xref: /openbmc/linux/net/ipv4/udp.c (revision f0702555)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2,
142 						 bool match_wildcard),
143 			       unsigned int log)
144 {
145 	struct sock *sk2;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_for_each(sk2, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
157 		     !uid_eq(uid, sock_i_uid(sk2))) &&
158 		    saddr_comp(sk, sk2, true)) {
159 			if (!bitmap)
160 				return 1;
161 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
162 		}
163 	}
164 	return 0;
165 }
166 
167 /*
168  * Note: we still hold spinlock of primary hash chain, so no other writer
169  * can insert/delete a socket with local_port == num
170  */
171 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
172 				struct udp_hslot *hslot2,
173 				struct sock *sk,
174 				int (*saddr_comp)(const struct sock *sk1,
175 						  const struct sock *sk2,
176 						  bool match_wildcard))
177 {
178 	struct sock *sk2;
179 	kuid_t uid = sock_i_uid(sk);
180 	int res = 0;
181 
182 	spin_lock(&hslot2->lock);
183 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
184 		if (net_eq(sock_net(sk2), net) &&
185 		    sk2 != sk &&
186 		    (udp_sk(sk2)->udp_port_hash == num) &&
187 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
188 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
189 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
190 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
191 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
192 		     !uid_eq(uid, sock_i_uid(sk2))) &&
193 		    saddr_comp(sk, sk2, true)) {
194 			res = 1;
195 			break;
196 		}
197 	}
198 	spin_unlock(&hslot2->lock);
199 	return res;
200 }
201 
202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
203 				  int (*saddr_same)(const struct sock *sk1,
204 						    const struct sock *sk2,
205 						    bool match_wildcard))
206 {
207 	struct net *net = sock_net(sk);
208 	kuid_t uid = sock_i_uid(sk);
209 	struct sock *sk2;
210 
211 	sk_for_each(sk2, &hslot->head) {
212 		if (net_eq(sock_net(sk2), net) &&
213 		    sk2 != sk &&
214 		    sk2->sk_family == sk->sk_family &&
215 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
216 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
217 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
218 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
219 		    (*saddr_same)(sk, sk2, false)) {
220 			return reuseport_add_sock(sk, sk2);
221 		}
222 	}
223 
224 	/* Initial allocation may have already happened via setsockopt */
225 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
226 		return reuseport_alloc(sk);
227 	return 0;
228 }
229 
230 /**
231  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
232  *
233  *  @sk:          socket struct in question
234  *  @snum:        port number to look up
235  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     int (*saddr_comp)(const struct sock *sk1,
241 				       const struct sock *sk2,
242 				       bool match_wildcard),
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    saddr_comp, udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 		} while (++first != last);
288 		goto fail;
289 	} else {
290 		hslot = udp_hashslot(udptable, net, snum);
291 		spin_lock_bh(&hslot->lock);
292 		if (hslot->count > 10) {
293 			int exist;
294 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295 
296 			slot2          &= udptable->mask;
297 			hash2_nulladdr &= udptable->mask;
298 
299 			hslot2 = udp_hashslot2(udptable, slot2);
300 			if (hslot->count < hslot2->count)
301 				goto scan_primary_hash;
302 
303 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 						     sk, saddr_comp);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk, saddr_comp);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
317 					saddr_comp, 0))
318 			goto fail_unlock;
319 	}
320 found:
321 	inet_sk(sk)->inet_num = snum;
322 	udp_sk(sk)->udp_port_hash = snum;
323 	udp_sk(sk)->udp_portaddr_hash ^= snum;
324 	if (sk_unhashed(sk)) {
325 		if (sk->sk_reuseport &&
326 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
327 			inet_sk(sk)->inet_num = 0;
328 			udp_sk(sk)->udp_port_hash = 0;
329 			udp_sk(sk)->udp_portaddr_hash ^= snum;
330 			goto fail_unlock;
331 		}
332 
333 		sk_add_node_rcu(sk, &hslot->head);
334 		hslot->count++;
335 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336 
337 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 		spin_lock(&hslot2->lock);
339 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 		    sk->sk_family == AF_INET6)
341 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		else
344 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 					   &hslot2->head);
346 		hslot2->count++;
347 		spin_unlock(&hslot2->lock);
348 	}
349 	sock_set_flag(sk, SOCK_RCU_FREE);
350 	error = 0;
351 fail_unlock:
352 	spin_unlock_bh(&hslot->lock);
353 fail:
354 	return error;
355 }
356 EXPORT_SYMBOL(udp_lib_get_port);
357 
358 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
359  * match_wildcard == false: addresses must be exactly the same, i.e.
360  *                          0.0.0.0 only equals to 0.0.0.0
361  */
362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
363 			 bool match_wildcard)
364 {
365 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
366 
367 	if (!ipv6_only_sock(sk2)) {
368 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
369 			return 1;
370 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
371 			return match_wildcard;
372 	}
373 	return 0;
374 }
375 
376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
377 			      unsigned int port)
378 {
379 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
380 }
381 
382 int udp_v4_get_port(struct sock *sk, unsigned short snum)
383 {
384 	unsigned int hash2_nulladdr =
385 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
386 	unsigned int hash2_partial =
387 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
388 
389 	/* precompute partial secondary hash */
390 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
391 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
392 }
393 
394 static inline int compute_score(struct sock *sk, struct net *net,
395 				__be32 saddr, unsigned short hnum, __be16 sport,
396 				__be32 daddr, __be16 dport, int dif)
397 {
398 	int score;
399 	struct inet_sock *inet;
400 
401 	if (!net_eq(sock_net(sk), net) ||
402 	    udp_sk(sk)->udp_port_hash != hnum ||
403 	    ipv6_only_sock(sk))
404 		return -1;
405 
406 	score = (sk->sk_family == PF_INET) ? 2 : 1;
407 	inet = inet_sk(sk);
408 
409 	if (inet->inet_rcv_saddr) {
410 		if (inet->inet_rcv_saddr != daddr)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (inet->inet_daddr) {
416 		if (inet->inet_daddr != saddr)
417 			return -1;
418 		score += 4;
419 	}
420 
421 	if (inet->inet_dport) {
422 		if (inet->inet_dport != sport)
423 			return -1;
424 		score += 4;
425 	}
426 
427 	if (sk->sk_bound_dev_if) {
428 		if (sk->sk_bound_dev_if != dif)
429 			return -1;
430 		score += 4;
431 	}
432 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
433 		score++;
434 	return score;
435 }
436 
437 /*
438  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
439  */
440 static inline int compute_score2(struct sock *sk, struct net *net,
441 				 __be32 saddr, __be16 sport,
442 				 __be32 daddr, unsigned int hnum, int dif)
443 {
444 	int score;
445 	struct inet_sock *inet;
446 
447 	if (!net_eq(sock_net(sk), net) ||
448 	    ipv6_only_sock(sk))
449 		return -1;
450 
451 	inet = inet_sk(sk);
452 
453 	if (inet->inet_rcv_saddr != daddr ||
454 	    inet->inet_num != hnum)
455 		return -1;
456 
457 	score = (sk->sk_family == PF_INET) ? 2 : 1;
458 
459 	if (inet->inet_daddr) {
460 		if (inet->inet_daddr != saddr)
461 			return -1;
462 		score += 4;
463 	}
464 
465 	if (inet->inet_dport) {
466 		if (inet->inet_dport != sport)
467 			return -1;
468 		score += 4;
469 	}
470 
471 	if (sk->sk_bound_dev_if) {
472 		if (sk->sk_bound_dev_if != dif)
473 			return -1;
474 		score += 4;
475 	}
476 
477 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
478 		score++;
479 
480 	return score;
481 }
482 
483 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
484 		       const __u16 lport, const __be32 faddr,
485 		       const __be16 fport)
486 {
487 	static u32 udp_ehash_secret __read_mostly;
488 
489 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
490 
491 	return __inet_ehashfn(laddr, lport, faddr, fport,
492 			      udp_ehash_secret + net_hash_mix(net));
493 }
494 
495 /* called with read_rcu_lock() */
496 static struct sock *udp4_lib_lookup2(struct net *net,
497 		__be32 saddr, __be16 sport,
498 		__be32 daddr, unsigned int hnum, int dif,
499 		struct udp_hslot *hslot2, unsigned int slot2,
500 		struct sk_buff *skb)
501 {
502 	struct sock *sk, *result;
503 	int score, badness, matches = 0, reuseport = 0;
504 	u32 hash = 0;
505 
506 	result = NULL;
507 	badness = 0;
508 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
