1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sock_set_flag(sk, SOCK_RCU_FREE); 330 331 sk_add_node_rcu(sk, &hslot->head); 332 hslot->count++; 333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 334 335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 336 spin_lock(&hslot2->lock); 337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 338 sk->sk_family == AF_INET6) 339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 340 &hslot2->head); 341 else 342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 348 error = 0; 349 fail_unlock: 350 spin_unlock_bh(&hslot->lock); 351 fail: 352 return error; 353 } 354 EXPORT_SYMBOL(udp_lib_get_port); 355 356 int udp_v4_get_port(struct sock *sk, unsigned short snum) 357 { 358 unsigned int hash2_nulladdr = 359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 360 unsigned int hash2_partial = 361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 362 363 /* precompute partial secondary hash */ 364 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 365 return udp_lib_get_port(sk, snum, hash2_nulladdr); 366 } 367 368 static int compute_score(struct sock *sk, struct net *net, 369 __be32 saddr, __be16 sport, 370 __be32 daddr, unsigned short hnum, 371 int dif, int sdif) 372 { 373 int score; 374 struct inet_sock *inet; 375 bool dev_match; 376 377 if (!net_eq(sock_net(sk), net) || 378 udp_sk(sk)->udp_port_hash != hnum || 379 ipv6_only_sock(sk)) 380 return -1; 381 382 if (sk->sk_rcv_saddr != daddr) 383 return -1; 384 385 score = (sk->sk_family == PF_INET) ? 2 : 1; 386 387 inet = inet_sk(sk); 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 401 dif, sdif); 402 if (!dev_match) 403 return -1; 404 if (sk->sk_bound_dev_if) 405 score += 4; 406 407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 408 score++; 409 return score; 410 } 411 412 INDIRECT_CALLABLE_SCOPE 413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 414 const __be32 faddr, const __be16 fport) 415 { 416 static u32 udp_ehash_secret __read_mostly; 417 418 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 419 420 return __inet_ehashfn(laddr, lport, faddr, fport, 421 udp_ehash_secret + net_hash_mix(net)); 422 } 423 424 /* called with rcu_read_lock() */ 425 static struct sock *udp4_lib_lookup2(struct net *net, 426 __be32 saddr, __be16 sport, 427 __be32 daddr, unsigned int hnum, 428 int dif, int sdif, 429 struct udp_hslot *hslot2, 430 struct sk_buff *skb) 431 { 432 struct sock *sk, *result; 433 int score, badness; 434 bool need_rescore; 435 436 result = NULL; 437 badness = 0; 438 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 439 need_rescore = false; 440 rescore: 441 score = compute_score(need_rescore ? result : sk, net, saddr, 442 sport, daddr, hnum, dif, sdif); 443 if (score > badness) { 444 badness = score; 445 446 if (need_rescore) 447 continue; 448 449 if (sk->sk_state == TCP_ESTABLISHED) { 450 result = sk; 451 continue; 452 } 453 454 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 455 saddr, sport, daddr, hnum, udp_ehashfn); 456 if (!result) { 457 result = sk; 458 continue; 459 } 460 461 /* Fall back to scoring if group has connections */ 462 if (!reuseport_has_conns(sk)) 463 return result; 464 465 /* Reuseport logic returned an error, keep original score. */ 466 if (IS_ERR(result)) 467 continue; 468 469 /* compute_score is too long of a function to be 470 * inlined, and calling it again here yields 471 * measureable overhead for some 472 * workloads. Work around it by jumping 473 * backwards to rescore 'result'. 474 */ 475 need_rescore = true; 476 goto rescore; 477 } 478 } 479 return result; 480 } 481 482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 483 * harder than this. -DaveM 484 */ 485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 486 __be16 sport, __be32 daddr, __be16 dport, int dif, 487 int sdif, struct udp_table *udptable, struct sk_buff *skb) 488 { 489 unsigned short hnum = ntohs(dport); 490 unsigned int hash2, slot2; 491 struct udp_hslot *hslot2; 492 struct sock *result, *sk; 493 494 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 495 slot2 = hash2 & udptable->mask; 496 hslot2 = &udptable->hash2[slot2]; 497 498 /* Lookup connected or non-wildcard socket */ 499 result = udp4_lib_lookup2(net, saddr, sport, 500 daddr, hnum, dif, sdif, 501 hslot2, skb); 502 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 503 goto done; 504 505 /* Lookup redirect from BPF */ 506 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 507 udptable == net->ipv4.udp_table) { 508 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 509 saddr, sport, daddr, hnum, dif, 510 udp_ehashfn); 511 if (sk) { 512 result = sk; 513 goto done; 514 } 515 } 516 517 /* Got non-wildcard socket or error on first lookup */ 518 if (result) 519 goto done; 520 521 /* Lookup wildcard sockets */ 522 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 523 slot2 = hash2 & udptable->mask; 524 hslot2 = &udptable->hash2[slot2]; 525 526 result = udp4_lib_lookup2(net, saddr, sport, 527 htonl(INADDR_ANY), hnum, dif, sdif, 528 hslot2, skb); 529 done: 530 if (IS_ERR(result)) 531 return NULL; 532 return result; 533 } 534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 535 536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 537 __be16 sport, __be16 dport, 538 struct udp_table *udptable) 539 { 540 const struct iphdr *iph = ip_hdr(skb); 541 542 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 543 iph->daddr, dport, inet_iif(skb), 544 inet_sdif(skb), udptable, skb); 545 } 546 547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 548 __be16 sport, __be16 dport) 549 { 550 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 551 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 552 struct net *net = dev_net(skb->dev); 553 int iif, sdif; 554 555 inet_get_iif_sdif(skb, &iif, &sdif); 556 557 return __udp4_lib_lookup(net, iph->saddr, sport, 558 iph->daddr, dport, iif, 559 sdif, net->ipv4.udp_table, NULL); 560 } 561 562 /* Must be called under rcu_read_lock(). 563 * Does increment socket refcount. 564 */ 565 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 566 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 567 __be32 daddr, __be16 dport, int dif) 568 { 569 struct sock *sk; 570 571 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 572 dif, 0, net->ipv4.udp_table, NULL); 573 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 574 sk = NULL; 575 return sk; 576 } 577 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 578 #endif 579 580 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 581 __be16 loc_port, __be32 loc_addr, 582 __be16 rmt_port, __be32 rmt_addr, 583 int dif, int sdif, unsigned short hnum) 584 { 585 const struct inet_sock *inet = inet_sk(sk); 586 587 if (!net_eq(sock_net(sk), net) || 588 udp_sk(sk)->udp_port_hash != hnum || 589 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 590 (inet->inet_dport != rmt_port && inet->inet_dport) || 591 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 592 ipv6_only_sock(sk) || 593 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 594 return false; 595 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 596 return false; 597 return true; 598 } 599 600 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 601 EXPORT_SYMBOL(udp_encap_needed_key); 602 603 #if IS_ENABLED(CONFIG_IPV6) 604 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 605 EXPORT_SYMBOL(udpv6_encap_needed_key); 606 #endif 607 608 void udp_encap_enable(void) 609 { 610 static_branch_inc(&udp_encap_needed_key); 611 } 612 EXPORT_SYMBOL(udp_encap_enable); 613 614 void udp_encap_disable(void) 615 { 616 static_branch_dec(&udp_encap_needed_key); 617 } 618 EXPORT_SYMBOL(udp_encap_disable); 619 620 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 621 * through error handlers in encapsulations looking for a match. 622 */ 623 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 624 { 625 int i; 626 627 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 628 int (*handler)(struct sk_buff *skb, u32 info); 629 const struct ip_tunnel_encap_ops *encap; 630 631 encap = rcu_dereference(iptun_encaps[i]); 632 if (!encap) 633 continue; 634 handler = encap->err_handler; 635 if (handler && !handler(skb, info)) 636 return 0; 637 } 638 639 return -ENOENT; 640 } 641 642 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 643 * reversing source and destination port: this will match tunnels that force the 644 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 645 * lwtunnels might actually break this assumption by being configured with 646 * different destination ports on endpoints, in this case we won't be able to 647 * trace ICMP messages back to them. 648 * 649 * If this doesn't match any socket, probe tunnels with arbitrary destination 650 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 651 * we've sent packets to won't necessarily match the local destination port. 652 * 653 * Then ask the tunnel implementation to match the error against a valid 654 * association. 655 * 656 * Return an error if we can't find a match, the socket if we need further 657 * processing, zero otherwise. 