xref: /openbmc/linux/net/ipv4/udp.c (revision e8e0929d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 struct udp_table udp_table;
110 EXPORT_SYMBOL(udp_table);
111 
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
114 
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
117 
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
120 
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
123 
124 #define PORTS_PER_CHAIN (65536 / UDP_HTABLE_SIZE)
125 
126 static int udp_lib_lport_inuse(struct net *net, __u16 num,
127 			       const struct udp_hslot *hslot,
128 			       unsigned long *bitmap,
129 			       struct sock *sk,
130 			       int (*saddr_comp)(const struct sock *sk1,
131 						 const struct sock *sk2))
132 {
133 	struct sock *sk2;
134 	struct hlist_nulls_node *node;
135 
136 	sk_nulls_for_each(sk2, node, &hslot->head)
137 		if (net_eq(sock_net(sk2), net)			&&
138 		    sk2 != sk					&&
139 		    (bitmap || sk2->sk_hash == num)		&&
140 		    (!sk2->sk_reuse || !sk->sk_reuse)		&&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
142 			|| sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    (*saddr_comp)(sk, sk2)) {
144 			if (bitmap)
145 				__set_bit(sk2->sk_hash / UDP_HTABLE_SIZE,
146 					  bitmap);
147 			else
148 				return 1;
149 		}
150 	return 0;
151 }
152 
153 /**
154  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
155  *
156  *  @sk:          socket struct in question
157  *  @snum:        port number to look up
158  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
159  */
160 int udp_lib_get_port(struct sock *sk, unsigned short snum,
161 		       int (*saddr_comp)(const struct sock *sk1,
162 					 const struct sock *sk2))
163 {
164 	struct udp_hslot *hslot;
165 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
166 	int    error = 1;
167 	struct net *net = sock_net(sk);
168 
169 	if (!snum) {
170 		int low, high, remaining;
171 		unsigned rand;
172 		unsigned short first, last;
173 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
174 
175 		inet_get_local_port_range(&low, &high);
176 		remaining = (high - low) + 1;
177 
178 		rand = net_random();
179 		first = (((u64)rand * remaining) >> 32) + low;
180 		/*
181 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
182 		 */
183 		rand = (rand | 1) * UDP_HTABLE_SIZE;
184 		for (last = first + UDP_HTABLE_SIZE; first != last; first++) {
185 			hslot = &udptable->hash[udp_hashfn(net, first)];
186 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
187 			spin_lock_bh(&hslot->lock);
188 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
189 					    saddr_comp);
190 
191 			snum = first;
192 			/*
193 			 * Iterate on all possible values of snum for this hash.
194 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
195 			 * give us randomization and full range coverage.
196 			 */
197 			do {
198 				if (low <= snum && snum <= high &&
199 				    !test_bit(snum / UDP_HTABLE_SIZE, bitmap))
200 					goto found;
201 				snum += rand;
202 			} while (snum != first);
203 			spin_unlock_bh(&hslot->lock);
204 		}
205 		goto fail;
206 	} else {
207 		hslot = &udptable->hash[udp_hashfn(net, snum)];
208 		spin_lock_bh(&hslot->lock);
209 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, saddr_comp))
210 			goto fail_unlock;
211 	}
212 found:
213 	inet_sk(sk)->num = snum;
214 	sk->sk_hash = snum;
215 	if (sk_unhashed(sk)) {
216 		sk_nulls_add_node_rcu(sk, &hslot->head);
217 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
218 	}
219 	error = 0;
220 fail_unlock:
221 	spin_unlock_bh(&hslot->lock);
222 fail:
223 	return error;
224 }
225 EXPORT_SYMBOL(udp_lib_get_port);
226 
227 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
228 {
229 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
230 
231 	return 	(!ipv6_only_sock(sk2)  &&
232 		 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
233 		   inet1->rcv_saddr == inet2->rcv_saddr));
234 }
235 
236 int udp_v4_get_port(struct sock *sk, unsigned short snum)
237 {
238 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
239 }
240 
241 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
242 			 unsigned short hnum,
243 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
244 {
245 	int score = -1;
246 
247 	if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
248 			!ipv6_only_sock(sk)) {
249 		struct inet_sock *inet = inet_sk(sk);
250 
251 		score = (sk->sk_family == PF_INET ? 1 : 0);
252 		if (inet->rcv_saddr) {
253 			if (inet->rcv_saddr != daddr)
254 				return -1;
255 			score += 2;
256 		}
257 		if (inet->daddr) {
258 			if (inet->daddr != saddr)
259 				return -1;
260 			score += 2;
261 		}
262 		if (inet->dport) {
263 			if (inet->dport != sport)
264 				return -1;
265 			score += 2;
266 		}
267 		if (sk->sk_bound_dev_if) {
268 			if (sk->sk_bound_dev_if != dif)
269 				return -1;
270 			score += 2;
271 		}
272 	}
273 	return score;
274 }
275 
276 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
277  * harder than this. -DaveM
278  */
279 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
280 		__be16 sport, __be32 daddr, __be16 dport,
281 		int dif, struct udp_table *udptable)
282 {
283 	struct sock *sk, *result;
284 	struct hlist_nulls_node *node;
285 	unsigned short hnum = ntohs(dport);
286 	unsigned int hash = udp_hashfn(net, hnum);
287 	struct udp_hslot *hslot = &udptable->hash[hash];
288 	int score, badness;
289 
290 	rcu_read_lock();
291 begin:
292 	result = NULL;
293 	badness = -1;
294 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
295 		score = compute_score(sk, net, saddr, hnum, sport,
296 				      daddr, dport, dif);
297 		if (score > badness) {
298 			result = sk;
299 			badness = score;
300 		}
301 	}
302 	/*
303 	 * if the nulls value we got at the end of this lookup is
304 	 * not the expected one, we must restart lookup.
305 	 * We probably met an item that was moved to another chain.
