(sock_net(sk), 838 UDP_MIB_OUTDATAGRAMS, is_udplite); 839 return err; 840 } 841 842 /* 843 * Push out all pending data as one UDP datagram. Socket is locked. 844 */ 845 int udp_push_pending_frames(struct sock *sk) 846 { 847 struct udp_sock *up = udp_sk(sk); 848 struct inet_sock *inet = inet_sk(sk); 849 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 850 struct sk_buff *skb; 851 int err = 0; 852 853 skb = ip_finish_skb(sk, fl4); 854 if (!skb) 855 goto out; 856 857 err = udp_send_skb(skb, fl4, &inet->cork.base); 858 859 out: 860 up->len = 0; 861 up->pending = 0; 862 return err; 863 } 864 EXPORT_SYMBOL(udp_push_pending_frames); 865 866 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 867 { 868 switch (cmsg->cmsg_type) { 869 case UDP_SEGMENT: 870 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 871 return -EINVAL; 872 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 873 return 0; 874 default: 875 return -EINVAL; 876 } 877 } 878 879 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 880 { 881 struct cmsghdr *cmsg; 882 bool need_ip = false; 883 int err; 884 885 for_each_cmsghdr(cmsg, msg) { 886 if (!CMSG_OK(msg, cmsg)) 887 return -EINVAL; 888 889 if (cmsg->cmsg_level != SOL_UDP) { 890 need_ip = true; 891 continue; 892 } 893 894 err = __udp_cmsg_send(cmsg, gso_size); 895 if (err) 896 return err; 897 } 898 899 return need_ip; 900 } 901 EXPORT_SYMBOL_GPL(udp_cmsg_send); 902 903 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 904 { 905 struct inet_sock *inet = inet_sk(sk); 906 struct udp_sock *up = udp_sk(sk); 907 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 908 struct flowi4 fl4_stack; 909 struct flowi4 *fl4; 910 int ulen = len; 911 struct ipcm_cookie ipc; 912 struct rtable *rt = NULL; 913 int free = 0; 914 int connected = 0; 915 __be32 daddr, faddr, saddr; 916 __be16 dport; 917 u8 tos; 918 int err, is_udplite = IS_UDPLITE(sk); 919 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 920 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 921 struct sk_buff *skb; 922 struct ip_options_data opt_copy; 923 924 if (len > 0xFFFF) 925 return -EMSGSIZE; 926 927 /* 928 * Check the flags. 929 */ 930 931 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 932 return -EOPNOTSUPP; 933 934 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 935 936 fl4 = &inet->cork.fl.u.ip4; 937 if (up->pending) { 938 /* 939 * There are pending frames. 940 * The socket lock must be held while it's corked. 941 */ 942 lock_sock(sk); 943 if (likely(up->pending)) { 944 if (unlikely(up->pending != AF_INET)) { 945 release_sock(sk); 946 return -EINVAL; 947 } 948 goto do_append_data; 949 } 950 release_sock(sk); 951 } 952 ulen += sizeof(struct udphdr); 953 954 /* 955 * Get and verify the address. 956 */ 957 if (usin) { 958 if (msg->msg_namelen < sizeof(*usin)) 959 return -EINVAL; 960 if (usin->sin_family != AF_INET) { 961 if (usin->sin_family != AF_UNSPEC) 962 return -EAFNOSUPPORT; 963 } 964 965 daddr = usin->sin_addr.s_addr; 966 dport = usin->sin_port; 967 if (dport == 0) 968 return -EINVAL; 969 } else { 970 if (sk->sk_state != TCP_ESTABLISHED) 971 return -EDESTADDRREQ; 972 daddr = inet->inet_daddr; 973 dport = inet->inet_dport; 974 /* Open fast path for connected socket. 975 Route will not be used, if at least one option is set. 976 */ 977 connected = 1; 978 } 979 980 ipcm_init_sk(&ipc, inet); 981 ipc.gso_size = up->gso_size; 982 983 if (msg->msg_controllen) { 984 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 985 if (err > 0) 986 err = ip_cmsg_send(sk, msg, &ipc, 987 sk->sk_family == AF_INET6); 988 if (unlikely(err < 0)) { 989 kfree(ipc.opt); 990 return err; 991 } 992 if (ipc.opt) 993 free = 1; 994 connected = 0; 995 } 996 if (!ipc.opt) { 997 struct ip_options_rcu *inet_opt; 998 999 rcu_read_lock(); 1000 inet_opt = rcu_dereference(inet->inet_opt); 1001 if (inet_opt) { 1002 memcpy(&opt_copy, inet_opt, 1003 sizeof(*inet_opt) + inet_opt->opt.optlen); 1004 ipc.opt = &opt_copy.opt; 1005 } 1006 rcu_read_unlock(); 1007 } 1008 1009 if (cgroup_bpf_enabled && !connected) { 1010 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1011 (struct sockaddr *)usin, &ipc.addr); 1012 if (err) 1013 goto out_free; 1014 if (usin) { 1015 if (usin->sin_port == 0) { 1016 /* BPF program set invalid port. Reject it. */ 1017 err = -EINVAL; 1018 goto out_free; 1019 } 1020 daddr = usin->sin_addr.s_addr; 1021 dport = usin->sin_port; 1022 } 1023 } 1024 1025 saddr = ipc.addr; 1026 ipc.addr = faddr = daddr; 1027 1028 if (ipc.opt && ipc.opt->opt.srr) { 1029 if (!daddr) { 1030 err = -EINVAL; 1031 goto out_free; 1032 } 1033 faddr = ipc.opt->opt.faddr; 1034 connected = 0; 1035 } 1036 tos = get_rttos(&ipc, inet); 1037 if (sock_flag(sk, SOCK_LOCALROUTE) || 1038 (msg->msg_flags & MSG_DONTROUTE) || 1039 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1040 tos |= RTO_ONLINK; 1041 connected = 0; 1042 } 1043 1044 if (ipv4_is_multicast(daddr)) { 1045 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1046 ipc.oif = inet->mc_index; 1047 if (!saddr) 1048 saddr = inet->mc_addr; 1049 connected = 0; 1050 } else if (!ipc.oif) { 1051 ipc.oif = inet->uc_index; 1052 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1053 /* oif is set, packet is to local broadcast and 1054 * and uc_index is set. oif is most likely set 1055 * by sk_bound_dev_if. If uc_index != oif check if the 1056 * oif is an L3 master and uc_index is an L3 slave. 1057 * If so, we want to allow the send using the uc_index. 1058 */ 1059 if (ipc.oif != inet->uc_index && 1060 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1061 inet->uc_index)) { 1062 ipc.oif = inet->uc_index; 1063 } 1064 } 1065 1066 if (connected) 1067 rt = (struct rtable *)sk_dst_check(sk, 0); 1068 1069 if (!rt) { 1070 struct net *net = sock_net(sk); 1071 __u8 flow_flags = inet_sk_flowi_flags(sk); 1072 1073 fl4 = &fl4_stack; 1074 1075 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1076 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1077 flow_flags, 1078 faddr, saddr, dport, inet->inet_sport, 1079 sk->sk_uid); 1080 1081 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1082 rt = ip_route_output_flow(net, fl4, sk); 1083 if (IS_ERR(rt)) { 1084 err = PTR_ERR(rt); 1085 rt = NULL; 1086 if (err == -ENETUNREACH) 1087 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1088 goto out; 1089 } 1090 1091 err = -EACCES; 1092 if ((rt->rt_flags & RTCF_BROADCAST) && 1093 !sock_flag(sk, SOCK_BROADCAST)) 1094 goto out; 1095 if (connected) 1096 sk_dst_set(sk, dst_clone(&rt->dst)); 1097 } 1098 1099 if (msg->msg_flags&MSG_CONFIRM) 1100 goto do_confirm; 1101 back_from_confirm: 1102 1103 saddr = fl4->saddr; 1104 if (!ipc.addr) 1105 daddr = ipc.addr = fl4->daddr; 1106 1107 /* Lockless fast path for the non-corking case. */ 1108 if (!corkreq) { 1109 struct inet_cork cork; 1110 1111 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1112 sizeof(struct udphdr), &ipc, &rt, 1113 &cork, msg->msg_flags); 1114 err = PTR_ERR(skb); 1115 if (!IS_ERR_OR_NULL(skb)) 1116 err = udp_send_skb(skb, fl4, &cork); 1117 goto out; 1118 } 1119 1120 lock_sock(sk); 1121 if (unlikely(up->pending)) { 1122 /* The socket is already corked while preparing it. */ 1123 /* ... which is an evident application bug. --ANK */ 1124 release_sock(sk); 1125 1126 net_dbg_ratelimited("socket already corked\n"); 1127 err = -EINVAL; 