658 */ 659 static struct sock *__udp4_lib_err_encap(struct net *net, 660 const struct iphdr *iph, 661 struct udphdr *uh, 662 struct udp_table *udptable, 663 struct sock *sk, 664 struct sk_buff *skb, u32 info) 665 { 666 int (*lookup)(struct sock *sk, struct sk_buff *skb); 667 int network_offset, transport_offset; 668 struct udp_sock *up; 669 670 network_offset = skb_network_offset(skb); 671 transport_offset = skb_transport_offset(skb); 672 673 /* Network header needs to point to the outer IPv4 header inside ICMP */ 674 skb_reset_network_header(skb); 675 676 /* Transport header needs to point to the UDP header */ 677 skb_set_transport_header(skb, iph->ihl << 2); 678 679 if (sk) { 680 up = udp_sk(sk); 681 682 lookup = READ_ONCE(up->encap_err_lookup); 683 if (lookup && lookup(sk, skb)) 684 sk = NULL; 685 686 goto out; 687 } 688 689 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 690 iph->saddr, uh->dest, skb->dev->ifindex, 0, 691 udptable, NULL); 692 if (sk) { 693 up = udp_sk(sk); 694 695 lookup = READ_ONCE(up->encap_err_lookup); 696 if (!lookup || lookup(sk, skb)) 697 sk = NULL; 698 } 699 700 out: 701 if (!sk) 702 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 703 704 skb_set_transport_header(skb, transport_offset); 705 skb_set_network_header(skb, network_offset); 706 707 return sk; 708 } 709 710 /* 711 * This routine is called by the ICMP module when it gets some 712 * sort of error condition. If err < 0 then the socket should 713 * be closed and the error returned to the user. If err > 0 714 * it's just the icmp type << 8 | icmp code. 715 * Header points to the ip header of the error packet. We move 716 * on past this. Then (as it used to claim before adjustment) 717 * header points to the first 8 bytes of the udp header. We need 718 * to find the appropriate port. 719 */ 720 721 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 722 { 723 struct inet_sock *inet; 724 const struct iphdr *iph = (const struct iphdr *)skb->data; 725 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 726 const int type = icmp_hdr(skb)->type; 727 const int code = icmp_hdr(skb)->code; 728 bool tunnel = false; 729 struct sock *sk; 730 int harderr; 731 int err; 732 struct net *net = dev_net(skb->dev); 733 734 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 735 iph->saddr, uh->source, skb->dev->ifindex, 736 inet_sdif(skb), udptable, NULL); 737 738 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 739 /* No socket for error: try tunnels before discarding */ 740 if (static_branch_unlikely(&udp_encap_needed_key)) { 741 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 742 info); 743 if (!sk) 744 return 0; 745 } else 746 sk = ERR_PTR(-ENOENT); 747 748 if (IS_ERR(sk)) { 749 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 750 return PTR_ERR(sk); 751 } 752 753 tunnel = true; 754 } 755 756 err = 0; 757 harderr = 0; 758 inet = inet_sk(sk); 759 760 switch (type) { 761 default: 762 case ICMP_TIME_EXCEEDED: 763 err = EHOSTUNREACH; 764 break; 765 case ICMP_SOURCE_QUENCH: 766 goto out; 767 case ICMP_PARAMETERPROB: 768 err = EPROTO; 769 harderr = 1; 770 break; 771 case ICMP_DEST_UNREACH: 772 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 773 ipv4_sk_update_pmtu(skb, sk, info); 774 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 775 err = EMSGSIZE; 776 harderr = 1; 777 break; 778 } 779 goto out; 780 } 781 err = EHOSTUNREACH; 782 if (code <= NR_ICMP_UNREACH) { 783 harderr = icmp_err_convert[code].fatal; 784 err = icmp_err_convert[code].errno; 785 } 786 break; 787 case ICMP_REDIRECT: 788 ipv4_sk_redirect(skb, sk); 789 goto out; 790 } 791 792 /* 793 * RFC1122: OK. Passes ICMP errors back to application, as per 794 * 4.1.3.3. 795 */ 796 if (tunnel) { 797 /* ...not for tunnels though: we don't have a sending socket */ 798 if (udp_sk(sk)->encap_err_rcv) 799 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 800 (u8 *)(uh+1)); 801 goto out; 802 } 803 if (!inet_test_bit(RECVERR, sk)) { 804 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 805 goto out; 806 } else 807 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 808 809 sk->sk_err = err; 810 sk_error_report(sk); 811 out: 812 return 0; 813 } 814 815 int udp_err(struct sk_buff *skb, u32 info) 816 { 817 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 818 } 819 820 /* 821 * Throw away all pending data and cancel the corking. Socket is locked. 822 */ 823 void udp_flush_pending_frames(struct sock *sk) 824 { 825 struct udp_sock *up = udp_sk(sk); 826 827 if (up->pending) { 828 up->len = 0; 829 WRITE_ONCE(up->pending, 0); 830 ip_flush_pending_frames(sk); 831 } 832 } 833 EXPORT_SYMBOL(udp_flush_pending_frames); 834 835 /** 836 * udp4_hwcsum - handle outgoing HW checksumming 837 * @skb: sk_buff containing the filled-in UDP header 838 * (checksum field must be zeroed out) 839 * @src: source IP address 840 * @dst: destination IP address 841 */ 842 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 843 { 844 struct udphdr *uh = udp_hdr(skb); 845 int offset = skb_transport_offset(skb); 846 int len = skb->len - offset; 847 int hlen = len; 848 __wsum csum = 0; 849 850 if (!skb_has_frag_list(skb)) { 851 /* 852 * Only one fragment on the socket. 853 */ 854 skb->csum_start = skb_transport_header(skb) - skb->head; 855 skb->csum_offset = offsetof(struct udphdr, check); 856 uh->check = ~csum_tcpudp_magic(src, dst, len, 857 IPPROTO_UDP, 0); 858 } else { 859 struct sk_buff *frags; 860 861 /* 862 * HW-checksum won't work as there are two or more 863 * fragments on the socket so that all csums of sk_buffs 864 * should be together 865 */ 866 skb_walk_frags(skb, frags) { 867 csum = csum_add(csum, frags->csum); 868 hlen -= frags->len; 869 } 870 871 csum = skb_checksum(skb, offset, hlen, csum); 872 skb->ip_summed = CHECKSUM_NONE; 873 874 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 875 if (uh->check == 0) 876 uh->check = CSUM_MANGLED_0; 877 } 878 } 879 EXPORT_SYMBOL_GPL(udp4_hwcsum); 880 881 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 882 * for the simple case like when setting the checksum for a UDP tunnel. 883 */ 884 void udp_set_csum(bool nocheck, struct sk_buff *skb, 885 __be32 saddr, __be32 daddr, int len) 886 { 887 struct udphdr *uh = udp_hdr(skb); 888 889 if (nocheck) { 890 uh->check = 0; 891 } else if (skb_is_gso(skb)) { 892 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 893 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 894 uh->check = 0; 895 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 896 if (uh->check == 0) 897 uh->check = CSUM_MANGLED_0; 898 } else { 899 skb->ip_summed = CHECKSUM_PARTIAL; 900 skb->csum_start = skb_transport_header(skb) - skb->head; 901 skb->csum_offset = offsetof(struct udphdr, check); 902 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 903 } 904 } 905 EXPORT_SYMBOL(udp_set_csum); 906 907 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 908 struct inet_cork *cork) 909 { 910 struct sock *sk = skb->sk; 911 struct inet_sock *inet = inet_sk(sk); 912 struct udphdr *uh; 913 int err; 914 int is_udplite = IS_UDPLITE(sk); 915 int offset = skb_transport_offset(skb); 916 int len = skb->len - offset; 917 int datalen = len - sizeof(*uh); 918 __wsum csum = 0; 919 920 /* 921 * Create a UDP header 922 */ 923 uh = udp_hdr(skb); 924 uh->source = inet->inet_sport; 925 uh->dest = fl4->fl4_dport; 926 uh->len = htons(len); 927 uh->check = 0; 928 929 if (cork->gso_size) { 930 const int hlen = skb_network_header_len(skb) + 931 sizeof(struct udphdr); 932 933 if (hlen + cork->gso_size > cork->fragsize) { 934 kfree_skb(skb); 935 return -EINVAL; 936 } 937 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 938 kfree_skb(skb); 939 return -EINVAL; 940 } 941 if (sk->sk_no_check_tx) { 942 kfree_skb(skb); 943 return -EINVAL; 944 } 945 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 946 dst_xfrm(skb_dst(skb))) { 947 kfree_skb(skb); 948 return -EIO; 949 } 950 951 if (datalen > cork->gso_size) { 952 skb_shinfo(skb)->gso_size = cork->gso_size; 953 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 954 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 955 cork->gso_size); 956 } 957 goto csum_partial; 958 } 959 960 if (is_udplite) /* UDP-Lite */ 961 csum = udplite_csum(skb); 962 963 else if (sk->sk_no_check_tx) { /* UDP csum off */ 964 965 skb->ip_summed = CHECKSUM_NONE; 966 goto send; 967 968 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 969 csum_partial: 970 971 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 972 goto send; 973 974 } else 975 csum = udp_csum(skb); 976 977 /* add protocol-dependent pseudo-header */ 978 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 979 sk->sk_protocol, csum); 980 if (uh->check == 0) 981 uh->check = CSUM_MANGLED_0; 982 983 send: 984 err = ip_send_skb(sock_net(sk), skb); 985 if (err) { 986 if (err == -ENOBUFS && 987 !inet_test_bit(RECVERR, sk)) { 988 UDP_INC_STATS(sock_net(sk), 989 UDP_MIB_SNDBUFERRORS, is_udplite); 990 err = 0; 991 } 992 } else 993 UDP_INC_STATS(sock_net(sk), 994 UDP_MIB_OUTDATAGRAMS, is_udplite); 995 return err; 996 } 997 998 /* 999 * Push out all pending data as one UDP datagram. Socket is locked. 1000 */ 1001 int udp_push_pending_frames(struct sock *sk) 1002 { 1003 struct udp_sock *up = udp_sk(sk); 1004 struct inet_sock *inet = inet_sk(sk); 1005 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1006 struct sk_buff *skb; 1007 int err = 0; 1008 1009 skb = ip_finish_skb(sk, fl4); 1010 if (!skb) 1011 goto out; 1012 1013 err = udp_send_skb(skb, fl4, &inet->cork.base); 1014 1015 out: 1016 up->len = 0; 1017 WRITE_ONCE(up->pending, 0); 1018 return err; 1019 } 1020 EXPORT_SYMBOL(udp_push_pending_frames); 1021 1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1023 { 1024 switch (cmsg->cmsg_type) { 1025 case UDP_SEGMENT: 1026 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1027 return -EINVAL; 1028 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1029 return 0; 1030 default: 1031 return -EINVAL; 1032 } 1033 } 1034 1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1036 { 1037 struct cmsghdr *cmsg; 1038 bool need_ip = false; 1039 int err; 1040 1041 for_each_cmsghdr(cmsg, msg) { 1042 if (!CMSG_OK(msg, cmsg)) 1043 return -EINVAL; 1044 1045 if (cmsg->cmsg_level != SOL_UDP) { 1046 need_ip = true; 1047 continue; 1048 } 1049 1050 err = __udp_cmsg_send(cmsg, gso_size); 1051 if (err) 1052 return err; 1053 } 1054 1055 return need_ip; 1056 } 1057 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1058 1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1060 { 1061 struct inet_sock *inet = inet_sk(sk); 1062 struct udp_sock *up = udp_sk(sk); 1063 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1064 struct flowi4 fl4_stack; 1065 struct flowi4 *fl4; 1066 int ulen = len; 1067 struct ipcm_cookie ipc; 1068 struct rtable *rt = NULL; 1069 int free = 0; 1070 int connected = 0; 1071 __be32 daddr, faddr, saddr; 1072 u8 tos, scope; 1073 __be16 dport; 1074 int err, is_udplite = IS_UDPLITE(sk); 1075 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1076 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1077 struct sk_buff *skb; 1078 struct ip_options_data opt_copy; 1079 1080 if (len > 0xFFFF) 1081 return -EMSGSIZE; 1082 1083 /* 1084 * Check the flags. 1085 */ 1086 1087 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1088 return -EOPNOTSUPP; 1089 1090 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1091 1092 fl4 = &inet->cork.fl.u.ip4; 1093 if (READ_ONCE(up->pending)) { 1094 /* 1095 * There are pending frames. 