306 	 */
307 	if (get_nulls_value(node) != hash)
308 		goto begin;
309 
310 	if (result) {
311 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
312 			result = NULL;
313 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
314 				  daddr, dport, dif) < badness)) {
315 			sock_put(result);
316 			goto begin;
317 		}
318 	}
319 	rcu_read_unlock();
320 	return result;
321 }
322 
323 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
324 						 __be16 sport, __be16 dport,
325 						 struct udp_table *udptable)
326 {
327 	struct sock *sk;
328 	const struct iphdr *iph = ip_hdr(skb);
329 
330 	if (unlikely(sk = skb_steal_sock(skb)))
331 		return sk;
332 	else
333 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
334 					 iph->daddr, dport, inet_iif(skb),
335 					 udptable);
336 }
337 
338 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
339 			     __be32 daddr, __be16 dport, int dif)
340 {
341 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
342 }
343 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
344 
345 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
346 					     __be16 loc_port, __be32 loc_addr,
347 					     __be16 rmt_port, __be32 rmt_addr,
348 					     int dif)
349 {
350 	struct hlist_nulls_node *node;
351 	struct sock *s = sk;
352 	unsigned short hnum = ntohs(loc_port);
353 
354 	sk_nulls_for_each_from(s, node) {
355 		struct inet_sock *inet = inet_sk(s);
356 
357 		if (!net_eq(sock_net(s), net)				||
358 		    s->sk_hash != hnum					||
359 		    (inet->daddr && inet->daddr != rmt_addr)		||
360 		    (inet->dport != rmt_port && inet->dport)		||
361 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
362 		    ipv6_only_sock(s)					||
363 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
364 			continue;
365 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
366 			continue;
367 		goto found;
368 	}
369 	s = NULL;
370 found:
371 	return s;
372 }
373 
374 /*
375  * This routine is called by the ICMP module when it gets some
376  * sort of error condition.  If err < 0 then the socket should
377  * be closed and the error returned to the user.  If err > 0
378  * it's just the icmp type << 8 | icmp code.
379  * Header points to the ip header of the error packet. We move
380  * on past this. Then (as it used to claim before adjustment)
381  * header points to the first 8 bytes of the udp header.  We need
382  * to find the appropriate port.
383  */
384 
385 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
386 {
387 	struct inet_sock *inet;
388 	struct iphdr *iph = (struct iphdr *)skb->data;
389 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
390 	const int type = icmp_hdr(skb)->type;
391 	const int code = icmp_hdr(skb)->code;
392 	struct sock *sk;
393 	int harderr;
394 	int err;
395 	struct net *net = dev_net(skb->dev);
396 
397 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
398 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
399 	if (sk == NULL) {
400 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
401 		return;	/* No socket for error */
402 	}
403 
404 	err = 0;
405 	harderr = 0;
406 	inet = inet_sk(sk);
407 
408 	switch (type) {
409 	default:
410 	case ICMP_TIME_EXCEEDED:
411 		err = EHOSTUNREACH;
412 		break;
413 	case ICMP_SOURCE_QUENCH:
414 		goto out;
415 	case ICMP_PARAMETERPROB:
416 		err = EPROTO;
417 		harderr = 1;
418 		break;
419 	case ICMP_DEST_UNREACH:
420 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
421 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
422 				err = EMSGSIZE;
423 				harderr = 1;
424 				break;
425 			}
426 			goto out;
427 		}
428 		err = EHOSTUNREACH;
429 		if (code <= NR_ICMP_UNREACH) {
430 			harderr = icmp_err_convert[code].fatal;
431 			err = icmp_err_convert[code].errno;
432 		}
433 		break;
434 	}
435 
436 	/*
437 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
438 	 *	4.1.3.3.
439 	 */
440 	if (!inet->recverr) {
441 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
442 			goto out;
443 	} else {
444 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
445 	}
446 	sk->sk_err = err;
447 	sk->sk_error_report(sk);
448 out:
449 	sock_put(sk);
450 }
451 
452 void udp_err(struct sk_buff *skb, u32 info)
453 {
454 	__udp4_lib_err(skb, info, &udp_table);
455 }
456 
457 /*
458  * Throw away all pending data and cancel the corking. Socket is locked.
459  */
460 void udp_flush_pending_frames(struct sock *sk)
461 {
462 	struct udp_sock *up = udp_sk(sk);
463 
464 	if (up->pending) {
465 		up->len = 0;
466 		up->pending = 0;
467 		ip_flush_pending_frames(sk);
468 	}
469 }
470 EXPORT_SYMBOL(udp_flush_pending_frames);
471 
472 /**
473  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
474  * 	@sk: 	socket we are sending on
475  * 	@skb: 	sk_buff containing the filled-in UDP header
476  * 	        (checksum field must be zeroed out)
477  */
478 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
479 				 __be32 src, __be32 dst, int len)
480 {
481 	unsigned int offset;
482 	struct udphdr *uh = udp_hdr(skb);
483 	__wsum csum = 0;
484 
485 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
486 		/*
487 		 * Only one fragment on the socket.
488 		 */
489 		skb->csum_start = skb_transport_header(skb) - skb->head;
490 		skb->csum_offset = offsetof(struct udphdr, check);
491 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
492 	} else {
493 		/*
494 		 * HW-checksum won't work as there are two or more
495 		 * fragments on the socket so that all csums of sk_buffs
496 		 * should be together
497 		 */
498 		offset = skb_transport_offset(skb);
499 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
500 
501 		skb->ip_summed = CHECKSUM_NONE;
502 
503 		skb_queue_walk(&sk->sk_write_queue, skb) {
504 			csum = csum_add(csum, skb->csum);
505 		}
506 
507 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
508 		if (uh->check == 0)
509 			uh->check = CSUM_MANGLED_0;
510 	}
511 }
512 
513 /*
514  * Push out all pending data as one UDP datagram. Socket is locked.
515  */
516 static int udp_push_pending_frames(struct sock *sk)
517 {
518 	struct udp_sock  *up = udp_sk(sk);
519 	struct inet_sock *inet = inet_sk(sk);
520 	struct flowi *fl = &inet->cork.fl;
521 	struct sk_buff *skb;
522 	struct udphdr *uh;
523 	int err = 0;
524 	int is_udplite = IS_UDPLITE(sk);
525 	__wsum csum = 0;
526 
527 	/* Grab the skbuff where UDP header space exists. */
528 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
529 		goto out;
530 
531 	/*
532 	 * Create a UDP header
533 	 */
534 	uh = udp_hdr(skb);
535 	uh->source = fl->fl_ip_sport;
536 	uh->dest = fl->fl_ip_dport;
537 	uh->len = htons(up->len);
538 	uh->check = 0;
539 
540 	if (is_udplite)  				 /*     UDP-Lite      */
541 		csum  = udplite_csum_outgoing(sk, skb);
542 
543 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
544 
545 		skb->ip_summed = CHECKSUM_NONE;
546 		goto send;
547 
548 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
549 
550 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
551 		goto send;
552 
553 	} else						 /*   `normal' UDP    */
554 		csum = udp_csum_outgoing(sk, skb);
555 
556 	/* add protocol-dependent pseudo-header */
557 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
558 				      sk->sk_protocol, csum);
559 	if (uh->check == 0)
560 		uh->check = CSUM_MANGLED_0;
561 
562 send:
563 	err = ip_push_pending_frames(sk);
564 	if (err) {
565 		if (err == -ENOBUFS && !inet->recverr) {
566 			UDP_INC_STATS_USER(sock_net(sk),
567 					   UDP_MIB_SNDBUFERRORS, is_udplite);
568 			err = 0;
569 		}
570 	} else
571 		UDP_INC_STATS_USER(sock_net(sk),
572 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
573 out:
574 	up->len = 0;
575 	up->pending = 0;
576 	return err;
577 }
578 
579 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
580 		size_t len)
581 {
582 	struct inet_sock *inet = inet_sk(sk);
583 	struct udp_sock *up = udp_sk(sk);
584 	int ulen = len;
585 	struct ipcm_cookie ipc;
586 	struct rtable *rt = NULL;
587 	int free = 0;
588 	int connected = 0;
589 	__be32 daddr, faddr, saddr;
590 	__be16 dport;
591 	u8  tos;
592 	int err, is_udplite = IS_UDPLITE(sk);
593 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
594 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
595 
596 	if (len > 0xFFFF)
597 		return -EMSGSIZE;
598 
599 	/*
600 	 *	Check the flags.