509 		score = compute_score2(sk, net, saddr, sport,
510 				      daddr, hnum, dif);
511 		if (score > badness) {
512 			reuseport = sk->sk_reuseport;
513 			if (reuseport) {
514 				hash = udp_ehashfn(net, daddr, hnum,
515 						   saddr, sport);
516 				result = reuseport_select_sock(sk, hash, skb,
517 							sizeof(struct udphdr));
518 				if (result)
519 					return result;
520 				matches = 1;
521 			}
522 			badness = score;
523 			result = sk;
524 		} else if (score == badness && reuseport) {
525 			matches++;
526 			if (reciprocal_scale(hash, matches) == 0)
527 				result = sk;
528 			hash = next_pseudo_random32(hash);
529 		}
530 	}
531 	return result;
532 }
533 
534 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
535  * harder than this. -DaveM
536  */
537 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
538 		__be16 sport, __be32 daddr, __be16 dport,
539 		int dif, struct udp_table *udptable, struct sk_buff *skb)
540 {
541 	struct sock *sk, *result;
542 	unsigned short hnum = ntohs(dport);
543 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
544 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
545 	int score, badness, matches = 0, reuseport = 0;
546 	u32 hash = 0;
547 
548 	if (hslot->count > 10) {
549 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
550 		slot2 = hash2 & udptable->mask;
551 		hslot2 = &udptable->hash2[slot2];
552 		if (hslot->count < hslot2->count)
553 			goto begin;
554 
555 		result = udp4_lib_lookup2(net, saddr, sport,
556 					  daddr, hnum, dif,
557 					  hslot2, slot2, skb);
558 		if (!result) {
559 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
560 			slot2 = hash2 & udptable->mask;
561 			hslot2 = &udptable->hash2[slot2];
562 			if (hslot->count < hslot2->count)
563 				goto begin;
564 
565 			result = udp4_lib_lookup2(net, saddr, sport,
566 						  htonl(INADDR_ANY), hnum, dif,
567 						  hslot2, slot2, skb);
568 		}
569 		return result;
570 	}
571 begin:
572 	result = NULL;
573 	badness = 0;
574 	sk_for_each_rcu(sk, &hslot->head) {
575 		score = compute_score(sk, net, saddr, hnum, sport,
576 				      daddr, dport, dif);
577 		if (score > badness) {
578 			reuseport = sk->sk_reuseport;
579 			if (reuseport) {
580 				hash = udp_ehashfn(net, daddr, hnum,
581 						   saddr, sport);
582 				result = reuseport_select_sock(sk, hash, skb,
583 							sizeof(struct udphdr));
584 				if (result)
585 					return result;
586 				matches = 1;
587 			}
588 			result = sk;
589 			badness = score;
590 		} else if (score == badness && reuseport) {
591 			matches++;
592 			if (reciprocal_scale(hash, matches) == 0)
593 				result = sk;
594 			hash = next_pseudo_random32(hash);
595 		}
596 	}
597 	return result;
598 }
599 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
600 
601 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
602 						 __be16 sport, __be16 dport,
603 						 struct udp_table *udptable)
604 {
605 	const struct iphdr *iph = ip_hdr(skb);
606 
607 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
608 				 iph->daddr, dport, inet_iif(skb),
609 				 udptable, skb);
610 }
611 
612 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
613 				 __be16 sport, __be16 dport)
614 {
615 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
616 }
617 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
618 
619 /* Must be called under rcu_read_lock().
620  * Does increment socket refcount.
621  */
622 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
623     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
624 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
625 			     __be32 daddr, __be16 dport, int dif)
626 {
627 	struct sock *sk;
628 
629 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
630 			       dif, &udp_table, NULL);
631 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
632 		sk = NULL;
633 	return sk;
634 }
635 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
636 #endif
637 
638 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
639 				       __be16 loc_port, __be32 loc_addr,
640 				       __be16 rmt_port, __be32 rmt_addr,
641 				       int dif, unsigned short hnum)
642 {
643 	struct inet_sock *inet = inet_sk(sk);
644 
645 	if (!net_eq(sock_net(sk), net) ||
646 	    udp_sk(sk)->udp_port_hash != hnum ||
647 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
648 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
649 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
650 	    ipv6_only_sock(sk) ||
651 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
652 		return false;
653 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
654 		return false;
655 	return true;
656 }
657 
658 /*
659  * This routine is called by the ICMP module when it gets some
660  * sort of error condition.  If err < 0 then the socket should
661  * be closed and the error returned to the user.  If err > 0
662  * it's just the icmp type << 8 | icmp code.
663  * Header points to the ip header of the error packet. We move
664  * on past this. Then (as it used to claim before adjustment)
665  * header points to the first 8 bytes of the udp header.  We need
666  * to find the appropriate port.
667  */
668 
669 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
670 {
671 	struct inet_sock *inet;
672 	const struct iphdr *iph = (const struct iphdr *)skb->data;
673 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
674 	const int type = icmp_hdr(skb)->type;
675 	const int code = icmp_hdr(skb)->code;
676 	struct sock *sk;
677 	int harderr;
678 	int err;
679 	struct net *net = dev_net(skb->dev);
680 
681 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
682 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
683 			NULL);
684 	if (!sk) {
685 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
686 		return;	/* No socket for error */
687 	}
688 
689 	err = 0;
690 	harderr = 0;
691 	inet = inet_sk(sk);
692 
693 	switch (type) {
694 	default:
695 	case ICMP_TIME_EXCEEDED:
696 		err = EHOSTUNREACH;
697 		break;
698 	case ICMP_SOURCE_QUENCH:
699 		goto out;
700 	case ICMP_PARAMETERPROB:
701 		err = EPROTO;
702 		harderr = 1;
703 		break;
704 	case ICMP_DEST_UNREACH:
705 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
706 			ipv4_sk_update_pmtu(skb, sk, info);
707 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
708 				err = EMSGSIZE;
709 				harderr = 1;
710 				break;
711 			}
712 			goto out;
713 		}
714 		err = EHOSTUNREACH;
715 		if (code <= NR_ICMP_UNREACH) {
716 			harderr = icmp_err_convert[code].fatal;
717 			err = icmp_err_convert[code].errno;
718 		}
719 		break;
720 	case ICMP_REDIRECT:
721 		ipv4_sk_redirect(skb, sk);
722 		goto out;
723 	}
724 
725 	/*
726 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
727 	 *	4.1.3.3.
728 	 */
729 	if (!inet->recverr) {
730 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
731 			goto out;
732 	} else
733 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
734 
735 	sk->sk_err = err;
736 	sk->sk_error_report(sk);
737 out:
738 	return;
739 }
740 
741 void udp_err(struct sk_buff *skb, u32 info)
742 {
743 	__udp4_lib_err(skb, info, &udp_table);
744 }
745 
746 /*
747  * Throw away all pending data and cancel the corking. Socket is locked.
748  */
749 void udp_flush_pending_frames(struct sock *sk)
750 {
751 	struct udp_sock *up = udp_sk(sk);
752 
753 	if (up->pending) {
754 		up->len = 0;
755 		up->pending = 0;
756 		ip_flush_pending_frames(sk);
757 	}
758 }
759 EXPORT_SYMBOL(udp_flush_pending_frames);
760 
761 /**
762  * 	udp4_hwcsum  -  handle outgoing HW checksumming
763  * 	@skb: 	sk_buff containing the filled-in UDP header
764  * 	        (checksum field must be zeroed out)
765  *	@src:	source IP address
766  *	@dst:	destination IP address
767  */
768 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
769 {
770 	struct udphdr *uh = udp_hdr(skb);
771 	int offset = skb_transport_offset(skb);
772 	int len = skb->len - offset;
773 	int hlen = len;
774 	__wsum csum = 0;
775 
776 	if (!skb_has_frag_list(skb)) {
777 		/*
778 		 * Only one fragment on the socket.
779 		 */
780 		skb->csum_start = skb_transport_header(skb) - skb->head;
781 		skb->csum_offset = offsetof(struct udphdr, check);
782 		uh->check = ~csum_tcpudp_magic(src, dst, len,
783 					       IPPROTO_UDP, 0);
784 	} else {
785 		struct sk_buff *frags;
786 
787 		/*
788 		 * HW-checksum won't work as there are two or more
789 		 * fragments on the socket so that all csums of sk_buffs
790 		 * should be together
791 		 */
792 		skb_walk_frags(skb, frags) {
793 			csum = csum_add(csum, frags->csum);
794 			hlen -= frags->len;
795 		}
796 
797 		csum = skb_checksum(skb, offset, hlen, csum);
798 		skb->ip_summed = CHECKSUM_NONE;
799 
800 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
801 		if (uh->check == 0)
802 			uh->check = CSUM_MANGLED_0;
803 	}
804 }
805 EXPORT_SYMBOL_GPL(udp4_hwcsum);
806 
807 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
808  * for the simple case like when setting the checksum for a UDP tunnel.