1096 * The socket lock must be held while it's corked. 1097 */ 1098 lock_sock(sk); 1099 if (likely(up->pending)) { 1100 if (unlikely(up->pending != AF_INET)) { 1101 release_sock(sk); 1102 return -EINVAL; 1103 } 1104 goto do_append_data; 1105 } 1106 release_sock(sk); 1107 } 1108 ulen += sizeof(struct udphdr); 1109 1110 /* 1111 * Get and verify the address. 1112 */ 1113 if (usin) { 1114 if (msg->msg_namelen < sizeof(*usin)) 1115 return -EINVAL; 1116 if (usin->sin_family != AF_INET) { 1117 if (usin->sin_family != AF_UNSPEC) 1118 return -EAFNOSUPPORT; 1119 } 1120 1121 daddr = usin->sin_addr.s_addr; 1122 dport = usin->sin_port; 1123 if (dport == 0) 1124 return -EINVAL; 1125 } else { 1126 if (sk->sk_state != TCP_ESTABLISHED) 1127 return -EDESTADDRREQ; 1128 daddr = inet->inet_daddr; 1129 dport = inet->inet_dport; 1130 /* Open fast path for connected socket. 1131 Route will not be used, if at least one option is set. 1132 */ 1133 connected = 1; 1134 } 1135 1136 ipcm_init_sk(&ipc, inet); 1137 ipc.gso_size = READ_ONCE(up->gso_size); 1138 1139 if (msg->msg_controllen) { 1140 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1141 if (err > 0) { 1142 err = ip_cmsg_send(sk, msg, &ipc, 1143 sk->sk_family == AF_INET6); 1144 connected = 0; 1145 } 1146 if (unlikely(err < 0)) { 1147 kfree(ipc.opt); 1148 return err; 1149 } 1150 if (ipc.opt) 1151 free = 1; 1152 } 1153 if (!ipc.opt) { 1154 struct ip_options_rcu *inet_opt; 1155 1156 rcu_read_lock(); 1157 inet_opt = rcu_dereference(inet->inet_opt); 1158 if (inet_opt) { 1159 memcpy(&opt_copy, inet_opt, 1160 sizeof(*inet_opt) + inet_opt->opt.optlen); 1161 ipc.opt = &opt_copy.opt; 1162 } 1163 rcu_read_unlock(); 1164 } 1165 1166 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1167 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1168 (struct sockaddr *)usin, 1169 &msg->msg_namelen, 1170 &ipc.addr); 1171 if (err) 1172 goto out_free; 1173 if (usin) { 1174 if (usin->sin_port == 0) { 1175 /* BPF program set invalid port. Reject it. */ 1176 err = -EINVAL; 1177 goto out_free; 1178 } 1179 daddr = usin->sin_addr.s_addr; 1180 dport = usin->sin_port; 1181 } 1182 } 1183 1184 saddr = ipc.addr; 1185 ipc.addr = faddr = daddr; 1186 1187 if (ipc.opt && ipc.opt->opt.srr) { 1188 if (!daddr) { 1189 err = -EINVAL; 1190 goto out_free; 1191 } 1192 faddr = ipc.opt->opt.faddr; 1193 connected = 0; 1194 } 1195 tos = get_rttos(&ipc, inet); 1196 scope = ip_sendmsg_scope(inet, &ipc, msg); 1197 if (scope == RT_SCOPE_LINK) 1198 connected = 0; 1199 1200 if (ipv4_is_multicast(daddr)) { 1201 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1202 ipc.oif = inet->mc_index; 1203 if (!saddr) 1204 saddr = inet->mc_addr; 1205 connected = 0; 1206 } else if (!ipc.oif) { 1207 ipc.oif = inet->uc_index; 1208 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1209 /* oif is set, packet is to local broadcast and 1210 * uc_index is set. oif is most likely set 1211 * by sk_bound_dev_if. If uc_index != oif check if the 1212 * oif is an L3 master and uc_index is an L3 slave. 1213 * If so, we want to allow the send using the uc_index. 1214 */ 1215 if (ipc.oif != inet->uc_index && 1216 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1217 inet->uc_index)) { 1218 ipc.oif = inet->uc_index; 1219 } 1220 } 1221 1222 if (connected) 1223 rt = (struct rtable *)sk_dst_check(sk, 0); 1224 1225 if (!rt) { 1226 struct net *net = sock_net(sk); 1227 __u8 flow_flags = inet_sk_flowi_flags(sk); 1228 1229 fl4 = &fl4_stack; 1230 1231 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1232 sk->sk_protocol, flow_flags, faddr, saddr, 1233 dport, inet->inet_sport, sk->sk_uid); 1234 1235 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1236 rt = ip_route_output_flow(net, fl4, sk); 1237 if (IS_ERR(rt)) { 1238 err = PTR_ERR(rt); 1239 rt = NULL; 1240 if (err == -ENETUNREACH) 1241 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1242 goto out; 1243 } 1244 1245 err = -EACCES; 1246 if ((rt->rt_flags & RTCF_BROADCAST) && 1247 !sock_flag(sk, SOCK_BROADCAST)) 1248 goto out; 1249 if (connected) 1250 sk_dst_set(sk, dst_clone(&rt->dst)); 1251 } 1252 1253 if (msg->msg_flags&MSG_CONFIRM) 1254 goto do_confirm; 1255 back_from_confirm: 1256 1257 saddr = fl4->saddr; 1258 if (!ipc.addr) 1259 daddr = ipc.addr = fl4->daddr; 1260 1261 /* Lockless fast path for the non-corking case. */ 1262 if (!corkreq) { 1263 struct inet_cork cork; 1264 1265 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1266 sizeof(struct udphdr), &ipc, &rt, 1267 &cork, msg->msg_flags); 1268 err = PTR_ERR(skb); 1269 if (!IS_ERR_OR_NULL(skb)) 1270 err = udp_send_skb(skb, fl4, &cork); 1271 goto out; 1272 } 1273 1274 lock_sock(sk); 1275 if (unlikely(up->pending)) { 1276 /* The socket is already corked while preparing it. */ 1277 /* ... which is an evident application bug. --ANK */ 1278 release_sock(sk); 1279 1280 net_dbg_ratelimited("socket already corked\n"); 1281 err = -EINVAL; 1282 goto out; 1283 } 1284 /* 1285 * Now cork the socket to pend data. 1286 */ 1287 fl4 = &inet->cork.fl.u.ip4; 1288 fl4->daddr = daddr; 1289 fl4->saddr = saddr; 1290 fl4->fl4_dport = dport; 1291 fl4->fl4_sport = inet->inet_sport; 1292 WRITE_ONCE(up->pending, AF_INET); 1293 1294 do_append_data: 1295 up->len += ulen; 1296 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1297 sizeof(struct udphdr), &ipc, &rt, 1298 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1299 if (err) 1300 udp_flush_pending_frames(sk); 1301 else if (!corkreq) 1302 err = udp_push_pending_frames(sk); 1303 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1304 WRITE_ONCE(up->pending, 0); 1305 release_sock(sk); 1306 1307 out: 1308 ip_rt_put(rt); 1309 out_free: 1310 if (free) 1311 kfree(ipc.opt); 1312 if (!err) 1313 return len; 1314 /* 1315 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1316 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1317 * we don't have a good statistic (IpOutDiscards but it can be too many 1318 * things). We could add another new stat but at least for now that 1319 * seems like overkill. 1320 */ 1321 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1322 UDP_INC_STATS(sock_net(sk), 1323 UDP_MIB_SNDBUFERRORS, is_udplite); 1324 } 1325 return err; 1326 1327 do_confirm: 1328 if (msg->msg_flags & MSG_PROBE) 1329 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1330 if (!(msg->msg_flags&MSG_PROBE) || len) 1331 goto back_from_confirm; 1332 err = 0; 1333 goto out; 1334 } 1335 EXPORT_SYMBOL(udp_sendmsg); 1336 1337 void udp_splice_eof(struct socket *sock) 1338 { 1339 struct sock *sk = sock->sk; 1340 struct udp_sock *up = udp_sk(sk); 1341 1342 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1343 return; 1344 1345 lock_sock(sk); 1346 if (up->pending && !udp_test_bit(CORK, sk)) 1347 udp_push_pending_frames(sk); 1348 release_sock(sk); 1349 } 1350 EXPORT_SYMBOL_GPL(udp_splice_eof); 1351 1352 #define UDP_SKB_IS_STATELESS 0x80000000 1353 1354 /* all head states (dst, sk, nf conntrack) except skb extensions are 1355 * cleared by udp_rcv(). 1356 * 1357 * We need to preserve secpath, if present, to eventually process 1358 * IP_CMSG_PASSSEC at recvmsg() time. 1359 * 1360 * Other extensions can be cleared. 1361 */ 1362 static bool udp_try_make_stateless(struct sk_buff *skb) 1363 { 1364 if (!skb_has_extensions(skb)) 1365 return true; 1366 1367 if (!secpath_exists(skb)) { 1368 skb_ext_reset(skb); 1369 return true; 1370 } 1371 1372 return false; 1373 } 1374 1375 static void udp_set_dev_scratch(struct sk_buff *skb) 1376 { 1377 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1378 1379 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1380 scratch->_tsize_state = skb->truesize; 1381 #if BITS_PER_LONG == 64 1382 scratch->len = skb->len; 1383 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1384 scratch->is_linear = !skb_is_nonlinear(skb); 1385 #endif 1386 if (udp_try_make_stateless(skb)) 1387 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1388 } 1389 1390 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1391 { 1392 /* We come here after udp_lib_checksum_complete() returned 0. 1393 * This means that __skb_checksum_complete() might have 1394 * set skb->csum_valid to 1. 1395 * On 64bit platforms, we can set csum_unnecessary 1396 * to true, but only if the skb is not shared. 1397 */ 1398 #if BITS_PER_LONG == 64 1399 if (!skb_shared(skb)) 1400 udp_skb_scratch(skb)->csum_unnecessary = true; 1401 #endif 1402 } 1403 1404 static int udp_skb_truesize(struct sk_buff *skb) 1405 { 1406 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1407 } 1408 1409 static bool udp_skb_has_head_state(struct sk_buff *skb) 1410 { 1411 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1412 } 1413 1414 /* fully reclaim rmem/fwd memory allocated for skb */ 1415 static void udp_rmem_release(struct sock *sk, int size, int partial, 1416 bool rx_queue_lock_held) 1417 { 1418 struct udp_sock *up = udp_sk(sk); 1419 struct sk_buff_head *sk_queue; 1420 int amt; 1421 1422 if (likely(partial)) { 1423 up->forward_deficit += size; 1424 size = up->forward_deficit; 1425 if (size < READ_ONCE(up->forward_threshold) && 1426 !skb_queue_empty(&up->reader_queue)) 1427 return; 1428 } else { 1429 size += up->forward_deficit; 1430 } 1431 up->forward_deficit = 0; 1432 1433 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1434 * if the called don't held it already 1435 */ 1436 sk_queue = &sk->sk_receive_queue; 1437 if (!rx_queue_lock_held) 1438 spin_lock(&sk_queue->lock); 1439 1440 1441 sk_forward_alloc_add(sk, size); 1442 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1443 sk_forward_alloc_add(sk, -amt); 1444 1445 if (amt) 1446 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1447 1448 atomic_sub(size, &sk->sk_rmem_alloc); 1449 1450 /* this can save us from acquiring the rx queue lock on next receive */ 1451 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1452 1453 if (!rx_queue_lock_held) 1454 spin_unlock(&sk_queue->lock); 1455 } 1456 1457 /* Note: called with reader_queue.lock held. 1458 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1459 * This avoids a cache line miss while receive_queue lock is held. 1460 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1461 */ 1462 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1463 { 1464 prefetch(&skb->data); 1465 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1466 } 1467 EXPORT_SYMBOL(udp_skb_destructor); 1468 1469 /* as above, but the caller held the rx queue lock, too */ 1470 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1471 { 1472 prefetch(&skb->data); 1473 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1474 } 1475 1476 /* Idea of busylocks is to let producers grab an extra spinlock 1477 * to relieve pressure on the receive_queue spinlock shared by consumer. 