1128 goto out; 1129 } 1130 /* 1131 * Now cork the socket to pend data. 1132 */ 1133 fl4 = &inet->cork.fl.u.ip4; 1134 fl4->daddr = daddr; 1135 fl4->saddr = saddr; 1136 fl4->fl4_dport = dport; 1137 fl4->fl4_sport = inet->inet_sport; 1138 up->pending = AF_INET; 1139 1140 do_append_data: 1141 up->len += ulen; 1142 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1143 sizeof(struct udphdr), &ipc, &rt, 1144 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1145 if (err) 1146 udp_flush_pending_frames(sk); 1147 else if (!corkreq) 1148 err = udp_push_pending_frames(sk); 1149 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1150 up->pending = 0; 1151 release_sock(sk); 1152 1153 out: 1154 ip_rt_put(rt); 1155 out_free: 1156 if (free) 1157 kfree(ipc.opt); 1158 if (!err) 1159 return len; 1160 /* 1161 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1162 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1163 * we don't have a good statistic (IpOutDiscards but it can be too many 1164 * things). We could add another new stat but at least for now that 1165 * seems like overkill. 1166 */ 1167 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1168 UDP_INC_STATS(sock_net(sk), 1169 UDP_MIB_SNDBUFERRORS, is_udplite); 1170 } 1171 return err; 1172 1173 do_confirm: 1174 if (msg->msg_flags & MSG_PROBE) 1175 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1176 if (!(msg->msg_flags&MSG_PROBE) || len) 1177 goto back_from_confirm; 1178 err = 0; 1179 goto out; 1180 } 1181 EXPORT_SYMBOL(udp_sendmsg); 1182 1183 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1184 size_t size, int flags) 1185 { 1186 struct inet_sock *inet = inet_sk(sk); 1187 struct udp_sock *up = udp_sk(sk); 1188 int ret; 1189 1190 if (flags & MSG_SENDPAGE_NOTLAST) 1191 flags |= MSG_MORE; 1192 1193 if (!up->pending) { 1194 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1195 1196 /* Call udp_sendmsg to specify destination address which 1197 * sendpage interface can't pass. 1198 * This will succeed only when the socket is connected. 1199 */ 1200 ret = udp_sendmsg(sk, &msg, 0); 1201 if (ret < 0) 1202 return ret; 1203 } 1204 1205 lock_sock(sk); 1206 1207 if (unlikely(!up->pending)) { 1208 release_sock(sk); 1209 1210 net_dbg_ratelimited("cork failed\n"); 1211 return -EINVAL; 1212 } 1213 1214 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1215 page, offset, size, flags); 1216 if (ret == -EOPNOTSUPP) { 1217 release_sock(sk); 1218 return sock_no_sendpage(sk->sk_socket, page, offset, 1219 size, flags); 1220 } 1221 if (ret < 0) { 1222 udp_flush_pending_frames(sk); 1223 goto out; 1224 } 1225 1226 up->len += size; 1227 if (!(up->corkflag || (flags&MSG_MORE))) 1228 ret = udp_push_pending_frames(sk); 1229 if (!ret) 1230 ret = size; 1231 out: 1232 release_sock(sk); 1233 return ret; 1234 } 1235 1236 #define UDP_SKB_IS_STATELESS 0x80000000 1237 1238 static void udp_set_dev_scratch(struct sk_buff *skb) 1239 { 1240 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1241 1242 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1243 scratch->_tsize_state = skb->truesize; 1244 #if BITS_PER_LONG == 64 1245 scratch->len = skb->len; 1246 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1247 scratch->is_linear = !skb_is_nonlinear(skb); 1248 #endif 1249 /* all head states execept sp (dst, sk, nf) are always cleared by 1250 * udp_rcv() and we need to preserve secpath, if present, to eventually 1251 * process IP_CMSG_PASSSEC at recvmsg() time 1252 */ 1253 if (likely(!skb_sec_path(skb))) 1254 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1255 } 1256 1257 static int udp_skb_truesize(struct sk_buff *skb) 1258 { 1259 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1260 } 1261 1262 static bool udp_skb_has_head_state(struct sk_buff *skb) 1263 { 1264 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1265 } 1266 1267 /* fully reclaim rmem/fwd memory allocated for skb */ 1268 static void udp_rmem_release(struct sock *sk, int size, int partial, 1269 bool rx_queue_lock_held) 1270 { 1271 struct udp_sock *up = udp_sk(sk); 1272 struct sk_buff_head *sk_queue; 1273 int amt; 1274 1275 if (likely(partial)) { 1276 up->forward_deficit += size; 1277 size = up->forward_deficit; 1278 if (size < (sk->sk_rcvbuf >> 2)) 1279 return; 1280 } else { 1281 size += up->forward_deficit; 1282 } 1283 up->forward_deficit = 0; 1284 1285 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1286 * if the called don't held it already 1287 */ 1288 sk_queue = &sk->sk_receive_queue; 1289 if (!rx_queue_lock_held) 1290 spin_lock(&sk_queue->lock); 1291 1292 1293 sk->sk_forward_alloc += size; 1294 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1295 sk->sk_forward_alloc -= amt; 1296 1297 if (amt) 1298 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1299 1300 atomic_sub(size, &sk->sk_rmem_alloc); 1301 1302 /* this can save us from acquiring the rx queue lock on next receive */ 1303 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1304 1305 if (!rx_queue_lock_held) 1306 spin_unlock(&sk_queue->lock); 1307 } 1308 1309 /* Note: called with reader_queue.lock held. 1310 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1311 * This avoids a cache line miss while receive_queue lock is held. 1312 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1313 */ 1314 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1315 { 1316 prefetch(&skb->data); 1317 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1318 } 1319 EXPORT_SYMBOL(udp_skb_destructor); 1320 1321 /* as above, but the caller held the rx queue lock, too */ 1322 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1323 { 1324 prefetch(&skb->data); 1325 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1326 } 1327 1328 /* Idea of busylocks is to let producers grab an extra spinlock 1329 * to relieve pressure on the receive_queue spinlock shared by consumer. 1330 * Under flood, this means that only one producer can be in line 1331 * trying to acquire the receive_queue spinlock. 1332 * These busylock can be allocated on a per cpu manner, instead of a 1333 * per socket one (that would consume a cache line per socket) 1334 */ 1335 static int udp_busylocks_log __read_mostly; 1336 static spinlock_t *udp_busylocks __read_mostly; 1337 1338 static spinlock_t *busylock_acquire(void *ptr) 1339 { 1340 spinlock_t *busy; 1341 1342 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1343 spin_lock(busy); 1344 return busy; 1345 } 1346 1347 static void busylock_release(spinlock_t *busy) 1348 { 1349 if (busy) 1350 spin_unlock(busy); 1351 } 1352 1353 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1354 { 1355 struct sk_buff_head *list = &sk->sk_receive_queue; 1356 int rmem, delta, amt, err = -ENOMEM; 1357 spinlock_t *busy = NULL; 1358 int size; 1359 1360 /* try to avoid the costly atomic add/sub pair when the receive 1361 * queue is full; always allow at least a packet 1362 */ 1363 rmem = atomic_read(&sk->sk_rmem_alloc); 1364 if (rmem > sk->sk_rcvbuf) 1365 goto drop; 1366 1367 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1368 * having linear skbs : 1369 * - Reduce memory overhead and thus increase receive queue capacity 1370 * - Less cache line misses at copyout() time 1371 * - Less work at consume_skb() (less alien page frag freeing) 1372 */ 1373 if (rmem > (sk->sk_rcvbuf >> 1)) { 1374 