809  */
810 void udp_set_csum(bool nocheck, struct sk_buff *skb,
811 		  __be32 saddr, __be32 daddr, int len)
812 {
813 	struct udphdr *uh = udp_hdr(skb);
814 
815 	if (nocheck) {
816 		uh->check = 0;
817 	} else if (skb_is_gso(skb)) {
818 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
819 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
820 		uh->check = 0;
821 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
822 		if (uh->check == 0)
823 			uh->check = CSUM_MANGLED_0;
824 	} else {
825 		skb->ip_summed = CHECKSUM_PARTIAL;
826 		skb->csum_start = skb_transport_header(skb) - skb->head;
827 		skb->csum_offset = offsetof(struct udphdr, check);
828 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
829 	}
830 }
831 EXPORT_SYMBOL(udp_set_csum);
832 
833 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
834 {
835 	struct sock *sk = skb->sk;
836 	struct inet_sock *inet = inet_sk(sk);
837 	struct udphdr *uh;
838 	int err = 0;
839 	int is_udplite = IS_UDPLITE(sk);
840 	int offset = skb_transport_offset(skb);
841 	int len = skb->len - offset;
842 	__wsum csum = 0;
843 
844 	/*
845 	 * Create a UDP header
846 	 */
847 	uh = udp_hdr(skb);
848 	uh->source = inet->inet_sport;
849 	uh->dest = fl4->fl4_dport;
850 	uh->len = htons(len);
851 	uh->check = 0;
852 
853 	if (is_udplite)  				 /*     UDP-Lite      */
854 		csum = udplite_csum(skb);
855 
856 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
857 
858 		skb->ip_summed = CHECKSUM_NONE;
859 		goto send;
860 
861 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
862 
863 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
864 		goto send;
865 
866 	} else
867 		csum = udp_csum(skb);
868 
869 	/* add protocol-dependent pseudo-header */
870 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
871 				      sk->sk_protocol, csum);
872 	if (uh->check == 0)
873 		uh->check = CSUM_MANGLED_0;
874 
875 send:
876 	err = ip_send_skb(sock_net(sk), skb);
877 	if (err) {
878 		if (err == -ENOBUFS && !inet->recverr) {
879 			UDP_INC_STATS(sock_net(sk),
880 				      UDP_MIB_SNDBUFERRORS, is_udplite);
881 			err = 0;
882 		}
883 	} else
884 		UDP_INC_STATS(sock_net(sk),
885 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
886 	return err;
887 }
888 
889 /*
890  * Push out all pending data as one UDP datagram. Socket is locked.
891  */
892 int udp_push_pending_frames(struct sock *sk)
893 {
894 	struct udp_sock  *up = udp_sk(sk);
895 	struct inet_sock *inet = inet_sk(sk);
896 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
897 	struct sk_buff *skb;
898 	int err = 0;
899 
900 	skb = ip_finish_skb(sk, fl4);
901 	if (!skb)
902 		goto out;
903 
904 	err = udp_send_skb(skb, fl4);
905 
906 out:
907 	up->len = 0;
908 	up->pending = 0;
909 	return err;
910 }
911 EXPORT_SYMBOL(udp_push_pending_frames);
912 
913 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
914 {
915 	struct inet_sock *inet = inet_sk(sk);
916 	struct udp_sock *up = udp_sk(sk);
917 	struct flowi4 fl4_stack;
918 	struct flowi4 *fl4;
919 	int ulen = len;
920 	struct ipcm_cookie ipc;
921 	struct rtable *rt = NULL;
922 	int free = 0;
923 	int connected = 0;
924 	__be32 daddr, faddr, saddr;
925 	__be16 dport;
926 	u8  tos;
927 	int err, is_udplite = IS_UDPLITE(sk);
928 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
929 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
930 	struct sk_buff *skb;
931 	struct ip_options_data opt_copy;
932 
933 	if (len > 0xFFFF)
934 		return -EMSGSIZE;
935 
936 	/*
937 	 *	Check the flags.
938 	 */
939 
940 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
941 		return -EOPNOTSUPP;
942 
943 	ipc.opt = NULL;
944 	ipc.tx_flags = 0;
945 	ipc.ttl = 0;
946 	ipc.tos = -1;
947 
948 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
949 
950 	fl4 = &inet->cork.fl.u.ip4;
951 	if (up->pending) {
952 		/*
953 		 * There are pending frames.
954 		 * The socket lock must be held while it's corked.
955 		 */
956 		lock_sock(sk);
957 		if (likely(up->pending)) {
958 			if (unlikely(up->pending != AF_INET)) {
959 				release_sock(sk);
960 				return -EINVAL;
961 			}
962 			goto do_append_data;
963 		}
964 		release_sock(sk);
965 	}
966 	ulen += sizeof(struct udphdr);
967 
968 	/*
969 	 *	Get and verify the address.
970 	 */
971 	if (msg->msg_name) {
972 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
973 		if (msg->msg_namelen < sizeof(*usin))
974 			return -EINVAL;
975 		if (usin->sin_family != AF_INET) {
976 			if (usin->sin_family != AF_UNSPEC)
977 				return -EAFNOSUPPORT;
978 		}
979 
980 		daddr = usin->sin_addr.s_addr;
981 		dport = usin->sin_port;
982 		if (dport == 0)
983 			return -EINVAL;
984 	} else {
985 		if (sk->sk_state != TCP_ESTABLISHED)
986 			return -EDESTADDRREQ;
987 		daddr = inet->inet_daddr;
988 		dport = inet->inet_dport;
989 		/* Open fast path for connected socket.
990 		   Route will not be used, if at least one option is set.
991 		 */
992 		connected = 1;
993 	}
994 
995 	ipc.sockc.tsflags = sk->sk_tsflags;
996 	ipc.addr = inet->inet_saddr;
997 	ipc.oif = sk->sk_bound_dev_if;
998 
999 	if (msg->msg_controllen) {
1000 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
1001 		if (unlikely(err)) {
1002 			kfree(ipc.opt);
1003 			return err;
1004 		}
1005 		if (ipc.opt)
1006 			free = 1;
1007 		connected = 0;
1008 	}
1009 	if (!ipc.opt) {
1010 		struct ip_options_rcu *inet_opt;
1011 
1012 		rcu_read_lock();
1013 		inet_opt = rcu_dereference(inet->inet_opt);
1014 		if (inet_opt) {
1015 			memcpy(&opt_copy, inet_opt,
1016 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1017 			ipc.opt = &opt_copy.opt;
1018 		}
1019 		rcu_read_unlock();
1020 	}
1021 
1022 	saddr = ipc.addr;
1023 	ipc.addr = faddr = daddr;
1024 
1025 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1026 
1027 	if (ipc.opt && ipc.opt->opt.srr) {
1028 		if (!daddr)
1029 			return -EINVAL;
1030 		faddr = ipc.opt->opt.faddr;
1031 		connected = 0;
1032 	}
1033 	tos = get_rttos(&ipc, inet);
1034 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1035 	    (msg->msg_flags & MSG_DONTROUTE) ||
1036 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1037 		tos |= RTO_ONLINK;
1038 		connected = 0;
1039 	}
1040 
1041 	if (ipv4_is_multicast(daddr)) {
1042 		if (!ipc.oif)
1043 			ipc.oif = inet->mc_index;
1044 		if (!saddr)
1045 			saddr = inet->mc_addr;
1046 		connected = 0;
1047 	} else if (!ipc.oif)
1048 		ipc.oif = inet->uc_index;
1049 
1050 	if (connected)
1051 		rt = (struct rtable *)sk_dst_check(sk, 0);
1052 
1053 	if (!rt) {
1054 		struct net *net = sock_net(sk);
1055 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1056 
1057 		fl4 = &fl4_stack;
1058 
1059 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1060 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1061 				   flow_flags,
1062 				   faddr, saddr, dport, inet->inet_sport);
1063 
1064 		if (!saddr && ipc.oif) {
1065 			err = l3mdev_get_saddr(net, ipc.oif, fl4);
1066 			if (err < 0)
1067 				goto out;
1068 		}
1069 
1070 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1071 		rt = ip_route_output_flow(net, fl4, sk);
1072 		if (IS_ERR(rt)) {
1073 			err = PTR_ERR(rt);
1074 			rt = NULL;
1075 			if (err == -ENETUNREACH)
1076 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1077 			goto out;
1078 		}
1079 
1080 		err = -EACCES;
1081 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1082 		    !sock_flag(sk, SOCK_BROADCAST))
1083 			goto out;
1084 		if (connected)
1085 			sk_dst_set(sk, dst_clone(&rt->dst));
1086 	}
1087 
1088 	if (msg->msg_flags&MSG_CONFIRM)
1089 		goto do_confirm;
1090 back_from_confirm:
1091 
1092 	saddr = fl4->saddr;
1093 	if (!ipc.addr)
1094 		daddr = ipc.addr = fl4->daddr;
1095 
1096 	/* Lockless fast path for the non-corking case. */
1097 	if (!corkreq) {
1098 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1099 				  sizeof(struct udphdr), &ipc, &rt,
1100 				  msg->msg_flags);
1101 		err = PTR_ERR(skb);
1102 		if (!IS_ERR_OR_NULL(skb))
1103 			err = udp_send_skb(skb, fl4);
1104 		goto out;
1105 	}
1106 
1107 	lock_sock(sk);
1108 	if (unlikely(up->pending)) {
1109 		/* The socket is already corked while preparing it. */
1110 		/* ... which is an evident application bug. --ANK */
1111 		release_sock(sk);
1112 
1113 		net_dbg_ratelimited("cork app bug 2\n");
1114 		err = -EINVAL;
1115 		goto out;
1116 	}
1117 	/*
1118 	 *	Now cork the socket to pend data.
