xref: /openbmc/linux/net/ipv4/udp.c (revision f14c1a14)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 
433 	result = NULL;
434 	badness = 0;
435 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 		score = compute_score(sk, net, saddr, sport,
437 				      daddr, hnum, dif, sdif);
438 		if (score > badness) {
439 			badness = score;
440 
441 			if (sk->sk_state == TCP_ESTABLISHED) {
442 				result = sk;
443 				continue;
444 			}
445 
446 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447 						       saddr, sport, daddr, hnum, udp_ehashfn);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470  * harder than this. -DaveM
471  */
472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 		__be16 sport, __be32 daddr, __be16 dport, int dif,
474 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475 {
476 	unsigned short hnum = ntohs(dport);
477 	unsigned int hash2, slot2;
478 	struct udp_hslot *hslot2;
479 	struct sock *result, *sk;
480 
481 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482 	slot2 = hash2 & udptable->mask;
483 	hslot2 = &udptable->hash2[slot2];
484 
485 	/* Lookup connected or non-wildcard socket */
486 	result = udp4_lib_lookup2(net, saddr, sport,
487 				  daddr, hnum, dif, sdif,
488 				  hslot2, skb);
489 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490 		goto done;
491 
492 	/* Lookup redirect from BPF */
493 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 	    udptable == net->ipv4.udp_table) {
495 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496 					       saddr, sport, daddr, hnum, dif,
497 					       udp_ehashfn);
498 		if (sk) {
499 			result = sk;
500 			goto done;
501 		}
502 	}
503 
504 	/* Got non-wildcard socket or error on first lookup */
505 	if (result)
506 		goto done;
507 
508 	/* Lookup wildcard sockets */
509 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 	slot2 = hash2 & udptable->mask;
511 	hslot2 = &udptable->hash2[slot2];
512 
513 	result = udp4_lib_lookup2(net, saddr, sport,
514 				  htonl(INADDR_ANY), hnum, dif, sdif,
515 				  hslot2, skb);
516 done:
517 	if (IS_ERR(result))
518 		return NULL;
519 	return result;
520 }
521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522 
523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 						 __be16 sport, __be16 dport,
525 						 struct udp_table *udptable)
526 {
527 	const struct iphdr *iph = ip_hdr(skb);
528 
529 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530 				 iph->daddr, dport, inet_iif(skb),
531 				 inet_sdif(skb), udptable, skb);
532 }
533 
534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 				 __be16 sport, __be16 dport)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 	struct net *net = dev_net(skb->dev);
539 	int iif, sdif;
540 
541 	inet_get_iif_sdif(skb, &iif, &sdif);
542 
543 	return __udp4_lib_lookup(net, iph->saddr, sport,
544 				 iph->daddr, dport, iif,
545 				 sdif, net->ipv4.udp_table, NULL);
546 }
547 
548 /* Must be called under rcu_read_lock().
549  * Does increment socket refcount.
550  */
551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 			     __be32 daddr, __be16 dport, int dif)
554 {
555 	struct sock *sk;
556 
557 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 			       dif, 0, net->ipv4.udp_table, NULL);
559 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560 		sk = NULL;
561 	return sk;
562 }
563 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 #endif
565 
566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 				       __be16 loc_port, __be32 loc_addr,
568 				       __be16 rmt_port, __be32 rmt_addr,
569 				       int dif, int sdif, unsigned short hnum)
570 {
571 	const struct inet_sock *inet = inet_sk(sk);
572 
573 	if (!net_eq(sock_net(sk), net) ||
574 	    udp_sk(sk)->udp_port_hash != hnum ||
575 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 	    ipv6_only_sock(sk) ||
579 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580 		return false;
581 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 		return false;
583 	return true;
584 }
585 
586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587 void udp_encap_enable(void)
588 {
589 	static_branch_inc(&udp_encap_needed_key);
590 }
591 EXPORT_SYMBOL(udp_encap_enable);
592 
593 void udp_encap_disable(void)
594 {
595 	static_branch_dec(&udp_encap_needed_key);
596 }
597 EXPORT_SYMBOL(udp_encap_disable);
598 
599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600  * through error handlers in encapsulations looking for a match.
601  */
602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
603 {
604 	int i;
605 
606 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607 		int (*handler)(struct sk_buff *skb, u32 info);
608 		const struct ip_tunnel_encap_ops *encap;
609 
610 		encap = rcu_dereference(iptun_encaps[i]);
611 		if (!encap)
612 			continue;
613 		handler = encap->err_handler;
614 		if (handler && !handler(skb, info))
615 			return 0;
616 	}
617 
618 	return -ENOENT;
619 }
620 
621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
622  * reversing source and destination port: this will match tunnels that force the
623  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624  * lwtunnels might actually break this assumption by being configured with
625  * different destination ports on endpoints, in this case we won't be able to
626  * trace ICMP messages back to them.
627  *
628  * If this doesn't match any socket, probe tunnels with arbitrary destination
629  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630  * we've sent packets to won't necessarily match the local destination port.
631  *
632  * Then ask the tunnel implementation to match the error against a valid
633  * association.
634  *
635  * Return an error if we can't find a match, the socket if we need further
636  * processing, zero otherwise.
637  */
638 static struct sock *__udp4_lib_err_encap(struct net *net,
639 					 const struct iphdr *iph,
640 					 struct udphdr *uh,
641 					 struct udp_table *udptable,
642 					 struct sock *sk,
643 					 struct sk_buff *skb, u32 info)
644 {
645 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
646 	int network_offset, transport_offset;
647 	struct udp_sock *up;
648 
649 	network_offset = skb_network_offset(skb);
650 	transport_offset = skb_transport_offset(skb);
651 
652 	/* Network header needs to point to the outer IPv4 header inside ICMP */
653 	skb_reset_network_header(skb);
654 
655 	/* Transport header needs to point to the UDP header */
656 	skb_set_transport_header(skb, iph->ihl << 2);
657 
658 	if (sk) {
659 		up = udp_sk(sk);
660 
661 		lookup = READ_ONCE(up->encap_err_lookup);
662 		if (lookup && lookup(sk, skb))
663 			sk = NULL;
664 
665 		goto out;
666 	}
667 
668 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
669 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
670 			       udptable, NULL);
671 	if (sk) {
672 		up = udp_sk(sk);
673 
674 		lookup = READ_ONCE(up->encap_err_lookup);
675 		if (!lookup || lookup(sk, skb))
676 			sk = NULL;
677 	}
678 
679 out:
680 	if (!sk)
681 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
682 
683 	skb_set_transport_header(skb, transport_offset);
684 	skb_set_network_header(skb, network_offset);
685 
686 	return sk;
687 }
688 
689 /*
690  * This routine is called by the ICMP module when it gets some
691  * sort of error condition.  If err < 0 then the socket should
692  * be closed and the error returned to the user.  If err > 0
693  * it's just the icmp type << 8 | icmp code.
694  * Header points to the ip header of the error packet. We move
695  * on past this. Then (as it used to claim before adjustment)
696  * header points to the first 8 bytes of the udp header.  We need
697  * to find the appropriate port.
698  */
699 
700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
701 {
702 	struct inet_sock *inet;
703 	const struct iphdr *iph = (const struct iphdr *)skb->data;
704 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
705 	const int type = icmp_hdr(skb)->type;
706 	const int code = icmp_hdr(skb)->code;
707 	bool tunnel = false;
708 	struct sock *sk;
709 	int harderr;
710 	int err;
711 	struct net *net = dev_net(skb->dev);
712 
713 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
714 			       iph->saddr, uh->source, skb->dev->ifindex,
715 			       inet_sdif(skb), udptable, NULL);
716 
717 	if (!sk || udp_sk(sk)->encap_type) {
718 		/* No socket for error: try tunnels before discarding */
719 		if (static_branch_unlikely(&udp_encap_needed_key)) {
720 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
721 						  info);
722 			if (!sk)
723 				return 0;
724 		} else
725 			sk = ERR_PTR(-ENOENT);
726 
727 		if (IS_ERR(sk)) {
728 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
729 			return PTR_ERR(sk);
730 		}
731 
732 		tunnel = true;
733 	}
734 
735 	err = 0;
736 	harderr = 0;
737 	inet = inet_sk(sk);
738 
739 	switch (type) {
740 	default:
741 	case ICMP_TIME_EXCEEDED:
742 		err = EHOSTUNREACH;
743 		break;
744 	case ICMP_SOURCE_QUENCH:
745 		goto out;
746 	case ICMP_PARAMETERPROB:
747 		err = EPROTO;
748 		harderr = 1;
749 		break;
750 	case ICMP_DEST_UNREACH:
751 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
752 			ipv4_sk_update_pmtu(skb, sk, info);
753 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
754 				err = EMSGSIZE;
755 				harderr = 1;
756 				break;
757 			}
758 			goto out;
759 		}
760 		err = EHOSTUNREACH;
761 		if (code <= NR_ICMP_UNREACH) {
762 			harderr = icmp_err_convert[code].fatal;
763 			err = icmp_err_convert[code].errno;
764 		}
765 		break;
766 	case ICMP_REDIRECT:
767 		ipv4_sk_redirect(skb, sk);
768 		goto out;
769 	}
770 
771 	/*
772 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
773 	 *	4.1.3.3.
774 	 */
775 	if (tunnel) {
776 		/* ...not for tunnels though: we don't have a sending socket */
777 		if (udp_sk(sk)->encap_err_rcv)
778 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
779 						  (u8 *)(uh+1));
780 		goto out;
781 	}
782 	if (!inet->recverr) {
783 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
784 			goto out;
785 	} else
786 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
787 
788 	sk->sk_err = err;
789 	sk_error_report(sk);
790 out:
791 	return 0;
792 }
793 
794 int udp_err(struct sk_buff *skb, u32 info)
795 {
796 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
797 }
798 
799 /*
800  * Throw away all pending data and cancel the corking. Socket is locked.
801  */
802 void udp_flush_pending_frames(struct sock *sk)
803 {
804 	struct udp_sock *up = udp_sk(sk);
805 
806 	if (up->pending) {
807 		up->len = 0;
808 		up->pending = 0;
809 		ip_flush_pending_frames(sk);
810 	}
811 }
812 EXPORT_SYMBOL(udp_flush_pending_frames);
813 
814 /**
815  * 	udp4_hwcsum  -  handle outgoing HW checksumming
816  * 	@skb: 	sk_buff containing the filled-in UDP header
817  * 	        (checksum field must be zeroed out)
818  *	@src:	source IP address
819  *	@dst:	destination IP address
820  */
821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
822 {
823 	struct udphdr *uh = udp_hdr(skb);
824 	int offset = skb_transport_offset(skb);
825 	int len = skb->len - offset;
826 	int hlen = len;
827 	__wsum csum = 0;
828 
829 	if (!skb_has_frag_list(skb)) {
830 		/*
831 		 * Only one fragment on the socket.
832 		 */
833 		skb->csum_start = skb_transport_header(skb) - skb->head;
834 		skb->csum_offset = offsetof(struct udphdr, check);
835 		uh->check = ~csum_tcpudp_magic(src, dst, len,
836 					       IPPROTO_UDP, 0);
837 	} else {
838 		struct sk_buff *frags;
839 
840 		/*
841 		 * HW-checksum won't work as there are two or more
842 		 * fragments on the socket so that all csums of sk_buffs
843 		 * should be together
844 		 */
845 		skb_walk_frags(skb, frags) {
846 			csum = csum_add(csum, frags->csum);
847 			hlen -= frags->len;
848 		}
849 
850 		csum = skb_checksum(skb, offset, hlen, csum);
851 		skb->ip_summed = CHECKSUM_NONE;
852 
853 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
854 		if (uh->check == 0)
855 			uh->check = CSUM_MANGLED_0;
856 	}
857 }
858 EXPORT_SYMBOL_GPL(udp4_hwcsum);
859 
860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
861  * for the simple case like when setting the checksum for a UDP tunnel.