1478 * Under flood, this means that only one producer can be in line 1479 * trying to acquire the receive_queue spinlock. 1480 * These busylock can be allocated on a per cpu manner, instead of a 1481 * per socket one (that would consume a cache line per socket) 1482 */ 1483 static int udp_busylocks_log __read_mostly; 1484 static spinlock_t *udp_busylocks __read_mostly; 1485 1486 static spinlock_t *busylock_acquire(void *ptr) 1487 { 1488 spinlock_t *busy; 1489 1490 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1491 spin_lock(busy); 1492 return busy; 1493 } 1494 1495 static void busylock_release(spinlock_t *busy) 1496 { 1497 if (busy) 1498 spin_unlock(busy); 1499 } 1500 1501 static int udp_rmem_schedule(struct sock *sk, int size) 1502 { 1503 int delta; 1504 1505 delta = size - sk->sk_forward_alloc; 1506 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1507 return -ENOBUFS; 1508 1509 return 0; 1510 } 1511 1512 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1513 { 1514 struct sk_buff_head *list = &sk->sk_receive_queue; 1515 int rmem, err = -ENOMEM; 1516 spinlock_t *busy = NULL; 1517 int size; 1518 1519 /* try to avoid the costly atomic add/sub pair when the receive 1520 * queue is full; always allow at least a packet 1521 */ 1522 rmem = atomic_read(&sk->sk_rmem_alloc); 1523 if (rmem > sk->sk_rcvbuf) 1524 goto drop; 1525 1526 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1527 * having linear skbs : 1528 * - Reduce memory overhead and thus increase receive queue capacity 1529 * - Less cache line misses at copyout() time 1530 * - Less work at consume_skb() (less alien page frag freeing) 1531 */ 1532 if (rmem > (sk->sk_rcvbuf >> 1)) { 1533 skb_condense(skb); 1534 1535 busy = busylock_acquire(sk); 1536 } 1537 size = skb->truesize; 1538 udp_set_dev_scratch(skb); 1539 1540 /* we drop only if the receive buf is full and the receive 1541 * queue contains some other skb 1542 */ 1543 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1544 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1545 goto uncharge_drop; 1546 1547 spin_lock(&list->lock); 1548 err = udp_rmem_schedule(sk, size); 1549 if (err) { 1550 spin_unlock(&list->lock); 1551 goto uncharge_drop; 1552 } 1553 1554 sk_forward_alloc_add(sk, -size); 1555 1556 /* no need to setup a destructor, we will explicitly release the 1557 * forward allocated memory on dequeue 1558 */ 1559 sock_skb_set_dropcount(sk, skb); 1560 1561 __skb_queue_tail(list, skb); 1562 spin_unlock(&list->lock); 1563 1564 if (!sock_flag(sk, SOCK_DEAD)) 1565 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1566 1567 busylock_release(busy); 1568 return 0; 1569 1570 uncharge_drop: 1571 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1572 1573 drop: 1574 atomic_inc(&sk->sk_drops); 1575 busylock_release(busy); 1576 return err; 1577 } 1578 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1579 1580 void udp_destruct_common(struct sock *sk) 1581 { 1582 /* reclaim completely the forward allocated memory */ 1583 struct udp_sock *up = udp_sk(sk); 1584 unsigned int total = 0; 1585 struct sk_buff *skb; 1586 1587 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1588 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1589 total += skb->truesize; 1590 kfree_skb(skb); 1591 } 1592 udp_rmem_release(sk, total, 0, true); 1593 } 1594 EXPORT_SYMBOL_GPL(udp_destruct_common); 1595 1596 static void udp_destruct_sock(struct sock *sk) 1597 { 1598 udp_destruct_common(sk); 1599 inet_sock_destruct(sk); 1600 } 1601 1602 int udp_init_sock(struct sock *sk) 1603 { 1604 udp_lib_init_sock(sk); 1605 sk->sk_destruct = udp_destruct_sock; 1606 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1607 return 0; 1608 } 1609 1610 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1611 { 1612 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1613 bool slow = lock_sock_fast(sk); 1614 1615 sk_peek_offset_bwd(sk, len); 1616 unlock_sock_fast(sk, slow); 1617 } 1618 1619 if (!skb_unref(skb)) 1620 return; 1621 1622 /* In the more common cases we cleared the head states previously, 1623 * see __udp_queue_rcv_skb(). 1624 */ 1625 if (unlikely(udp_skb_has_head_state(skb))) 1626 skb_release_head_state(skb); 1627 __consume_stateless_skb(skb); 1628 } 1629 EXPORT_SYMBOL_GPL(skb_consume_udp); 1630 1631 static struct sk_buff *__first_packet_length(struct sock *sk, 1632 struct sk_buff_head *rcvq, 1633 int *total) 1634 { 1635 struct sk_buff *skb; 1636 1637 while ((skb = skb_peek(rcvq)) != NULL) { 1638 if (udp_lib_checksum_complete(skb)) { 1639 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1640 IS_UDPLITE(sk)); 1641 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1642 IS_UDPLITE(sk)); 1643 atomic_inc(&sk->sk_drops); 1644 __skb_unlink(skb, rcvq); 1645 *total += skb->truesize; 1646 kfree_skb(skb); 1647 } else { 1648 udp_skb_csum_unnecessary_set(skb); 1649 break; 1650 } 1651 } 1652 return skb; 1653 } 1654 1655 /** 1656 * first_packet_length - return length of first packet in receive queue 1657 * @sk: socket 1658 * 1659 * Drops all bad checksum frames, until a valid one is found. 1660 * Returns the length of found skb, or -1 if none is found. 1661 */ 1662 static int first_packet_length(struct sock *sk) 1663 { 1664 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1665 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1666 struct sk_buff *skb; 1667 int total = 0; 1668 int res; 1669 1670 spin_lock_bh(&rcvq->lock); 1671 skb = __first_packet_length(sk, rcvq, &total); 1672 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1673 spin_lock(&sk_queue->lock); 1674 skb_queue_splice_tail_init(sk_queue, rcvq); 1675 spin_unlock(&sk_queue->lock); 1676 1677 skb = __first_packet_length(sk, rcvq, &total); 1678 } 1679 res = skb ? skb->len : -1; 1680 if (total) 1681 udp_rmem_release(sk, total, 1, false); 1682 spin_unlock_bh(&rcvq->lock); 1683 return res; 1684 } 1685 1686 /* 1687 * IOCTL requests applicable to the UDP protocol 1688 */ 1689 1690 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1691 { 1692 switch (cmd) { 1693 case SIOCOUTQ: 1694 { 1695 *karg = sk_wmem_alloc_get(sk); 1696 return 0; 1697 } 1698 1699 case SIOCINQ: 1700 { 1701 *karg = max_t(int, 0, first_packet_length(sk)); 1702 return 0; 1703 } 1704 1705 default: 1706 return -ENOIOCTLCMD; 1707 } 1708 1709 return 0; 1710 } 1711 EXPORT_SYMBOL(udp_ioctl); 1712 1713 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1714 int *off, int *err) 1715 { 1716 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1717 struct sk_buff_head *queue; 1718 struct sk_buff *last; 1719 long timeo; 1720 int error; 1721 1722 queue = &udp_sk(sk)->reader_queue; 1723 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1724 do { 1725 struct sk_buff *skb; 1726 1727 error = sock_error(sk); 1728 if (error) 1729 break; 1730 1731 error = -EAGAIN; 1732 do { 1733 spin_lock_bh(&queue->lock); 1734 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1735 err, &last); 1736 if (skb) { 1737 if (!(flags & MSG_PEEK)) 1738 udp_skb_destructor(sk, skb); 1739 spin_unlock_bh(&queue->lock); 1740 return skb; 1741 } 1742 1743 if (skb_queue_empty_lockless(sk_queue)) { 1744 spin_unlock_bh(&queue->lock); 1745 goto busy_check; 1746 } 1747 1748 /* refill the reader queue and walk it again 1749 * keep both queues locked to avoid re-acquiring 1750 * the sk_receive_queue lock if fwd memory scheduling 1751 * is needed. 1752 */ 1753 spin_lock(&sk_queue->lock); 1754 skb_queue_splice_tail_init(sk_queue, queue); 1755 1756 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1757 err, &last); 1758 if (skb && !(flags & MSG_PEEK)) 1759 udp_skb_dtor_locked(sk, skb); 1760 spin_unlock(&sk_queue->lock); 1761 spin_unlock_bh(&queue->lock); 1762 if (skb) 1763 return skb; 1764 1765 busy_check: 1766 if (!sk_can_busy_loop(sk)) 1767 break; 1768 1769 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1770 } while (!skb_queue_empty_lockless(sk_queue)); 1771 1772 /* sk_queue is empty, reader_queue may contain peeked packets */ 1773 } while (timeo && 1774 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1775 &error, &timeo, 1776 (struct sk_buff *)sk_queue)); 1777 1778 *err = error; 1779 return NULL; 1780 } 1781 EXPORT_SYMBOL(__skb_recv_udp); 1782 1783 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1784 { 1785 struct sk_buff *skb; 1786 int err; 1787 1788 try_again: 1789 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1790 if (!skb) 1791 return err; 1792 1793 if (udp_lib_checksum_complete(skb)) { 1794 int is_udplite = IS_UDPLITE(sk); 1795 struct net *net = sock_net(sk); 1796 1797 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1798 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1799 atomic_inc(&sk->sk_drops); 1800 kfree_skb(skb); 1801 goto try_again; 1802 } 1803 1804 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1805 return recv_actor(sk, skb); 1806 } 1807 EXPORT_SYMBOL(udp_read_skb); 1808 1809 /* 1810 * This should be easy, if there is something there we 1811 * return it, otherwise we block. 1812 */ 1813 1814 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1815 int *addr_len) 1816 { 1817 struct inet_sock *inet = inet_sk(sk); 1818 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1819 struct sk_buff *skb; 1820 unsigned int ulen, copied; 1821 int off, err, peeking = flags & MSG_PEEK; 1822 int is_udplite = IS_UDPLITE(sk); 1823 bool checksum_valid = false; 1824 1825 if (flags & MSG_ERRQUEUE) 1826 return ip_recv_error(sk, msg, len, addr_len); 1827 1828 try_again: 1829 off = sk_peek_offset(sk, flags); 1830 skb = __skb_recv_udp(sk, flags, &off, &err); 1831 if (!skb) 1832 return err; 1833 1834 ulen = udp_skb_len(skb); 1835 copied = len; 1836 if (copied > ulen - off) 1837 copied = ulen - off; 1838 else if (copied < ulen) 1839 msg->msg_flags |= MSG_TRUNC; 1840 1841 /* 1842 * If checksum is needed at all, try to do it while copying the 1843 * data. If the data is truncated, or if we only want a partial 1844 * coverage checksum (UDP-Lite), do it before the copy. 1845 */ 1846 1847 if (copied < ulen || peeking || 1848 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1849 checksum_valid = udp_skb_csum_unnecessary(skb) || 1850 !