1119 	 */
1120 	fl4 = &inet->cork.fl.u.ip4;
1121 	fl4->daddr = daddr;
1122 	fl4->saddr = saddr;
1123 	fl4->fl4_dport = dport;
1124 	fl4->fl4_sport = inet->inet_sport;
1125 	up->pending = AF_INET;
1126 
1127 do_append_data:
1128 	up->len += ulen;
1129 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1130 			     sizeof(struct udphdr), &ipc, &rt,
1131 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1132 	if (err)
1133 		udp_flush_pending_frames(sk);
1134 	else if (!corkreq)
1135 		err = udp_push_pending_frames(sk);
1136 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1137 		up->pending = 0;
1138 	release_sock(sk);
1139 
1140 out:
1141 	ip_rt_put(rt);
1142 	if (free)
1143 		kfree(ipc.opt);
1144 	if (!err)
1145 		return len;
1146 	/*
1147 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1148 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1149 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1150 	 * things).  We could add another new stat but at least for now that
1151 	 * seems like overkill.
1152 	 */
1153 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1154 		UDP_INC_STATS(sock_net(sk),
1155 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1156 	}
1157 	return err;
1158 
1159 do_confirm:
1160 	dst_confirm(&rt->dst);
1161 	if (!(msg->msg_flags&MSG_PROBE) || len)
1162 		goto back_from_confirm;
1163 	err = 0;
1164 	goto out;
1165 }
1166 EXPORT_SYMBOL(udp_sendmsg);
1167 
1168 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1169 		 size_t size, int flags)
1170 {
1171 	struct inet_sock *inet = inet_sk(sk);
1172 	struct udp_sock *up = udp_sk(sk);
1173 	int ret;
1174 
1175 	if (flags & MSG_SENDPAGE_NOTLAST)
1176 		flags |= MSG_MORE;
1177 
1178 	if (!up->pending) {
1179 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1180 
1181 		/* Call udp_sendmsg to specify destination address which
1182 		 * sendpage interface can't pass.
1183 		 * This will succeed only when the socket is connected.
1184 		 */
1185 		ret = udp_sendmsg(sk, &msg, 0);
1186 		if (ret < 0)
1187 			return ret;
1188 	}
1189 
1190 	lock_sock(sk);
1191 
1192 	if (unlikely(!up->pending)) {
1193 		release_sock(sk);
1194 
1195 		net_dbg_ratelimited("udp cork app bug 3\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1200 			     page, offset, size, flags);
1201 	if (ret == -EOPNOTSUPP) {
1202 		release_sock(sk);
1203 		return sock_no_sendpage(sk->sk_socket, page, offset,
1204 					size, flags);
1205 	}
1206 	if (ret < 0) {
1207 		udp_flush_pending_frames(sk);
1208 		goto out;
1209 	}
1210 
1211 	up->len += size;
1212 	if (!(up->corkflag || (flags&MSG_MORE)))
1213 		ret = udp_push_pending_frames(sk);
1214 	if (!ret)
1215 		ret = size;
1216 out:
1217 	release_sock(sk);
1218 	return ret;
1219 }
1220 
1221 /**
1222  *	first_packet_length	- return length of first packet in receive queue
1223  *	@sk: socket
1224  *
1225  *	Drops all bad checksum frames, until a valid one is found.
1226  *	Returns the length of found skb, or 0 if none is found.
1227  */
1228 static unsigned int first_packet_length(struct sock *sk)
1229 {
1230 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1231 	struct sk_buff *skb;
1232 	unsigned int res;
1233 
1234 	__skb_queue_head_init(&list_kill);
1235 
1236 	spin_lock_bh(&rcvq->lock);
1237 	while ((skb = skb_peek(rcvq)) != NULL &&
1238 		udp_lib_checksum_complete(skb)) {
1239 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1240 				IS_UDPLITE(sk));
1241 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1242 				IS_UDPLITE(sk));
1243 		atomic_inc(&sk->sk_drops);
1244 		__skb_unlink(skb, rcvq);
1245 		__skb_queue_tail(&list_kill, skb);
1246 	}
1247 	res = skb ? skb->len : 0;
1248 	spin_unlock_bh(&rcvq->lock);
1249 
1250 	if (!skb_queue_empty(&list_kill)) {
1251 		bool slow = lock_sock_fast(sk);
1252 
1253 		__skb_queue_purge(&list_kill);
1254 		sk_mem_reclaim_partial(sk);
1255 		unlock_sock_fast(sk, slow);
1256 	}
1257 	return res;
1258 }
1259 
1260 /*
1261  *	IOCTL requests applicable to the UDP protocol
1262  */
1263 
1264 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1265 {
1266 	switch (cmd) {
1267 	case SIOCOUTQ:
1268 	{
1269 		int amount = sk_wmem_alloc_get(sk);
1270 
1271 		return put_user(amount, (int __user *)arg);
1272 	}
1273 
1274 	case SIOCINQ:
1275 	{
1276 		unsigned int amount = first_packet_length(sk);
1277 
1278 		return put_user(amount, (int __user *)arg);
1279 	}
1280 
1281 	default:
1282 		return -ENOIOCTLCMD;
1283 	}
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL(udp_ioctl);
1288 
1289 /*
1290  * 	This should be easy, if there is something there we
1291  * 	return it, otherwise we block.
1292  */
1293 
1294 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1295 		int flags, int *addr_len)
1296 {
1297 	struct inet_sock *inet = inet_sk(sk);
1298 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1299 	struct sk_buff *skb;
1300 	unsigned int ulen, copied;
1301 	int peeked, peeking, off;
1302 	int err;
1303 	int is_udplite = IS_UDPLITE(sk);
1304 	bool checksum_valid = false;
1305 	bool slow;
1306 
1307 	if (flags & MSG_ERRQUEUE)
1308 		return ip_recv_error(sk, msg, len, addr_len);
1309 
1310 try_again:
1311 	peeking = off = sk_peek_offset(sk, flags);
1312 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1313 				  &peeked, &off, &err);
1314 	if (!skb)
1315 		return err;
1316 
1317 	ulen = skb->len;
1318 	copied = len;
1319 	if (copied > ulen - off)
1320 		copied = ulen - off;
1321 	else if (copied < ulen)
1322 		msg->msg_flags |= MSG_TRUNC;
1323 
1324 	/*
1325 	 * If checksum is needed at all, try to do it while copying the
1326 	 * data.  If the data is truncated, or if we only want a partial
1327 	 * coverage checksum (UDP-Lite), do it before the copy.
1328 	 */
1329 
1330 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1331 		checksum_valid = !udp_lib_checksum_complete(skb);
1332 		if (!checksum_valid)
1333 			goto csum_copy_err;
1334 	}
1335 
1336 	if (checksum_valid || skb_csum_unnecessary(skb))
1337 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1338 	else {
1339 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1340 
1341 		if (err == -EINVAL)
1342 			goto csum_copy_err;
1343 	}
1344 
1345 	if (unlikely(err)) {
1346 		trace_kfree_skb(skb, udp_recvmsg);
1347 		if (!peeked) {
1348 			atomic_inc(&sk->sk_drops);
1349 			UDP_INC_STATS(sock_net(sk),
1350 				      UDP_MIB_INERRORS, is_udplite);
1351 		}
1352 		skb_free_datagram_locked(sk, skb);
1353 		return err;
1354 	}
1355 
1356 	if (!peeked)
1357 		UDP_INC_STATS(sock_net(sk),
1358 			      UDP_MIB_INDATAGRAMS, is_udplite);
1359 
1360 	sock_recv_ts_and_drops(msg, sk, skb);
1361 
1362 	/* Copy the address. */
1363 	if (sin) {
1364 		sin->sin_family = AF_INET;
1365 		sin->sin_port = udp_hdr(skb)->source;
1366 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1367 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1368 		*addr_len = sizeof(*sin);
1369 	}
1370 	if (inet->cmsg_flags)
1371 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off);
1372 
1373 	err = copied;
1374 	if (flags & MSG_TRUNC)
1375 		err = ulen;
1376 
1377 	__skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1378 	return err;
1379 
1380 csum_copy_err:
1381 	slow = lock_sock_fast(sk);
1382 	if (!skb_kill_datagram(sk, skb, flags)) {
1383 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1384 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1385 	}
1386 	unlock_sock_fast(sk, slow);
1387 
1388 	/* starting over for a new packet, but check if we need to yield */
1389 	cond_resched();
1390 	msg->msg_flags &= ~MSG_TRUNC;
1391 	goto try_again;
1392 }
1393 
1394 int udp_disconnect(struct sock *sk, int flags)
1395 {
1396 	struct inet_sock *inet = inet_sk(sk);
1397 	/*
1398 	 *	1003.1g - break association.