skb_condense(skb); 1375 1376 busy = busylock_acquire(sk); 1377 } 1378 size = skb->truesize; 1379 udp_set_dev_scratch(skb); 1380 1381 /* we drop only if the receive buf is full and the receive 1382 * queue contains some other skb 1383 */ 1384 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1385 if (rmem > (size + sk->sk_rcvbuf)) 1386 goto uncharge_drop; 1387 1388 spin_lock(&list->lock); 1389 if (size >= sk->sk_forward_alloc) { 1390 amt = sk_mem_pages(size); 1391 delta = amt << SK_MEM_QUANTUM_SHIFT; 1392 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1393 err = -ENOBUFS; 1394 spin_unlock(&list->lock); 1395 goto uncharge_drop; 1396 } 1397 1398 sk->sk_forward_alloc += delta; 1399 } 1400 1401 sk->sk_forward_alloc -= size; 1402 1403 /* no need to setup a destructor, we will explicitly release the 1404 * forward allocated memory on dequeue 1405 */ 1406 sock_skb_set_dropcount(sk, skb); 1407 1408 __skb_queue_tail(list, skb); 1409 spin_unlock(&list->lock); 1410 1411 if (!sock_flag(sk, SOCK_DEAD)) 1412 sk->sk_data_ready(sk); 1413 1414 busylock_release(busy); 1415 return 0; 1416 1417 uncharge_drop: 1418 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1419 1420 drop: 1421 atomic_inc(&sk->sk_drops); 1422 busylock_release(busy); 1423 return err; 1424 } 1425 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1426 1427 void udp_destruct_sock(struct sock *sk) 1428 { 1429 /* reclaim completely the forward allocated memory */ 1430 struct udp_sock *up = udp_sk(sk); 1431 unsigned int total = 0; 1432 struct sk_buff *skb; 1433 1434 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1435 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1436 total += skb->truesize; 1437 kfree_skb(skb); 1438 } 1439 udp_rmem_release(sk, total, 0, true); 1440 1441 inet_sock_destruct(sk); 1442 } 1443 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1444 1445 int udp_init_sock(struct sock *sk) 1446 { 1447 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1448 sk->sk_destruct = udp_destruct_sock; 1449 return 0; 1450 } 1451 EXPORT_SYMBOL_GPL(udp_init_sock); 1452 1453 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1454 { 1455 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1456 bool slow = lock_sock_fast(sk); 1457 1458 sk_peek_offset_bwd(sk, len); 1459 unlock_sock_fast(sk, slow); 1460 } 1461 1462 if (!skb_unref(skb)) 1463 return; 1464 1465 /* In the more common cases we cleared the head states previously, 1466 * see __udp_queue_rcv_skb(). 1467 */ 1468 if (unlikely(udp_skb_has_head_state(skb))) 1469 skb_release_head_state(skb); 1470 __consume_stateless_skb(skb); 1471 } 1472 EXPORT_SYMBOL_GPL(skb_consume_udp); 1473 1474 static struct sk_buff *__first_packet_length(struct sock *sk, 1475 struct sk_buff_head *rcvq, 1476 int *total) 1477 { 1478 struct sk_buff *skb; 1479 1480 while ((skb = skb_peek(rcvq)) != NULL) { 1481 if (udp_lib_checksum_complete(skb)) { 1482 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1483 IS_UDPLITE(sk)); 1484 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1485 IS_UDPLITE(sk)); 1486 atomic_inc(&sk->sk_drops); 1487 __skb_unlink(skb, rcvq); 1488 *total += skb->truesize; 1489 kfree_skb(skb); 1490 } else { 1491 /* the csum related bits could be changed, refresh 1492 * the scratch area 1493 */ 1494 udp_set_dev_scratch(skb); 1495 break; 1496 } 1497 } 1498 return skb; 1499 } 1500 1501 /** 1502 * first_packet_length - return length of first packet in receive queue 1503 * @sk: socket 1504 * 1505 * Drops all bad checksum frames, until a valid one is found. 1506 * Returns the length of found skb, or -1 if none is found. 1507 */ 1508 static int first_packet_length(struct sock *sk) 1509 { 1510 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1511 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1512 struct sk_buff *skb; 1513 int total = 0; 1514 int res; 1515 1516 spin_lock_bh(&rcvq->lock); 1517 skb = __first_packet_length(sk, rcvq, &total); 1518 if (!skb && !skb_queue_empty(sk_queue)) { 1519 spin_lock(&sk_queue->lock); 1520 skb_queue_splice_tail_init(sk_queue, rcvq); 1521 spin_unlock(&sk_queue->lock); 1522 1523 skb = __first_packet_length(sk, rcvq, &total); 1524 } 1525 res = skb ? skb->len : -1; 1526 if (total) 1527 udp_rmem_release(sk, total, 1, false); 1528 spin_unlock_bh(&rcvq->lock); 1529 return res; 1530 } 1531 1532 /* 1533 * IOCTL requests applicable to the UDP protocol 1534 */ 1535 1536 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1537 { 1538 switch (cmd) { 1539 case SIOCOUTQ: 1540 { 1541 int amount = sk_wmem_alloc_get(sk); 1542 1543 return put_user(amount, (int __user *)arg); 1544 } 1545 1546 case SIOCINQ: 1547 { 1548 int amount = max_t(int, 0, first_packet_length(sk)); 1549 1550 return put_user(amount, (int __user *)arg); 1551 } 1552 1553 default: 1554 return -ENOIOCTLCMD; 1555 } 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL(udp_ioctl); 1560 1561 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1562 int noblock, int *peeked, int *off, int *err) 1563 { 1564 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1565 struct sk_buff_head *queue; 1566 struct sk_buff *last; 1567 long timeo; 1568 int error; 1569 1570 queue = &udp_sk(sk)->reader_queue; 1571 flags |= noblock ? MSG_DONTWAIT : 0; 1572 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1573 do { 1574 struct sk_buff *skb; 1575 1576 error = sock_error(sk); 1577 if (error) 1578 break; 1579 1580 error = -EAGAIN; 1581 *peeked = 0; 1582 do { 1583 spin_lock_bh(&queue->lock); 1584 skb = __skb_try_recv_from_queue(sk, queue, flags, 1585 udp_skb_destructor, 1586 peeked, off, err, 1587 &last); 1588 if (skb) { 1589 spin_unlock_bh(&queue->lock); 1590 return skb; 1591 } 1592 1593 if (skb_queue_empty(sk_queue)) { 1594 spin_unlock_bh(&queue->lock); 1595 goto busy_check; 1596 } 1597 1598 /* refill the reader queue and walk it again 1599 * keep both queues locked to avoid re-acquiring 1600 * the sk_receive_queue lock if fwd memory scheduling 1601 * is needed. 1602 */ 1603 spin_lock(&sk_queue->lock); 1604 skb_queue_splice_tail_init(sk_queue, queue); 1605 1606 skb = __skb_try_recv_from_queue(sk, queue, flags, 1607 udp_skb_dtor_locked, 1608 peeked, off, err, 1609 &last); 1610 spin_unlock(&sk_queue->lock); 1611 spin_unlock_bh(&queue->lock); 1612 if (skb) 1613 return skb; 1614 1615 busy_check: 1616 if (!sk_can_busy_loop(sk)) 1617 break; 1618 1619 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1620 } while (!skb_queue_empty(sk_queue)); 1621 1622 /* sk_queue is empty, reader_queue may contain peeked packets */ 1623 } while (timeo && 1624 !__skb_wait_for_more_packets(sk, &error, &timeo, 1625 (struct sk_buff *)sk_queue)); 1626 1627 *err = error; 1628 return NULL; 1629 } 1630 EXPORT_SYMBOL(__skb_recv_udp); 1631 1632 /* 1633 * This should be easy, if there is something there we 1634 * return it, otherwise we block. 