__udp_lib_checksum_complete(skb); 1851 if (!checksum_valid) 1852 goto csum_copy_err; 1853 } 1854 1855 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1856 if (udp_skb_is_linear(skb)) 1857 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1858 else 1859 err = skb_copy_datagram_msg(skb, off, msg, copied); 1860 } else { 1861 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1862 1863 if (err == -EINVAL) 1864 goto csum_copy_err; 1865 } 1866 1867 if (unlikely(err)) { 1868 if (!peeking) { 1869 atomic_inc(&sk->sk_drops); 1870 UDP_INC_STATS(sock_net(sk), 1871 UDP_MIB_INERRORS, is_udplite); 1872 } 1873 kfree_skb(skb); 1874 return err; 1875 } 1876 1877 if (!peeking) 1878 UDP_INC_STATS(sock_net(sk), 1879 UDP_MIB_INDATAGRAMS, is_udplite); 1880 1881 sock_recv_cmsgs(msg, sk, skb); 1882 1883 /* Copy the address. */ 1884 if (sin) { 1885 sin->sin_family = AF_INET; 1886 sin->sin_port = udp_hdr(skb)->source; 1887 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1888 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1889 *addr_len = sizeof(*sin); 1890 1891 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1892 (struct sockaddr *)sin, 1893 addr_len); 1894 } 1895 1896 if (udp_test_bit(GRO_ENABLED, sk)) 1897 udp_cmsg_recv(msg, sk, skb); 1898 1899 if (inet_cmsg_flags(inet)) 1900 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1901 1902 err = copied; 1903 if (flags & MSG_TRUNC) 1904 err = ulen; 1905 1906 skb_consume_udp(sk, skb, peeking ? -err : err); 1907 return err; 1908 1909 csum_copy_err: 1910 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1911 udp_skb_destructor)) { 1912 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1913 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1914 } 1915 kfree_skb(skb); 1916 1917 /* starting over for a new packet, but check if we need to yield */ 1918 cond_resched(); 1919 msg->msg_flags &= ~MSG_TRUNC; 1920 goto try_again; 1921 } 1922 1923 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1924 { 1925 /* This check is replicated from __ip4_datagram_connect() and 1926 * intended to prevent BPF program called below from accessing bytes 1927 * that are out of the bound specified by user in addr_len. 1928 */ 1929 if (addr_len < sizeof(struct sockaddr_in)) 1930 return -EINVAL; 1931 1932 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1933 } 1934 EXPORT_SYMBOL(udp_pre_connect); 1935 1936 int __udp_disconnect(struct sock *sk, int flags) 1937 { 1938 struct inet_sock *inet = inet_sk(sk); 1939 /* 1940 * 1003.1g - break association. 1941 */ 1942 1943 sk->sk_state = TCP_CLOSE; 1944 inet->inet_daddr = 0; 1945 inet->inet_dport = 0; 1946 sock_rps_reset_rxhash(sk); 1947 sk->sk_bound_dev_if = 0; 1948 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1949 inet_reset_saddr(sk); 1950 if (sk->sk_prot->rehash && 1951 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1952 sk->sk_prot->rehash(sk); 1953 } 1954 1955 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1956 sk->sk_prot->unhash(sk); 1957 inet->inet_sport = 0; 1958 } 1959 sk_dst_reset(sk); 1960 return 0; 1961 } 1962 EXPORT_SYMBOL(__udp_disconnect); 1963 1964 int udp_disconnect(struct sock *sk, int flags) 1965 { 1966 lock_sock(sk); 1967 __udp_disconnect(sk, flags); 1968 release_sock(sk); 1969 return 0; 1970 } 1971 EXPORT_SYMBOL(udp_disconnect); 1972 1973 void udp_lib_unhash(struct sock *sk) 1974 { 1975 if (sk_hashed(sk)) { 1976 struct udp_table *udptable = udp_get_table_prot(sk); 1977 struct udp_hslot *hslot, *hslot2; 1978 1979 hslot = udp_hashslot(udptable, sock_net(sk), 1980 udp_sk(sk)->udp_port_hash); 1981 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1982 1983 spin_lock_bh(&hslot->lock); 1984 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1985 reuseport_detach_sock(sk); 1986 if (sk_del_node_init_rcu(sk)) { 1987 hslot->count--; 1988 inet_sk(sk)->inet_num = 0; 1989 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1990 1991 spin_lock(&hslot2->lock); 1992 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1993 hslot2->count--; 1994 spin_unlock(&hslot2->lock); 1995 } 1996 spin_unlock_bh(&hslot->lock); 1997 } 1998 } 1999 EXPORT_SYMBOL(udp_lib_unhash); 2000 2001 /* 2002 * inet_rcv_saddr was changed, we must rehash secondary hash 2003 */ 2004 void udp_lib_rehash(struct sock *sk, u16 newhash) 2005 { 2006 if (sk_hashed(sk)) { 2007 struct udp_table *udptable = udp_get_table_prot(sk); 2008 struct udp_hslot *hslot, *hslot2, *nhslot2; 2009 2010 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2011 nhslot2 = udp_hashslot2(udptable, newhash); 2012 udp_sk(sk)->udp_portaddr_hash = newhash; 2013 2014 if (hslot2 != nhslot2 || 2015 rcu_access_pointer(sk->sk_reuseport_cb)) { 2016 hslot = udp_hashslot(udptable, sock_net(sk), 2017 udp_sk(sk)->udp_port_hash); 2018 /* we must lock primary chain too */ 2019 spin_lock_bh(&hslot->lock); 2020 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2021 reuseport_detach_sock(sk); 2022 2023 if (hslot2 != nhslot2) { 2024 spin_lock(&hslot2->lock); 2025 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2026 hslot2->count--; 2027 spin_unlock(&hslot2->lock); 2028 2029 spin_lock(&nhslot2->lock); 2030 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2031 &nhslot2->head); 2032 nhslot2->count++; 2033 spin_unlock(&nhslot2->lock); 2034 } 2035 2036 spin_unlock_bh(&hslot->lock); 2037 } 2038 } 2039 } 2040 EXPORT_SYMBOL(udp_lib_rehash); 2041 2042 void udp_v4_rehash(struct sock *sk) 2043 { 2044 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2045 inet_sk(sk)->inet_rcv_saddr, 2046 inet_sk(sk)->inet_num); 2047 udp_lib_rehash(sk, new_hash); 2048 } 2049 2050 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2051 { 2052 int rc; 2053 2054 if (inet_sk(sk)->inet_daddr) { 2055 sock_rps_save_rxhash(sk, skb); 2056 sk_mark_napi_id(sk, skb); 2057 sk_incoming_cpu_update(sk); 2058 } else { 2059 sk_mark_napi_id_once(sk, skb); 2060 } 2061 2062 rc = __udp_enqueue_schedule_skb(sk, skb); 2063 if (rc < 0) { 2064 int is_udplite = IS_UDPLITE(sk); 2065 int drop_reason; 2066 2067 /* Note that an ENOMEM error is charged twice */ 2068 if (rc == -ENOMEM) { 2069 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2070 is_udplite); 2071 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2072 } else { 2073 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2074 is_udplite); 2075 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2076 } 2077 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2078 kfree_skb_reason(skb, drop_reason); 2079 trace_udp_fail_queue_rcv_skb(rc, sk); 2080 return -1; 2081 } 2082 2083 return 0; 2084 } 2085 2086 /* returns: 2087 * -1: error 2088 * 0: success 2089 * >0: "udp encap" protocol resubmission 2090 * 2091 * Note that in the success and error cases, the skb is assumed to 2092 * have either been requeued or freed. 2093 */ 2094 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2095 { 2096 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2097 struct udp_sock *up = udp_sk(sk); 2098 int is_udplite = IS_UDPLITE(sk); 2099 2100 /* 2101 * Charge it to the socket, dropping if the queue is full. 2102 */ 2103 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2104 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2105 goto drop; 2106 } 2107 nf_reset_ct(skb); 2108 2109 if (static_branch_unlikely(&udp_encap_needed_key) && 2110 READ_ONCE(up->encap_type)) { 2111 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2112 2113 /* 2114 * This is an encapsulation socket so pass the skb to 2115 * the socket's udp_encap_rcv() hook. Otherwise, just 2116 * fall through and pass this up the UDP socket. 2117 * up->encap_rcv() returns the following value: 2118 * =0 if skb was successfully passed to the encap 2119 * handler or was discarded by it. 2120 * >0 if skb should be passed on to UDP. 2121 * <0 if skb should be resubmitted as proto -N 2122 */ 2123 2124 /* if we're overly short, let UDP handle it */ 2125 encap_rcv = READ_ONCE(up->encap_rcv); 2126 if (encap_rcv) { 2127 int ret; 2128 2129 /* Verify checksum before giving to encap */ 2130 if (udp_lib_checksum_complete(skb)) 2131 goto csum_error; 2132 2133 ret = encap_rcv(sk, skb); 2134 if (ret <= 0) { 2135 __UDP_INC_STATS(sock_net(sk), 2136 UDP_MIB_INDATAGRAMS, 2137 is_udplite); 2138 return -ret; 2139 } 2140 } 2141 2142 /* FALLTHROUGH -- it's a UDP Packet */ 2143 } 2144 2145 /* 2146 * UDP-Lite specific tests, ignored on UDP sockets 2147 */ 2148 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2149 u16 pcrlen = READ_ONCE(up->pcrlen); 2150 2151 /* 2152 * MIB statistics other than incrementing the error count are 2153 * disabled for the following two types of errors: these depend 2154 * on the application settings, not on the functioning of the 2155 * protocol stack as such. 2156 * 2157 * RFC 3828 here recommends (sec 3.3): "There should also be a 2158 * way ... to ... at least let the receiving application block 2159 * delivery of packets with coverage values less than a value 2160 * provided by the application." 2161 */ 2162 if (pcrlen == 0) { /* full coverage was set */ 2163 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2164 UDP_SKB_CB(skb)->cscov, skb->len); 2165 goto drop; 2166 } 2167 /* The next case involves violating the min. coverage requested 2168 * by the receiver. This is subtle: if receiver wants x and x is 2169 * greater than the buffersize/MTU then receiver will complain 2170 * that it wants x while sender emits packets of smaller size y. 2171 * Therefore the above ...()->partial_cov statement is essential. 