1399 	 */
1400 
1401 	sk->sk_state = TCP_CLOSE;
1402 	inet->inet_daddr = 0;
1403 	inet->inet_dport = 0;
1404 	sock_rps_reset_rxhash(sk);
1405 	sk->sk_bound_dev_if = 0;
1406 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1407 		inet_reset_saddr(sk);
1408 
1409 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1410 		sk->sk_prot->unhash(sk);
1411 		inet->inet_sport = 0;
1412 	}
1413 	sk_dst_reset(sk);
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL(udp_disconnect);
1417 
1418 void udp_lib_unhash(struct sock *sk)
1419 {
1420 	if (sk_hashed(sk)) {
1421 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1422 		struct udp_hslot *hslot, *hslot2;
1423 
1424 		hslot  = udp_hashslot(udptable, sock_net(sk),
1425 				      udp_sk(sk)->udp_port_hash);
1426 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1427 
1428 		spin_lock_bh(&hslot->lock);
1429 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1430 			reuseport_detach_sock(sk);
1431 		if (sk_del_node_init_rcu(sk)) {
1432 			hslot->count--;
1433 			inet_sk(sk)->inet_num = 0;
1434 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1435 
1436 			spin_lock(&hslot2->lock);
1437 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1438 			hslot2->count--;
1439 			spin_unlock(&hslot2->lock);
1440 		}
1441 		spin_unlock_bh(&hslot->lock);
1442 	}
1443 }
1444 EXPORT_SYMBOL(udp_lib_unhash);
1445 
1446 /*
1447  * inet_rcv_saddr was changed, we must rehash secondary hash
1448  */
1449 void udp_lib_rehash(struct sock *sk, u16 newhash)
1450 {
1451 	if (sk_hashed(sk)) {
1452 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1453 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1454 
1455 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1456 		nhslot2 = udp_hashslot2(udptable, newhash);
1457 		udp_sk(sk)->udp_portaddr_hash = newhash;
1458 
1459 		if (hslot2 != nhslot2 ||
1460 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1461 			hslot = udp_hashslot(udptable, sock_net(sk),
1462 					     udp_sk(sk)->udp_port_hash);
1463 			/* we must lock primary chain too */
1464 			spin_lock_bh(&hslot->lock);
1465 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1466 				reuseport_detach_sock(sk);
1467 
1468 			if (hslot2 != nhslot2) {
1469 				spin_lock(&hslot2->lock);
1470 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1471 				hslot2->count--;
1472 				spin_unlock(&hslot2->lock);
1473 
1474 				spin_lock(&nhslot2->lock);
1475 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1476 							 &nhslot2->head);
1477 				nhslot2->count++;
1478 				spin_unlock(&nhslot2->lock);
1479 			}
1480 
1481 			spin_unlock_bh(&hslot->lock);
1482 		}
1483 	}
1484 }
1485 EXPORT_SYMBOL(udp_lib_rehash);
1486 
1487 static void udp_v4_rehash(struct sock *sk)
1488 {
1489 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1490 					  inet_sk(sk)->inet_rcv_saddr,
1491 					  inet_sk(sk)->inet_num);
1492 	udp_lib_rehash(sk, new_hash);
1493 }
1494 
1495 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1496 {
1497 	int rc;
1498 
1499 	if (inet_sk(sk)->inet_daddr) {
1500 		sock_rps_save_rxhash(sk, skb);
1501 		sk_mark_napi_id(sk, skb);
1502 		sk_incoming_cpu_update(sk);
1503 	}
1504 
1505 	rc = __sock_queue_rcv_skb(sk, skb);
1506 	if (rc < 0) {
1507 		int is_udplite = IS_UDPLITE(sk);
1508 
1509 		/* Note that an ENOMEM error is charged twice */
1510 		if (rc == -ENOMEM)
1511 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1512 					is_udplite);
1513 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1514 		kfree_skb(skb);
1515 		trace_udp_fail_queue_rcv_skb(rc, sk);
1516 		return -1;
1517 	}
1518 
1519 	return 0;
1520 
1521 }
1522 
1523 static struct static_key udp_encap_needed __read_mostly;
1524 void udp_encap_enable(void)
1525 {
1526 	if (!static_key_enabled(&udp_encap_needed))
1527 		static_key_slow_inc(&udp_encap_needed);
1528 }
1529 EXPORT_SYMBOL(udp_encap_enable);
1530 
1531 /* returns:
1532  *  -1: error
1533  *   0: success
1534  *  >0: "udp encap" protocol resubmission
1535  *
1536  * Note that in the success and error cases, the skb is assumed to
1537  * have either been requeued or freed.
1538  */
1539 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1540 {
1541 	struct udp_sock *up = udp_sk(sk);
1542 	int rc;
1543 	int is_udplite = IS_UDPLITE(sk);
1544 
1545 	/*
1546 	 *	Charge it to the socket, dropping if the queue is full.
1547 	 */
1548 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1549 		goto drop;
1550 	nf_reset(skb);
1551 
1552 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1553 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1554 
1555 		/*
1556 		 * This is an encapsulation socket so pass the skb to
1557 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1558 		 * fall through and pass this up the UDP socket.
1559 		 * up->encap_rcv() returns the following value:
1560 		 * =0 if skb was successfully passed to the encap
1561 		 *    handler or was discarded by it.
1562 		 * >0 if skb should be passed on to UDP.
1563 		 * <0 if skb should be resubmitted as proto -N
1564 		 */
1565 
1566 		/* if we're overly short, let UDP handle it */
1567 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1568 		if (encap_rcv) {
1569 			int ret;
1570 
1571 			/* Verify checksum before giving to encap */
1572 			if (udp_lib_checksum_complete(skb))
1573 				goto csum_error;
1574 
1575 			ret = encap_rcv(sk, skb);
1576 			if (ret <= 0) {
1577 				__UDP_INC_STATS(sock_net(sk),
1578 						UDP_MIB_INDATAGRAMS,
1579 						is_udplite);
1580 				return -ret;
1581 			}
1582 		}
1583 
1584 		/* FALLTHROUGH -- it's a UDP Packet */
1585 	}
1586 
1587 	/*
1588 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1589 	 */
1590 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1591 
1592 		/*
1593 		 * MIB statistics other than incrementing the error count are
1594 		 * disabled for the following two types of errors: these depend
1595 		 * on the application settings, not on the functioning of the
1596 		 * protocol stack as such.
1597 		 *
1598 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1599 		 * way ... to ... at least let the receiving application block
1600 		 * delivery of packets with coverage values less than a value
1601 		 * provided by the application."
1602 		 */
1603 		if (up->pcrlen == 0) {          /* full coverage was set  */
1604 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1605 					    UDP_SKB_CB(skb)->cscov, skb->len);
1606 			goto drop;
1607 		}
1608 		/* The next case involves violating the min. coverage requested
1609 		 * by the receiver. This is subtle: if receiver wants x and x is
1610 		 * greater than the buffersize/MTU then receiver will complain
1611 		 * that it wants x while sender emits packets of smaller size y.
1612 		 * Therefore the above ...()->partial_cov statement is essential.
1613 		 */
1614 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1615 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1616 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1617 			goto drop;
1618 		}
1619 	}
1620 
1621 	if (rcu_access_pointer(sk->sk_filter) &&
1622 	    udp_lib_checksum_complete(skb))
1623 			goto csum_error;
1624 
1625 	if (sk_filter(sk, skb))
1626 		goto drop;
1627 
1628 	udp_csum_pull_header(skb);
1629 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1630 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1631 				is_udplite);
1632 		goto drop;
1633 	}
1634 
1635 	rc = 0;
1636 
1637 	ipv4_pktinfo_prepare(sk, skb);
1638 	bh_lock_sock(sk);
1639 	if (!sock_owned_by_user(sk))
1640 		rc = __udp_queue_rcv_skb(sk, skb);
1641 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1642 		bh_unlock_sock(sk);
1643 		goto drop;
1644 	}
1645 	bh_unlock_sock(sk);
1646 
1647 	return rc;
1648 
1649 csum_error:
1650 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1651 drop:
1652 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1653 	atomic_inc(&sk->sk_drops);
1654 	kfree_skb(skb);
1655 	return -1;
1656 }
1657 
1658 /* For TCP sockets, sk_rx_dst is protected by socket lock
1659  * For UDP, we use xchg() to guard against concurrent changes.
1660  */
1661 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1662 {
1663 	struct dst_entry *old;
1664 
1665 	dst_hold(dst);
1666 	old = xchg(&sk->sk_rx_dst, dst);
1667 	dst_release(old);
1668 }
1669 
1670 /*
1671  *	Multicasts and broadcasts go to each listener.
1672  *
1673  *	Note: called only from the BH handler context.