601 	 */
602 
603 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
604 		return -EOPNOTSUPP;
605 
606 	ipc.opt = NULL;
607 	ipc.shtx.flags = 0;
608 
609 	if (up->pending) {
610 		/*
611 		 * There are pending frames.
612 		 * The socket lock must be held while it's corked.
613 		 */
614 		lock_sock(sk);
615 		if (likely(up->pending)) {
616 			if (unlikely(up->pending != AF_INET)) {
617 				release_sock(sk);
618 				return -EINVAL;
619 			}
620 			goto do_append_data;
621 		}
622 		release_sock(sk);
623 	}
624 	ulen += sizeof(struct udphdr);
625 
626 	/*
627 	 *	Get and verify the address.
628 	 */
629 	if (msg->msg_name) {
630 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
631 		if (msg->msg_namelen < sizeof(*usin))
632 			return -EINVAL;
633 		if (usin->sin_family != AF_INET) {
634 			if (usin->sin_family != AF_UNSPEC)
635 				return -EAFNOSUPPORT;
636 		}
637 
638 		daddr = usin->sin_addr.s_addr;
639 		dport = usin->sin_port;
640 		if (dport == 0)
641 			return -EINVAL;
642 	} else {
643 		if (sk->sk_state != TCP_ESTABLISHED)
644 			return -EDESTADDRREQ;
645 		daddr = inet->daddr;
646 		dport = inet->dport;
647 		/* Open fast path for connected socket.
648 		   Route will not be used, if at least one option is set.
649 		 */
650 		connected = 1;
651 	}
652 	ipc.addr = inet->saddr;
653 
654 	ipc.oif = sk->sk_bound_dev_if;
655 	err = sock_tx_timestamp(msg, sk, &ipc.shtx);
656 	if (err)
657 		return err;
658 	if (msg->msg_controllen) {
659 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
660 		if (err)
661 			return err;
662 		if (ipc.opt)
663 			free = 1;
664 		connected = 0;
665 	}
666 	if (!ipc.opt)
667 		ipc.opt = inet->opt;
668 
669 	saddr = ipc.addr;
670 	ipc.addr = faddr = daddr;
671 
672 	if (ipc.opt && ipc.opt->srr) {
673 		if (!daddr)
674 			return -EINVAL;
675 		faddr = ipc.opt->faddr;
676 		connected = 0;
677 	}
678 	tos = RT_TOS(inet->tos);
679 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
680 	    (msg->msg_flags & MSG_DONTROUTE) ||
681 	    (ipc.opt && ipc.opt->is_strictroute)) {
682 		tos |= RTO_ONLINK;
683 		connected = 0;
684 	}
685 
686 	if (ipv4_is_multicast(daddr)) {
687 		if (!ipc.oif)
688 			ipc.oif = inet->mc_index;
689 		if (!saddr)
690 			saddr = inet->mc_addr;
691 		connected = 0;
692 	}
693 
694 	if (connected)
695 		rt = (struct rtable *)sk_dst_check(sk, 0);
696 
697 	if (rt == NULL) {
698 		struct flowi fl = { .oif = ipc.oif,
699 				    .mark = sk->sk_mark,
700 				    .nl_u = { .ip4_u =
701 					      { .daddr = faddr,
702 						.saddr = saddr,
703 						.tos = tos } },
704 				    .proto = sk->sk_protocol,
705 				    .flags = inet_sk_flowi_flags(sk),
706 				    .uli_u = { .ports =
707 					       { .sport = inet->sport,
708 						 .dport = dport } } };
709 		struct net *net = sock_net(sk);
710 
711 		security_sk_classify_flow(sk, &fl);
712 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
713 		if (err) {
714 			if (err == -ENETUNREACH)
715 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
716 			goto out;
717 		}
718 
719 		err = -EACCES;
720 		if ((rt->rt_flags & RTCF_BROADCAST) &&
721 		    !sock_flag(sk, SOCK_BROADCAST))
722 			goto out;
723 		if (connected)
724 			sk_dst_set(sk, dst_clone(&rt->u.dst));
725 	}
726 
727 	if (msg->msg_flags&MSG_CONFIRM)
728 		goto do_confirm;
729 back_from_confirm:
730 
731 	saddr = rt->rt_src;
732 	if (!ipc.addr)
733 		daddr = ipc.addr = rt->rt_dst;
734 
735 	lock_sock(sk);
736 	if (unlikely(up->pending)) {
737 		/* The socket is already corked while preparing it. */
738 		/* ... which is an evident application bug. --ANK */
739 		release_sock(sk);
740 
741 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
742 		err = -EINVAL;
743 		goto out;
744 	}
745 	/*
746 	 *	Now cork the socket to pend data.
747 	 */
748 	inet->cork.fl.fl4_dst = daddr;
749 	inet->cork.fl.fl_ip_dport = dport;
750 	inet->cork.fl.fl4_src = saddr;
751 	inet->cork.fl.fl_ip_sport = inet->sport;
752 	up->pending = AF_INET;
753 
754 do_append_data:
755 	up->len += ulen;
756 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
757 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
758 			sizeof(struct udphdr), &ipc, &rt,
759 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
760 	if (err)
761 		udp_flush_pending_frames(sk);
762 	else if (!corkreq)
763 		err = udp_push_pending_frames(sk);
764 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
765 		up->pending = 0;
766 	release_sock(sk);
767 
768 out:
769 	ip_rt_put(rt);
770 	if (free)
771 		kfree(ipc.opt);
772 	if (!err)
773 		return len;
774 	/*
775 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
776 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
777 	 * we don't have a good statistic (IpOutDiscards but it can be too many
778 	 * things).  We could add another new stat but at least for now that
779 	 * seems like overkill.
780 	 */
781 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
782 		UDP_INC_STATS_USER(sock_net(sk),
783 				UDP_MIB_SNDBUFERRORS, is_udplite);
784 	}
785 	return err;
786 
787 do_confirm:
788 	dst_confirm(&rt->u.dst);
789 	if (!(msg->msg_flags&MSG_PROBE) || len)
790 		goto back_from_confirm;
791 	err = 0;
792 	goto out;
793 }
794 EXPORT_SYMBOL(udp_sendmsg);
795 
796 int udp_sendpage(struct sock *sk, struct page *page, int offset,
797 		 size_t size, int flags)
798 {
799 	struct udp_sock *up = udp_sk(sk);
800 	int ret;
801 
802 	if (!up->pending) {
803 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
804 
805 		/* Call udp_sendmsg to specify destination address which
806 		 * sendpage interface can't pass.