2172 */ 2173 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2174 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2175 UDP_SKB_CB(skb)->cscov, pcrlen); 2176 goto drop; 2177 } 2178 } 2179 2180 prefetch(&sk->sk_rmem_alloc); 2181 if (rcu_access_pointer(sk->sk_filter) && 2182 udp_lib_checksum_complete(skb)) 2183 goto csum_error; 2184 2185 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2186 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2187 goto drop; 2188 } 2189 2190 udp_csum_pull_header(skb); 2191 2192 ipv4_pktinfo_prepare(sk, skb, true); 2193 return __udp_queue_rcv_skb(sk, skb); 2194 2195 csum_error: 2196 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2197 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2198 drop: 2199 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2200 atomic_inc(&sk->sk_drops); 2201 kfree_skb_reason(skb, drop_reason); 2202 return -1; 2203 } 2204 2205 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2206 { 2207 struct sk_buff *next, *segs; 2208 int ret; 2209 2210 if (likely(!udp_unexpected_gso(sk, skb))) 2211 return udp_queue_rcv_one_skb(sk, skb); 2212 2213 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2214 __skb_push(skb, -skb_mac_offset(skb)); 2215 segs = udp_rcv_segment(sk, skb, true); 2216 skb_list_walk_safe(segs, skb, next) { 2217 __skb_pull(skb, skb_transport_offset(skb)); 2218 2219 udp_post_segment_fix_csum(skb); 2220 ret = udp_queue_rcv_one_skb(sk, skb); 2221 if (ret > 0) 2222 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2223 } 2224 return 0; 2225 } 2226 2227 /* For TCP sockets, sk_rx_dst is protected by socket lock 2228 * For UDP, we use xchg() to guard against concurrent changes. 2229 */ 2230 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2231 { 2232 struct dst_entry *old; 2233 2234 if (dst_hold_safe(dst)) { 2235 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2236 dst_release(old); 2237 return old != dst; 2238 } 2239 return false; 2240 } 2241 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2242 2243 /* 2244 * Multicasts and broadcasts go to each listener. 2245 * 2246 * Note: called only from the BH handler context. 2247 */ 2248 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2249 struct udphdr *uh, 2250 __be32 saddr, __be32 daddr, 2251 struct udp_table *udptable, 2252 int proto) 2253 { 2254 struct sock *sk, *first = NULL; 2255 unsigned short hnum = ntohs(uh->dest); 2256 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2257 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2258 unsigned int offset = offsetof(typeof(*sk), sk_node); 2259 int dif = skb->dev->ifindex; 2260 int sdif = inet_sdif(skb); 2261 struct hlist_node *node; 2262 struct sk_buff *nskb; 2263 2264 if (use_hash2) { 2265 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2266 udptable->mask; 2267 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2268 start_lookup: 2269 hslot = &udptable->hash2[hash2]; 2270 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2271 } 2272 2273 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2274 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2275 uh->source, saddr, dif, sdif, hnum)) 2276 continue; 2277 2278 if (!first) { 2279 first = sk; 2280 continue; 2281 } 2282 nskb = skb_clone(skb, GFP_ATOMIC); 2283 2284 if (unlikely(!nskb)) { 2285 atomic_inc(&sk->sk_drops); 2286 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2287 IS_UDPLITE(sk)); 2288 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2289 IS_UDPLITE(sk)); 2290 continue; 2291 } 2292 if (udp_queue_rcv_skb(sk, nskb) > 0) 2293 consume_skb(nskb); 2294 } 2295 2296 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2297 if (use_hash2 && hash2 != hash2_any) { 2298 hash2 = hash2_any; 2299 goto start_lookup; 2300 } 2301 2302 if (first) { 2303 if (udp_queue_rcv_skb(first, skb) > 0) 2304 consume_skb(skb); 2305 } else { 2306 kfree_skb(skb); 2307 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2308 proto == IPPROTO_UDPLITE); 2309 } 2310 return 0; 2311 } 2312 2313 /* Initialize UDP checksum. If exited with zero value (success), 2314 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2315 * Otherwise, csum completion requires checksumming packet body, 2316 * including udp header and folding it to skb->csum. 2317 */ 2318 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2319 int proto) 2320 { 2321 int err; 2322 2323 UDP_SKB_CB(skb)->partial_cov = 0; 2324 UDP_SKB_CB(skb)->cscov = skb->len; 2325 2326 if (proto == IPPROTO_UDPLITE) { 2327 err = udplite_checksum_init(skb, uh); 2328 if (err) 2329 return err; 2330 2331 if (UDP_SKB_CB(skb)->partial_cov) { 2332 skb->csum = inet_compute_pseudo(skb, proto); 2333 return 0; 2334 } 2335 } 2336 2337 /* Note, we are only interested in != 0 or == 0, thus the 2338 * force to int. 2339 */ 2340 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2341 inet_compute_pseudo); 2342 if (err) 2343 return err; 2344 2345 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2346 /* If SW calculated the value, we know it's bad */ 2347 if (skb->csum_complete_sw) 2348 return 1; 2349 2350 /* HW says the value is bad. Let's validate that. 2351 * skb->csum is no longer the full packet checksum, 2352 * so don't treat it as such. 2353 */ 2354 skb_checksum_complete_unset(skb); 2355 } 2356 2357 return 0; 2358 } 2359 2360 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2361 * return code conversion for ip layer consumption 2362 */ 2363 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2364 struct udphdr *uh) 2365 { 2366 int ret; 2367 2368 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2369 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2370 2371 ret = udp_queue_rcv_skb(sk, skb); 2372 2373 /* a return value > 0 means to resubmit the input, but 2374 * it wants the return to be -protocol, or 0 2375 */ 2376 if (ret > 0) 2377 return -ret; 2378 return 0; 2379 } 2380 2381 /* 2382 * All we need to do is get the socket, and then do a checksum. 2383 */ 2384 2385 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2386 int proto) 2387 { 2388 struct sock *sk; 2389 struct udphdr *uh; 2390 unsigned short ulen; 2391 struct rtable *rt = skb_rtable(skb); 2392 __be32 saddr, daddr; 2393 struct net *net = dev_net(skb->dev); 2394 bool refcounted; 2395 int drop_reason; 2396 2397 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2398 2399 /* 2400 * Validate the packet. 2401 */ 2402 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2403 goto drop; /* No space for header. */ 2404 2405 uh = udp_hdr(skb); 2406 ulen = ntohs(uh->len); 2407 saddr = ip_hdr(skb)->saddr; 2408 daddr = ip_hdr(skb)->daddr; 2409 2410 if (ulen > skb->len) 2411 goto short_packet; 2412 2413 if (proto == IPPROTO_UDP) { 2414 /* UDP validates ulen. */ 2415 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2416 goto short_packet; 2417 uh = udp_hdr(skb); 2418 } 2419 2420 if (udp4_csum_init(skb, uh, proto)) 2421 goto csum_error; 2422 2423 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2424 &refcounted, udp_ehashfn); 2425 if (IS_ERR(sk)) 2426 goto no_sk; 2427 2428 if (sk) { 2429 struct dst_entry *dst = skb_dst(skb); 2430 int ret; 2431 2432 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2433 udp_sk_rx_dst_set(sk, dst); 2434 2435 ret = udp_unicast_rcv_skb(sk, skb, uh); 2436 if (refcounted) 2437 sock_put(sk); 2438 return ret; 2439 } 2440 2441 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2442 return __udp4_lib_mcast_deliver(net, skb, uh, 2443 saddr, daddr, udptable, proto); 2444 2445 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2446 if (sk) 2447 return udp_unicast_rcv_skb(sk, skb, uh); 2448 no_sk: 2449 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2450 goto drop; 2451 nf_reset_ct(skb); 2452 2453 /* No socket. Drop packet silently, if checksum is wrong */ 2454 if (udp_lib_checksum_complete(skb)) 2455 goto csum_error; 2456 2457 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2458 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2459 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2460 2461 /* 2462 * Hmm. We got an UDP packet to a port to which we 2463 * don't wanna listen. Ignore it. 2464 */ 2465 kfree_skb_reason(skb, drop_reason); 2466 return 0; 2467 2468 short_packet: 2469 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2470 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2471 proto == IPPROTO_UDPLITE ? "Lite" : "", 2472 &saddr, ntohs(uh->source), 2473 ulen, skb->len, 2474 &daddr, ntohs(uh->dest)); 2475 goto drop; 2476 2477 csum_error: 2478 /* 2479 * RFC1122: OK. Discards the bad packet silently (as far as 2480 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2481 */ 2482 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2483 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2484 proto == IPPROTO_UDPLITE ? "Lite" : "", 2485 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2486 ulen); 2487 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2488 drop: 2489 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2490 kfree_skb_reason(skb, drop_reason); 2491 return 0; 2492 } 2493 2494 /* We can only early demux multicast if there is a single matching socket. 2495 * If more than one socket found returns NULL 2496 */ 2497 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2498 __be16 loc_port, __be32 loc_addr, 2499 __be16 rmt_port, __be32 rmt_addr, 2500 int dif, int sdif) 2501 { 2502 struct udp_table *udptable = net->ipv4.udp_table; 2503 unsigned short hnum = ntohs(loc_port); 2504 struct sock *sk, *result; 2505 struct udp_hslot *hslot; 2506 unsigned int slot; 2507 2508 slot = udp_hashfn(net, hnum, udptable->mask); 2509 hslot = &udptable->hash[slot]; 2510 2511 /* Do not bother scanning a too big list */ 2512 if (hslot->count > 10) 2513 return NULL; 2514 2515 result = NULL; 2516 sk_for_each_rcu(sk, &hslot->head) { 2517 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2518 rmt_port, rmt_addr, dif, sdif, hnum)) { 2519 if (result) 2520 return NULL; 2521 result = sk; 2522 } 2523 } 2524 2525 return result; 2526 } 2527 2528 /* For unicast we should only early demux connected sockets or we can 2529 * break forwarding setups. The chains here can be long so only check 2530 * if the first socket is an exact match and if not move on. 2531 */ 2532 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2533 __be16 loc_port, __be32 loc_addr, 2534 __be16 rmt_port, __be32 rmt_addr, 2535 int dif, int sdif) 2536 { 2537 struct udp_table *udptable = net->ipv4.udp_table; 2538 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2539 unsigned short hnum = ntohs(loc_port); 2540 unsigned int hash2, slot2; 2541 struct udp_hslot *hslot2; 2542 __portpair ports; 2543 struct sock *sk; 2544 2545 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2546 slot2 = hash2 & udptable->mask; 2547 hslot2 = &udptable->hash2[slot2]; 2548 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2549 2550 