1674  */
1675 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1676 				    struct udphdr  *uh,
1677 				    __be32 saddr, __be32 daddr,
1678 				    struct udp_table *udptable,
1679 				    int proto)
1680 {
1681 	struct sock *sk, *first = NULL;
1682 	unsigned short hnum = ntohs(uh->dest);
1683 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1684 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1685 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1686 	int dif = skb->dev->ifindex;
1687 	struct hlist_node *node;
1688 	struct sk_buff *nskb;
1689 
1690 	if (use_hash2) {
1691 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1692 			    udp_table.mask;
1693 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1694 start_lookup:
1695 		hslot = &udp_table.hash2[hash2];
1696 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1697 	}
1698 
1699 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1700 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1701 					 uh->source, saddr, dif, hnum))
1702 			continue;
1703 
1704 		if (!first) {
1705 			first = sk;
1706 			continue;
1707 		}
1708 		nskb = skb_clone(skb, GFP_ATOMIC);
1709 
1710 		if (unlikely(!nskb)) {
1711 			atomic_inc(&sk->sk_drops);
1712 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1713 					IS_UDPLITE(sk));
1714 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1715 					IS_UDPLITE(sk));
1716 			continue;
1717 		}
1718 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1719 			consume_skb(nskb);
1720 	}
1721 
1722 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1723 	if (use_hash2 && hash2 != hash2_any) {
1724 		hash2 = hash2_any;
1725 		goto start_lookup;
1726 	}
1727 
1728 	if (first) {
1729 		if (udp_queue_rcv_skb(first, skb) > 0)
1730 			consume_skb(skb);
1731 	} else {
1732 		kfree_skb(skb);
1733 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1734 				proto == IPPROTO_UDPLITE);
1735 	}
1736 	return 0;
1737 }
1738 
1739 /* Initialize UDP checksum. If exited with zero value (success),
1740  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1741  * Otherwise, csum completion requires chacksumming packet body,
1742  * including udp header and folding it to skb->csum.
1743  */
1744 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1745 				 int proto)
1746 {
1747 	int err;
1748 
1749 	UDP_SKB_CB(skb)->partial_cov = 0;
1750 	UDP_SKB_CB(skb)->cscov = skb->len;
1751 
1752 	if (proto == IPPROTO_UDPLITE) {
1753 		err = udplite_checksum_init(skb, uh);
1754 		if (err)
1755 			return err;
1756 	}
1757 
1758 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1759 					    inet_compute_pseudo);
1760 }
1761 
1762 /*
1763  *	All we need to do is get the socket, and then do a checksum.
1764  */
1765 
1766 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1767 		   int proto)
1768 {
1769 	struct sock *sk;
1770 	struct udphdr *uh;
1771 	unsigned short ulen;
1772 	struct rtable *rt = skb_rtable(skb);
1773 	__be32 saddr, daddr;
1774 	struct net *net = dev_net(skb->dev);
1775 
1776 	/*
1777 	 *  Validate the packet.
1778 	 */
1779 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1780 		goto drop;		/* No space for header. */
1781 
1782 	uh   = udp_hdr(skb);
1783 	ulen = ntohs(uh->len);
1784 	saddr = ip_hdr(skb)->saddr;
1785 	daddr = ip_hdr(skb)->daddr;
1786 
1787 	if (ulen > skb->len)
1788 		goto short_packet;
1789 
1790 	if (proto == IPPROTO_UDP) {
1791 		/* UDP validates ulen. */
1792 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1793 			goto short_packet;
1794 		uh = udp_hdr(skb);
1795 	}
1796 
1797 	if (udp4_csum_init(skb, uh, proto))
1798 		goto csum_error;
1799 
1800 	sk = skb_steal_sock(skb);
1801 	if (sk) {
1802 		struct dst_entry *dst = skb_dst(skb);
1803 		int ret;
1804 
1805 		if (unlikely(sk->sk_rx_dst != dst))
1806 			udp_sk_rx_dst_set(sk, dst);
1807 
1808 		ret = udp_queue_rcv_skb(sk, skb);
1809 		sock_put(sk);
1810 		/* a return value > 0 means to resubmit the input, but
1811 		 * it wants the return to be -protocol, or 0
1812 		 */
1813 		if (ret > 0)
1814 			return -ret;
1815 		return 0;
1816 	}
1817 
1818 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1819 		return __udp4_lib_mcast_deliver(net, skb, uh,
1820 						saddr, daddr, udptable, proto);
1821 
1822 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1823 	if (sk) {
1824 		int ret;
1825 
1826 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1827 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1828 						 inet_compute_pseudo);
1829 
1830 		ret = udp_queue_rcv_skb(sk, skb);
1831 
1832 		/* a return value > 0 means to resubmit the input, but
1833 		 * it wants the return to be -protocol, or 0
1834 		 */
1835 		if (ret > 0)
1836 			return -ret;
1837 		return 0;
1838 	}
1839 
1840 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1841 		goto drop;
1842 	nf_reset(skb);
1843 
1844 	/* No socket. Drop packet silently, if checksum is wrong */
1845 	if (udp_lib_checksum_complete(skb))
1846 		goto csum_error;
1847 
1848 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1849 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1850 
1851 	/*
1852 	 * Hmm.  We got an UDP packet to a port to which we
1853 	 * don't wanna listen.  Ignore it.
1854 	 */
1855 	kfree_skb(skb);
1856 	return 0;
1857 
1858 short_packet:
1859 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1860 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1861 			    &saddr, ntohs(uh->source),
1862 			    ulen, skb->len,
1863 			    &daddr, ntohs(uh->dest));
1864 	goto drop;
1865 
1866 csum_error:
1867 	/*
1868 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1869 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1870 	 */
1871 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1872 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1873 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1874 			    ulen);
1875 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1876 drop:
1877 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1878 	kfree_skb(skb);
1879 	return 0;
1880 }
1881 
1882 /* We can only early demux multicast if there is a single matching socket.
1883  * If more than one socket found returns NULL
1884  */
1885 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1886 						  __be16 loc_port, __be32 loc_addr,
1887 						  __be16 rmt_port, __be32 rmt_addr,
1888 						  int dif)
1889 {
1890 	struct sock *sk, *result;
1891 	unsigned short hnum = ntohs(loc_port);
1892 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1893 	struct udp_hslot *hslot = &udp_table.hash[slot];
1894 
1895 	/* Do not bother scanning a too big list */
1896 	if (hslot->count > 10)
1897 		return NULL;
1898 
1899 	result = NULL;
1900 	sk_for_each_rcu(sk, &hslot->head) {
1901 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1902 					rmt_port, rmt_addr, dif, hnum)) {
1903 			if (result)
1904 				return NULL;
1905 			result = sk;
1906 		}
1907 	}
1908 
1909 	return result;
1910 }
1911 
1912 /* For unicast we should only early demux connected sockets or we can
1913  * break forwarding setups.  The chains here can be long so only check
1914  * if the first socket is an exact match and if not move on.