807 		 * This will succeed only when the socket is connected.
808 		 */
809 		ret = udp_sendmsg(NULL, sk, &msg, 0);
810 		if (ret < 0)
811 			return ret;
812 	}
813 
814 	lock_sock(sk);
815 
816 	if (unlikely(!up->pending)) {
817 		release_sock(sk);
818 
819 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
820 		return -EINVAL;
821 	}
822 
823 	ret = ip_append_page(sk, page, offset, size, flags);
824 	if (ret == -EOPNOTSUPP) {
825 		release_sock(sk);
826 		return sock_no_sendpage(sk->sk_socket, page, offset,
827 					size, flags);
828 	}
829 	if (ret < 0) {
830 		udp_flush_pending_frames(sk);
831 		goto out;
832 	}
833 
834 	up->len += size;
835 	if (!(up->corkflag || (flags&MSG_MORE)))
836 		ret = udp_push_pending_frames(sk);
837 	if (!ret)
838 		ret = size;
839 out:
840 	release_sock(sk);
841 	return ret;
842 }
843 
844 /*
845  *	IOCTL requests applicable to the UDP protocol
846  */
847 
848 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
849 {
850 	switch (cmd) {
851 	case SIOCOUTQ:
852 	{
853 		int amount = sk_wmem_alloc_get(sk);
854 
855 		return put_user(amount, (int __user *)arg);
856 	}
857 
858 	case SIOCINQ:
859 	{
860 		struct sk_buff *skb;
861 		unsigned long amount;
862 
863 		amount = 0;
864 		spin_lock_bh(&sk->sk_receive_queue.lock);
865 		skb = skb_peek(&sk->sk_receive_queue);
866 		if (skb != NULL) {
867 			/*
868 			 * We will only return the amount
869 			 * of this packet since that is all
870 			 * that will be read.
871 			 */
872 			amount = skb->len - sizeof(struct udphdr);
873 		}
874 		spin_unlock_bh(&sk->sk_receive_queue.lock);
875 		return put_user(amount, (int __user *)arg);
876 	}
877 
878 	default:
879 		return -ENOIOCTLCMD;
880 	}
881 
882 	return 0;
883 }
884 EXPORT_SYMBOL(udp_ioctl);
885 
886 /*
887  * 	This should be easy, if there is something there we
888  * 	return it, otherwise we block.
889  */
890 
891 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
892 		size_t len, int noblock, int flags, int *addr_len)
893 {
894 	struct inet_sock *inet = inet_sk(sk);
895 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
896 	struct sk_buff *skb;
897 	unsigned int ulen, copied;
898 	int peeked;
899 	int err;
900 	int is_udplite = IS_UDPLITE(sk);
901 
902 	/*
903 	 *	Check any passed addresses
904 	 */
905 	if (addr_len)
906 		*addr_len = sizeof(*sin);
907 
908 	if (flags & MSG_ERRQUEUE)
909 		return ip_recv_error(sk, msg, len);
910 
911 try_again:
912 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
913 				  &peeked, &err);
914 	if (!skb)
915 		goto out;
916 
917 	ulen = skb->len - sizeof(struct udphdr);
918 	copied = len;
919 	if (copied > ulen)
920 		copied = ulen;
921 	else if (copied < ulen)
922 		msg->msg_flags |= MSG_TRUNC;
923 
924 	/*
925 	 * If checksum is needed at all, try to do it while copying the
926 	 * data.  If the data is truncated, or if we only want a partial
927 	 * coverage checksum (UDP-Lite), do it before the copy.
928 	 */
929 
930 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
931 		if (udp_lib_checksum_complete(skb))
932 			goto csum_copy_err;
933 	}
934 
935 	if (skb_csum_unnecessary(skb))
936 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
937 					      msg->msg_iov, copied);
938 	else {
939 		err = skb_copy_and_csum_datagram_iovec(skb,
940 						       sizeof(struct udphdr),
941 						       msg->msg_iov);
942 
943 		if (err == -EINVAL)
944 			goto csum_copy_err;
945 	}
946 
947 	if (err)
948 		goto out_free;
949 
950 	if (!peeked)
951 		UDP_INC_STATS_USER(sock_net(sk),
952 				UDP_MIB_INDATAGRAMS, is_udplite);
953 
954 	sock_recv_timestamp(msg, sk, skb);
955 
956 	/* Copy the address. */
957 	if (sin) {
958 		sin->sin_family = AF_INET;
959 		sin->sin_port = udp_hdr(skb)->source;
960 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
961 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
962 	}
963 	if (inet->cmsg_flags)
964 		ip_cmsg_recv(msg, skb);
965 
966 	err = copied;
967 	if (flags & MSG_TRUNC)
968 		err = ulen;
969 
970 out_free:
971 	lock_sock(sk);
972 	skb_free_datagram(sk, skb);
973 	release_sock(sk);
974 out:
975 	return err;
976 
977 csum_copy_err:
978 	lock_sock(sk);
979 	if (!skb_kill_datagram(sk, skb, flags))
980 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
981 	release_sock(sk);
982 
983 	if (noblock)
984 		return -EAGAIN;
985 	goto try_again;
986 }
987 
988 
989 int udp_disconnect(struct sock *sk, int flags)
990 {
991 	struct inet_sock *inet = inet_sk(sk);
992 	/*
993 	 *	1003.1g - break association.
994 	 */
995 
996 	sk->sk_state = TCP_CLOSE;
997 	inet->daddr = 0;
998 	inet->dport = 0;
999 	sk->sk_bound_dev_if = 0;
1000 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1001 		inet_reset_saddr(sk);
1002 
1003 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1004 		sk->sk_prot->unhash(sk);
1005 		inet->sport = 0;
1006 	}
1007 	sk_dst_reset(sk);
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL(udp_disconnect);
1011 
1012 void udp_lib_unhash(struct sock *sk)
1013 {
1014 	if (sk_hashed(sk)) {
1015 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1016 		unsigned int hash = udp_hashfn(sock_net(sk), sk->sk_hash);
1017 		struct udp_hslot *hslot = &udptable->hash[hash];
1018 
1019 		spin_lock_bh(&hslot->lock);
1020 		if (sk_nulls_del_node_init_rcu(sk)) {
1021 			inet_sk(sk)->num = 0;
1022 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1023 		}
1024 		spin_unlock_bh(&hslot->lock);
1025 	}
1026 }
1027 EXPORT_SYMBOL(udp_lib_unhash);
1028 
1029 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1030 {
1031 	int is_udplite = IS_UDPLITE(sk);
1032 	int rc;
1033 
1034 	if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
1035 		/* Note that an ENOMEM error is charged twice */
1036 		if (rc == -ENOMEM) {
1037 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1038 					 is_udplite);
1039 			atomic_inc(&sk->sk_drops);
1040 		}
1041 		goto drop;
1042 	}
1043 
1044 	return 0;
1045 
1046 drop:
1047 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1048 	kfree_skb(skb);
1049 	return -1;
1050 }
1051 
1052 /* returns:
1053  *  -1: error
1054  *   0: success
1055  *  >0: "udp encap" protocol resubmission
1056  *
1057  * Note that in the success and error cases, the skb is assumed to
1058  * have either been requeued or freed.