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2551 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2552 return sk; 2553 /* Only check first socket in chain */ 2554 break; 2555 } 2556 return NULL; 2557 } 2558 2559 int udp_v4_early_demux(struct sk_buff *skb) 2560 { 2561 struct net *net = dev_net(skb->dev); 2562 struct in_device *in_dev = NULL; 2563 const struct iphdr *iph; 2564 const struct udphdr *uh; 2565 struct sock *sk = NULL; 2566 struct dst_entry *dst; 2567 int dif = skb->dev->ifindex; 2568 int sdif = inet_sdif(skb); 2569 int ours; 2570 2571 /* validate the packet */ 2572 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2573 return 0; 2574 2575 iph = ip_hdr(skb); 2576 uh = udp_hdr(skb); 2577 2578 if (skb->pkt_type == PACKET_MULTICAST) { 2579 in_dev = __in_dev_get_rcu(skb->dev); 2580 2581 if (!in_dev) 2582 return 0; 2583 2584 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2585 iph->protocol); 2586 if (!ours) 2587 return 0; 2588 2589 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2590 uh->source, iph->saddr, 2591 dif, sdif); 2592 } else if (skb->pkt_type == PACKET_HOST) { 2593 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2594 uh->source, iph->saddr, dif, sdif); 2595 } 2596 2597 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2598 return 0; 2599 2600 skb->sk = sk; 2601 skb->destructor = sock_efree; 2602 dst = rcu_dereference(sk->sk_rx_dst); 2603 2604 if (dst) 2605 dst = dst_check(dst, 0); 2606 if (dst) { 2607 u32 itag = 0; 2608 2609 /* set noref for now. 2610 * any place which wants to hold dst has to call 2611 * dst_hold_safe() 2612 */ 2613 skb_dst_set_noref(skb, dst); 2614 2615 /* for unconnected multicast sockets we need to validate 2616 * the source on each packet 2617 */ 2618 if (!inet_sk(sk)->inet_daddr && in_dev) 2619 return ip_mc_validate_source(skb, iph->daddr, 2620 iph->saddr, 2621 iph->tos & IPTOS_RT_MASK, 2622 skb->dev, in_dev, &itag); 2623 } 2624 return 0; 2625 } 2626 2627 int udp_rcv(struct sk_buff *skb) 2628 { 2629 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2630 } 2631 2632 void udp_destroy_sock(struct sock *sk) 2633 { 2634 struct udp_sock *up = udp_sk(sk); 2635 bool slow = lock_sock_fast(sk); 2636 2637 /* protects from races with udp_abort() */ 2638 sock_set_flag(sk, SOCK_DEAD); 2639 udp_flush_pending_frames(sk); 2640 unlock_sock_fast(sk, slow); 2641 if (static_branch_unlikely(&udp_encap_needed_key)) { 2642 if (up->encap_type) { 2643 void (*encap_destroy)(struct sock *sk); 2644 encap_destroy = READ_ONCE(up->encap_destroy); 2645 if (encap_destroy) 2646 encap_destroy(sk); 2647 } 2648 if (udp_test_bit(ENCAP_ENABLED, sk)) 2649 static_branch_dec(&udp_encap_needed_key); 2650 } 2651 } 2652 2653 /* 2654 * Socket option code for UDP 2655 */ 2656 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2657 sockptr_t optval, unsigned int optlen, 2658 int (*push_pending_frames)(struct sock *)) 2659 { 2660 struct udp_sock *up = udp_sk(sk); 2661 int val, valbool; 2662 int err = 0; 2663 int is_udplite = IS_UDPLITE(sk); 2664 2665 if (level == SOL_SOCKET) { 2666 err = sk_setsockopt(sk, level, optname, optval, optlen); 2667 2668 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2669 sockopt_lock_sock(sk); 2670 /* paired with READ_ONCE in udp_rmem_release() */ 2671 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2672 sockopt_release_sock(sk); 2673 } 2674 return err; 2675 } 2676 2677 if (optlen < sizeof(int)) 2678 return -EINVAL; 2679 2680 if (copy_from_sockptr(&val, optval, sizeof(val))) 2681 return -EFAULT; 2682 2683 valbool = val ? 1 : 0; 2684 2685 switch (optname) { 2686 case UDP_CORK: 2687 if (val != 0) { 2688 udp_set_bit(CORK, sk); 2689 } else { 2690 udp_clear_bit(CORK, sk); 2691 lock_sock(sk); 2692 push_pending_frames(sk); 2693 release_sock(sk); 2694 } 2695 break; 2696 2697 case UDP_ENCAP: 2698 switch (val) { 2699 case 0: 2700 #ifdef CONFIG_XFRM 2701 case UDP_ENCAP_ESPINUDP: 2702 case UDP_ENCAP_ESPINUDP_NON_IKE: 2703 #if IS_ENABLED(CONFIG_IPV6) 2704 if (sk->sk_family == AF_INET6) 2705 WRITE_ONCE(up->encap_rcv, 2706 ipv6_stub->xfrm6_udp_encap_rcv); 2707 else 2708 #endif 2709 WRITE_ONCE(up->encap_rcv, 2710 xfrm4_udp_encap_rcv); 2711 #endif 2712 fallthrough; 2713 case UDP_ENCAP_L2TPINUDP: 2714 WRITE_ONCE(up->encap_type, val); 2715 udp_tunnel_encap_enable(sk); 2716 break; 2717 default: 2718 err = -ENOPROTOOPT; 2719 break; 2720 } 2721 break; 2722 2723 case UDP_NO_CHECK6_TX: 2724 udp_set_no_check6_tx(sk, valbool); 2725 break; 2726 2727 case UDP_NO_CHECK6_RX: 2728 udp_set_no_check6_rx(sk, valbool); 2729 break; 2730 2731 case UDP_SEGMENT: 2732 if (val < 0 || val > USHRT_MAX) 2733 return -EINVAL; 2734 WRITE_ONCE(up->gso_size, val); 2735 break; 2736 2737 case UDP_GRO: 2738 2739 /* when enabling GRO, accept the related GSO packet type */ 2740 if (valbool) 2741 udp_tunnel_encap_enable(sk); 2742 udp_assign_bit(GRO_ENABLED, sk, valbool); 2743 udp_assign_bit(ACCEPT_L4, sk, valbool); 2744 break; 2745 2746 /* 2747 * UDP-Lite's partial checksum coverage (RFC 3828). 2748 */ 2749 /* The sender sets actual checksum coverage length via this option. 2750 * The case coverage > packet length is handled by send module. */ 2751 case UDPLITE_SEND_CSCOV: 2752 if (!is_udplite) /* Disable the option on UDP sockets */ 2753 return -ENOPROTOOPT; 2754 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2755 val = 8; 2756 else if (val > USHRT_MAX) 2757 val = USHRT_MAX; 2758 WRITE_ONCE(up->pcslen, val); 2759 udp_set_bit(UDPLITE_SEND_CC, sk); 2760 break; 2761 2762 /* The receiver specifies a minimum checksum coverage value. To make 2763 * sense, this should be set to at least 8 (as done below). If zero is 2764 * used, this again means full checksum coverage. */ 2765 case UDPLITE_RECV_CSCOV: 2766 if (!is_udplite) /* Disable the option on UDP sockets */ 2767 return -ENOPROTOOPT; 2768 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2769 val = 8; 2770 else if (val > USHRT_MAX) 2771 val = USHRT_MAX; 2772 WRITE_ONCE(up->pcrlen, val); 2773 udp_set_bit(UDPLITE_RECV_CC, sk); 2774 break; 2775 2776 default: 2777 err = -ENOPROTOOPT; 2778 break; 2779 } 2780 2781 return err; 2782 } 2783 EXPORT_SYMBOL(udp_lib_setsockopt); 2784 2785 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2786 unsigned int optlen) 2787 { 2788 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2789 return udp_lib_setsockopt(sk, level, optname, 2790 optval, optlen, 2791 udp_push_pending_frames); 2792 return ip_setsockopt(sk, level, optname, optval, optlen); 2793 } 2794 2795 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2796 char __user *optval, int __user *optlen) 2797 { 2798 struct udp_sock *up = udp_sk(sk); 2799 int val, len; 2800 2801 if (get_user(len, optlen)) 2802 return -EFAULT; 2803 2804 if (len < 0) 2805 return -EINVAL; 2806 2807 len = min_t(unsigned int, len, sizeof(int)); 2808 2809 switch (optname) { 2810 case UDP_CORK: 2811 val = udp_test_bit(CORK, sk); 2812 break; 2813 2814 case UDP_ENCAP: 2815 val = READ_ONCE(up->encap_type); 2816 break; 2817 2818 case UDP_NO_CHECK6_TX: 2819 val = udp_get_no_check6_tx(sk); 2820 break; 2821 2822 case UDP_NO_CHECK6_RX: 2823 val = udp_get_no_check6_rx(sk); 2824 break; 2825 2826 case UDP_SEGMENT: 2827 val = READ_ONCE(up->gso_size); 2828 break; 2829 2830 case UDP_GRO: 2831 val = udp_test_bit(GRO_ENABLED, sk); 2832 break; 2833 2834 /* The following two cannot be changed on UDP sockets, the return is 2835 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2836 case UDPLITE_SEND_CSCOV: 2837 val = READ_ONCE(up->pcslen); 2838 break; 2839 2840 case UDPLITE_RECV_CSCOV: 2841 val = READ_ONCE(up->pcrlen); 2842 break; 2843 2844 default: 2845 return -ENOPROTOOPT; 2846 } 2847 2848 if (put_user(len, optlen)) 2849 return -EFAULT; 2850 if (copy_to_user(optval, &val, len)) 2851 return -EFAULT; 2852 return 0; 2853 } 2854 EXPORT_SYMBOL(udp_lib_getsockopt); 2855 2856 int udp_getsockopt(struct sock *sk, int level, int optname, 2857 char __user *optval, int __user *optlen) 2858 { 2859 if (level == SOL_UDP || level == SOL_UDPLITE) 2860 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2861 return ip_getsockopt(sk, level, optname, optval, optlen); 2862 } 2863 2864 /** 2865 * udp_poll - wait for a UDP event. 2866 * @file: - file struct 2867 * @sock: - socket 2868 * @wait: - poll table 2869 * 2870 * This is same as datagram poll, except for the special case of 2871 * blocking sockets. If application is using a blocking fd 2872 * and a packet with checksum error is in the queue; 2873 * then it could get return from select indicating data available 2874 * but then block when reading it. Add special case code 2875 * to work around these arguably broken applications. 2876 */ 2877 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2878 { 2879 __poll_t mask = datagram_poll(file, sock, wait); 2880 struct sock *sk = sock->sk; 2881 2882 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2883 mask |= EPOLLIN | EPOLLRDNORM; 2884 2885 /* Check for false positives due to checksum errors */ 2886 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2887 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2888 mask &= ~(EPOLLIN | EPOLLRDNORM); 2889 2890 /* psock ingress_msg queue should not contain any bad checksum frames */ 2891 if (sk_is_readable(sk)) 2892 mask |= EPOLLIN | EPOLLRDNORM; 2893 return mask; 2894 2895 } 2896 EXPORT_SYMBOL(udp_poll); 2897 2898 int udp_abort(struct sock *sk, int err) 2899 { 2900 if (!has_current_bpf_ctx()) 2901 lock_sock(sk); 2902 2903 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2904 * with close() 2905 */ 2906 if (sock_flag(sk, SOCK_DEAD)) 2907 goto out; 2908 2909 sk->sk_err = err; 2910 sk_error_report(sk); 2911 __udp_disconnect(sk, 0); 2912 2913 out: 2914 if (!has_current_bpf_ctx()) 2915 release_sock(sk); 2916 2917 return 0; 2918 } 2919 EXPORT_SYMBOL_GPL(udp_abort); 2920 2921 struct proto udp_prot = { 2922 .name = "UDP", 2923 .owner = THIS_MODULE, 2924 .close = udp_lib_close, 2925 .pre_connect = udp_pre_connect, 2926 .connect = ip4_datagram_connect, 2927 .disconnect = udp_disconnect, 2928 .ioctl = udp_ioctl, 2929 .init = udp_init_sock, 2930 .destroy = udp_destroy_sock, 2931 .setsockopt = udp_setsockopt, 2932 .getsockopt = udp_getsockopt, 2933 .sendmsg = udp_sendmsg, 2934 .recvmsg = udp_recvmsg, 2935 .splice_eof = udp_splice_eof, 2936 .release_cb = ip4_datagram_release_cb, 