1635 */ 1636 1637 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1638 int flags, int *addr_len) 1639 { 1640 struct inet_sock *inet = inet_sk(sk); 1641 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1642 struct sk_buff *skb; 1643 unsigned int ulen, copied; 1644 int peeked, peeking, off; 1645 int err; 1646 int is_udplite = IS_UDPLITE(sk); 1647 bool checksum_valid = false; 1648 1649 if (flags & MSG_ERRQUEUE) 1650 return ip_recv_error(sk, msg, len, addr_len); 1651 1652 try_again: 1653 peeking = flags & MSG_PEEK; 1654 off = sk_peek_offset(sk, flags); 1655 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1656 if (!skb) 1657 return err; 1658 1659 ulen = udp_skb_len(skb); 1660 copied = len; 1661 if (copied > ulen - off) 1662 copied = ulen - off; 1663 else if (copied < ulen) 1664 msg->msg_flags |= MSG_TRUNC; 1665 1666 /* 1667 * If checksum is needed at all, try to do it while copying the 1668 * data. If the data is truncated, or if we only want a partial 1669 * coverage checksum (UDP-Lite), do it before the copy. 1670 */ 1671 1672 if (copied < ulen || peeking || 1673 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1674 checksum_valid = udp_skb_csum_unnecessary(skb) || 1675 !__udp_lib_checksum_complete(skb); 1676 if (!checksum_valid) 1677 goto csum_copy_err; 1678 } 1679 1680 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1681 if (udp_skb_is_linear(skb)) 1682 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1683 else 1684 err = skb_copy_datagram_msg(skb, off, msg, copied); 1685 } else { 1686 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1687 1688 if (err == -EINVAL) 1689 goto csum_copy_err; 1690 } 1691 1692 if (unlikely(err)) { 1693 if (!peeked) { 1694 atomic_inc(&sk->sk_drops); 1695 UDP_INC_STATS(sock_net(sk), 1696 UDP_MIB_INERRORS, is_udplite); 1697 } 1698 kfree_skb(skb); 1699 return err; 1700 } 1701 1702 if (!peeked) 1703 UDP_INC_STATS(sock_net(sk), 1704 UDP_MIB_INDATAGRAMS, is_udplite); 1705 1706 sock_recv_ts_and_drops(msg, sk, skb); 1707 1708 /* Copy the address. */ 1709 if (sin) { 1710 sin->sin_family = AF_INET; 1711 sin->sin_port = udp_hdr(skb)->source; 1712 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1713 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1714 *addr_len = sizeof(*sin); 1715 } 1716 if (inet->cmsg_flags) 1717 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1718 1719 err = copied; 1720 if (flags & MSG_TRUNC) 1721 err = ulen; 1722 1723 skb_consume_udp(sk, skb, peeking ? -err : err); 1724 return err; 1725 1726 csum_copy_err: 1727 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1728 udp_skb_destructor)) { 1729 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1730 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1731 } 1732 kfree_skb(skb); 1733 1734 /* starting over for a new packet, but check if we need to yield */ 1735 cond_resched(); 1736 msg->msg_flags &= ~MSG_TRUNC; 1737 goto try_again; 1738 } 1739 1740 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1741 { 1742 /* This check is replicated from __ip4_datagram_connect() and 1743 * intended to prevent BPF program called below from accessing bytes 1744 * that are out of the bound specified by user in addr_len. 1745 */ 1746 if (addr_len < sizeof(struct sockaddr_in)) 1747 return -EINVAL; 1748 1749 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1750 } 1751 EXPORT_SYMBOL(udp_pre_connect); 1752 1753 int __udp_disconnect(struct sock *sk, int flags) 1754 { 1755 struct inet_sock *inet = inet_sk(sk); 1756 /* 1757 * 1003.1g - break association. 1758 */ 1759 1760 sk->sk_state = TCP_CLOSE; 1761 inet->inet_daddr = 0; 1762 inet->inet_dport = 0; 1763 sock_rps_reset_rxhash(sk); 1764 sk->sk_bound_dev_if = 0; 1765 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1766 inet_reset_saddr(sk); 1767 1768 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1769 sk->sk_prot->unhash(sk); 1770 inet->inet_sport = 0; 1771 } 1772 sk_dst_reset(sk); 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(__udp_disconnect); 1776 1777 int udp_disconnect(struct sock *sk, int flags) 1778 { 1779 lock_sock(sk); 1780 __udp_disconnect(sk, flags); 1781 release_sock(sk); 1782 return 0; 1783 } 1784 EXPORT_SYMBOL(udp_disconnect); 1785 1786 void udp_lib_unhash(struct sock *sk) 1787 { 1788 if (sk_hashed(sk)) { 1789 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1790 struct udp_hslot *hslot, *hslot2; 1791 1792 hslot = udp_hashslot(udptable, sock_net(sk), 1793 udp_sk(sk)->udp_port_hash); 1794 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1795 1796 spin_lock_bh(&hslot->lock); 1797 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1798 reuseport_detach_sock(sk); 1799 if (sk_del_node_init_rcu(sk)) { 1800 hslot->count--; 1801 inet_sk(sk)->inet_num = 0; 1802 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1803 1804 spin_lock(&hslot2->lock); 1805 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1806 hslot2->count--; 1807 spin_unlock(&hslot2->lock); 1808 } 1809 spin_unlock_bh(&hslot->lock); 1810 } 1811 } 1812 EXPORT_SYMBOL(udp_lib_unhash); 1813 1814 /* 1815 * inet_rcv_saddr was changed, we must rehash secondary hash 1816 */ 1817 void udp_lib_rehash(struct sock *sk, u16 newhash) 1818 { 1819 if (sk_hashed(sk)) { 1820 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1821 struct udp_hslot *hslot, *hslot2, *nhslot2; 1822 1823 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1824 nhslot2 = udp_hashslot2(udptable, newhash); 1825 udp_sk(sk)->udp_portaddr_hash = newhash; 1826 1827 if (hslot2 != nhslot2 || 1828 rcu_access_pointer(sk->sk_reuseport_cb)) { 1829 hslot = udp_hashslot(udptable, sock_net(sk), 1830 udp_sk(sk)->udp_port_hash); 1831 /* we must lock primary chain too */ 1832 spin_lock_bh(&hslot->lock); 1833 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1834 reuseport_detach_sock(sk); 1835 1836 if (hslot2 != nhslot2) { 1837 spin_lock(&hslot2->lock); 1838 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1839 hslot2->count--; 1840 spin_unlock(&hslot2->lock); 1841 1842 spin_lock(&nhslot2->lock); 1843 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1844 &nhslot2->head); 1845 nhslot2->count++; 1846 spin_unlock(&nhslot2->lock); 1847 } 1848 1849 spin_unlock_bh(&hslot->lock); 1850 } 1851 } 1852 } 1853 EXPORT_SYMBOL(udp_lib_rehash); 1854 1855 static void udp_v4_rehash(struct sock *sk) 1856 { 1857 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1858 inet_sk(sk)->inet_rcv_saddr, 1859 inet_sk(sk)->inet_num); 1860 udp_lib_rehash(sk, new_hash); 1861 } 1862 1863 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1864 { 1865 int rc; 1866 1867 if (inet_sk(sk)->inet_daddr) { 1868 sock_rps_save_rxhash(sk, skb); 1869 sk_mark_napi_id(sk, skb); 1870 sk_incoming_cpu_update(sk); 1871 } else { 1872 sk_mark_napi_id_once(sk, skb); 1873 } 1874 1875 rc = __udp_enqueue_schedule_skb(sk, skb); 1876 if (rc < 0) { 1877 int is_udplite = IS_UDPLITE(sk); 1878 1879 /* Note that an ENOMEM error is charged twice */ 1880 if (rc == -ENOMEM) 1881 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1882 is_udplite); 1883 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1884 kfree_skb(skb); 1885 trace_udp_fail_queue_rcv_skb(rc, sk); 1886 return -1; 1887 } 1888 1889 return 0; 1890 } 1891 1892 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1893 void udp_encap_enable(void) 1894 { 1895 static_branch_enable(&udp_encap_needed_key); 1896 } 1897 EXPORT_SYMBOL(udp_encap_enable); 1898 1899 /* returns: 1900 * -1: error 1901 * 0: success 1902 * >0: "udp encap" protocol resubmission 1903 * 1904 * Note that in the success and error cases, the skb is assumed to 1905 * have either been requeued or freed. 