1059  */
1060 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1061 {
1062 	struct udp_sock *up = udp_sk(sk);
1063 	int rc;
1064 	int is_udplite = IS_UDPLITE(sk);
1065 
1066 	/*
1067 	 *	Charge it to the socket, dropping if the queue is full.
1068 	 */
1069 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1070 		goto drop;
1071 	nf_reset(skb);
1072 
1073 	if (up->encap_type) {
1074 		/*
1075 		 * This is an encapsulation socket so pass the skb to
1076 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1077 		 * fall through and pass this up the UDP socket.
1078 		 * up->encap_rcv() returns the following value:
1079 		 * =0 if skb was successfully passed to the encap
1080 		 *    handler or was discarded by it.
1081 		 * >0 if skb should be passed on to UDP.
1082 		 * <0 if skb should be resubmitted as proto -N
1083 		 */
1084 
1085 		/* if we're overly short, let UDP handle it */
1086 		if (skb->len > sizeof(struct udphdr) &&
1087 		    up->encap_rcv != NULL) {
1088 			int ret;
1089 
1090 			ret = (*up->encap_rcv)(sk, skb);
1091 			if (ret <= 0) {
1092 				UDP_INC_STATS_BH(sock_net(sk),
1093 						 UDP_MIB_INDATAGRAMS,
1094 						 is_udplite);
1095 				return -ret;
1096 			}
1097 		}
1098 
1099 		/* FALLTHROUGH -- it's a UDP Packet */
1100 	}
1101 
1102 	/*
1103 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1104 	 */
1105 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1106 
1107 		/*
1108 		 * MIB statistics other than incrementing the error count are
1109 		 * disabled for the following two types of errors: these depend
1110 		 * on the application settings, not on the functioning of the
1111 		 * protocol stack as such.
1112 		 *
1113 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1114 		 * way ... to ... at least let the receiving application block
1115 		 * delivery of packets with coverage values less than a value
1116 		 * provided by the application."
1117 		 */
1118 		if (up->pcrlen == 0) {          /* full coverage was set  */
1119 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1120 				"%d while full coverage %d requested\n",
1121 				UDP_SKB_CB(skb)->cscov, skb->len);
1122 			goto drop;
1123 		}
1124 		/* The next case involves violating the min. coverage requested
1125 		 * by the receiver. This is subtle: if receiver wants x and x is
1126 		 * greater than the buffersize/MTU then receiver will complain
1127 		 * that it wants x while sender emits packets of smaller size y.
1128 		 * Therefore the above ...()->partial_cov statement is essential.
1129 		 */
1130 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1131 			LIMIT_NETDEBUG(KERN_WARNING
1132 				"UDPLITE: coverage %d too small, need min %d\n",
1133 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1134 			goto drop;
1135 		}
1136 	}
1137 
1138 	if (sk->sk_filter) {
1139 		if (udp_lib_checksum_complete(skb))
1140 			goto drop;
1141 	}
1142 
1143 	rc = 0;
1144 
1145 	bh_lock_sock(sk);
1146 	if (!sock_owned_by_user(sk))
1147 		rc = __udp_queue_rcv_skb(sk, skb);
1148 	else
1149 		sk_add_backlog(sk, skb);
1150 	bh_unlock_sock(sk);
1151 
1152 	return rc;
1153 
1154 drop:
1155 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1156 	kfree_skb(skb);
1157 	return -1;
1158 }
1159 
1160 /*
1161  *	Multicasts and broadcasts go to each listener.
1162  *
1163  *	Note: called only from the BH handler context,
1164  *	so we don't need to lock the hashes.
1165  */
1166 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1167 				    struct udphdr  *uh,
1168 				    __be32 saddr, __be32 daddr,
1169 				    struct udp_table *udptable)
1170 {
1171 	struct sock *sk;
1172 	struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
1173 	int dif;
1174 
1175 	spin_lock(&hslot->lock);
1176 	sk = sk_nulls_head(&hslot->head);
1177 	dif = skb->dev->ifindex;
1178 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1179 	if (sk) {
1180 		struct sock *sknext = NULL;
1181 
1182 		do {
1183 			struct sk_buff *skb1 = skb;
1184 
1185 			sknext = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1186 						   daddr, uh->source, saddr,
1187 						   dif);
1188 			if (sknext)
1189 				skb1 = skb_clone(skb, GFP_ATOMIC);
1190 
1191 			if (skb1) {
1192 				int ret = udp_queue_rcv_skb(sk, skb1);
1193 				if (ret > 0)
1194 					/* we should probably re-process instead
1195 					 * of dropping packets here. */
1196 					kfree_skb(skb1);
1197 			}
1198 			sk = sknext;
1199 		} while (sknext);
1200 	} else
1201 		consume_skb(skb);
1202 	spin_unlock(&hslot->lock);
1203 	return 0;
1204 }
1205 
1206 /* Initialize UDP checksum. If exited with zero value (success),
1207  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1208  * Otherwise, csum completion requires chacksumming packet body,
1209  * including udp header and folding it to skb->csum.
1210  */
1211 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1212 				 int proto)
1213 {
1214 	const struct iphdr *iph;
1215 	int err;
1216 
1217 	UDP_SKB_CB(skb)->partial_cov = 0;
1218 	UDP_SKB_CB(skb)->cscov = skb->len;
1219 
1220 	if (proto == IPPROTO_UDPLITE) {
1221 		err = udplite_checksum_init(skb, uh);
1222 		if (err)
1223 			return err;
1224 	}
1225 
1226 	iph = ip_hdr(skb);
1227 	if (uh->check == 0) {
1228 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1229 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1230 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1231 				      proto, skb->csum))
1232 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1233 	}
1234 	if (!skb_csum_unnecessary(skb))
1235 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1236 					       skb->len, proto, 0);
1237 	/* Probably, we should checksum udp header (it should be in cache
1238 	 * in any case) and data in tiny packets (< rx copybreak).
1239 	 */
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  *	All we need to do is get the socket, and then do a checksum.