862  */
863 void udp_set_csum(bool nocheck, struct sk_buff *skb,
864 		  __be32 saddr, __be32 daddr, int len)
865 {
866 	struct udphdr *uh = udp_hdr(skb);
867 
868 	if (nocheck) {
869 		uh->check = 0;
870 	} else if (skb_is_gso(skb)) {
871 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
872 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 		uh->check = 0;
874 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
875 		if (uh->check == 0)
876 			uh->check = CSUM_MANGLED_0;
877 	} else {
878 		skb->ip_summed = CHECKSUM_PARTIAL;
879 		skb->csum_start = skb_transport_header(skb) - skb->head;
880 		skb->csum_offset = offsetof(struct udphdr, check);
881 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
882 	}
883 }
884 EXPORT_SYMBOL(udp_set_csum);
885 
886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
887 			struct inet_cork *cork)
888 {
889 	struct sock *sk = skb->sk;
890 	struct inet_sock *inet = inet_sk(sk);
891 	struct udphdr *uh;
892 	int err;
893 	int is_udplite = IS_UDPLITE(sk);
894 	int offset = skb_transport_offset(skb);
895 	int len = skb->len - offset;
896 	int datalen = len - sizeof(*uh);
897 	__wsum csum = 0;
898 
899 	/*
900 	 * Create a UDP header
901 	 */
902 	uh = udp_hdr(skb);
903 	uh->source = inet->inet_sport;
904 	uh->dest = fl4->fl4_dport;
905 	uh->len = htons(len);
906 	uh->check = 0;
907 
908 	if (cork->gso_size) {
909 		const int hlen = skb_network_header_len(skb) +
910 				 sizeof(struct udphdr);
911 
912 		if (hlen + cork->gso_size > cork->fragsize) {
913 			kfree_skb(skb);
914 			return -EINVAL;
915 		}
916 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
917 			kfree_skb(skb);
918 			return -EINVAL;
919 		}
920 		if (sk->sk_no_check_tx) {
921 			kfree_skb(skb);
922 			return -EINVAL;
923 		}
924 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
925 		    dst_xfrm(skb_dst(skb))) {
926 			kfree_skb(skb);
927 			return -EIO;
928 		}
929 
930 		if (datalen > cork->gso_size) {
931 			skb_shinfo(skb)->gso_size = cork->gso_size;
932 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
933 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
934 								 cork->gso_size);
935 		}
936 		goto csum_partial;
937 	}
938 
939 	if (is_udplite)  				 /*     UDP-Lite      */
940 		csum = udplite_csum(skb);
941 
942 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
943 
944 		skb->ip_summed = CHECKSUM_NONE;
945 		goto send;
946 
947 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
948 csum_partial:
949 
950 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
951 		goto send;
952 
953 	} else
954 		csum = udp_csum(skb);
955 
956 	/* add protocol-dependent pseudo-header */
957 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
958 				      sk->sk_protocol, csum);
959 	if (uh->check == 0)
960 		uh->check = CSUM_MANGLED_0;
961 
962 send:
963 	err = ip_send_skb(sock_net(sk), skb);
964 	if (err) {
965 		if (err == -ENOBUFS && !inet->recverr) {
966 			UDP_INC_STATS(sock_net(sk),
967 				      UDP_MIB_SNDBUFERRORS, is_udplite);
968 			err = 0;
969 		}
970 	} else
971 		UDP_INC_STATS(sock_net(sk),
972 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
973 	return err;
974 }
975 
976 /*
977  * Push out all pending data as one UDP datagram. Socket is locked.
978  */
979 int udp_push_pending_frames(struct sock *sk)
980 {
981 	struct udp_sock  *up = udp_sk(sk);
982 	struct inet_sock *inet = inet_sk(sk);
983 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
984 	struct sk_buff *skb;
985 	int err = 0;
986 
987 	skb = ip_finish_skb(sk, fl4);
988 	if (!skb)
989 		goto out;
990 
991 	err = udp_send_skb(skb, fl4, &inet->cork.base);
992 
993 out:
994 	up->len = 0;
995 	up->pending = 0;
996 	return err;
997 }
998 EXPORT_SYMBOL(udp_push_pending_frames);
999 
1000 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1001 {
1002 	switch (cmsg->cmsg_type) {
1003 	case UDP_SEGMENT:
1004 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1005 			return -EINVAL;
1006 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1007 		return 0;
1008 	default:
1009 		return -EINVAL;
1010 	}
1011 }
1012 
1013 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1014 {
1015 	struct cmsghdr *cmsg;
1016 	bool need_ip = false;
1017 	int err;
1018 
1019 	for_each_cmsghdr(cmsg, msg) {
1020 		if (!CMSG_OK(msg, cmsg))
1021 			return -EINVAL;
1022 
1023 		if (cmsg->cmsg_level != SOL_UDP) {
1024 			need_ip = true;
1025 			continue;
1026 		}
1027 
1028 		err = __udp_cmsg_send(cmsg, gso_size);
1029 		if (err)
1030 			return err;
1031 	}
1032 
1033 	return need_ip;
1034 }
1035 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1036 
1037 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1038 {
1039 	struct inet_sock *inet = inet_sk(sk);
1040 	struct udp_sock *up = udp_sk(sk);
1041 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1042 	struct flowi4 fl4_stack;
1043 	struct flowi4 *fl4;
1044 	int ulen = len;
1045 	struct ipcm_cookie ipc;
1046 	struct rtable *rt = NULL;
1047 	int free = 0;
1048 	int connected = 0;
1049 	__be32 daddr, faddr, saddr;
1050 	u8 tos, scope;
1051 	__be16 dport;
1052 	int err, is_udplite = IS_UDPLITE(sk);
1053 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1054 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1055 	struct sk_buff *skb;
1056 	struct ip_options_data opt_copy;
1057 
1058 	if (len > 0xFFFF)
1059 		return -EMSGSIZE;
1060 
1061 	/*
1062 	 *	Check the flags.
1063 	 */
1064 
1065 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1066 		return -EOPNOTSUPP;
1067 
1068 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1069 
1070 	fl4 = &inet->cork.fl.u.ip4;
1071 	if (up->pending) {
1072 		/*
1073 		 * There are pending frames.
1074 		 * The socket lock must be held while it's corked.
1075 		 */
1076 		lock_sock(sk);
1077 		if (likely(up->pending)) {
1078 			if (unlikely(up->pending != AF_INET)) {
1079 				release_sock(sk);
1080 				return -EINVAL;
1081 			}
1082 			goto do_append_data;
1083 		}
1084 		release_sock(sk);
1085 	}
1086 	ulen += sizeof(struct udphdr);
1087 
1088 	/*
1089 	 *	Get and verify the address.
1090 	 */
1091 	if (usin) {
1092 		if (msg->msg_namelen < sizeof(*usin))
1093 			return -EINVAL;
1094 		if (usin->sin_family != AF_INET) {
1095 			if (usin->sin_family != AF_UNSPEC)
1096 				return -EAFNOSUPPORT;
1097 		}
1098 
1099 		daddr = usin->sin_addr.s_addr;
1100 		dport = usin->sin_port;
1101 		if (dport == 0)
1102 			return -EINVAL;
1103 	} else {
1104 		if (sk->sk_state != TCP_ESTABLISHED)
1105 			return -EDESTADDRREQ;
1106 		daddr = inet->inet_daddr;
1107 		dport = inet->inet_dport;
1108 		/* Open fast path for connected socket.
1109 		   Route will not be used, if at least one option is set.
1110 		 */
1111 		connected = 1;
1112 	}
1113 
1114 	ipcm_init_sk(&ipc, inet);
1115 	ipc.gso_size = READ_ONCE(up->gso_size);
1116 
1117 	if (msg->msg_controllen) {
1118 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1119 		if (err > 0)
1120 			err = ip_cmsg_send(sk, msg, &ipc,
1121 					   sk->sk_family == AF_INET6);
1122 		if (unlikely(err < 0)) {
1123 			kfree(ipc.opt);
1124 			return err;
1125 		}
1126 		if (ipc.opt)
1127 			free = 1;
1128 		connected = 0;
1129 	}
1130 	if (!ipc.opt) {
1131 		struct ip_options_rcu *inet_opt;
1132 
1133 		rcu_read_lock();
1134 		inet_opt = rcu_dereference(inet->inet_opt);
1135 		if (inet_opt) {
1136 			memcpy(&opt_copy, inet_opt,
1137 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1138 			ipc.opt = &opt_copy.opt;
1139 		}
1140 		rcu_read_unlock();
1141 	}
1142 
1143 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1144 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1145 					    (struct sockaddr *)usin, &ipc.addr);
1146 		if (err)
1147 			goto out_free;
1148 		if (usin) {
1149 			if (usin->sin_port == 0) {
1150 				/* BPF program set invalid port. Reject it. */
1151 				err = -EINVAL;
1152 				goto out_free;
1153 			}
1154 			daddr = usin->sin_addr.s_addr;
1155 			dport = usin->sin_port;
1156 		}
1157 	}
1158 
1159 	saddr = ipc.addr;
1160 	ipc.addr = faddr = daddr;
1161 
1162 	if (ipc.opt && ipc.opt->opt.srr) {
1163 		if (!daddr) {
1164 			err = -EINVAL;
1165 			goto out_free;
1166 		}
1167 		faddr = ipc.opt->opt.faddr;
1168 		connected = 0;
1169 	}
1170 	tos = get_rttos(&ipc, inet);
1171 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1172 	if (scope == RT_SCOPE_LINK)
1173 		connected = 0;
1174 
1175 	if (ipv4_is_multicast(daddr)) {
1176 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1177 			ipc.oif = inet->mc_index;
1178 		if (!saddr)
1179 			saddr = inet->mc_addr;
1180 		connected = 0;
1181 	} else if (!ipc.oif) {
1182 		ipc.oif = inet->uc_index;
1183 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1184 		/* oif is set, packet is to local broadcast and
1185 		 * uc_index is set. oif is most likely set
1186 		 * by sk_bound_dev_if. If uc_index != oif check if the
1187 		 * oif is an L3 master and uc_index is an L3 slave.
1188 		 * If so, we want to allow the send using the uc_index.
1189 		 */
1190 		if (ipc.oif != inet->uc_index &&
1191 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1192 							      inet->uc_index)) {
1193 			ipc.oif = inet->uc_index;
1194 		}
1195 	}
1196 
1197 	if (connected)
1198 		rt = (struct rtable *)sk_dst_check(sk, 0);
1199 
1200 	if (!rt) {
1201 		struct net *net = sock_net(sk);
1202 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1203 
1204 		fl4 = &fl4_stack;
1205 
1206 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1207 				   sk->sk_protocol, flow_flags, faddr, saddr,
1208 				   dport, inet->inet_sport, sk->sk_uid);
1209 
1210 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1211 		rt = ip_route_output_flow(net, fl4, sk);
1212 		if (IS_ERR(rt)) {
1213 			err = PTR_ERR(rt);
1214 			rt = NULL;
1215 			if (err == -ENETUNREACH)
1216 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1217 			goto out;
1218 		}
1219 
1220 		err = -EACCES;
1221 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1222 		    !sock_flag(sk, SOCK_BROADCAST))
1223 			goto out;
1224 		if (connected)
1225 			sk_dst_set(sk, dst_clone(&rt->dst));
1226 	}
1227 
1228 	if (msg->msg_flags&MSG_CONFIRM)
1229 		goto do_confirm;
1230 back_from_confirm:
1231 
1232 	saddr = fl4->saddr;
1233 	if (!ipc.addr)
1234 		daddr = ipc.addr = fl4->daddr;
1235 
1236 	/* Lockless fast path for the non-corking case. */
1237 	if (!corkreq) {
1238 		struct inet_cork cork;
1239 
1240 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1241 				  sizeof(struct udphdr), &ipc, &rt,
1242 				  &cork, msg->msg_flags);
1243 		err = PTR_ERR(skb);
1244 		if (!IS_ERR_OR_NULL(skb))
1245 			err = udp_send_skb(skb, fl4, &cork);
1246 		goto out;
1247 	}
1248 
1249 	lock_sock(sk);
1250 	if (unlikely(up->pending)) {
1251 		/* The socket is already corked while preparing it. */
1252 		/* ... which is an evident application bug. --ANK */
1253 		release_sock(sk);
1254 
1255 		net_dbg_ratelimited("socket already corked\n");
1256 		err = -EINVAL;
1257 		goto out;
1258 	}
1259 	/*
1260 	 *	Now cork the socket to pend data.