1906 */ 1907 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1908 { 1909 struct udp_sock *up = udp_sk(sk); 1910 int is_udplite = IS_UDPLITE(sk); 1911 1912 /* 1913 * Charge it to the socket, dropping if the queue is full. 1914 */ 1915 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1916 goto drop; 1917 nf_reset(skb); 1918 1919 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1920 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1921 1922 /* 1923 * This is an encapsulation socket so pass the skb to 1924 * the socket's udp_encap_rcv() hook. Otherwise, just 1925 * fall through and pass this up the UDP socket. 1926 * up->encap_rcv() returns the following value: 1927 * =0 if skb was successfully passed to the encap 1928 * handler or was discarded by it. 1929 * >0 if skb should be passed on to UDP. 1930 * <0 if skb should be resubmitted as proto -N 1931 */ 1932 1933 /* if we're overly short, let UDP handle it */ 1934 encap_rcv = READ_ONCE(up->encap_rcv); 1935 if (encap_rcv) { 1936 int ret; 1937 1938 /* Verify checksum before giving to encap */ 1939 if (udp_lib_checksum_complete(skb)) 1940 goto csum_error; 1941 1942 ret = encap_rcv(sk, skb); 1943 if (ret <= 0) { 1944 __UDP_INC_STATS(sock_net(sk), 1945 UDP_MIB_INDATAGRAMS, 1946 is_udplite); 1947 return -ret; 1948 } 1949 } 1950 1951 /* FALLTHROUGH -- it's a UDP Packet */ 1952 } 1953 1954 /* 1955 * UDP-Lite specific tests, ignored on UDP sockets 1956 */ 1957 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1958 1959 /* 1960 * MIB statistics other than incrementing the error count are 1961 * disabled for the following two types of errors: these depend 1962 * on the application settings, not on the functioning of the 1963 * protocol stack as such. 1964 * 1965 * RFC 3828 here recommends (sec 3.3): "There should also be a 1966 * way ... to ... at least let the receiving application block 1967 * delivery of packets with coverage values less than a value 1968 * provided by the application." 1969 */ 1970 if (up->pcrlen == 0) { /* full coverage was set */ 1971 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1972 UDP_SKB_CB(skb)->cscov, skb->len); 1973 goto drop; 1974 } 1975 /* The next case involves violating the min. coverage requested 1976 * by the receiver. This is subtle: if receiver wants x and x is 1977 * greater than the buffersize/MTU then receiver will complain 1978 * that it wants x while sender emits packets of smaller size y. 1979 * Therefore the above ...()->partial_cov statement is essential. 1980 */ 1981 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1982 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1983 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1984 goto drop; 1985 } 1986 } 1987 1988 prefetch(&sk->sk_rmem_alloc); 1989 if (rcu_access_pointer(sk->sk_filter) && 1990 udp_lib_checksum_complete(skb)) 1991 goto csum_error; 1992 1993 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1994 goto drop; 1995 1996 udp_csum_pull_header(skb); 1997 1998 ipv4_pktinfo_prepare(sk, skb); 1999 return __udp_queue_rcv_skb(sk, skb); 2000 2001 csum_error: 2002 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2003 drop: 2004 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2005 atomic_inc(&sk->sk_drops); 2006 kfree_skb(skb); 2007 return -1; 2008 } 2009 2010 /* For TCP sockets, sk_rx_dst is protected by socket lock 2011 * For UDP, we use xchg() to guard against concurrent changes. 2012 */ 2013 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2014 { 2015 struct dst_entry *old; 2016 2017 if (dst_hold_safe(dst)) { 2018 old = xchg(&sk->sk_rx_dst, dst); 2019 dst_release(old); 2020 return old != dst; 2021 } 2022 return false; 2023 } 2024 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2025 2026 /* 2027 * Multicasts and broadcasts go to each listener. 2028 * 2029 * Note: called only from the BH handler context. 2030 */ 2031 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2032 struct udphdr *uh, 2033 __be32 saddr, __be32 daddr, 2034 struct udp_table *udptable, 2035 int proto) 2036 { 2037 struct sock *sk, *first = NULL; 2038 unsigned short hnum = ntohs(uh->dest); 2039 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2040 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2041 unsigned int offset = offsetof(typeof(*sk), sk_node); 2042 int dif = skb->dev->ifindex; 2043 int sdif = inet_sdif(skb); 2044 struct hlist_node *node; 2045 struct sk_buff *nskb; 2046 2047 if (use_hash2) { 2048 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2049 udptable->mask; 2050 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2051 start_lookup: 2052 hslot = &udptable->hash2[hash2]; 2053 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2054 } 2055 2056 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2057 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2058 uh->source, saddr, dif, sdif, hnum)) 2059 continue; 2060 2061 if (!first) { 2062 first = sk; 2063 continue; 2064 } 2065 nskb = skb_clone(skb, GFP_ATOMIC); 2066 2067 if (unlikely(!nskb)) { 2068 atomic_inc(&sk->sk_drops); 2069 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2070 IS_UDPLITE(sk)); 2071 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2072 IS_UDPLITE(sk)); 2073 continue; 2074 } 2075 if (udp_queue_rcv_skb(sk, nskb) > 0) 2076 consume_skb(nskb); 2077 } 2078 2079 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2080 if (use_hash2 && hash2 != hash2_any) { 2081 hash2 = hash2_any; 2082 goto start_lookup; 2083 } 2084 2085 if (first) { 2086 if (udp_queue_rcv_skb(first, skb) > 0) 2087 consume_skb(skb); 2088 } else { 2089 kfree_skb(skb); 2090 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2091 proto == IPPROTO_UDPLITE); 2092 } 2093 return 0; 2094 } 2095 2096 /* Initialize UDP checksum. If exited with zero value (success), 2097 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2098 * Otherwise, csum completion requires chacksumming packet body, 2099 * including udp header and folding it to skb->csum. 2100 */ 2101 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2102 int proto) 2103 { 2104 int err; 2105 2106 UDP_SKB_CB(skb)->partial_cov = 0; 2107 UDP_SKB_CB(skb)->cscov = skb->len; 2108 2109 if (proto == IPPROTO_UDPLITE) { 2110 err = udplite_checksum_init(skb, uh); 2111 if (err) 2112 return err; 2113 2114 if (UDP_SKB_CB(skb)->partial_cov) { 2115 skb->csum = inet_compute_pseudo(skb, proto); 2116 return 0; 2117 } 2118 } 2119 2120 /* Note, we are only interested in != 0 or == 0, thus the 2121 * force to int. 2122 */ 2123 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2124 inet_compute_pseudo); 2125 if (err) 2126 return err; 2127 2128 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2129 /* If SW calculated the value, we know it's bad */ 2130 if (skb->csum_complete_sw) 2131 return 1; 2132 2133 /* HW says the value is bad. Let's validate that. 2134 * skb->csum is no longer the full packet checksum, 2135 * so don't treat it as such. 2136 */ 2137 skb_checksum_complete_unset(skb); 2138 } 2139 2140 return 0; 2141 } 2142 2143 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2144 * return code conversion for ip layer consumption 2145 */ 2146 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2147 struct udphdr *uh) 2148 { 2149 int ret; 2150 2151 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2152 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2153 inet_compute_pseudo); 2154 2155 ret = udp_queue_rcv_skb(sk, skb); 2156 2157 /* a return value > 0 means to resubmit the input, but 2158 * it wants the return to be -protocol, or 0 2159 */ 2160 if (ret > 0) 2161 return -ret; 2162 return 0; 2163 } 2164 2165 /* 2166 * All we need to do is get the socket, and then do a checksum. 