1246  */
1247 
1248 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1249 		   int proto)
1250 {
1251 	struct sock *sk;
1252 	struct udphdr *uh;
1253 	unsigned short ulen;
1254 	struct rtable *rt = skb_rtable(skb);
1255 	__be32 saddr, daddr;
1256 	struct net *net = dev_net(skb->dev);
1257 
1258 	/*
1259 	 *  Validate the packet.
1260 	 */
1261 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1262 		goto drop;		/* No space for header. */
1263 
1264 	uh   = udp_hdr(skb);
1265 	ulen = ntohs(uh->len);
1266 	if (ulen > skb->len)
1267 		goto short_packet;
1268 
1269 	if (proto == IPPROTO_UDP) {
1270 		/* UDP validates ulen. */
1271 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1272 			goto short_packet;
1273 		uh = udp_hdr(skb);
1274 	}
1275 
1276 	if (udp4_csum_init(skb, uh, proto))
1277 		goto csum_error;
1278 
1279 	saddr = ip_hdr(skb)->saddr;
1280 	daddr = ip_hdr(skb)->daddr;
1281 
1282 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1283 		return __udp4_lib_mcast_deliver(net, skb, uh,
1284 				saddr, daddr, udptable);
1285 
1286 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1287 
1288 	if (sk != NULL) {
1289 		int ret = udp_queue_rcv_skb(sk, skb);
1290 		sock_put(sk);
1291 
1292 		/* a return value > 0 means to resubmit the input, but
1293 		 * it wants the return to be -protocol, or 0
1294 		 */
1295 		if (ret > 0)
1296 			return -ret;
1297 		return 0;
1298 	}
1299 
1300 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1301 		goto drop;
1302 	nf_reset(skb);
1303 
1304 	/* No socket. Drop packet silently, if checksum is wrong */
1305 	if (udp_lib_checksum_complete(skb))
1306 		goto csum_error;
1307 
1308 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1309 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1310 
1311 	/*
1312 	 * Hmm.  We got an UDP packet to a port to which we
1313 	 * don't wanna listen.  Ignore it.
1314 	 */
1315 	kfree_skb(skb);
1316 	return 0;
1317 
1318 short_packet:
1319 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1320 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1321 		       &saddr,
1322 		       ntohs(uh->source),
1323 		       ulen,
1324 		       skb->len,
1325 		       &daddr,
1326 		       ntohs(uh->dest));
1327 	goto drop;
1328 
1329 csum_error:
1330 	/*
1331 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1332 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1333 	 */
1334 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1335 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1336 		       &saddr,
1337 		       ntohs(uh->source),
1338 		       &daddr,
1339 		       ntohs(uh->dest),
1340 		       ulen);
1341 drop:
1342 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1343 	kfree_skb(skb);
1344 	return 0;
1345 }
1346 
1347 int udp_rcv(struct sk_buff *skb)
1348 {
1349 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1350 }
1351 
1352 void udp_destroy_sock(struct sock *sk)
1353 {
1354 	lock_sock(sk);
1355 	udp_flush_pending_frames(sk);
1356 	release_sock(sk);
1357 }
1358 
1359 /*
1360  *	Socket option code for UDP
1361  */
1362 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1363 		       char __user *optval, unsigned int optlen,
1364 		       int (*push_pending_frames)(struct sock *))
1365 {
1366 	struct udp_sock *up = udp_sk(sk);
1367 	int val;
1368 	int err = 0;
1369 	int is_udplite = IS_UDPLITE(sk);
1370 
1371 	if (optlen < sizeof(int))
1372 		return -EINVAL;
1373 
1374 	if (get_user(val, (int __user *)optval))
1375 		return -EFAULT;
1376 
1377 	switch (optname) {
1378 	case UDP_CORK:
1379 		if (val != 0) {
1380 			up->corkflag = 1;
1381 		} else {
1382 			up->corkflag = 0;
1383 			lock_sock(sk);
1384 			(*push_pending_frames)(sk);
1385 			release_sock(sk);
1386 		}
1387 		break;
1388 
1389 	case UDP_ENCAP:
1390 		switch (val) {
1391 		case 0:
1392 		case UDP_ENCAP_ESPINUDP:
1393 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1394 			up->encap_rcv = xfrm4_udp_encap_rcv;
1395 			/* FALLTHROUGH */
1396 		case UDP_ENCAP_L2TPINUDP:
1397 			up->encap_type = val;
1398 			break;
1399 		default:
1400 			err = -ENOPROTOOPT;
1401 			break;
1402 		}
1403 		break;
1404 
1405 	/*
1406 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1407 	 */
1408 	/* The sender sets actual checksum coverage length via this option.
1409 	 * The case coverage > packet length is handled by send module. */
1410 	case UDPLITE_SEND_CSCOV:
1411 		if (!is_udplite)         /* Disable the option on UDP sockets */
1412 			return -ENOPROTOOPT;
1413 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1414 			val = 8;
1415 		else if (val > USHORT_MAX)
1416 			val = USHORT_MAX;
1417 		up->pcslen = val;
1418 		up->pcflag |= UDPLITE_SEND_CC;
1419 		break;
1420 
1421 	/* The receiver specifies a minimum checksum coverage value. To make
1422 	 * sense, this should be set to at least 8 (as done below). If zero is
1423 	 * used, this again means full checksum coverage.                     */
1424 	case UDPLITE_RECV_CSCOV:
1425 		if (!is_udplite)         /* Disable the option on UDP sockets */
1426 			return -ENOPROTOOPT;
1427 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1428 			val = 8;
1429 		else if (val > USHORT_MAX)
1430 			val = USHORT_MAX;
1431 		up->pcrlen = val;
1432 		up->pcflag |= UDPLITE_RECV_CC;
1433 		break;
1434 
1435 	default:
1436 		err = -ENOPROTOOPT;
1437 		break;
1438 	}
1439 
1440 	return err;
1441 }
1442 EXPORT_SYMBOL(udp_lib_setsockopt);
1443 
1444 int udp_setsockopt(struct sock *sk, int level, int optname,
1445 		   char __user *optval, unsigned int optlen)
1446 {
1447 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1448 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1449 					  udp_push_pending_frames);
1450 	return ip_setsockopt(sk, level, optname, optval, optlen);
1451 }
1452 
1453 #ifdef CONFIG_COMPAT
1454 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1455 			  char __user *optval, unsigned int optlen)
1456 {
1457 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1458 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1459 					  udp_push_pending_frames);
1460 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1461 }
1462 #endif
1463 
1464 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1465 		       char __user *optval, int __user *optlen)
1466 {
1467 	struct udp_sock *up = udp_sk(sk);
1468 	int val, len;
1469 
1470 	if (get_user(len, optlen))
1471 		return -EFAULT;
1472 
1473 	len = min_t(unsigned int, len, sizeof(int));
1474 
1475 	if (len < 0)
1476 		return -EINVAL;
1477 
1478 	switch (optname) {
1479 	case UDP_CORK:
1480 		val = up->corkflag;
1481 		break;
1482 
1483 	case UDP_ENCAP:
1484 		val = up->encap_type;
1485 		break;
1486 
1487 	/* The following two cannot be changed on UDP sockets, the return is
1488 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1489 	case UDPLITE_SEND_CSCOV:
1490 		val = up->pcslen;
1491 		break;
1492 
1493 	case UDPLITE_RECV_CSCOV:
1494 		val = up->pcrlen;
1495 		break;
1496 
1497 	default:
1498 		return -ENOPROTOOPT;
1499 	}
1500 
1501 	if (put_user(len, optlen))
1502 		return -EFAULT;
1503 	if (copy_to_user(optval, &val, len))
1504 		return -EFAULT;
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(udp_lib_getsockopt);
1508 
1509 int udp_getsockopt(struct sock *sk, int level, int optname,
1510 		   char __user *optval, int __user *optlen)
1511 {
1512 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1513 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1514 	return ip_getsockopt(sk, level, optname, optval, optlen);
1515 }
1516 
1517 #ifdef CONFIG_COMPAT
1518 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1519 				 char __user *optval, int __user *optlen)
1520 {
1521 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1522 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1523 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1524 }
1525 #endif
1526 /**
1527  * 	udp_poll - wait for a UDP event.