1261 	 */
1262 	fl4 = &inet->cork.fl.u.ip4;
1263 	fl4->daddr = daddr;
1264 	fl4->saddr = saddr;
1265 	fl4->fl4_dport = dport;
1266 	fl4->fl4_sport = inet->inet_sport;
1267 	up->pending = AF_INET;
1268 
1269 do_append_data:
1270 	up->len += ulen;
1271 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1272 			     sizeof(struct udphdr), &ipc, &rt,
1273 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1274 	if (err)
1275 		udp_flush_pending_frames(sk);
1276 	else if (!corkreq)
1277 		err = udp_push_pending_frames(sk);
1278 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1279 		up->pending = 0;
1280 	release_sock(sk);
1281 
1282 out:
1283 	ip_rt_put(rt);
1284 out_free:
1285 	if (free)
1286 		kfree(ipc.opt);
1287 	if (!err)
1288 		return len;
1289 	/*
1290 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1291 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1292 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1293 	 * things).  We could add another new stat but at least for now that
1294 	 * seems like overkill.
1295 	 */
1296 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1297 		UDP_INC_STATS(sock_net(sk),
1298 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1299 	}
1300 	return err;
1301 
1302 do_confirm:
1303 	if (msg->msg_flags & MSG_PROBE)
1304 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1305 	if (!(msg->msg_flags&MSG_PROBE) || len)
1306 		goto back_from_confirm;
1307 	err = 0;
1308 	goto out;
1309 }
1310 EXPORT_SYMBOL(udp_sendmsg);
1311 
1312 void udp_splice_eof(struct socket *sock)
1313 {
1314 	struct sock *sk = sock->sk;
1315 	struct udp_sock *up = udp_sk(sk);
1316 
1317 	if (!up->pending || READ_ONCE(up->corkflag))
1318 		return;
1319 
1320 	lock_sock(sk);
1321 	if (up->pending && !READ_ONCE(up->corkflag))
1322 		udp_push_pending_frames(sk);
1323 	release_sock(sk);
1324 }
1325 EXPORT_SYMBOL_GPL(udp_splice_eof);
1326 
1327 #define UDP_SKB_IS_STATELESS 0x80000000
1328 
1329 /* all head states (dst, sk, nf conntrack) except skb extensions are
1330  * cleared by udp_rcv().
1331  *
1332  * We need to preserve secpath, if present, to eventually process
1333  * IP_CMSG_PASSSEC at recvmsg() time.
1334  *
1335  * Other extensions can be cleared.
1336  */
1337 static bool udp_try_make_stateless(struct sk_buff *skb)
1338 {
1339 	if (!skb_has_extensions(skb))
1340 		return true;
1341 
1342 	if (!secpath_exists(skb)) {
1343 		skb_ext_reset(skb);
1344 		return true;
1345 	}
1346 
1347 	return false;
1348 }
1349 
1350 static void udp_set_dev_scratch(struct sk_buff *skb)
1351 {
1352 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1353 
1354 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1355 	scratch->_tsize_state = skb->truesize;
1356 #if BITS_PER_LONG == 64
1357 	scratch->len = skb->len;
1358 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1359 	scratch->is_linear = !skb_is_nonlinear(skb);
1360 #endif
1361 	if (udp_try_make_stateless(skb))
1362 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1363 }
1364 
1365 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1366 {
1367 	/* We come here after udp_lib_checksum_complete() returned 0.
1368 	 * This means that __skb_checksum_complete() might have
1369 	 * set skb->csum_valid to 1.
1370 	 * On 64bit platforms, we can set csum_unnecessary
1371 	 * to true, but only if the skb is not shared.
1372 	 */
1373 #if BITS_PER_LONG == 64
1374 	if (!skb_shared(skb))
1375 		udp_skb_scratch(skb)->csum_unnecessary = true;
1376 #endif
1377 }
1378 
1379 static int udp_skb_truesize(struct sk_buff *skb)
1380 {
1381 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1382 }
1383 
1384 static bool udp_skb_has_head_state(struct sk_buff *skb)
1385 {
1386 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1387 }
1388 
1389 /* fully reclaim rmem/fwd memory allocated for skb */
1390 static void udp_rmem_release(struct sock *sk, int size, int partial,
1391 			     bool rx_queue_lock_held)
1392 {
1393 	struct udp_sock *up = udp_sk(sk);
1394 	struct sk_buff_head *sk_queue;
1395 	int amt;
1396 
1397 	if (likely(partial)) {
1398 		up->forward_deficit += size;
1399 		size = up->forward_deficit;
1400 		if (size < READ_ONCE(up->forward_threshold) &&
1401 		    !skb_queue_empty(&up->reader_queue))
1402 			return;
1403 	} else {
1404 		size += up->forward_deficit;
1405 	}
1406 	up->forward_deficit = 0;
1407 
1408 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1409 	 * if the called don't held it already
1410 	 */
1411 	sk_queue = &sk->sk_receive_queue;
1412 	if (!rx_queue_lock_held)
1413 		spin_lock(&sk_queue->lock);
1414 
1415 
1416 	sk->sk_forward_alloc += size;
1417 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1418 	sk->sk_forward_alloc -= amt;
1419 
1420 	if (amt)
1421 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1422 
1423 	atomic_sub(size, &sk->sk_rmem_alloc);
1424 
1425 	/* this can save us from acquiring the rx queue lock on next receive */
1426 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1427 
1428 	if (!rx_queue_lock_held)
1429 		spin_unlock(&sk_queue->lock);
1430 }
1431 
1432 /* Note: called with reader_queue.lock held.
1433  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1434  * This avoids a cache line miss while receive_queue lock is held.
1435  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1436  */
1437 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1438 {
1439 	prefetch(&skb->data);
1440 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1441 }
1442 EXPORT_SYMBOL(udp_skb_destructor);
1443 
1444 /* as above, but the caller held the rx queue lock, too */
1445 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1446 {
1447 	prefetch(&skb->data);
1448 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1449 }
1450 
1451 /* Idea of busylocks is to let producers grab an extra spinlock
1452  * to relieve pressure on the receive_queue spinlock shared by consumer.
1453  * Under flood, this means that only one producer can be in line
1454  * trying to acquire the receive_queue spinlock.
1455  * These busylock can be allocated on a per cpu manner, instead of a
1456  * per socket one (that would consume a cache line per socket)
1457  */
1458 static int udp_busylocks_log __read_mostly;
1459 static spinlock_t *udp_busylocks __read_mostly;
1460 
1461 static spinlock_t *busylock_acquire(void *ptr)
1462 {
1463 	spinlock_t *busy;
1464 
1465 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1466 	spin_lock(busy);
1467 	return busy;
1468 }
1469 
1470 static void busylock_release(spinlock_t *busy)
1471 {
1472 	if (busy)
1473 		spin_unlock(busy);
1474 }
1475 
1476 static int udp_rmem_schedule(struct sock *sk, int size)
1477 {
1478 	int delta;
1479 
1480 	delta = size - sk->sk_forward_alloc;
1481 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1482 		return -ENOBUFS;
1483 
1484 	return 0;
1485 }
1486 
1487 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1488 {
1489 	struct sk_buff_head *list = &sk->sk_receive_queue;
1490 	int rmem, err = -ENOMEM;
1491 	spinlock_t *busy = NULL;
1492 	int size;
1493 
1494 	/* try to avoid the costly atomic add/sub pair when the receive
1495 	 * queue is full; always allow at least a packet
1496 	 */
1497 	rmem = atomic_read(&sk->sk_rmem_alloc);
1498 	if (rmem > sk->sk_rcvbuf)
1499 		goto drop;
1500 
1501 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1502 	 * having linear skbs :
1503 	 * - Reduce memory overhead and thus increase receive queue capacity
1504 	 * - Less cache line misses at copyout() time
1505 	 * - Less work at consume_skb() (less alien page frag freeing)
1506 	 */
1507 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1508 		skb_condense(skb);
1509 
1510 		busy = busylock_acquire(sk);
1511 	}
1512 	size = skb->truesize;
1513 	udp_set_dev_scratch(skb);
1514 
1515 	/* we drop only if the receive buf is full and the receive
1516 	 * queue contains some other skb
1517 	 */
1518 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1519 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1520 		goto uncharge_drop;
1521 
1522 	spin_lock(&list->lock);
1523 	err = udp_rmem_schedule(sk, size);
1524 	if (err) {
1525 		spin_unlock(&list->lock);
1526 		goto uncharge_drop;
1527 	}
1528 
1529 	sk->sk_forward_alloc -= size;
1530 
1531 	/* no need to setup a destructor, we will explicitly release the
1532 	 * forward allocated memory on dequeue
1533 	 */
1534 	sock_skb_set_dropcount(sk, skb);
1535 
1536 	__skb_queue_tail(list, skb);
1537 	spin_unlock(&list->lock);
1538 
1539 	if (!sock_flag(sk, SOCK_DEAD))
1540 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1541 
1542 	busylock_release(busy);
1543 	return 0;
1544 
1545 uncharge_drop:
1546 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1547 
1548 drop:
1549 	atomic_inc(&sk->sk_drops);
1550 	busylock_release(busy);
1551 	return err;
1552 }
1553 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1554 
1555 void udp_destruct_common(struct sock *sk)
1556 {
1557 	/* reclaim completely the forward allocated memory */
1558 	struct udp_sock *up = udp_sk(sk);
1559 	unsigned int total = 0;
1560 	struct sk_buff *skb;
1561 
1562 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1563 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1564 		total += skb->truesize;
1565 		kfree_skb(skb);
1566 	}
1567 	udp_rmem_release(sk, total, 0, true);
1568 }
1569 EXPORT_SYMBOL_GPL(udp_destruct_common);
1570 
1571 static void udp_destruct_sock(struct sock *sk)
1572 {
1573 	udp_destruct_common(sk);
1574 	inet_sock_destruct(sk);
1575 }
1576 
1577 int udp_init_sock(struct sock *sk)
1578 {
1579 	udp_lib_init_sock(sk);
1580 	sk->sk_destruct = udp_destruct_sock;
1581 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1582 	return 0;
1583 }
1584 
1585 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1586 {
1587 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1588 		bool slow = lock_sock_fast(sk);
1589 
1590 		sk_peek_offset_bwd(sk, len);
1591 		unlock_sock_fast(sk, slow);
1592 	}
1593 
1594 	if (!skb_unref(skb))
1595 		return;
1596 
1597 	/* In the more common cases we cleared the head states previously,
1598 	 * see __udp_queue_rcv_skb().
1599 	 */
1600 	if (unlikely(udp_skb_has_head_state(skb)))
1601 		skb_release_head_state(skb);
1602 	__consume_stateless_skb(skb);
1603 }
1604 EXPORT_SYMBOL_GPL(skb_consume_udp);
1605 
1606 static struct sk_buff *__first_packet_length(struct sock *sk,
1607 					     struct sk_buff_head *rcvq,
1608 					     int *total)
1609 {
1610 	struct sk_buff *skb;
1611 
1612 	while ((skb = skb_peek(rcvq)) != NULL) {
1613 		if (udp_lib_checksum_complete(skb)) {
1614 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1615 					IS_UDPLITE(sk));
1616 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1617 					IS_UDPLITE(sk));
1618 			atomic_inc(&sk->sk_drops);
1619 			__skb_unlink(skb, rcvq);
1620 			*total += skb->truesize;
1621 			kfree_skb(skb);
1622 		} else {
1623 			udp_skb_csum_unnecessary_set(skb);
1624 			break;
1625 		}
1626 	}
1627 	return skb;
1628 }
1629 
1630 /**
1631  *	first_packet_length	- return length of first packet in receive queue
1632  *	@sk: socket
1633  *
1634  *	Drops all bad checksum frames, until a valid one is found.
1635  *	Returns the length of found skb, or -1 if none is found.