2167 */ 2168 2169 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2170 int proto) 2171 { 2172 struct sock *sk; 2173 struct udphdr *uh; 2174 unsigned short ulen; 2175 struct rtable *rt = skb_rtable(skb); 2176 __be32 saddr, daddr; 2177 struct net *net = dev_net(skb->dev); 2178 2179 /* 2180 * Validate the packet. 2181 */ 2182 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2183 goto drop; /* No space for header. */ 2184 2185 uh = udp_hdr(skb); 2186 ulen = ntohs(uh->len); 2187 saddr = ip_hdr(skb)->saddr; 2188 daddr = ip_hdr(skb)->daddr; 2189 2190 if (ulen > skb->len) 2191 goto short_packet; 2192 2193 if (proto == IPPROTO_UDP) { 2194 /* UDP validates ulen. */ 2195 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2196 goto short_packet; 2197 uh = udp_hdr(skb); 2198 } 2199 2200 if (udp4_csum_init(skb, uh, proto)) 2201 goto csum_error; 2202 2203 sk = skb_steal_sock(skb); 2204 if (sk) { 2205 struct dst_entry *dst = skb_dst(skb); 2206 int ret; 2207 2208 if (unlikely(sk->sk_rx_dst != dst)) 2209 udp_sk_rx_dst_set(sk, dst); 2210 2211 ret = udp_unicast_rcv_skb(sk, skb, uh); 2212 sock_put(sk); 2213 return ret; 2214 } 2215 2216 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2217 return __udp4_lib_mcast_deliver(net, skb, uh, 2218 saddr, daddr, udptable, proto); 2219 2220 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2221 if (sk) 2222 return udp_unicast_rcv_skb(sk, skb, uh); 2223 2224 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2225 goto drop; 2226 nf_reset(skb); 2227 2228 /* No socket. Drop packet silently, if checksum is wrong */ 2229 if (udp_lib_checksum_complete(skb)) 2230 goto csum_error; 2231 2232 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2233 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2234 2235 /* 2236 * Hmm. We got an UDP packet to a port to which we 2237 * don't wanna listen. Ignore it. 2238 */ 2239 kfree_skb(skb); 2240 return 0; 2241 2242 short_packet: 2243 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2244 proto == IPPROTO_UDPLITE ? "Lite" : "", 2245 &saddr, ntohs(uh->source), 2246 ulen, skb->len, 2247 &daddr, ntohs(uh->dest)); 2248 goto drop; 2249 2250 csum_error: 2251 /* 2252 * RFC1122: OK. Discards the bad packet silently (as far as 2253 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2254 */ 2255 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2256 proto == IPPROTO_UDPLITE ? "Lite" : "", 2257 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2258 ulen); 2259 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2260 drop: 2261 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2262 kfree_skb(skb); 2263 return 0; 2264 } 2265 2266 /* We can only early demux multicast if there is a single matching socket. 2267 * If more than one socket found returns NULL 2268 */ 2269 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2270 __be16 loc_port, __be32 loc_addr, 2271 __be16 rmt_port, __be32 rmt_addr, 2272 int dif, int sdif) 2273 { 2274 struct sock *sk, *result; 2275 unsigned short hnum = ntohs(loc_port); 2276 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2277 struct udp_hslot *hslot = &udp_table.hash[slot]; 2278 2279 /* Do not bother scanning a too big list */ 2280 if (hslot->count > 10) 2281 return NULL; 2282 2283 result = NULL; 2284 sk_for_each_rcu(sk, &hslot->head) { 2285 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2286 rmt_port, rmt_addr, dif, sdif, hnum)) { 2287 if (result) 2288 return NULL; 2289 result = sk; 2290 } 2291 } 2292 2293 return result; 2294 } 2295 2296 /* For unicast we should only early demux connected sockets or we can 2297 * break forwarding setups. The chains here can be long so only check 2298 * if the first socket is an exact match and if not move on. 2299 */ 2300 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2301 __be16 loc_port, __be32 loc_addr, 2302 __be16 rmt_port, __be32 rmt_addr, 2303 int dif, int sdif) 2304 { 2305 unsigned short hnum = ntohs(loc_port); 2306 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2307 unsigned int slot2 = hash2 & udp_table.mask; 2308 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2309 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2310 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2311 struct sock *sk; 2312 2313 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2314 if (INET_MATCH(sk, net, acookie, rmt_addr, 2315 loc_addr, ports, dif, sdif)) 2316 return sk; 2317 /* Only check first socket in chain */ 2318 break; 2319 } 2320 return NULL; 2321 } 2322 2323 int udp_v4_early_demux(struct sk_buff *skb) 2324 { 2325 struct net *net = dev_net(skb->dev); 2326 struct in_device *in_dev = NULL; 2327 const struct iphdr *iph; 2328 const struct udphdr *uh; 2329 struct sock *sk = NULL; 2330 struct dst_entry *dst; 2331 int dif = skb->dev->ifindex; 2332 int sdif = inet_sdif(skb); 2333 int ours; 2334 2335 /* validate the packet */ 2336 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2337 return 0; 2338 2339 iph = ip_hdr(skb); 2340 uh = udp_hdr(skb); 2341 2342 if (skb->pkt_type == PACKET_MULTICAST) { 2343 in_dev = __in_dev_get_rcu(skb->dev); 2344 2345 if (!in_dev) 2346 return 0; 2347 2348 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2349 iph->protocol); 2350 if (!ours) 2351 return 0; 2352 2353 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2354 uh->source, iph->saddr, 2355 dif, sdif); 2356 } else if (skb->pkt_type == PACKET_HOST) { 2357 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2358 uh->source, iph->saddr, dif, sdif); 2359 } 2360 2361 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2362 return 0; 2363 2364 skb->sk = sk; 2365 skb->destructor = sock_efree; 2366 dst = READ_ONCE(sk->sk_rx_dst); 2367 2368 if (dst) 2369 dst = dst_check(dst, 0); 2370 if (dst) { 2371 u32 itag = 0; 2372 2373 /* set noref for now. 2374 * any place which wants to hold dst has to call 2375 * dst_hold_safe() 2376 */ 2377 skb_dst_set_noref(skb, dst); 2378 2379 /* for unconnected multicast sockets we need to validate 2380 * the source on each packet 2381 */ 2382 if (!inet_sk(sk)->inet_daddr && in_dev) 2383 return ip_mc_validate_source(skb, iph->daddr, 2384 iph->saddr, iph->tos, 2385 skb->dev, in_dev, &itag); 2386 } 2387 return 0; 2388 } 2389 2390 int udp_rcv(struct sk_buff *skb) 2391 { 2392 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2393 } 2394 2395 void udp_destroy_sock(struct sock *sk) 2396 { 2397 struct udp_sock *up = udp_sk(sk); 2398 bool slow = lock_sock_fast(sk); 2399 udp_flush_pending_frames(sk); 2400 unlock_sock_fast(sk, slow); 2401 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2402 void (*encap_destroy)(struct sock *sk); 2403 encap_destroy = READ_ONCE(up->encap_destroy); 2404 if (encap_destroy) 2405 encap_destroy(sk); 2406 } 2407 } 2408 2409 /* 2410 * Socket option code for UDP 2411 */ 2412 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2413 char __user *optval, unsigned int optlen, 2414 int (*push_pending_frames)(struct sock *)) 2415 { 2416 struct udp_sock *up = udp_sk(sk); 2417 int val, valbool; 2418 int err = 0; 2419 int is_udplite = IS_UDPLITE(sk); 2420 2421 if (optlen < sizeof(int)) 2422 return -EINVAL; 2423 2424 if (get_user(val, (int __user *)optval)) 2425 return -EFAULT; 2426 2427 valbool = val ? 