1915  */
1916 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1917 					    __be16 loc_port, __be32 loc_addr,
1918 					    __be16 rmt_port, __be32 rmt_addr,
1919 					    int dif)
1920 {
1921 	unsigned short hnum = ntohs(loc_port);
1922 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1923 	unsigned int slot2 = hash2 & udp_table.mask;
1924 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1925 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1926 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1927 	struct sock *sk;
1928 
1929 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1930 		if (INET_MATCH(sk, net, acookie, rmt_addr,
1931 			       loc_addr, ports, dif))
1932 			return sk;
1933 		/* Only check first socket in chain */
1934 		break;
1935 	}
1936 	return NULL;
1937 }
1938 
1939 void udp_v4_early_demux(struct sk_buff *skb)
1940 {
1941 	struct net *net = dev_net(skb->dev);
1942 	const struct iphdr *iph;
1943 	const struct udphdr *uh;
1944 	struct sock *sk = NULL;
1945 	struct dst_entry *dst;
1946 	int dif = skb->dev->ifindex;
1947 	int ours;
1948 
1949 	/* validate the packet */
1950 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1951 		return;
1952 
1953 	iph = ip_hdr(skb);
1954 	uh = udp_hdr(skb);
1955 
1956 	if (skb->pkt_type == PACKET_BROADCAST ||
1957 	    skb->pkt_type == PACKET_MULTICAST) {
1958 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1959 
1960 		if (!in_dev)
1961 			return;
1962 
1963 		/* we are supposed to accept bcast packets */
1964 		if (skb->pkt_type == PACKET_MULTICAST) {
1965 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1966 					       iph->protocol);
1967 			if (!ours)
1968 				return;
1969 		}
1970 
1971 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1972 						   uh->source, iph->saddr, dif);
1973 	} else if (skb->pkt_type == PACKET_HOST) {
1974 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1975 					     uh->source, iph->saddr, dif);
1976 	}
1977 
1978 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1979 		return;
1980 
1981 	skb->sk = sk;
1982 	skb->destructor = sock_efree;
1983 	dst = READ_ONCE(sk->sk_rx_dst);
1984 
1985 	if (dst)
1986 		dst = dst_check(dst, 0);
1987 	if (dst) {
1988 		/* DST_NOCACHE can not be used without taking a reference */
1989 		if (dst->flags & DST_NOCACHE) {
1990 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1991 				skb_dst_set(skb, dst);
1992 		} else {
1993 			skb_dst_set_noref(skb, dst);
1994 		}
1995 	}
1996 }
1997 
1998 int udp_rcv(struct sk_buff *skb)
1999 {
2000 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2001 }
2002 
2003 void udp_destroy_sock(struct sock *sk)
2004 {
2005 	struct udp_sock *up = udp_sk(sk);
2006 	bool slow = lock_sock_fast(sk);
2007 	udp_flush_pending_frames(sk);
2008 	unlock_sock_fast(sk, slow);
2009 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2010 		void (*encap_destroy)(struct sock *sk);
2011 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2012 		if (encap_destroy)
2013 			encap_destroy(sk);
2014 	}
2015 }
2016 
2017 /*
2018  *	Socket option code for UDP
2019  */
2020 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2021 		       char __user *optval, unsigned int optlen,
2022 		       int (*push_pending_frames)(struct sock *))
2023 {
2024 	struct udp_sock *up = udp_sk(sk);
2025 	int val, valbool;
2026 	int err = 0;
2027 	int is_udplite = IS_UDPLITE(sk);
2028 
2029 	if (optlen < sizeof(int))
2030 		return -EINVAL;
2031 
2032 	if (get_user(val, (int __user *)optval))
2033 		return -EFAULT;
2034 
2035 	valbool = val ? 1 : 0;
2036 
2037 	switch (optname) {
2038 	case UDP_CORK:
2039 		if (val != 0) {
2040 			up->corkflag = 1;
2041 		} else {
2042 			up->corkflag = 0;
2043 			lock_sock(sk);
2044 			push_pending_frames(sk);
2045 			release_sock(sk);
2046 		}
2047 		break;
2048 
2049 	case UDP_ENCAP:
2050 		switch (val) {
2051 		case 0:
2052 		case UDP_ENCAP_ESPINUDP:
2053 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2054 			up->encap_rcv = xfrm4_udp_encap_rcv;
2055 			/* FALLTHROUGH */
2056 		case UDP_ENCAP_L2TPINUDP:
2057 			up->encap_type = val;
2058 			udp_encap_enable();
2059 			break;
2060 		default:
2061 			err = -ENOPROTOOPT;
2062 			break;
2063 		}
2064 		break;
2065 
2066 	case UDP_NO_CHECK6_TX:
2067 		up->no_check6_tx = valbool;
2068 		break;
2069 
2070 	case UDP_NO_CHECK6_RX:
2071 		up->no_check6_rx = valbool;
2072 		break;
2073 
2074 	/*
2075 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2076 	 */
2077 	/* The sender sets actual checksum coverage length via this option.
2078 	 * The case coverage > packet length is handled by send module. */
2079 	case UDPLITE_SEND_CSCOV:
2080 		if (!is_udplite)         /* Disable the option on UDP sockets */
2081 			return -ENOPROTOOPT;
2082 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2083 			val = 8;
2084 		else if (val > USHRT_MAX)
2085 			val = USHRT_MAX;
2086 		up->pcslen = val;
2087 		up->pcflag |= UDPLITE_SEND_CC;
2088 		break;
2089 
2090 	/* The receiver specifies a minimum checksum coverage value. To make
2091 	 * sense, this should be set to at least 8 (as done below). If zero is
2092 	 * used, this again means full checksum coverage.                     */
2093 	case UDPLITE_RECV_CSCOV:
2094 		if (!is_udplite)         /* Disable the option on UDP sockets */
2095 			return -ENOPROTOOPT;
2096 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2097 			val = 8;
2098 		else if (val > USHRT_MAX)
2099 			val = USHRT_MAX;
2100 		up->pcrlen = val;
2101 		up->pcflag |= UDPLITE_RECV_CC;
2102 		break;
2103 
2104 	default:
2105 		err = -ENOPROTOOPT;
2106 		break;
2107 	}
2108 
2109 	return err;
2110 }
2111 EXPORT_SYMBOL(udp_lib_setsockopt);
2112 
2113 int udp_setsockopt(struct sock *sk, int level, int optname,
2114 		   char __user *optval, unsigned int optlen)
2115 {
2116 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2117 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2118 					  udp_push_pending_frames);
2119 	return ip_setsockopt(sk, level, optname, optval, optlen);
2120 }
2121 
2122 #ifdef CONFIG_COMPAT
2123 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2124 			  char __user *optval, unsigned int optlen)
2125 {
2126 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2127 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2128 					  udp_push_pending_frames);
2129 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2130 }
2131 #endif
2132 
2133 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2134 		       char __user *optval, int __user *optlen)
2135 {
2136 	struct udp_sock *up = udp_sk(sk);
2137 	int val, len;
2138 
2139 	if (get_user(len, optlen))
2140 		return -EFAULT;
2141 
2142 	len = min_t(unsigned int, len, sizeof(int));
2143 
2144 	if (len < 0)
2145 		return -EINVAL;
2146 
2147 	switch (optname) {
2148 	case UDP_CORK:
2149 		val = up->corkflag;
2150 		break;
2151 
2152 	case UDP_ENCAP:
2153 		val = up->encap_type;
2154 		break;
2155 
2156 	case UDP_NO_CHECK6_TX:
2157 		val = up->no_check6_tx;
2158 		break;
2159 
2160 	case UDP_NO_CHECK6_RX:
2161 		val = up->no_check6_rx;
2162 		break;
2163 
2164 	/* The following two cannot be changed on UDP sockets, the return is
2165 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2166 	case UDPLITE_SEND_CSCOV:
2167 		val = up->pcslen;
2168 		break;
2169 
2170 	case UDPLITE_RECV_CSCOV:
2171 		val = up->pcrlen;
2172 		break;
2173 
2174 	default:
2175 		return -ENOPROTOOPT;
2176 	}
2177 
2178 	if (put_user(len, optlen))
2179 		return -EFAULT;
2180 	if (copy_to_user(optval, &val, len))
2181 		return -EFAULT;
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(udp_lib_getsockopt);
2185 
2186 int udp_getsockopt(struct sock *sk, int level, int optname,
2187 		   char __user *optval, int __user *optlen)
2188 {
2189 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2190 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2191 	return ip_getsockopt(sk, level, optname, optval, optlen);
2192 }
2193 
2194 #ifdef CONFIG_COMPAT
2195 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2196 				 char __user *optval, int __user *optlen)
2197 {
2198 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2199 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2200 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2201 }
2202 #endif
2203 /**
2204  * 	udp_poll - wait for a UDP event.
2205  *	@file - file struct
2206  *	@sock - socket
2207  *	@wait - poll table
2208  *
2209  *	This is same as datagram poll, except for the special case of
2210  *	blocking sockets. If application is using a blocking fd
2211  *	and a packet with checksum error is in the queue;
2212  *	then it could get return from select indicating data available
2213  *	but then block when reading it. Add special case code
2214  *	to work around these arguably broken applications.