1636  */
1637 static int first_packet_length(struct sock *sk)
1638 {
1639 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1640 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1641 	struct sk_buff *skb;
1642 	int total = 0;
1643 	int res;
1644 
1645 	spin_lock_bh(&rcvq->lock);
1646 	skb = __first_packet_length(sk, rcvq, &total);
1647 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1648 		spin_lock(&sk_queue->lock);
1649 		skb_queue_splice_tail_init(sk_queue, rcvq);
1650 		spin_unlock(&sk_queue->lock);
1651 
1652 		skb = __first_packet_length(sk, rcvq, &total);
1653 	}
1654 	res = skb ? skb->len : -1;
1655 	if (total)
1656 		udp_rmem_release(sk, total, 1, false);
1657 	spin_unlock_bh(&rcvq->lock);
1658 	return res;
1659 }
1660 
1661 /*
1662  *	IOCTL requests applicable to the UDP protocol
1663  */
1664 
1665 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1666 {
1667 	switch (cmd) {
1668 	case SIOCOUTQ:
1669 	{
1670 		*karg = sk_wmem_alloc_get(sk);
1671 		return 0;
1672 	}
1673 
1674 	case SIOCINQ:
1675 	{
1676 		*karg = max_t(int, 0, first_packet_length(sk));
1677 		return 0;
1678 	}
1679 
1680 	default:
1681 		return -ENOIOCTLCMD;
1682 	}
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL(udp_ioctl);
1687 
1688 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1689 			       int *off, int *err)
1690 {
1691 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1692 	struct sk_buff_head *queue;
1693 	struct sk_buff *last;
1694 	long timeo;
1695 	int error;
1696 
1697 	queue = &udp_sk(sk)->reader_queue;
1698 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1699 	do {
1700 		struct sk_buff *skb;
1701 
1702 		error = sock_error(sk);
1703 		if (error)
1704 			break;
1705 
1706 		error = -EAGAIN;
1707 		do {
1708 			spin_lock_bh(&queue->lock);
1709 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1710 							err, &last);
1711 			if (skb) {
1712 				if (!(flags & MSG_PEEK))
1713 					udp_skb_destructor(sk, skb);
1714 				spin_unlock_bh(&queue->lock);
1715 				return skb;
1716 			}
1717 
1718 			if (skb_queue_empty_lockless(sk_queue)) {
1719 				spin_unlock_bh(&queue->lock);
1720 				goto busy_check;
1721 			}
1722 
1723 			/* refill the reader queue and walk it again
1724 			 * keep both queues locked to avoid re-acquiring
1725 			 * the sk_receive_queue lock if fwd memory scheduling
1726 			 * is needed.
1727 			 */
1728 			spin_lock(&sk_queue->lock);
1729 			skb_queue_splice_tail_init(sk_queue, queue);
1730 
1731 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1732 							err, &last);
1733 			if (skb && !(flags & MSG_PEEK))
1734 				udp_skb_dtor_locked(sk, skb);
1735 			spin_unlock(&sk_queue->lock);
1736 			spin_unlock_bh(&queue->lock);
1737 			if (skb)
1738 				return skb;
1739 
1740 busy_check:
1741 			if (!sk_can_busy_loop(sk))
1742 				break;
1743 
1744 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1745 		} while (!skb_queue_empty_lockless(sk_queue));
1746 
1747 		/* sk_queue is empty, reader_queue may contain peeked packets */
1748 	} while (timeo &&
1749 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1750 					      &error, &timeo,
1751 					      (struct sk_buff *)sk_queue));
1752 
1753 	*err = error;
1754 	return NULL;
1755 }
1756 EXPORT_SYMBOL(__skb_recv_udp);
1757 
1758 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1759 {
1760 	struct sk_buff *skb;
1761 	int err;
1762 
1763 try_again:
1764 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1765 	if (!skb)
1766 		return err;
1767 
1768 	if (udp_lib_checksum_complete(skb)) {
1769 		int is_udplite = IS_UDPLITE(sk);
1770 		struct net *net = sock_net(sk);
1771 
1772 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1773 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1774 		atomic_inc(&sk->sk_drops);
1775 		kfree_skb(skb);
1776 		goto try_again;
1777 	}
1778 
1779 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1780 	return recv_actor(sk, skb);
1781 }
1782 EXPORT_SYMBOL(udp_read_skb);
1783 
1784 /*
1785  * 	This should be easy, if there is something there we
1786  * 	return it, otherwise we block.
1787  */
1788 
1789 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1790 		int *addr_len)
1791 {
1792 	struct inet_sock *inet = inet_sk(sk);
1793 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1794 	struct sk_buff *skb;
1795 	unsigned int ulen, copied;
1796 	int off, err, peeking = flags & MSG_PEEK;
1797 	int is_udplite = IS_UDPLITE(sk);
1798 	bool checksum_valid = false;
1799 
1800 	if (flags & MSG_ERRQUEUE)
1801 		return ip_recv_error(sk, msg, len, addr_len);
1802 
1803 try_again:
1804 	off = sk_peek_offset(sk, flags);
1805 	skb = __skb_recv_udp(sk, flags, &off, &err);
1806 	if (!skb)
1807 		return err;
1808 
1809 	ulen = udp_skb_len(skb);
1810 	copied = len;
1811 	if (copied > ulen - off)
1812 		copied = ulen - off;
1813 	else if (copied < ulen)
1814 		msg->msg_flags |= MSG_TRUNC;
1815 
1816 	/*
1817 	 * If checksum is needed at all, try to do it while copying the
1818 	 * data.  If the data is truncated, or if we only want a partial
1819 	 * coverage checksum (UDP-Lite), do it before the copy.
1820 	 */
1821 
1822 	if (copied < ulen || peeking ||
1823 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1824 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1825 				!__udp_lib_checksum_complete(skb);
1826 		if (!checksum_valid)
1827 			goto csum_copy_err;
1828 	}
1829 
1830 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1831 		if (udp_skb_is_linear(skb))
1832 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1833 		else
1834 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1835 	} else {
1836 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1837 
1838 		if (err == -EINVAL)
1839 			goto csum_copy_err;
1840 	}
1841 
1842 	if (unlikely(err)) {
1843 		if (!peeking) {
1844 			atomic_inc(&sk->sk_drops);
1845 			UDP_INC_STATS(sock_net(sk),
1846 				      UDP_MIB_INERRORS, is_udplite);
1847 		}
1848 		kfree_skb(skb);
1849 		return err;
1850 	}
1851 
1852 	if (!peeking)
1853 		UDP_INC_STATS(sock_net(sk),
1854 			      UDP_MIB_INDATAGRAMS, is_udplite);
1855 
1856 	sock_recv_cmsgs(msg, sk, skb);
1857 
1858 	/* Copy the address. */
1859 	if (sin) {
1860 		sin->sin_family = AF_INET;
1861 		sin->sin_port = udp_hdr(skb)->source;
1862 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1863 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1864 		*addr_len = sizeof(*sin);
1865 
1866 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1867 						      (struct sockaddr *)sin);
1868 	}
1869 
1870 	if (udp_sk(sk)->gro_enabled)
1871 		udp_cmsg_recv(msg, sk, skb);
1872 
1873 	if (inet->cmsg_flags)
1874 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1875 
1876 	err = copied;
1877 	if (flags & MSG_TRUNC)
1878 		err = ulen;
1879 
1880 	skb_consume_udp(sk, skb, peeking ? -err : err);
1881 	return err;
1882 
1883 csum_copy_err:
1884 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1885 				 udp_skb_destructor)) {
1886 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1887 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1888 	}
1889 	kfree_skb(skb);
1890 
1891 	/* starting over for a new packet, but check if we need to yield */
1892 	cond_resched();
1893 	msg->msg_flags &= ~MSG_TRUNC;
1894 	goto try_again;
1895 }
1896 
1897 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1898 {
1899 	/* This check is replicated from __ip4_datagram_connect() and
1900 	 * intended to prevent BPF program called below from accessing bytes
1901 	 * that are out of the bound specified by user in addr_len.
1902 	 */
1903 	if (addr_len < sizeof(struct sockaddr_in))
1904 		return -EINVAL;
1905 
1906 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1907 }
1908 EXPORT_SYMBOL(udp_pre_connect);
1909 
1910 int __udp_disconnect(struct sock *sk, int flags)
1911 {
1912 	struct inet_sock *inet = inet_sk(sk);
1913 	/*
1914 	 *	1003.1g - break association.
1915 	 */
1916 
1917 	sk->sk_state = TCP_CLOSE;
1918 	inet->inet_daddr = 0;
1919 	inet->inet_dport = 0;
1920 	sock_rps_reset_rxhash(sk);
1921 	sk->sk_bound_dev_if = 0;
1922 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1923 		inet_reset_saddr(sk);
1924 		if (sk->sk_prot->rehash &&
1925 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1926 			sk->sk_prot->rehash(sk);
1927 	}
1928 
1929 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1930 		sk->sk_prot->unhash(sk);
1931 		inet->inet_sport = 0;
1932 	}
1933 	sk_dst_reset(sk);
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(__udp_disconnect);
1937 
1938 int udp_disconnect(struct sock *sk, int flags)
1939 {
1940 	lock_sock(sk);
1941 	__udp_disconnect(sk, flags);
1942 	release_sock(sk);
1943 	return 0;
1944 }
1945 EXPORT_SYMBOL(udp_disconnect);
1946 
1947 void udp_lib_unhash(struct sock *sk)
1948 {
1949 	if (sk_hashed(sk)) {
1950 		struct udp_table *udptable = udp_get_table_prot(sk);
1951 		struct udp_hslot *hslot, *hslot2;
1952 
1953 		hslot  = udp_hashslot(udptable, sock_net(sk),
1954 				      udp_sk(sk)->udp_port_hash);
1955 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1956 
1957 		spin_lock_bh(&hslot->lock);
1958 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1959 			reuseport_detach_sock(sk);
1960 		if (sk_del_node_init_rcu(sk)) {
1961 			hslot->count--;
1962 			inet_sk(sk)->inet_num = 0;
1963 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1964 
1965 			spin_lock(&hslot2->lock);
1966 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1967 			hslot2->count--;
1968 			spin_unlock(&hslot2->lock);
1969 		}
1970 		spin_unlock_bh(&hslot->lock);
1971 	}
1972 }
1973 EXPORT_SYMBOL(udp_lib_unhash);
1974 
1975 /*
1976  * inet_rcv_saddr was changed, we must rehash secondary hash
1977  */
1978 void udp_lib_rehash(struct sock *sk, u16 newhash)
1979 {
1980 	if (sk_hashed(sk)) {
1981 		struct udp_table *udptable = udp_get_table_prot(sk);
1982 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1983 
1984 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1985 		nhslot2 = udp_hashslot2(udptable, newhash);
1986 		udp_sk(sk)->udp_portaddr_hash = newhash;
1987 
1988 		if (hslot2 != nhslot2 ||
1989 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1990 			hslot = udp_hashslot(udptable, sock_net(sk),
1991 					     udp_sk(sk)->udp_port_hash);
1992 			/* we must lock primary chain too */
1993 			spin_lock_bh(&hslot->lock);
1994 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1995 				reuseport_detach_sock(sk);
1996 
1997 			if (hslot2 != nhslot2) {
1998 				spin_lock(&hslot2->lock);
1999 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2000 				hslot2->count--;
2001 				spin_unlock(&hslot2->lock);
2002 
2003 				spin_lock(&nhslot2->lock);
2004 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2005 							 &nhslot2->head);
2006 				nhslot2->count++;
2007 				spin_unlock(&nhslot2->lock);
2008 			}
2009 
2010 			spin_unlock_bh(&hslot->lock);
2011 		}
2012 	}
2013 }
2014 EXPORT_SYMBOL(udp_lib_rehash);
2015 
2016 void udp_v4_rehash(struct sock *sk)
2017 {
2018 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2019 					  inet_sk(sk)->inet_rcv_saddr,
2020 					  inet_sk(sk)->inet_num);
2021 	udp_lib_rehash(sk, new_hash);
2022 }
2023 
2024 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2025 {
2026 	int rc;
2027 
2028 	if (inet_sk(sk)->inet_daddr) {
2029 		sock_rps_save_rxhash(sk, skb);
2030 		sk_mark_napi_id(sk, skb);
2031 		sk_incoming_cpu_update(sk);
2032 	} else {
2033 		sk_mark_napi_id_once(sk, skb);
2034 	}
2035 
2036 	rc = __udp_enqueue_schedule_skb(sk, skb);
2037 	if (rc < 0) {
2038 		int is_udplite = IS_UDPLITE(sk);
2039 		int drop_reason;
2040 
2041 		/* Note that an ENOMEM error is charged twice */
2042 		if (rc == -ENOMEM) {
2043 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2044 					is_udplite);
2045 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2046 		} else {
2047 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2048 				      is_udplite);
2049 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2050 		}
2051 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2052 		kfree_skb_reason(skb, drop_reason);
2053 		trace_udp_fail_queue_rcv_skb(rc, sk);
2054 		return -1;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /* returns:
2061  *  -1: error
2062  *   0: success
2063  *  >0: "udp encap" protocol resubmission
2064  *
2065  * Note that in the success and error cases, the skb is assumed to
2066  * have either been requeued or freed.