1 : 0; 2428 2429 switch (optname) { 2430 case UDP_CORK: 2431 if (val != 0) { 2432 up->corkflag = 1; 2433 } else { 2434 up->corkflag = 0; 2435 lock_sock(sk); 2436 push_pending_frames(sk); 2437 release_sock(sk); 2438 } 2439 break; 2440 2441 case UDP_ENCAP: 2442 switch (val) { 2443 case 0: 2444 case UDP_ENCAP_ESPINUDP: 2445 case UDP_ENCAP_ESPINUDP_NON_IKE: 2446 up->encap_rcv = xfrm4_udp_encap_rcv; 2447 /* FALLTHROUGH */ 2448 case UDP_ENCAP_L2TPINUDP: 2449 up->encap_type = val; 2450 udp_encap_enable(); 2451 break; 2452 default: 2453 err = -ENOPROTOOPT; 2454 break; 2455 } 2456 break; 2457 2458 case UDP_NO_CHECK6_TX: 2459 up->no_check6_tx = valbool; 2460 break; 2461 2462 case UDP_NO_CHECK6_RX: 2463 up->no_check6_rx = valbool; 2464 break; 2465 2466 case UDP_SEGMENT: 2467 if (val < 0 || val > USHRT_MAX) 2468 return -EINVAL; 2469 up->gso_size = val; 2470 break; 2471 2472 /* 2473 * UDP-Lite's partial checksum coverage (RFC 3828). 2474 */ 2475 /* The sender sets actual checksum coverage length via this option. 2476 * The case coverage > packet length is handled by send module. */ 2477 case UDPLITE_SEND_CSCOV: 2478 if (!is_udplite) /* Disable the option on UDP sockets */ 2479 return -ENOPROTOOPT; 2480 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2481 val = 8; 2482 else if (val > USHRT_MAX) 2483 val = USHRT_MAX; 2484 up->pcslen = val; 2485 up->pcflag |= UDPLITE_SEND_CC; 2486 break; 2487 2488 /* The receiver specifies a minimum checksum coverage value. To make 2489 * sense, this should be set to at least 8 (as done below). If zero is 2490 * used, this again means full checksum coverage. */ 2491 case UDPLITE_RECV_CSCOV: 2492 if (!is_udplite) /* Disable the option on UDP sockets */ 2493 return -ENOPROTOOPT; 2494 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2495 val = 8; 2496 else if (val > USHRT_MAX) 2497 val = USHRT_MAX; 2498 up->pcrlen = val; 2499 up->pcflag |= UDPLITE_RECV_CC; 2500 break; 2501 2502 default: 2503 err = -ENOPROTOOPT; 2504 break; 2505 } 2506 2507 return err; 2508 } 2509 EXPORT_SYMBOL(udp_lib_setsockopt); 2510 2511 int udp_setsockopt(struct sock *sk, int level, int optname, 2512 char __user *optval, unsigned int optlen) 2513 { 2514 if (level == SOL_UDP || level == SOL_UDPLITE) 2515 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2516 udp_push_pending_frames); 2517 return ip_setsockopt(sk, level, optname, optval, optlen); 2518 } 2519 2520 #ifdef CONFIG_COMPAT 2521 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2522 char __user *optval, unsigned int optlen) 2523 { 2524 if (level == SOL_UDP || level == SOL_UDPLITE) 2525 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2526 udp_push_pending_frames); 2527 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2528 } 2529 #endif 2530 2531 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2532 char __user *optval, int __user *optlen) 2533 { 2534 struct udp_sock *up = udp_sk(sk); 2535 int val, len; 2536 2537 if (get_user(len, optlen)) 2538 return -EFAULT; 2539 2540 len = min_t(unsigned int, len, sizeof(int)); 2541 2542 if (len < 0) 2543 return -EINVAL; 2544 2545 switch (optname) { 2546 case UDP_CORK: 2547 val = up->corkflag; 2548 break; 2549 2550 case UDP_ENCAP: 2551 val = up->encap_type; 2552 break; 2553 2554 case UDP_NO_CHECK6_TX: 2555 val = up->no_check6_tx; 2556 break; 2557 2558 case UDP_NO_CHECK6_RX: 2559 val = up->no_check6_rx; 2560 break; 2561 2562 case UDP_SEGMENT: 2563 val = up->gso_size; 2564 break; 2565 2566 /* The following two cannot be changed on UDP sockets, the return is 2567 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2568 case UDPLITE_SEND_CSCOV: 2569 val = up->pcslen; 2570 break; 2571 2572 case UDPLITE_RECV_CSCOV: 2573 val = up->pcrlen; 2574 break; 2575 2576 default: 2577 return -ENOPROTOOPT; 2578 } 2579 2580 if (put_user(len, optlen)) 2581 return -EFAULT; 2582 if (copy_to_user(optval, &val, len)) 2583 return -EFAULT; 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(udp_lib_getsockopt); 2587 2588 int udp_getsockopt(struct sock *sk, int level, int optname, 2589 char __user *optval, int __user *optlen) 2590 { 2591 if (level == SOL_UDP || level == SOL_UDPLITE) 2592 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2593 return ip_getsockopt(sk, level, optname, optval, optlen); 2594 } 2595 2596 #ifdef CONFIG_COMPAT 2597 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2598 char __user *optval, int __user *optlen) 2599 { 2600 if (level == SOL_UDP || level == SOL_UDPLITE) 2601 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2602 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2603 } 2604 #endif 2605 /** 2606 * udp_poll - wait for a UDP event. 2607 * @file - file struct 2608 * @sock - socket 2609 * @wait - poll table 2610 * 2611 * This is same as datagram poll, except for the special case of 2612 * blocking sockets. If application is using a blocking fd 2613 * and a packet with checksum error is in the queue; 2614 * then it could get return from select indicating data available 2615 * but then block when reading it. Add special case code 2616 * to work around these arguably broken applications. 2617 */ 2618 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2619 { 2620 __poll_t mask = datagram_poll(file, sock, wait); 2621 struct sock *sk = sock->sk; 2622 2623 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2624 mask |= EPOLLIN | EPOLLRDNORM; 2625 2626 /* Check for false positives due to checksum errors */ 2627 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2628 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2629 mask &= ~(EPOLLIN | EPOLLRDNORM); 2630 2631 return mask; 2632 2633 } 2634 EXPORT_SYMBOL(udp_poll); 2635 2636 int udp_abort(struct sock *sk, int err) 2637 { 2638 lock_sock(sk); 2639 2640 sk->sk_err = err; 2641 sk->sk_error_report(sk); 2642 __udp_disconnect(sk, 0); 2643 2644 release_sock(sk); 2645 2646 return 0; 2647 } 2648 EXPORT_SYMBOL_GPL(udp_abort); 2649 2650 struct proto udp_prot = { 2651 .name = "UDP", 2652 .owner = THIS_MODULE, 2653 .close = udp_lib_close, 2654 .pre_connect = udp_pre_connect, 2655 .connect = ip4_datagram_connect, 2656 .disconnect = udp_disconnect, 2657 .ioctl = udp_ioctl, 2658 .init = udp_init_sock, 2659 .destroy = udp_destroy_sock, 2660 .setsockopt = udp_setsockopt, 2661 .getsockopt = udp_getsockopt, 2662 .sendmsg = udp_sendmsg, 2663 .recvmsg = udp_recvmsg, 2664 .sendpage = udp_sendpage, 2665 .release_cb = ip4_datagram_release_cb, 2666 .hash = udp_lib_hash, 2667 .unhash = udp_lib_unhash, 2668 .rehash = udp_v4_rehash, 2669 .get_port = udp_v4_get_port, 2670 .memory_allocated = &udp_memory_allocated, 2671 .sysctl_mem = sysctl_udp_mem, 2672 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2673 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2674 .obj_size = sizeof(struct udp_sock), 2675 .h.udp_table = &udp_table, 2676 #ifdef CONFIG_COMPAT 2677 .compat_setsockopt = compat_udp_setsockopt, 2678 .compat_getsockopt = compat_udp_getsockopt, 2679 #endif 2680 .diag_destroy = udp_abort, 2681 }; 2682 EXPORT_SYMBOL(udp_prot); 2683 2684 /* ------------------------------------------------------------------------ */ 2685 #ifdef CONFIG_PROC_FS 2686 2687 static struct sock *udp_get_first(struct seq_file *seq, int start) 2688 { 