1528  *	@file - file struct
1529  *	@sock - socket
1530  *	@wait - poll table
1531  *
1532  *	This is same as datagram poll, except for the special case of
1533  *	blocking sockets. If application is using a blocking fd
1534  *	and a packet with checksum error is in the queue;
1535  *	then it could get return from select indicating data available
1536  *	but then block when reading it. Add special case code
1537  *	to work around these arguably broken applications.
1538  */
1539 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1540 {
1541 	unsigned int mask = datagram_poll(file, sock, wait);
1542 	struct sock *sk = sock->sk;
1543 	int 	is_lite = IS_UDPLITE(sk);
1544 
1545 	/* Check for false positives due to checksum errors */
1546 	if ((mask & POLLRDNORM) &&
1547 	    !(file->f_flags & O_NONBLOCK) &&
1548 	    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1549 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1550 		struct sk_buff *skb;
1551 
1552 		spin_lock_bh(&rcvq->lock);
1553 		while ((skb = skb_peek(rcvq)) != NULL &&
1554 		       udp_lib_checksum_complete(skb)) {
1555 			UDP_INC_STATS_BH(sock_net(sk),
1556 					UDP_MIB_INERRORS, is_lite);
1557 			__skb_unlink(skb, rcvq);
1558 			kfree_skb(skb);
1559 		}
1560 		spin_unlock_bh(&rcvq->lock);
1561 
1562 		/* nothing to see, move along */
1563 		if (skb == NULL)
1564 			mask &= ~(POLLIN | POLLRDNORM);
1565 	}
1566 
1567 	return mask;
1568 
1569 }
1570 EXPORT_SYMBOL(udp_poll);
1571 
1572 struct proto udp_prot = {
1573 	.name		   = "UDP",
1574 	.owner		   = THIS_MODULE,
1575 	.close		   = udp_lib_close,
1576 	.connect	   = ip4_datagram_connect,
1577 	.disconnect	   = udp_disconnect,
1578 	.ioctl		   = udp_ioctl,
1579 	.destroy	   = udp_destroy_sock,
1580 	.setsockopt	   = udp_setsockopt,
1581 	.getsockopt	   = udp_getsockopt,
1582 	.sendmsg	   = udp_sendmsg,
1583 	.recvmsg	   = udp_recvmsg,
1584 	.sendpage	   = udp_sendpage,
1585 	.backlog_rcv	   = __udp_queue_rcv_skb,
1586 	.hash		   = udp_lib_hash,
1587 	.unhash		   = udp_lib_unhash,
1588 	.get_port	   = udp_v4_get_port,
1589 	.memory_allocated  = &udp_memory_allocated,
1590 	.sysctl_mem	   = sysctl_udp_mem,
1591 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1592 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1593 	.obj_size	   = sizeof(struct udp_sock),
1594 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1595 	.h.udp_table	   = &udp_table,
1596 #ifdef CONFIG_COMPAT
1597 	.compat_setsockopt = compat_udp_setsockopt,
1598 	.compat_getsockopt = compat_udp_getsockopt,
1599 #endif
1600 };
1601 EXPORT_SYMBOL(udp_prot);
1602 
1603 /* ------------------------------------------------------------------------ */
1604 #ifdef CONFIG_PROC_FS
1605 
1606 static struct sock *udp_get_first(struct seq_file *seq, int start)
1607 {
1608 	struct sock *sk;
1609 	struct udp_iter_state *state = seq->private;
1610 	struct net *net = seq_file_net(seq);
1611 
1612 	for (state->bucket = start; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1613 		struct hlist_nulls_node *node;
1614 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1615 		spin_lock_bh(&hslot->lock);
1616 		sk_nulls_for_each(sk, node, &hslot->head) {
1617 			if (!net_eq(sock_net(sk), net))
1618 				continue;
1619 			if (sk->sk_family == state->family)
1620 				goto found;
1621 		}
1622 		spin_unlock_bh(&hslot->lock);
1623 	}
1624 	sk = NULL;
1625 found:
1626 	return sk;
1627 }
1628 
1629 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1630 {
1631 	struct udp_iter_state *state = seq->private;
1632 	struct net *net = seq_file_net(seq);
1633 
1634 	do {
1635 		sk = sk_nulls_next(sk);
1636 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1637 
1638 	if (!sk) {
1639 		if (state->bucket < UDP_HTABLE_SIZE)
1640 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1641 		return udp_get_first(seq, state->bucket + 1);
1642 	}
1643 	return sk;
1644 }
1645 
1646 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1647 {
1648 	struct sock *sk = udp_get_first(seq, 0);
1649 
1650 	if (sk)
1651 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1652 			--pos;
1653 	return pos ? NULL : sk;
1654 }
1655 
1656 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1657 {
1658 	struct udp_iter_state *state = seq->private;
1659 	state->bucket = UDP_HTABLE_SIZE;
1660 
1661 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1662 }
1663 
1664 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1665 {
1666 	struct sock *sk;
1667 
1668 	if (v == SEQ_START_TOKEN)
1669 		sk = udp_get_idx(seq, 0);
1670 	else
1671 		sk = udp_get_next(seq, v);
1672 
1673 	++*pos;
1674 	return sk;
1675 }
1676 
1677 static void udp_seq_stop(struct seq_file *seq, void *v)
1678 {
1679 	struct udp_iter_state *state = seq->private;
1680 
1681 	if (state->bucket < UDP_HTABLE_SIZE)
1682 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1683 }
1684 
1685 static int udp_seq_open(struct inode *inode, struct file *file)
1686 {
1687 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1688 	struct udp_iter_state *s;
1689 	int err;
1690 
1691 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1692 			   sizeof(struct udp_iter_state));
1693 	if (err < 0)
1694 		return err;
1695 
1696 	s = ((struct seq_file *)file->private_data)->private;
1697 	s->family		= afinfo->family;
1698 	s->udp_table		= afinfo->udp_table;
1699 	return err;
1700 }
1701 
1702 /* ------------------------------------------------------------------------ */
1703 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1704 {
1705 	struct proc_dir_entry *p;
1706 	int rc = 0;
1707 
1708 	afinfo->seq_fops.open		= udp_seq_open;
1709 	afinfo->seq_fops.read		= seq_read;