2067  */
2068 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2071 	struct udp_sock *up = udp_sk(sk);
2072 	int is_udplite = IS_UDPLITE(sk);
2073 
2074 	/*
2075 	 *	Charge it to the socket, dropping if the queue is full.
2076 	 */
2077 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2078 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2079 		goto drop;
2080 	}
2081 	nf_reset_ct(skb);
2082 
2083 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2084 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2085 
2086 		/*
2087 		 * This is an encapsulation socket so pass the skb to
2088 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2089 		 * fall through and pass this up the UDP socket.
2090 		 * up->encap_rcv() returns the following value:
2091 		 * =0 if skb was successfully passed to the encap
2092 		 *    handler or was discarded by it.
2093 		 * >0 if skb should be passed on to UDP.
2094 		 * <0 if skb should be resubmitted as proto -N
2095 		 */
2096 
2097 		/* if we're overly short, let UDP handle it */
2098 		encap_rcv = READ_ONCE(up->encap_rcv);
2099 		if (encap_rcv) {
2100 			int ret;
2101 
2102 			/* Verify checksum before giving to encap */
2103 			if (udp_lib_checksum_complete(skb))
2104 				goto csum_error;
2105 
2106 			ret = encap_rcv(sk, skb);
2107 			if (ret <= 0) {
2108 				__UDP_INC_STATS(sock_net(sk),
2109 						UDP_MIB_INDATAGRAMS,
2110 						is_udplite);
2111 				return -ret;
2112 			}
2113 		}
2114 
2115 		/* FALLTHROUGH -- it's a UDP Packet */
2116 	}
2117 
2118 	/*
2119 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2120 	 */
2121 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2122 
2123 		/*
2124 		 * MIB statistics other than incrementing the error count are
2125 		 * disabled for the following two types of errors: these depend
2126 		 * on the application settings, not on the functioning of the
2127 		 * protocol stack as such.
2128 		 *
2129 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2130 		 * way ... to ... at least let the receiving application block
2131 		 * delivery of packets with coverage values less than a value
2132 		 * provided by the application."
2133 		 */
2134 		if (up->pcrlen == 0) {          /* full coverage was set  */
2135 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2136 					    UDP_SKB_CB(skb)->cscov, skb->len);
2137 			goto drop;
2138 		}
2139 		/* The next case involves violating the min. coverage requested
2140 		 * by the receiver. This is subtle: if receiver wants x and x is
2141 		 * greater than the buffersize/MTU then receiver will complain
2142 		 * that it wants x while sender emits packets of smaller size y.
2143 		 * Therefore the above ...()->partial_cov statement is essential.
2144 		 */
2145 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2146 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2147 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2148 			goto drop;
2149 		}
2150 	}
2151 
2152 	prefetch(&sk->sk_rmem_alloc);
2153 	if (rcu_access_pointer(sk->sk_filter) &&
2154 	    udp_lib_checksum_complete(skb))
2155 			goto csum_error;
2156 
2157 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2158 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2159 		goto drop;
2160 	}
2161 
2162 	udp_csum_pull_header(skb);
2163 
2164 	ipv4_pktinfo_prepare(sk, skb);
2165 	return __udp_queue_rcv_skb(sk, skb);
2166 
2167 csum_error:
2168 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2169 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2170 drop:
2171 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2172 	atomic_inc(&sk->sk_drops);
2173 	kfree_skb_reason(skb, drop_reason);
2174 	return -1;
2175 }
2176 
2177 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2178 {
2179 	struct sk_buff *next, *segs;
2180 	int ret;
2181 
2182 	if (likely(!udp_unexpected_gso(sk, skb)))
2183 		return udp_queue_rcv_one_skb(sk, skb);
2184 
2185 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2186 	__skb_push(skb, -skb_mac_offset(skb));
2187 	segs = udp_rcv_segment(sk, skb, true);
2188 	skb_list_walk_safe(segs, skb, next) {
2189 		__skb_pull(skb, skb_transport_offset(skb));
2190 
2191 		udp_post_segment_fix_csum(skb);
2192 		ret = udp_queue_rcv_one_skb(sk, skb);
2193 		if (ret > 0)
2194 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2195 	}
2196 	return 0;
2197 }
2198 
2199 /* For TCP sockets, sk_rx_dst is protected by socket lock
2200  * For UDP, we use xchg() to guard against concurrent changes.
2201  */
2202 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2203 {
2204 	struct dst_entry *old;
2205 
2206 	if (dst_hold_safe(dst)) {
2207 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2208 		dst_release(old);
2209 		return old != dst;
2210 	}
2211 	return false;
2212 }
2213 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2214 
2215 /*
2216  *	Multicasts and broadcasts go to each listener.
2217  *
2218  *	Note: called only from the BH handler context.
2219  */
2220 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2221 				    struct udphdr  *uh,
2222 				    __be32 saddr, __be32 daddr,
2223 				    struct udp_table *udptable,
2224 				    int proto)
2225 {
2226 	struct sock *sk, *first = NULL;
2227 	unsigned short hnum = ntohs(uh->dest);
2228 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2229 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2230 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2231 	int dif = skb->dev->ifindex;
2232 	int sdif = inet_sdif(skb);
2233 	struct hlist_node *node;
2234 	struct sk_buff *nskb;
2235 
2236 	if (use_hash2) {
2237 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2238 			    udptable->mask;
2239 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2240 start_lookup:
2241 		hslot = &udptable->hash2[hash2];
2242 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2243 	}
2244 
2245 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2246 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2247 					 uh->source, saddr, dif, sdif, hnum))
2248 			continue;
2249 
2250 		if (!first) {
2251 			first = sk;
2252 			continue;
2253 		}
2254 		nskb = skb_clone(skb, GFP_ATOMIC);
2255 
2256 		if (unlikely(!nskb)) {
2257 			atomic_inc(&sk->sk_drops);
2258 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2259 					IS_UDPLITE(sk));
2260 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2261 					IS_UDPLITE(sk));
2262 			continue;
2263 		}
2264 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2265 			consume_skb(nskb);
2266 	}
2267 
2268 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2269 	if (use_hash2 && hash2 != hash2_any) {
2270 		hash2 = hash2_any;
2271 		goto start_lookup;
2272 	}
2273 
2274 	if (first) {
2275 		if (udp_queue_rcv_skb(first, skb) > 0)
2276 			consume_skb(skb);
2277 	} else {
2278 		kfree_skb(skb);
2279 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2280 				proto == IPPROTO_UDPLITE);
2281 	}
2282 	return 0;
2283 }
2284 
2285 /* Initialize UDP checksum. If exited with zero value (success),
2286  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2287  * Otherwise, csum completion requires checksumming packet body,
2288  * including udp header and folding it to skb->csum.
2289  */
2290 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2291 				 int proto)
2292 {
2293 	int err;
2294 
2295 	UDP_SKB_CB(skb)->partial_cov = 0;
2296 	UDP_SKB_CB(skb)->cscov = skb->len;
2297 
2298 	if (proto == IPPROTO_UDPLITE) {
2299 		err = udplite_checksum_init(skb, uh);
2300 		if (err)
2301 			return err;
2302 
2303 		if (UDP_SKB_CB(skb)->partial_cov) {
2304 			skb->csum = inet_compute_pseudo(skb, proto);
2305 			return 0;
2306 		}
2307 	}
2308 
2309 	/* Note, we are only interested in != 0 or == 0, thus the
2310 	 * force to int.
2311 	 */
2312 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2313 							inet_compute_pseudo);
2314 	if (err)
2315 		return err;
2316 
2317 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2318 		/* If SW calculated the value, we know it's bad */
2319 		if (skb->csum_complete_sw)
2320 			return 1;
2321 
2322 		/* HW says the value is bad. Let's validate that.
2323 		 * skb->csum is no longer the full packet checksum,
2324 		 * so don't treat it as such.
2325 		 */
2326 		skb_checksum_complete_unset(skb);
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2333  * return code conversion for ip layer consumption
2334  */
2335 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2336 			       struct udphdr *uh)
2337 {
2338 	int ret;
2339 
2340 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2341 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2342 
2343 	ret = udp_queue_rcv_skb(sk, skb);
2344 
2345 	/* a return value > 0 means to resubmit the input, but
2346 	 * it wants the return to be -protocol, or 0
2347 	 */
2348 	if (ret > 0)
2349 		return -ret;
2350 	return 0;
2351 }
2352 
2353 /*
2354  *	All we need to do is get the socket, and then do a checksum.
2355  */
2356 
2357 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2358 		   int proto)
2359 {
2360 	struct sock *sk;
2361 	struct udphdr *uh;
2362 	unsigned short ulen;
2363 	struct rtable *rt = skb_rtable(skb);
2364 	__be32 saddr, daddr;
2365 	struct net *net = dev_net(skb->dev);
2366 	bool refcounted;
2367 	int drop_reason;
2368 
2369 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2370 
2371 	/*
2372 	 *  Validate the packet.
2373 	 */
2374 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2375 		goto drop;		/* No space for header. */
2376 
2377 	uh   = udp_hdr(skb);
2378 	ulen = ntohs(uh->len);
2379 	saddr = ip_hdr(skb)->saddr;
2380 	daddr = ip_hdr(skb)->daddr;
2381 
2382 	if (ulen > skb->len)
2383 		goto short_packet;
2384 
2385 	if (proto == IPPROTO_UDP) {
2386 		/* UDP validates ulen. */
2387 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2388 			goto short_packet;
2389 		uh = udp_hdr(skb);
2390 	}
2391 
2392 	if (udp4_csum_init(skb, uh, proto))
2393 		goto csum_error;
2394 
2395 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2396 			     &refcounted, udp_ehashfn);
2397 	if (IS_ERR(sk))
2398 		goto no_sk;
2399 
2400 	if (sk) {
2401 		struct dst_entry *dst = skb_dst(skb);
2402 		int ret;
2403 
2404 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2405 			udp_sk_rx_dst_set(sk, dst);
2406 
2407 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2408 		if (refcounted)
2409 			sock_put(sk);
2410 		return ret;
2411 	}
2412 
2413 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2414 		return __udp4_lib_mcast_deliver(net, skb, uh,
2415 						saddr, daddr, udptable, proto);
2416 
2417 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2418 	if (sk)
2419 		return udp_unicast_rcv_skb(sk, skb, uh);
2420 no_sk:
2421 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2422 		goto drop;
2423 	nf_reset_ct(skb);
2424 
2425 	/* No socket. Drop packet silently, if checksum is wrong */
2426 	if (udp_lib_checksum_complete(skb))
2427 		goto csum_error;
2428 
2429 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2430 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2431 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2432 
2433 	/*
2434 	 * Hmm.  We got an UDP packet to a port to which we
2435 	 * don't wanna listen.  Ignore it.
2436 	 */
2437 	kfree_skb_reason(skb, drop_reason);
2438 	return 0;
2439 
2440 short_packet:
2441 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2442 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2443 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2444 			    &saddr, ntohs(uh->source),
2445 			    ulen, skb->len,
2446 			    &daddr, ntohs(uh->dest));
2447 	goto drop;
2448 
2449 csum_error:
2450 	/*
2451 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2452 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2453 	 */
2454 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2455 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2456 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2457 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2458 			    ulen);
2459 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2460 drop:
2461 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2462 	kfree_skb_reason(skb, drop_reason);
2463 	return 0;
2464 }
2465 
2466 /* We can only early demux multicast if there is a single matching socket.