2689 struct sock *sk; 2690 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2691 struct udp_iter_state *state = seq->private; 2692 struct net *net = seq_file_net(seq); 2693 2694 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2695 ++state->bucket) { 2696 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2697 2698 if (hlist_empty(&hslot->head)) 2699 continue; 2700 2701 spin_lock_bh(&hslot->lock); 2702 sk_for_each(sk, &hslot->head) { 2703 if (!net_eq(sock_net(sk), net)) 2704 continue; 2705 if (sk->sk_family == afinfo->family) 2706 goto found; 2707 } 2708 spin_unlock_bh(&hslot->lock); 2709 } 2710 sk = NULL; 2711 found: 2712 return sk; 2713 } 2714 2715 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2716 { 2717 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2718 struct udp_iter_state *state = seq->private; 2719 struct net *net = seq_file_net(seq); 2720 2721 do { 2722 sk = sk_next(sk); 2723 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2724 2725 if (!sk) { 2726 if (state->bucket <= afinfo->udp_table->mask) 2727 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2728 return udp_get_first(seq, state->bucket + 1); 2729 } 2730 return sk; 2731 } 2732 2733 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2734 { 2735 struct sock *sk = udp_get_first(seq, 0); 2736 2737 if (sk) 2738 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2739 --pos; 2740 return pos ? NULL : sk; 2741 } 2742 2743 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2744 { 2745 struct udp_iter_state *state = seq->private; 2746 state->bucket = MAX_UDP_PORTS; 2747 2748 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2749 } 2750 EXPORT_SYMBOL(udp_seq_start); 2751 2752 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2753 { 2754 struct sock *sk; 2755 2756 if (v == SEQ_START_TOKEN) 2757 sk = udp_get_idx(seq, 0); 2758 else 2759 sk = udp_get_next(seq, v); 2760 2761 ++*pos; 2762 return sk; 2763 } 2764 EXPORT_SYMBOL(udp_seq_next); 2765 2766 void udp_seq_stop(struct seq_file *seq, void *v) 2767 { 2768 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2769 struct udp_iter_state *state = seq->private; 2770 2771 if (state->bucket <= afinfo->udp_table->mask) 2772 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2773 } 2774 EXPORT_SYMBOL(udp_seq_stop); 2775 2776 /* ------------------------------------------------------------------------ */ 2777 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2778 int bucket) 2779 { 2780 struct inet_sock *inet = inet_sk(sp); 2781 __be32 dest = inet->inet_daddr; 2782 __be32 src = inet->inet_rcv_saddr; 2783 __u16 destp = ntohs(inet->inet_dport); 2784 __u16 srcp = ntohs(inet->inet_sport); 2785 2786 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2787 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2788 bucket, src, srcp, dest, destp, sp->sk_state, 2789 sk_wmem_alloc_get(sp), 2790 udp_rqueue_get(sp), 2791 0, 0L, 0, 2792 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2793 0, sock_i_ino(sp), 2794 refcount_read(&sp->sk_refcnt), sp, 2795 atomic_read(&sp->sk_drops)); 2796 } 2797 2798 int udp4_seq_show(struct seq_file *seq, void *v) 2799 { 2800 seq_setwidth(seq, 127); 2801 if (v == SEQ_START_TOKEN) 2802 seq_puts(seq, " sl local_address rem_address st tx_queue " 2803 "rx_queue tr tm->when retrnsmt uid timeout " 2804 "inode ref pointer drops"); 2805 else { 2806 struct udp_iter_state *state = seq->private; 2807 2808 udp4_format_sock(v, seq, state->bucket); 2809 } 2810 seq_pad(seq, '\n'); 2811 return 0; 2812 } 2813 2814 const struct seq_operations udp_seq_ops = { 2815 .start = udp_seq_start, 2816 .next = udp_seq_next, 2817 .stop = udp_seq_stop, 2818 .show = udp4_seq_show, 2819 }; 2820 EXPORT_SYMBOL(udp_seq_ops); 2821 2822 static struct udp_seq_afinfo udp4_seq_afinfo = { 2823 .family = AF_INET, 2824 .udp_table = &udp_table, 2825 }; 2826 2827 static int __net_init udp4_proc_init_net(struct net *net) 2828 { 2829 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2830 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2831 return -ENOMEM; 2832 return 0; 2833 } 2834 2835 static void __net_exit udp4_proc_exit_net(struct net *net) 2836 { 2837 remove_proc_entry("udp", net->proc_net); 2838 } 2839 2840 static struct pernet_operations udp4_net_ops = { 2841 .init = udp4_proc_init_net, 2842 .exit = udp4_proc_exit_net, 2843 }; 2844 2845 int __init udp4_proc_init(void) 2846 { 2847 return register_pernet_subsys(&udp4_net_ops); 2848 } 2849 2850 void udp4_proc_exit(void) 2851 { 2852 unregister_pernet_subsys(&udp4_net_ops); 2853 } 2854 #endif /* CONFIG_PROC_FS */ 2855 2856 static __initdata unsigned long uhash_entries; 2857 static int __init set_uhash_entries(char *str) 2858 { 2859 ssize_t ret; 2860 2861 if (!str) 2862 return 0; 2863 2864 ret = kstrtoul(str, 0, &uhash_entries); 2865 if (ret) 2866 return 0; 2867 2868 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2869 uhash_entries = UDP_HTABLE_SIZE_MIN; 2870 return 1; 2871 } 2872 __setup("uhash_entries=", set_uhash_entries); 2873 2874 void __init udp_table_init(struct udp_table *table, const char *name) 2875 { 2876 unsigned int i; 2877 2878 table->hash = alloc_large_system_hash(name, 2879 2 * sizeof(struct udp_hslot), 2880 uhash_entries, 2881 21, /* one slot per 2 MB */ 2882 0, 2883 &table->log, 2884 &table->mask, 2885 UDP_HTABLE_SIZE_MIN, 2886 64 * 1024); 2887 2888 table->hash2 = table->hash + (table->mask + 1); 2889 for (i = 0; i <= table->mask; i++) { 2890 INIT_HLIST_HEAD(&table->hash[i].head); 2891 table->hash[i].count = 0; 2892 spin_lock_init(&table->hash[i].lock); 2893 } 2894 for (i = 0; i <= table->mask; i++) { 2895 INIT_HLIST_HEAD(&table->hash2[i].head); 2896 table->hash2[i].count = 0; 2897 spin_lock_init(&table->hash2[i].lock); 2898 } 2899 } 2900 2901 u32 udp_flow_hashrnd(void) 2902 { 2903 static u32 hashrnd __read_mostly; 2904 2905 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2906 2907 return hashrnd; 2908 } 2909 EXPORT_SYMBOL(udp_flow_hashrnd); 2910 2911 static void __udp_sysctl_init(struct net *net) 2912 { 2913 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2914 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2915 2916 #ifdef CONFIG_NET_L3_MASTER_DEV 2917 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2918 #endif 2919 } 2920 2921 static int __net_init udp_sysctl_init(struct net *net) 2922 { 2923 __udp_sysctl_init(net); 2924 return 0; 2925 } 2926 2927 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2928 .init = udp_sysctl_init, 2929 }; 2930 2931 void __init udp_init(void) 2932 { 2933 unsigned long limit; 2934 unsigned int i; 2935 2936 udp_table_init(&udp_table, "UDP"); 2937 limit = nr_free_buffer_pages() / 8; 2938 limit = max(limit, 128UL); 2939 sysctl_udp_mem[0] = limit / 4 * 3; 2940 sysctl_udp_mem[1] = limit; 2941 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2942 2943 __udp_sysctl_init(&init_net); 2944 2945 /* 16 spinlocks per cpu */ 2946 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2947 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2948 GFP_KERNEL); 2949 if (!udp_busylocks) 2950 panic("UDP: failed to alloc udp_busylocks\n"); 2951 for (i = 0; i < (1U << udp_busylocks_log); i++) 2952 spin_lock_init(udp_busylocks + i); 2953 2954 if (register_pernet_subsys(&udp_sysctl_ops)) 2955 panic("UDP: failed to init sysctl parameters.\n"); 2956 } 2957