2215  */
2216 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2217 {
2218 	unsigned int mask = datagram_poll(file, sock, wait);
2219 	struct sock *sk = sock->sk;
2220 
2221 	sock_rps_record_flow(sk);
2222 
2223 	/* Check for false positives due to checksum errors */
2224 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2225 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2226 		mask &= ~(POLLIN | POLLRDNORM);
2227 
2228 	return mask;
2229 
2230 }
2231 EXPORT_SYMBOL(udp_poll);
2232 
2233 struct proto udp_prot = {
2234 	.name		   = "UDP",
2235 	.owner		   = THIS_MODULE,
2236 	.close		   = udp_lib_close,
2237 	.connect	   = ip4_datagram_connect,
2238 	.disconnect	   = udp_disconnect,
2239 	.ioctl		   = udp_ioctl,
2240 	.destroy	   = udp_destroy_sock,
2241 	.setsockopt	   = udp_setsockopt,
2242 	.getsockopt	   = udp_getsockopt,
2243 	.sendmsg	   = udp_sendmsg,
2244 	.recvmsg	   = udp_recvmsg,
2245 	.sendpage	   = udp_sendpage,
2246 	.backlog_rcv	   = __udp_queue_rcv_skb,
2247 	.release_cb	   = ip4_datagram_release_cb,
2248 	.hash		   = udp_lib_hash,
2249 	.unhash		   = udp_lib_unhash,
2250 	.rehash		   = udp_v4_rehash,
2251 	.get_port	   = udp_v4_get_port,
2252 	.memory_allocated  = &udp_memory_allocated,
2253 	.sysctl_mem	   = sysctl_udp_mem,
2254 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2255 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2256 	.obj_size	   = sizeof(struct udp_sock),
2257 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2258 	.h.udp_table	   = &udp_table,
2259 #ifdef CONFIG_COMPAT
2260 	.compat_setsockopt = compat_udp_setsockopt,
2261 	.compat_getsockopt = compat_udp_getsockopt,
2262 #endif
2263 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2264 };
2265 EXPORT_SYMBOL(udp_prot);
2266 
2267 /* ------------------------------------------------------------------------ */
2268 #ifdef CONFIG_PROC_FS
2269 
2270 static struct sock *udp_get_first(struct seq_file *seq, int start)
2271 {
2272 	struct sock *sk;
2273 	struct udp_iter_state *state = seq->private;
2274 	struct net *net = seq_file_net(seq);
2275 
2276 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2277 	     ++state->bucket) {
2278 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2279 
2280 		if (hlist_empty(&hslot->head))
2281 			continue;
2282 
2283 		spin_lock_bh(&hslot->lock);
2284 		sk_for_each(sk, &hslot->head) {
2285 			if (!net_eq(sock_net(sk), net))
2286 				continue;
2287 			if (sk->sk_family == state->family)
2288 				goto found;
2289 		}
2290 		spin_unlock_bh(&hslot->lock);
2291 	}
2292 	sk = NULL;
2293 found:
2294 	return sk;
2295 }
2296 
2297 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2298 {
2299 	struct udp_iter_state *state = seq->private;
2300 	struct net *net = seq_file_net(seq);
2301 
2302 	do {
2303 		sk = sk_next(sk);
2304 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2305 
2306 	if (!sk) {
2307 		if (state->bucket <= state->udp_table->mask)
2308 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2309 		return udp_get_first(seq, state->bucket + 1);
2310 	}
2311 	return sk;
2312 }
2313 
2314 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2315 {
2316 	struct sock *sk = udp_get_first(seq, 0);
2317 
2318 	if (sk)
2319 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2320 			--pos;
2321 	return pos ? NULL : sk;
2322 }
2323 
2324 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2325 {
2326 	struct udp_iter_state *state = seq->private;
2327 	state->bucket = MAX_UDP_PORTS;
2328 
2329 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2330 }
2331 
2332 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2333 {
2334 	struct sock *sk;
2335 
2336 	if (v == SEQ_START_TOKEN)
2337 		sk = udp_get_idx(seq, 0);
2338 	else
2339 		sk = udp_get_next(seq, v);
2340 
2341 	++*pos;
2342 	return sk;
2343 }
2344 
2345 static void udp_seq_stop(struct seq_file *seq, void *v)
2346 {
2347 	struct udp_iter_state *state = seq->private;
2348 
2349 	if (state->bucket <= state->udp_table->mask)
2350 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2351 }
2352 
2353 int udp_seq_open(struct inode *inode, struct file *file)
2354 {
2355 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2356 	struct udp_iter_state *s;
2357 	int err;
2358 
2359 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2360 			   sizeof(struct udp_iter_state));
2361 	if (err < 0)
2362 		return err;
2363 
2364 	s = ((struct seq_file *)file->private_data)->private;
2365 	s->family		= afinfo->family;
2366 	s->udp_table		= afinfo->udp_table;
2367 	return err;
2368 }
2369 EXPORT_SYMBOL(udp_seq_open);
2370 
2371 /* ------------------------------------------------------------------------ */
2372 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2373 {
2374 	struct proc_dir_entry *p;
2375 	int rc = 0;
2376 
2377 	afinfo->seq_ops.start		= udp_seq_start;
2378 	afinfo->seq_ops.next		= udp_seq_next;
2379 	afinfo->seq_ops.stop		= udp_seq_stop;
2380 
2381 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2382 			     afinfo->seq_fops, afinfo);
2383 	if (!p)
2384 		rc = -ENOMEM;
2385 	return rc;
2386 }
2387 EXPORT_SYMBOL(udp_proc_register);
2388 
2389 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2390 {
2391 	remove_proc_entry(afinfo->name, net->proc_net);
2392 }
2393 EXPORT_SYMBOL(udp_proc_unregister);
2394 
2395 /* ------------------------------------------------------------------------ */
2396 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2397 		int bucket)
2398 {
2399 	struct inet_sock *inet = inet_sk(sp);
2400 	__be32 dest = inet->inet_daddr;
2401 	__be32 src  = inet->inet_rcv_saddr;
2402 	__u16 destp	  = ntohs(inet->inet_dport);
2403 	__u16 srcp	  = ntohs(inet->inet_sport);
2404 
2405 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2406 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2407 		bucket, src, srcp, dest, destp, sp->sk_state,
2408 		sk_wmem_alloc_get(sp),
2409 		sk_rmem_alloc_get(sp),
2410 		0, 0L, 0,
2411 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2412 		0, sock_i_ino(sp),
2413 		atomic_read(&sp->sk_refcnt), sp,
2414 		atomic_read(&sp->sk_drops));
2415 }
2416 
2417 int udp4_seq_show(struct seq_file *seq, void *v)
2418 {
2419 	seq_setwidth(seq, 127);
2420 	if (v == SEQ_START_TOKEN)
2421 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2422 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2423 			   "inode ref pointer drops");
2424 	else {
2425 		struct udp_iter_state *state = seq->private;
2426 
2427 		udp4_format_sock(v, seq, state->bucket);
2428 	}
2429 	seq_pad(seq, '\n');
2430 	return 0;
2431 }
2432 
2433 static const struct file_operations udp_afinfo_seq_fops = {
2434 	.owner    = THIS_MODULE,
2435 	.open     = udp_seq_open,
2436 	.read     = seq_read,
2437 	.llseek   = seq_lseek,
2438 	.release  = seq_release_net
2439 };
2440 
2441 /* ------------------------------------------------------------------------ */
2442 static struct udp_seq_afinfo udp4_seq_afinfo = {
2443 	.name		= "udp",
2444 	.family		= AF_INET,
2445 	.udp_table	= &udp_table,
2446 	.seq_fops	= &udp_afinfo_seq_fops,
2447 	.seq_ops	= {
2448 		.show		= udp4_seq_show,
2449 	},
2450 };
2451 
2452 static int __net_init udp4_proc_init_net(struct net *net)
2453 {
2454 	return udp_proc_register(net, &udp4_seq_afinfo);
2455 }
2456 
2457 static void __net_exit udp4_proc_exit_net(struct net *net)
2458 {
2459 	udp_proc_unregister(net, &udp4_seq_afinfo);
2460 }
2461 
2462 static struct pernet_operations udp4_net_ops = {
2463 	.init = udp4_proc_init_net,
2464 	.exit = udp4_proc_exit_net,
2465 };
2466 
2467 int __init udp4_proc_init(void)
2468 {
2469 	return register_pernet_subsys(&udp4_net_ops);
2470 }
2471 
2472 void udp4_proc_exit(void)
2473 {
2474 	unregister_pernet_subsys(&udp4_net_ops);
2475 }
2476 #endif /* CONFIG_PROC_FS */
2477 
2478 static __initdata unsigned long uhash_entries;
2479 static int __init set_uhash_entries(char *str)
2480 {
2481 	ssize_t ret;
2482 
2483 	if (!str)
2484 		return 0;
2485 
2486 	ret = kstrtoul(str, 0, &uhash_entries);
2487 	if (ret)
2488 		return 0;
2489 
2490 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2491 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2492 	return 1;
2493 }
2494 __setup("uhash_entries=", set_uhash_entries);
2495 
2496 void __init udp_table_init(struct udp_table *table, const char *name)
2497 {
2498 	unsigned int i;
2499 
2500 	table->hash = alloc_large_system_hash(name,
2501 					      2 * sizeof(struct udp_hslot),
2502 					      uhash_entries,
2503 					      21, /* one slot per 2 MB */
2504 					      0,
2505 					      &table->log,
2506 					      &table->mask,
2507 					      UDP_HTABLE_SIZE_MIN,
2508 					      64 * 1024);
2509 
2510 	table->hash2 = table->hash + (table->mask + 1);
2511 	for (i = 0; i <= table->mask; i++) {
2512 		INIT_HLIST_HEAD(&table->hash[i].head);
2513 		table->hash[i].count = 0;
2514 		spin_lock_init(&table->hash[i].lock);
2515 	}
2516 	for (i = 0; i <= table->mask; i++) {
2517 		INIT_HLIST_HEAD(&table->hash2[i].head);
2518 		table->hash2[i].count = 0;
2519 		spin_lock_init(&table->hash2[i].lock);
2520 	}
2521 }
2522 
2523 u32 udp_flow_hashrnd(void)
2524 {
2525 	static u32 hashrnd __read_mostly;
2526 
2527 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2528 
2529 	return hashrnd;
2530 }
2531 EXPORT_SYMBOL(udp_flow_hashrnd);
2532 
2533 void __init udp_init(void)
2534 {
2535 	unsigned long limit;
2536 
2537 	udp_table_init(&udp_table, "UDP");
2538 	limit = nr_free_buffer_pages() / 8;
2539 	limit = max(limit, 128UL);
2540 	sysctl_udp_mem[0] = limit / 4 * 3;
2541 	sysctl_udp_mem[1] = limit;
2542 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2543 
2544 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2545 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2546 }
2547