2467  * If more than one socket found returns NULL
2468  */
2469 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2470 						  __be16 loc_port, __be32 loc_addr,
2471 						  __be16 rmt_port, __be32 rmt_addr,
2472 						  int dif, int sdif)
2473 {
2474 	struct udp_table *udptable = net->ipv4.udp_table;
2475 	unsigned short hnum = ntohs(loc_port);
2476 	struct sock *sk, *result;
2477 	struct udp_hslot *hslot;
2478 	unsigned int slot;
2479 
2480 	slot = udp_hashfn(net, hnum, udptable->mask);
2481 	hslot = &udptable->hash[slot];
2482 
2483 	/* Do not bother scanning a too big list */
2484 	if (hslot->count > 10)
2485 		return NULL;
2486 
2487 	result = NULL;
2488 	sk_for_each_rcu(sk, &hslot->head) {
2489 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2490 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2491 			if (result)
2492 				return NULL;
2493 			result = sk;
2494 		}
2495 	}
2496 
2497 	return result;
2498 }
2499 
2500 /* For unicast we should only early demux connected sockets or we can
2501  * break forwarding setups.  The chains here can be long so only check
2502  * if the first socket is an exact match and if not move on.
2503  */
2504 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2505 					    __be16 loc_port, __be32 loc_addr,
2506 					    __be16 rmt_port, __be32 rmt_addr,
2507 					    int dif, int sdif)
2508 {
2509 	struct udp_table *udptable = net->ipv4.udp_table;
2510 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2511 	unsigned short hnum = ntohs(loc_port);
2512 	unsigned int hash2, slot2;
2513 	struct udp_hslot *hslot2;
2514 	__portpair ports;
2515 	struct sock *sk;
2516 
2517 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2518 	slot2 = hash2 & udptable->mask;
2519 	hslot2 = &udptable->hash2[slot2];
2520 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2521 
2522 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2523 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2524 			return sk;
2525 		/* Only check first socket in chain */
2526 		break;
2527 	}
2528 	return NULL;
2529 }
2530 
2531 int udp_v4_early_demux(struct sk_buff *skb)
2532 {
2533 	struct net *net = dev_net(skb->dev);
2534 	struct in_device *in_dev = NULL;
2535 	const struct iphdr *iph;
2536 	const struct udphdr *uh;
2537 	struct sock *sk = NULL;
2538 	struct dst_entry *dst;
2539 	int dif = skb->dev->ifindex;
2540 	int sdif = inet_sdif(skb);
2541 	int ours;
2542 
2543 	/* validate the packet */
2544 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2545 		return 0;
2546 
2547 	iph = ip_hdr(skb);
2548 	uh = udp_hdr(skb);
2549 
2550 	if (skb->pkt_type == PACKET_MULTICAST) {
2551 		in_dev = __in_dev_get_rcu(skb->dev);
2552 
2553 		if (!in_dev)
2554 			return 0;
2555 
2556 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2557 				       iph->protocol);
2558 		if (!ours)
2559 			return 0;
2560 
2561 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2562 						   uh->source, iph->saddr,
2563 						   dif, sdif);
2564 	} else if (skb->pkt_type == PACKET_HOST) {
2565 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2566 					     uh->source, iph->saddr, dif, sdif);
2567 	}
2568 
2569 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2570 		return 0;
2571 
2572 	skb->sk = sk;
2573 	skb->destructor = sock_efree;
2574 	dst = rcu_dereference(sk->sk_rx_dst);
2575 
2576 	if (dst)
2577 		dst = dst_check(dst, 0);
2578 	if (dst) {
2579 		u32 itag = 0;
2580 
2581 		/* set noref for now.
2582 		 * any place which wants to hold dst has to call
2583 		 * dst_hold_safe()
2584 		 */
2585 		skb_dst_set_noref(skb, dst);
2586 
2587 		/* for unconnected multicast sockets we need to validate
2588 		 * the source on each packet
2589 		 */
2590 		if (!inet_sk(sk)->inet_daddr && in_dev)
2591 			return ip_mc_validate_source(skb, iph->daddr,
2592 						     iph->saddr,
2593 						     iph->tos & IPTOS_RT_MASK,
2594 						     skb->dev, in_dev, &itag);
2595 	}
2596 	return 0;
2597 }
2598 
2599 int udp_rcv(struct sk_buff *skb)
2600 {
2601 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2602 }
2603 
2604 void udp_destroy_sock(struct sock *sk)
2605 {
2606 	struct udp_sock *up = udp_sk(sk);
2607 	bool slow = lock_sock_fast(sk);
2608 
2609 	/* protects from races with udp_abort() */
2610 	sock_set_flag(sk, SOCK_DEAD);
2611 	udp_flush_pending_frames(sk);
2612 	unlock_sock_fast(sk, slow);
2613 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2614 		if (up->encap_type) {
2615 			void (*encap_destroy)(struct sock *sk);
2616 			encap_destroy = READ_ONCE(up->encap_destroy);
2617 			if (encap_destroy)
2618 				encap_destroy(sk);
2619 		}
2620 		if (up->encap_enabled)
2621 			static_branch_dec(&udp_encap_needed_key);
2622 	}
2623 }
2624 
2625 /*
2626  *	Socket option code for UDP
2627  */
2628 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2629 		       sockptr_t optval, unsigned int optlen,
2630 		       int (*push_pending_frames)(struct sock *))
2631 {
2632 	struct udp_sock *up = udp_sk(sk);
2633 	int val, valbool;
2634 	int err = 0;
2635 	int is_udplite = IS_UDPLITE(sk);
2636 
2637 	if (level == SOL_SOCKET) {
2638 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2639 
2640 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2641 			sockopt_lock_sock(sk);
2642 			/* paired with READ_ONCE in udp_rmem_release() */
2643 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2644 			sockopt_release_sock(sk);
2645 		}
2646 		return err;
2647 	}
2648 
2649 	if (optlen < sizeof(int))
2650 		return -EINVAL;
2651 
2652 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2653 		return -EFAULT;
2654 
2655 	valbool = val ? 1 : 0;
2656 
2657 	switch (optname) {
2658 	case UDP_CORK:
2659 		if (val != 0) {
2660 			WRITE_ONCE(up->corkflag, 1);
2661 		} else {
2662 			WRITE_ONCE(up->corkflag, 0);
2663 			lock_sock(sk);
2664 			push_pending_frames(sk);
2665 			release_sock(sk);
2666 		}
2667 		break;
2668 
2669 	case UDP_ENCAP:
2670 		switch (val) {
2671 		case 0:
2672 #ifdef CONFIG_XFRM
2673 		case UDP_ENCAP_ESPINUDP:
2674 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2675 #if IS_ENABLED(CONFIG_IPV6)
2676 			if (sk->sk_family == AF_INET6)
2677 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2678 			else
2679 #endif
2680 				up->encap_rcv = xfrm4_udp_encap_rcv;
2681 #endif
2682 			fallthrough;
2683 		case UDP_ENCAP_L2TPINUDP:
2684 			up->encap_type = val;
2685 			lock_sock(sk);
2686 			udp_tunnel_encap_enable(sk->sk_socket);
2687 			release_sock(sk);
2688 			break;
2689 		default:
2690 			err = -ENOPROTOOPT;
2691 			break;
2692 		}
2693 		break;
2694 
2695 	case UDP_NO_CHECK6_TX:
2696 		up->no_check6_tx = valbool;
2697 		break;
2698 
2699 	case UDP_NO_CHECK6_RX:
2700 		up->no_check6_rx = valbool;
2701 		break;
2702 
2703 	case UDP_SEGMENT:
2704 		if (val < 0 || val > USHRT_MAX)
2705 			return -EINVAL;
2706 		WRITE_ONCE(up->gso_size, val);
2707 		break;
2708 
2709 	case UDP_GRO:
2710 		lock_sock(sk);
2711 
2712 		/* when enabling GRO, accept the related GSO packet type */
2713 		if (valbool)
2714 			udp_tunnel_encap_enable(sk->sk_socket);
2715 		up->gro_enabled = valbool;
2716 		up->accept_udp_l4 = valbool;
2717 		release_sock(sk);
2718 		break;
2719 
2720 	/*
2721 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2722 	 */
2723 	/* The sender sets actual checksum coverage length via this option.
2724 	 * The case coverage > packet length is handled by send module. */
2725 	case UDPLITE_SEND_CSCOV:
2726 		if (!is_udplite)         /* Disable the option on UDP sockets */
2727 			return -ENOPROTOOPT;
2728 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2729 			val = 8;
2730 		else if (val > USHRT_MAX)
2731 			val = USHRT_MAX;
2732 		up->pcslen = val;
2733 		up->pcflag |= UDPLITE_SEND_CC;
2734 		break;
2735 
2736 	/* The receiver specifies a minimum checksum coverage value. To make
2737 	 * sense, this should be set to at least 8 (as done below). If zero is
2738 	 * used, this again means full checksum coverage.                     */
2739 	case UDPLITE_RECV_CSCOV:
2740 		if (!is_udplite)         /* Disable the option on UDP sockets */
2741 			return -ENOPROTOOPT;
2742 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2743 			val = 8;
2744 		else if (val > USHRT_MAX)
2745 			val = USHRT_MAX;
2746 		up->pcrlen = val;
2747 		up->pcflag |= UDPLITE_RECV_CC;
2748 		break;
2749 
2750 	default:
2751 		err = -ENOPROTOOPT;
2752 		break;
2753 	}
2754 
2755 	return err;
2756 }
2757 EXPORT_SYMBOL(udp_lib_setsockopt);
2758 
2759 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2760 		   unsigned int optlen)
2761 {
2762 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2763 		return udp_lib_setsockopt(sk, level, optname,
2764 					  optval, optlen,
2765 					  udp_push_pending_frames);
2766 	return ip_setsockopt(sk, level, optname, optval, optlen);
2767 }
2768 
2769 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2770 		       char __user *optval, int __user *optlen)
2771 {
2772 	struct udp_sock *up = udp_sk(sk);
2773 	int val, len;
2774 
2775 	if (get_user(len, optlen))
2776 		return -EFAULT;
2777 
2778 	len = min_t(unsigned int, len, sizeof(int));
2779 
2780 	if (len < 0)
2781 		return -EINVAL;
2782 
2783 	switch (optname) {
2784 	case UDP_CORK:
2785 		val = READ_ONCE(up->corkflag);
2786 		break;
2787 
2788 	case UDP_ENCAP:
2789 		val = up->encap_type;
2790 		break;
2791 
2792 	case UDP_NO_CHECK6_TX:
2793 		val = up->no_check6_tx;
2794 		break;
2795 
2796 	case UDP_NO_CHECK6_RX:
2797 		val = up->no_check6_rx;
2798 		break;
2799 
2800 	case UDP_SEGMENT:
2801 		val = READ_ONCE(up->gso_size);
2802 		break;
2803 
2804 	case UDP_GRO:
2805 		val = up->gro_enabled;
2806 		break;
2807 
2808 	/* The following two cannot be changed on UDP sockets, the return is
2809 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2810 	case UDPLITE_SEND_CSCOV:
2811 		val = up->pcslen;
2812 		break;
2813 
2814 	case UDPLITE_RECV_CSCOV:
2815 		val = up->pcrlen;
2816 		break;
2817 
2818 	default:
2819 		return -ENOPROTOOPT;
2820 	}
2821 
2822 	if (put_user(len, optlen))
2823 		return -EFAULT;
2824 	if (copy_to_user(optval, &val, len))
2825 		return -EFAULT;
2826 	return 0;
2827 }
2828 EXPORT_SYMBOL(udp_lib_getsockopt);
2829 
2830 int udp_getsockopt(struct sock *sk, int level, int optname,
2831 		   char __user *optval, int __user *optlen)
2832 {
2833 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2834 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2835 	return ip_getsockopt(sk, level, optname, optval, optlen);
2836 }
2837 
2838 /**
2839  * 	udp_poll - wait for a UDP event.
2840  *	@file: - file struct
2841  *	@sock: - socket
2842  *	@wait: - poll table
2843  *
2844  *	This is same as datagram poll, except for the special case of
2845  *	blocking sockets. If application is using a blocking fd
2846  *	and a packet with checksum error is in the queue;
2847  *	then it could get return from select indicating data available
2848  *	but then block when reading it. Add special case code
2849  *	to work around these arguably broken applications.