1710 	afinfo->seq_fops.llseek		= seq_lseek;
1711 	afinfo->seq_fops.release	= seq_release_net;
1712 
1713 	afinfo->seq_ops.start		= udp_seq_start;
1714 	afinfo->seq_ops.next		= udp_seq_next;
1715 	afinfo->seq_ops.stop		= udp_seq_stop;
1716 
1717 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1718 			     &afinfo->seq_fops, afinfo);
1719 	if (!p)
1720 		rc = -ENOMEM;
1721 	return rc;
1722 }
1723 EXPORT_SYMBOL(udp_proc_register);
1724 
1725 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1726 {
1727 	proc_net_remove(net, afinfo->name);
1728 }
1729 EXPORT_SYMBOL(udp_proc_unregister);
1730 
1731 /* ------------------------------------------------------------------------ */
1732 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1733 		int bucket, int *len)
1734 {
1735 	struct inet_sock *inet = inet_sk(sp);
1736 	__be32 dest = inet->daddr;
1737 	__be32 src  = inet->rcv_saddr;
1738 	__u16 destp	  = ntohs(inet->dport);
1739 	__u16 srcp	  = ntohs(inet->sport);
1740 
1741 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1742 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1743 		bucket, src, srcp, dest, destp, sp->sk_state,
1744 		sk_wmem_alloc_get(sp),
1745 		sk_rmem_alloc_get(sp),
1746 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1747 		atomic_read(&sp->sk_refcnt), sp,
1748 		atomic_read(&sp->sk_drops), len);
1749 }
1750 
1751 int udp4_seq_show(struct seq_file *seq, void *v)
1752 {
1753 	if (v == SEQ_START_TOKEN)
1754 		seq_printf(seq, "%-127s\n",
1755 			   "  sl  local_address rem_address   st tx_queue "
1756 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1757 			   "inode ref pointer drops");
1758 	else {
1759 		struct udp_iter_state *state = seq->private;
1760 		int len;
1761 
1762 		udp4_format_sock(v, seq, state->bucket, &len);
1763 		seq_printf(seq, "%*s\n", 127 - len, "");
1764 	}
1765 	return 0;
1766 }
1767 
1768 /* ------------------------------------------------------------------------ */
1769 static struct udp_seq_afinfo udp4_seq_afinfo = {
1770 	.name		= "udp",
1771 	.family		= AF_INET,
1772 	.udp_table	= &udp_table,
1773 	.seq_fops	= {
1774 		.owner	=	THIS_MODULE,
1775 	},
1776 	.seq_ops	= {
1777 		.show		= udp4_seq_show,
1778 	},
1779 };
1780 
1781 static int udp4_proc_init_net(struct net *net)
1782 {
1783 	return udp_proc_register(net, &udp4_seq_afinfo);
1784 }
1785 
1786 static void udp4_proc_exit_net(struct net *net)
1787 {
1788 	udp_proc_unregister(net, &udp4_seq_afinfo);
1789 }
1790 
1791 static struct pernet_operations udp4_net_ops = {
1792 	.init = udp4_proc_init_net,
1793 	.exit = udp4_proc_exit_net,
1794 };
1795 
1796 int __init udp4_proc_init(void)
1797 {
1798 	return register_pernet_subsys(&udp4_net_ops);
1799 }
1800 
1801 void udp4_proc_exit(void)
1802 {
1803 	unregister_pernet_subsys(&udp4_net_ops);
1804 }
1805 #endif /* CONFIG_PROC_FS */
1806 
1807 void __init udp_table_init(struct udp_table *table)
1808 {
1809 	int i;
1810 
1811 	for (i = 0; i < UDP_HTABLE_SIZE; i++) {
1812 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
1813 		spin_lock_init(&table->hash[i].lock);
1814 	}
1815 }
1816 
1817 void __init udp_init(void)
1818 {
1819 	unsigned long nr_pages, limit;
1820 
1821 	udp_table_init(&udp_table);
1822 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1823 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1824 	 * toward zero with the amount of memory, with a floor of 128 pages.
1825 	 */
1826 	nr_pages = totalram_pages - totalhigh_pages;
1827 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1828 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1829 	limit = max(limit, 128UL);
1830 	sysctl_udp_mem[0] = limit / 4 * 3;
1831 	sysctl_udp_mem[1] = limit;
1832 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1833 
1834 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1835 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1836 }
1837 
1838 int udp4_ufo_send_check(struct sk_buff *skb)
1839 {
1840 	const struct iphdr *iph;
1841 	struct udphdr *uh;
1842 
1843 	if (!pskb_may_pull(skb, sizeof(*uh)))
1844 		return -EINVAL;
1845 
1846 	iph = ip_hdr(skb);
1847 	uh = udp_hdr(skb);
1848 
1849 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1850 				       IPPROTO_UDP, 0);
1851 	skb->csum_start = skb_transport_header(skb) - skb->head;
1852 	skb->csum_offset = offsetof(struct udphdr, check);
1853 	skb->ip_summed = CHECKSUM_PARTIAL;
1854 	return 0;
1855 }
1856 
1857 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
1858 {
1859 	struct sk_buff *segs = ERR_PTR(-EINVAL);
1860 	unsigned int mss;
1861 	int offset;
1862 	__wsum csum;
1863 
1864 	mss = skb_shinfo(skb)->gso_size;
1865 	if (unlikely(skb->len <= mss))
1866 		goto out;
1867 
1868 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
1869 		/* Packet is from an untrusted source, reset gso_segs. */
1870 		int type = skb_shinfo(skb)->gso_type;
1871 
1872 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
1873 			     !(type & (SKB_GSO_UDP))))
1874 			goto out;
1875 
1876 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
1877 
1878 		segs = NULL;
1879 		goto out;
1880 	}
1881 
1882 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
1883 	 * do checksum of UDP packets sent as multiple IP fragments.
1884 	 */
1885 	offset = skb->csum_start - skb_headroom(skb);
1886 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1887 	offset += skb->csum_offset;
1888 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1889 	skb->ip_summed = CHECKSUM_NONE;
1890 
1891 	/* Fragment the skb. IP headers of the fragments are updated in
1892 	 * inet_gso_segment()
1893 	 */
1894 	segs = skb_segment(skb, features);
1895 out:
1896 	return segs;
1897 }
1898 
1899