2850  */
2851 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2852 {
2853 	__poll_t mask = datagram_poll(file, sock, wait);
2854 	struct sock *sk = sock->sk;
2855 
2856 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2857 		mask |= EPOLLIN | EPOLLRDNORM;
2858 
2859 	/* Check for false positives due to checksum errors */
2860 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2861 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2862 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2863 
2864 	/* psock ingress_msg queue should not contain any bad checksum frames */
2865 	if (sk_is_readable(sk))
2866 		mask |= EPOLLIN | EPOLLRDNORM;
2867 	return mask;
2868 
2869 }
2870 EXPORT_SYMBOL(udp_poll);
2871 
2872 int udp_abort(struct sock *sk, int err)
2873 {
2874 	if (!has_current_bpf_ctx())
2875 		lock_sock(sk);
2876 
2877 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2878 	 * with close()
2879 	 */
2880 	if (sock_flag(sk, SOCK_DEAD))
2881 		goto out;
2882 
2883 	sk->sk_err = err;
2884 	sk_error_report(sk);
2885 	__udp_disconnect(sk, 0);
2886 
2887 out:
2888 	if (!has_current_bpf_ctx())
2889 		release_sock(sk);
2890 
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(udp_abort);
2894 
2895 struct proto udp_prot = {
2896 	.name			= "UDP",
2897 	.owner			= THIS_MODULE,
2898 	.close			= udp_lib_close,
2899 	.pre_connect		= udp_pre_connect,
2900 	.connect		= ip4_datagram_connect,
2901 	.disconnect		= udp_disconnect,
2902 	.ioctl			= udp_ioctl,
2903 	.init			= udp_init_sock,
2904 	.destroy		= udp_destroy_sock,
2905 	.setsockopt		= udp_setsockopt,
2906 	.getsockopt		= udp_getsockopt,
2907 	.sendmsg		= udp_sendmsg,
2908 	.recvmsg		= udp_recvmsg,
2909 	.splice_eof		= udp_splice_eof,
2910 	.release_cb		= ip4_datagram_release_cb,
2911 	.hash			= udp_lib_hash,
2912 	.unhash			= udp_lib_unhash,
2913 	.rehash			= udp_v4_rehash,
2914 	.get_port		= udp_v4_get_port,
2915 	.put_port		= udp_lib_unhash,
2916 #ifdef CONFIG_BPF_SYSCALL
2917 	.psock_update_sk_prot	= udp_bpf_update_proto,
2918 #endif
2919 	.memory_allocated	= &udp_memory_allocated,
2920 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2921 
2922 	.sysctl_mem		= sysctl_udp_mem,
2923 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2924 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2925 	.obj_size		= sizeof(struct udp_sock),
2926 	.h.udp_table		= NULL,
2927 	.diag_destroy		= udp_abort,
2928 };
2929 EXPORT_SYMBOL(udp_prot);
2930 
2931 /* ------------------------------------------------------------------------ */
2932 #ifdef CONFIG_PROC_FS
2933 
2934 static unsigned short seq_file_family(const struct seq_file *seq);
2935 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2936 {
2937 	unsigned short family = seq_file_family(seq);
2938 
2939 	/* AF_UNSPEC is used as a match all */
2940 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2941 		net_eq(sock_net(sk), seq_file_net(seq)));
2942 }
2943 
2944 #ifdef CONFIG_BPF_SYSCALL
2945 static const struct seq_operations bpf_iter_udp_seq_ops;
2946 #endif
2947 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2948 					   struct net *net)
2949 {
2950 	const struct udp_seq_afinfo *afinfo;
2951 
2952 #ifdef CONFIG_BPF_SYSCALL
2953 	if (seq->op == &bpf_iter_udp_seq_ops)
2954 		return net->ipv4.udp_table;
2955 #endif
2956 
2957 	afinfo = pde_data(file_inode(seq->file));
2958 	return afinfo->udp_table ? : net->ipv4.udp_table;
2959 }
2960 
2961 static struct sock *udp_get_first(struct seq_file *seq, int start)
2962 {
2963 	struct udp_iter_state *state = seq->private;
2964 	struct net *net = seq_file_net(seq);
2965 	struct udp_table *udptable;
2966 	struct sock *sk;
2967 
2968 	udptable = udp_get_table_seq(seq, net);
2969 
2970 	for (state->bucket = start; state->bucket <= udptable->mask;
2971 	     ++state->bucket) {
2972 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2973 
2974 		if (hlist_empty(&hslot->head))
2975 			continue;
2976 
2977 		spin_lock_bh(&hslot->lock);
2978 		sk_for_each(sk, &hslot->head) {
2979 			if (seq_sk_match(seq, sk))
2980 				goto found;
2981 		}
2982 		spin_unlock_bh(&hslot->lock);
2983 	}
2984 	sk = NULL;
2985 found:
2986 	return sk;
2987 }
2988 
2989 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2990 {
2991 	struct udp_iter_state *state = seq->private;
2992 	struct net *net = seq_file_net(seq);
2993 	struct udp_table *udptable;
2994 
2995 	do {
2996 		sk = sk_next(sk);
2997 	} while (sk && !seq_sk_match(seq, sk));
2998 
2999 	if (!sk) {
3000 		udptable = udp_get_table_seq(seq, net);
3001 
3002 		if (state->bucket <= udptable->mask)
3003 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3004 
3005 		return udp_get_first(seq, state->bucket + 1);
3006 	}
3007 	return sk;
3008 }
3009 
3010 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3011 {
3012 	struct sock *sk = udp_get_first(seq, 0);
3013 
3014 	if (sk)
3015 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3016 			--pos;
3017 	return pos ? NULL : sk;
3018 }
3019 
3020 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3021 {
3022 	struct udp_iter_state *state = seq->private;
3023 	state->bucket = MAX_UDP_PORTS;
3024 
3025 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3026 }
3027 EXPORT_SYMBOL(udp_seq_start);
3028 
3029 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3030 {
3031 	struct sock *sk;
3032 
3033 	if (v == SEQ_START_TOKEN)
3034 		sk = udp_get_idx(seq, 0);
3035 	else
3036 		sk = udp_get_next(seq, v);
3037 
3038 	++*pos;
3039 	return sk;
3040 }
3041 EXPORT_SYMBOL(udp_seq_next);
3042 
3043 void udp_seq_stop(struct seq_file *seq, void *v)
3044 {
3045 	struct udp_iter_state *state = seq->private;
3046 	struct udp_table *udptable;
3047 
3048 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3049 
3050 	if (state->bucket <= udptable->mask)
3051 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3052 }
3053 EXPORT_SYMBOL(udp_seq_stop);
3054 
3055 /* ------------------------------------------------------------------------ */
3056 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3057 		int bucket)
3058 {
3059 	struct inet_sock *inet = inet_sk(sp);
3060 	__be32 dest = inet->inet_daddr;
3061 	__be32 src  = inet->inet_rcv_saddr;
3062 	__u16 destp	  = ntohs(inet->inet_dport);
3063 	__u16 srcp	  = ntohs(inet->inet_sport);
3064 
3065 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3066 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3067 		bucket, src, srcp, dest, destp, sp->sk_state,
3068 		sk_wmem_alloc_get(sp),
3069 		udp_rqueue_get(sp),
3070 		0, 0L, 0,
3071 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3072 		0, sock_i_ino(sp),
3073 		refcount_read(&sp->sk_refcnt), sp,
3074 		atomic_read(&sp->sk_drops));
3075 }
3076 
3077 int udp4_seq_show(struct seq_file *seq, void *v)
3078 {
3079 	seq_setwidth(seq, 127);
3080 	if (v == SEQ_START_TOKEN)
3081 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3082 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3083 			   "inode ref pointer drops");
3084 	else {
3085 		struct udp_iter_state *state = seq->private;
3086 
3087 		udp4_format_sock(v, seq, state->bucket);
3088 	}
3089 	seq_pad(seq, '\n');
3090 	return 0;
3091 }
3092 
3093 #ifdef CONFIG_BPF_SYSCALL
3094 struct bpf_iter__udp {
3095 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3096 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3097 	uid_t uid __aligned(8);
3098 	int bucket __aligned(8);
3099 };
3100 
3101 struct bpf_udp_iter_state {
3102 	struct udp_iter_state state;
3103 	unsigned int cur_sk;
3104 	unsigned int end_sk;
3105 	unsigned int max_sk;
3106 	int offset;
3107 	struct sock **batch;
3108 	bool st_bucket_done;
3109 };
3110 
3111 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3112 				      unsigned int new_batch_sz);
3113 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3114 {
3115 	struct bpf_udp_iter_state *iter = seq->private;
3116 	struct udp_iter_state *state = &iter->state;
3117 	struct net *net = seq_file_net(seq);
3118 	struct udp_table *udptable;
3119 	unsigned int batch_sks = 0;
3120 	bool resized = false;
3121 	struct sock *sk;
3122 
3123 	/* The current batch is done, so advance the bucket. */
3124 	if (iter->st_bucket_done) {
3125 		state->bucket++;
3126 		iter->offset = 0;
3127 	}
3128 
3129 	udptable = udp_get_table_seq(seq, net);
3130 
3131 again:
3132 	/* New batch for the next bucket.
3133 	 * Iterate over the hash table to find a bucket with sockets matching
3134 	 * the iterator attributes, and return the first matching socket from
3135 	 * the bucket. The remaining matched sockets from the bucket are batched
3136 	 * before releasing the bucket lock. This allows BPF programs that are
3137 	 * called in seq_show to acquire the bucket lock if needed.
3138 	 */
3139 	iter->cur_sk = 0;
3140 	iter->end_sk = 0;
3141 	iter->st_bucket_done = false;
3142 	batch_sks = 0;
3143 
3144 	for (; state->bucket <= udptable->mask; state->bucket++) {
3145 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3146 
3147 		if (hlist_empty(&hslot2->head)) {
3148 			iter->offset = 0;
3149 			continue;
3150 		}
3151 
3152 		spin_lock_bh(&hslot2->lock);
3153 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3154 			if (seq_sk_match(seq, sk)) {
3155 				/* Resume from the last iterated socket at the
3156 				 * offset in the bucket before iterator was stopped.
3157 				 */
3158 				if (iter->offset) {
3159 					--iter->offset;
3160 					continue;
3161 				}
3162 				if (iter->end_sk < iter->max_sk) {
3163 					sock_hold(sk);
3164 					iter->batch[iter->end_sk++] = sk;
3165 				}
3166 				batch_sks++;
3167 			}
3168 		}
3169 		spin_unlock_bh(&hslot2->lock);
3170 
3171 		if (iter->end_sk)
3172 			break;
3173 
3174 		/* Reset the current bucket's offset before moving to the next bucket. */
3175 		iter->offset = 0;
3176 	}
3177 
3178 	/* All done: no batch made. */
3179 	if (!iter->end_sk)
3180 		return NULL;
3181 
3182 	if (iter->end_sk == batch_sks) {
3183 		/* Batching is done for the current bucket; return the first
3184 		 * socket to be iterated from the batch.
3185 		 */
3186 		iter->st_bucket_done = true;
3187 		goto done;
3188 	}
3189 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3190 		resized = true;
3191 		/* After allocating a larger batch, retry one more time to grab
3192 		 * the whole bucket.
3193 		 */
3194 		state->bucket--;
3195 		goto again;
3196 	}
3197 done:
3198 	return iter->batch[0];
3199 }
3200 
3201 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3202 {
3203 	struct bpf_udp_iter_state *iter = seq->private;
3204 	struct sock *sk;
3205 
3206 	/* Whenever seq_next() is called, the iter->cur_sk is
3207 	 * done with seq_show(), so unref the iter->cur_sk.
3208 	 */
3209 	if (iter->cur_sk < iter->end_sk) {
3210 		sock_put(iter->batch[iter->cur_sk++]);
3211 		++iter->offset;
3212 	}
3213 
3214 	/* After updating iter->cur_sk, check if there are more sockets
3215 	 * available in the current bucket batch.
3216 	 */
3217 	if (iter->cur_sk < iter->end_sk)
3218 		sk = iter->batch[iter->cur_sk];
3219 	else
3220 		/* Prepare a new batch. */
3221 		sk = bpf_iter_udp_batch(seq);
3222 
3223 	++*pos;
3224 	return sk;
3225 }
3226 
3227 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3228 {
3229 	/* bpf iter does not support lseek, so it always
3230 	 * continue from where it was stop()-ped.
3231 	 */
3232 	if (*pos)
3233 		return bpf_iter_udp_batch(seq);
3234 
3235 	return SEQ_START_TOKEN;
3236 }
3237 
3238 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3239 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3240 {
3241 	struct bpf_iter__udp ctx;
3242 
3243 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3244 	ctx.meta = meta;
3245 	ctx.udp_sk = udp_sk;
3246 	ctx.uid = uid;
3247 	ctx.bucket = bucket;
3248 	return bpf_iter_run_prog(prog, &ctx);
3249 }
3250 
3251 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3252 {
3253 	struct udp_iter_state *state = seq->private;
3254 	struct bpf_iter_meta meta;
3255 	struct bpf_prog *prog;
3256 	struct sock *sk = v;
3257 	uid_t uid;
3258 	int ret;
3259 
3260 	if (v == SEQ_START_TOKEN)
3261 		return 0;
3262 
3263 	lock_sock(sk);
3264 
3265 	if (unlikely(sk_unhashed(sk))) {
3266 		ret = SEQ_SKIP;
3267 		goto unlock;
3268 	}
3269 
3270 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3271 	meta.seq = seq;
3272 	prog = bpf_iter_get_info(&meta, false);
3273 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3274 
3275 unlock:
3276 	release_sock(sk);
3277 	return ret;
3278 }
3279 
3280 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3281 {
3282 	while (iter->cur_sk < iter->end_sk)
3283 		sock_put(iter->batch[iter->cur_sk++]);
3284 }
3285 
3286 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3287 {
3288 	struct bpf_udp_iter_state *iter = seq->private;
3289 	struct bpf_iter_meta meta;
3290 	struct bpf_prog *prog;
3291 
3292 	if (!v) {
3293 		meta.seq = seq;
3294 		prog = bpf_iter_get_info(&meta, true);
3295 		if (prog)
3296 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3297 	}
3298 
3299 	if (iter->cur_sk < iter->end_sk) {
3300 		bpf_iter_udp_put_batch(iter);
3301 		iter->st_bucket_done = false;
3302 	}
3303 }
3304 
3305 static const struct seq_operations bpf_iter_udp_seq_ops = {
3306 	.start		= bpf_iter_udp_seq_start,
3307 	.next		= bpf_iter_udp_seq_next,
3308 	.stop		= bpf_iter_udp_seq_stop,
3309 	.show		= bpf_iter_udp_seq_show,
3310 };
3311 #endif
3312 
3313 static unsigned short seq_file_family(const struct seq_file *seq)
3314 {
3315 	const struct udp_seq_afinfo *afinfo;
3316 
3317 #ifdef CONFIG_BPF_SYSCALL
3318 	/* BPF iterator: bpf programs to filter sockets. */
3319 	if (seq->op == &bpf_iter_udp_seq_ops)
3320 		return AF_UNSPEC;
3321 #endif
3322 
3323 	/* Proc fs iterator */
3324 	afinfo = pde_data(file_inode(seq->file));
3325 	return afinfo->family;
3326 }
3327 
3328 const struct seq_operations udp_seq_ops = {
3329 	.start		= udp_seq_start,
3330 	.next		= udp_seq_next,
3331 	.stop		= udp_seq_stop,
3332 	.show		= udp4_seq_show,
3333 };
3334 EXPORT_SYMBOL(udp_seq_ops);
3335 
3336 static struct udp_seq_afinfo udp4_seq_afinfo = {
3337 	.family		= AF_INET,
3338 	.udp_table	= NULL,
3339 };
3340 
3341 static int __net_init udp4_proc_init_net(struct net *net)
3342 {
3343 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3344 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3345 		return -ENOMEM;
3346 	return 0;
3347 }
3348 
3349 static void __net_exit udp4_proc_exit_net(struct net *net)
3350 {
3351 	remove_proc_entry("udp", net->proc_net);
3352 }
3353 
3354 static struct pernet_operations udp4_net_ops = {
3355 	.init = udp4_proc_init_net,
3356 	.exit = udp4_proc_exit_net,
3357 };
3358 
3359 int __init udp4_proc_init(void)
3360 {
3361 	return register_pernet_subsys(&udp4_net_ops);
3362 }
3363 
3364 void udp4_proc_exit(void)
3365 {
3366 	unregister_pernet_subsys(&udp4_net_ops);
3367 }
3368 #endif /* CONFIG_PROC_FS */
3369 
3370 static __initdata unsigned long uhash_entries;
3371 static int __init set_uhash_entries(char *str)
3372 {
3373 	ssize_t ret;
3374 
3375 	if (!str)
3376 		return 0;
3377 
3378 	ret = kstrtoul(str, 0, &uhash_entries);
3379 	if (ret)
3380 		return 0;
3381 
3382 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3383 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3384 	return 1;
3385 }
3386 __setup("uhash_entries=", set_uhash_entries);
3387 
3388 void __init udp_table_init(struct udp_table *table, const char *name)
3389 {
3390 	unsigned int i;
3391 
3392 	table->hash = alloc_large_system_hash(name,
3393 					      2 * sizeof(struct udp_hslot),
3394 					      uhash_entries,
3395 					      21, /* one slot per 2 MB */
3396 					      0,
3397 					      &table->log,
3398 					      &table->mask,
3399 					      UDP_HTABLE_SIZE_MIN,
3400 					      UDP_HTABLE_SIZE_MAX);
3401 
3402 	table->hash2 = table->hash + (table->mask + 1);
3403 	for (i = 0; i <= table->mask; i++) {
3404 		INIT_HLIST_HEAD(&table->hash[i].head);
3405 		table->hash[i].count = 0;
3406 		spin_lock_init(&table->hash[i].lock);
3407 	}
3408 	for (i = 0; i <= table->mask; i++) {
3409 		INIT_HLIST_HEAD(&table->hash2[i].head);
3410 		table->hash2[i].count = 0;
3411 		spin_lock_init(&table->hash2[i].lock);
3412 	}
3413 }
3414 
3415 u32 udp_flow_hashrnd(void)
3416 {
3417 	static u32 hashrnd __read_mostly;
3418 
3419 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3420 
3421 	return hashrnd;
3422 }
3423 EXPORT_SYMBOL(udp_flow_hashrnd);
3424 
3425 static void __net_init udp_sysctl_init(struct net *net)
3426 {
3427 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3428 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3429 
3430 #ifdef CONFIG_NET_L3_MASTER_DEV
3431 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3432 #endif
3433 }
3434 
3435 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3436 {
3437 	struct udp_table *udptable;
3438 	int i;
3439 
3440 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3441 	if (!udptable)
3442 		goto out;
3443 
3444 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3445 				      GFP_KERNEL_ACCOUNT);
3446 	if (!udptable->hash)
3447 		goto free_table;
3448 
3449 	udptable->hash2 = udptable->hash + hash_entries;
3450 	udptable->mask = hash_entries - 1;
3451 	udptable->log = ilog2(hash_entries);
3452 
3453 	for (i = 0; i < hash_entries; i++) {
3454 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3455 		udptable->hash[i].count = 0;
3456 		spin_lock_init(&udptable->hash[i].lock);
3457 
3458 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3459 		udptable->hash2[i].count = 0;
3460 		spin_lock_init(&udptable->hash2[i].lock);
3461 	}
3462 
3463 	return udptable;
3464 
3465 free_table:
3466 	kfree(udptable);
3467 out:
3468 	return NULL;
3469 }
3470 
3471 static void __net_exit udp_pernet_table_free(struct net *net)
3472 {
3473 	struct udp_table *udptable = net->ipv4.udp_table;
3474 
3475 	if (udptable == &udp_table)
3476 		return;
3477 
3478 	kvfree(udptable->hash);
3479 	kfree(udptable);
3480 }
3481 
3482 static void __net_init udp_set_table(struct net *net)
3483 {
3484 	struct udp_table *udptable;
3485 	unsigned int hash_entries;
3486 	struct net *old_net;
3487 
3488 	if (net_eq(net, &init_net))
3489 		goto fallback;
3490 
3491 	old_net = current->nsproxy->net_ns;
3492 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3493 	if (!hash_entries)
3494 		goto fallback;
3495 
3496 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3497 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3498 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3499 	else
3500 		hash_entries = roundup_pow_of_two(hash_entries);
3501 
3502 	udptable = udp_pernet_table_alloc(hash_entries);
3503 	if (udptable) {
3504 		net->ipv4.udp_table = udptable;
3505 	} else {
3506 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3507 			"for a netns, fallback to the global one\n",
3508 			hash_entries);
3509 fallback:
3510 		net->ipv4.udp_table = &udp_table;
3511 	}
3512 }
3513 
3514 static int __net_init udp_pernet_init(struct net *net)
3515 {
3516 	udp_sysctl_init(net);
3517 	udp_set_table(net);
3518 
3519 	return 0;
3520 }
3521 
3522 static void __net_exit udp_pernet_exit(struct net *net)
3523 {
3524 	udp_pernet_table_free(net);
3525 }
3526 
3527 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3528 	.init	= udp_pernet_init,
3529 	.exit	= udp_pernet_exit,
3530 };
3531 
3532 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3533 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3534 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3535 
3536 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3537 				      unsigned int new_batch_sz)
3538 {
3539 	struct sock **new_batch;
3540 
3541 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3542 				   GFP_USER | __GFP_NOWARN);
3543 	if (!new_batch)
3544 		return -ENOMEM;
3545 
3546 	bpf_iter_udp_put_batch(iter);
3547 	kvfree(iter->batch);
3548 	iter->batch = new_batch;
3549 	iter->max_sk = new_batch_sz;
3550 
3551 	return 0;
3552 }
3553 
3554 #define INIT_BATCH_SZ 16
3555 
3556 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3557 {
3558 	struct bpf_udp_iter_state *iter = priv_data;
3559 	int ret;
3560 
3561 	ret = bpf_iter_init_seq_net(priv_data, aux);
3562 	if (ret)
3563 		return ret;
3564 
3565 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3566 	if (ret)
3567 		bpf_iter_fini_seq_net(priv_data);
3568 
3569 	return ret;
3570 }
3571 
3572 static void bpf_iter_fini_udp(void *priv_data)
3573 {
3574 	struct bpf_udp_iter_state *iter = priv_data;
3575 
3576 	bpf_iter_fini_seq_net(priv_data);
3577 	kvfree(iter->batch);
3578 }
3579 
3580 static const struct bpf_iter_seq_info udp_seq_info = {
3581 	.seq_ops		= &bpf_iter_udp_seq_ops,
3582 	.init_seq_private	= bpf_iter_init_udp,
3583 	.fini_seq_private	= bpf_iter_fini_udp,
3584 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3585 };
3586 
3587 static struct bpf_iter_reg udp_reg_info = {
3588 	.target			= "udp",
3589 	.ctx_arg_info_size	= 1,
3590 	.ctx_arg_info		= {
3591 		{ offsetof(struct bpf_iter__udp, udp_sk),
3592 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3593 	},
3594 	.seq_info		= &udp_seq_info,
3595 };
3596 
3597 static void __init bpf_iter_register(void)
3598 {
3599 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3600 	if (bpf_iter_reg_target(&udp_reg_info))
3601 		pr_warn("Warning: could not register bpf iterator udp\n");
3602 }
3603 #endif
3604 
3605 void __init udp_init(void)
3606 {
3607 	unsigned long limit;
3608 	unsigned int i;
3609 
3610 	udp_table_init(&udp_table, "UDP");
3611 	limit = nr_free_buffer_pages() / 8;
3612 	limit = max(limit, 128UL);
3613 	sysctl_udp_mem[0] = limit / 4 * 3;
3614 	sysctl_udp_mem[1] = limit;
3615 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3616 
3617 	/* 16 spinlocks per cpu */
3618 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3619 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3620 				GFP_KERNEL);
3621 	if (!udp_busylocks)
3622 		panic("UDP: failed to alloc udp_busylocks\n");
3623 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3624 		spin_lock_init(udp_busylocks + i);
3625 
3626 	if (register_pernet_subsys(&udp_sysctl_ops))
3627 		panic("UDP: failed to init sysctl parameters.\n");
3628 
3629 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3630 	bpf_iter_register();
3631 #endif
3632 }
3633