2937 .hash = udp_lib_hash, 2938 .unhash = udp_lib_unhash, 2939 .rehash = udp_v4_rehash, 2940 .get_port = udp_v4_get_port, 2941 .put_port = udp_lib_unhash, 2942 #ifdef CONFIG_BPF_SYSCALL 2943 .psock_update_sk_prot = udp_bpf_update_proto, 2944 #endif 2945 .memory_allocated = &udp_memory_allocated, 2946 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2947 2948 .sysctl_mem = sysctl_udp_mem, 2949 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2950 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2951 .obj_size = sizeof(struct udp_sock), 2952 .h.udp_table = NULL, 2953 .diag_destroy = udp_abort, 2954 }; 2955 EXPORT_SYMBOL(udp_prot); 2956 2957 /* ------------------------------------------------------------------------ */ 2958 #ifdef CONFIG_PROC_FS 2959 2960 static unsigned short seq_file_family(const struct seq_file *seq); 2961 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2962 { 2963 unsigned short family = seq_file_family(seq); 2964 2965 /* AF_UNSPEC is used as a match all */ 2966 return ((family == AF_UNSPEC || family == sk->sk_family) && 2967 net_eq(sock_net(sk), seq_file_net(seq))); 2968 } 2969 2970 #ifdef CONFIG_BPF_SYSCALL 2971 static const struct seq_operations bpf_iter_udp_seq_ops; 2972 #endif 2973 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2974 struct net *net) 2975 { 2976 const struct udp_seq_afinfo *afinfo; 2977 2978 #ifdef CONFIG_BPF_SYSCALL 2979 if (seq->op == &bpf_iter_udp_seq_ops) 2980 return net->ipv4.udp_table; 2981 #endif 2982 2983 afinfo = pde_data(file_inode(seq->file)); 2984 return afinfo->udp_table ? : net->ipv4.udp_table; 2985 } 2986 2987 static struct sock *udp_get_first(struct seq_file *seq, int start) 2988 { 2989 struct udp_iter_state *state = seq->private; 2990 struct net *net = seq_file_net(seq); 2991 struct udp_table *udptable; 2992 struct sock *sk; 2993 2994 udptable = udp_get_table_seq(seq, net); 2995 2996 for (state->bucket = start; state->bucket <= udptable->mask; 2997 ++state->bucket) { 2998 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2999 3000 if (hlist_empty(&hslot->head)) 3001 continue; 3002 3003 spin_lock_bh(&hslot->lock); 3004 sk_for_each(sk, &hslot->head) { 3005 if (seq_sk_match(seq, sk)) 3006 goto found; 3007 } 3008 spin_unlock_bh(&hslot->lock); 3009 } 3010 sk = NULL; 3011 found: 3012 return sk; 3013 } 3014 3015 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3016 { 3017 struct udp_iter_state *state = seq->private; 3018 struct net *net = seq_file_net(seq); 3019 struct udp_table *udptable; 3020 3021 do { 3022 sk = sk_next(sk); 3023 } while (sk && !seq_sk_match(seq, sk)); 3024 3025 if (!sk) { 3026 udptable = udp_get_table_seq(seq, net); 3027 3028 if (state->bucket <= udptable->mask) 3029 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3030 3031 return udp_get_first(seq, state->bucket + 1); 3032 } 3033 return sk; 3034 } 3035 3036 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3037 { 3038 struct sock *sk = udp_get_first(seq, 0); 3039 3040 if (sk) 3041 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3042 --pos; 3043 return pos ? NULL : sk; 3044 } 3045 3046 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3047 { 3048 struct udp_iter_state *state = seq->private; 3049 state->bucket = MAX_UDP_PORTS; 3050 3051 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3052 } 3053 EXPORT_SYMBOL(udp_seq_start); 3054 3055 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3056 { 3057 struct sock *sk; 3058 3059 if (v == SEQ_START_TOKEN) 3060 sk = udp_get_idx(seq, 0); 3061 else 3062 sk = udp_get_next(seq, v); 3063 3064 ++*pos; 3065 return sk; 3066 } 3067 EXPORT_SYMBOL(udp_seq_next); 3068 3069 void udp_seq_stop(struct seq_file *seq, void *v) 3070 { 3071 struct udp_iter_state *state = seq->private; 3072 struct udp_table *udptable; 3073 3074 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3075 3076 if (state->bucket <= udptable->mask) 3077 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3078 } 3079 EXPORT_SYMBOL(udp_seq_stop); 3080 3081 /* ------------------------------------------------------------------------ */ 3082 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3083 int bucket) 3084 { 3085 struct inet_sock *inet = inet_sk(sp); 3086 __be32 dest = inet->inet_daddr; 3087 __be32 src = inet->inet_rcv_saddr; 3088 __u16 destp = ntohs(inet->inet_dport); 3089 __u16 srcp = ntohs(inet->inet_sport); 3090 3091 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3092 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3093 bucket, src, srcp, dest, destp, sp->sk_state, 3094 sk_wmem_alloc_get(sp), 3095 udp_rqueue_get(sp), 3096 0, 0L, 0, 3097 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3098 0, sock_i_ino(sp), 3099 refcount_read(&sp->sk_refcnt), sp, 3100 atomic_read(&sp->sk_drops)); 3101 } 3102 3103 int udp4_seq_show(struct seq_file *seq, void *v) 3104 { 3105 seq_setwidth(seq, 127); 3106 if (v == SEQ_START_TOKEN) 3107 seq_puts(seq, " sl local_address rem_address st tx_queue " 3108 "rx_queue tr tm->when retrnsmt uid timeout " 3109 "inode ref pointer drops"); 3110 else { 3111 struct udp_iter_state *state = seq->private; 3112 3113 udp4_format_sock(v, seq, state->bucket); 3114 } 3115 seq_pad(seq, '\n'); 3116 return 0; 3117 } 3118 3119 #ifdef CONFIG_BPF_SYSCALL 3120 struct bpf_iter__udp { 3121 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3122 __bpf_md_ptr(struct udp_sock *, udp_sk); 3123 uid_t uid __aligned(8); 3124 int bucket __aligned(8); 3125 }; 3126 3127 struct bpf_udp_iter_state { 3128 struct udp_iter_state state; 3129 unsigned int cur_sk; 3130 unsigned int end_sk; 3131 unsigned int max_sk; 3132 int offset; 3133 struct sock **batch; 3134 bool st_bucket_done; 3135 }; 3136 3137 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3138 unsigned int new_batch_sz); 3139 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3140 { 3141 struct bpf_udp_iter_state *iter = seq->private; 3142 struct udp_iter_state *state = &iter->state; 3143 struct net *net = seq_file_net(seq); 3144 int resume_bucket, resume_offset; 3145 struct udp_table *udptable; 3146 unsigned int batch_sks = 0; 3147 bool resized = false; 3148 struct sock *sk; 3149 3150 resume_bucket = state->bucket; 3151 resume_offset = iter->offset; 3152 3153 /* The current batch is done, so advance the bucket. */ 3154 if (iter->st_bucket_done) 3155 state->bucket++; 3156 3157 udptable = udp_get_table_seq(seq, net); 3158 3159 again: 3160 /* New batch for the next bucket. 3161 * Iterate over the hash table to find a bucket with sockets matching 3162 * the iterator attributes, and return the first matching socket from 3163 * the bucket. The remaining matched sockets from the bucket are batched 3164 * before releasing the bucket lock. This allows BPF programs that are 3165 * called in seq_show to acquire the bucket lock if needed. 3166 */ 3167 iter->cur_sk = 0; 3168 iter->end_sk = 0; 3169 iter->st_bucket_done = false; 3170 batch_sks = 0; 3171 3172 for (; state->bucket <= udptable->mask; state->bucket++) { 3173 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3174 3175 if (hlist_empty(&hslot2->head)) 3176 continue; 3177 3178 iter->offset = 0; 3179 spin_lock_bh(&hslot2->lock); 3180 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3181 if (seq_sk_match(seq, sk)) { 3182 /* Resume from the last iterated socket at the 3183 * offset in the bucket before iterator was stopped. 3184 */ 3185 if (state->bucket == resume_bucket && 3186 iter->offset < resume_offset) { 3187 ++iter->offset; 3188 continue; 3189 } 3190 if (iter->end_sk < iter->max_sk) { 3191 sock_hold(sk); 3192 iter->batch[iter->end_sk++] = sk; 3193 } 3194 batch_sks++; 3195 } 3196 } 3197 spin_unlock_bh(&hslot2->lock); 3198 3199 if (iter->end_sk) 3200 break; 3201 } 3202 3203 /* All done: no batch made. */ 3204 if (!iter->end_sk) 3205 return NULL; 3206 3207 if (iter->end_sk == batch_sks) { 3208 /* Batching is done for the current bucket; return the first 3209 * socket to be iterated from the batch. 3210 */ 3211 iter->st_bucket_done = true; 3212 goto done; 3213 } 3214 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3215 resized = true; 3216 /* After allocating a larger batch, retry one more time to grab 3217 * the whole bucket. 3218 */ 3219 goto again; 3220 } 3221 done: 3222 return iter->batch[0]; 3223 } 3224 3225 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3226 { 3227 struct bpf_udp_iter_state *iter = seq->private; 3228 struct sock *sk; 3229 3230 /* Whenever seq_next() is called, the iter->cur_sk is 3231 * done with seq_show(), so unref the iter->cur_sk. 3232 */ 3233 if (iter->cur_sk < iter->end_sk) { 3234 sock_put(iter->batch[iter->cur_sk++]); 3235 ++iter->offset; 3236 } 3237 3238 /* After updating iter->cur_sk, check if there are more sockets 3239 * available in the current bucket batch. 3240 */ 3241 if (iter->cur_sk < iter->end_sk) 3242 sk = iter->batch[iter->cur_sk]; 3243 else 3244 /* Prepare a new batch. */ 3245 sk = bpf_iter_udp_batch(seq); 3246 3247 ++*pos; 3248 return sk; 3249 } 3250 3251 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3252 { 3253 /* bpf iter does not support lseek, so it always 3254 * continue from where it was stop()-ped. 3255 */ 3256 if (*pos) 3257 return bpf_iter_udp_batch(seq); 3258 3259 return SEQ_START_TOKEN; 3260 } 3261 3262 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3263 struct udp_sock *udp_sk, uid_t uid, int bucket) 3264 { 3265 struct bpf_iter__udp ctx; 3266 3267 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3268 ctx.meta = meta; 3269 ctx.udp_sk = udp_sk; 3270 ctx.uid = uid; 3271 ctx.bucket = bucket; 3272 return bpf_iter_run_prog(prog, &ctx); 3273 } 3274 3275 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3276 { 3277 struct udp_iter_state *state = seq->private; 3278 struct bpf_iter_meta meta; 3279 struct bpf_prog *prog; 3280 struct sock *sk = v; 3281 uid_t uid; 3282 int ret; 3283 3284 if (v == SEQ_START_TOKEN) 3285 return 0; 3286 3287 lock_sock(sk); 3288 3289 if (unlikely(sk_unhashed(sk))) { 3290 ret = SEQ_SKIP; 3291 goto unlock; 3292 } 3293 3294 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3295 meta.seq = seq; 3296 prog = bpf_iter_get_info(&meta, false); 3297 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3298 3299 unlock: 3300 release_sock(sk); 3301 return ret; 3302 } 3303 3304 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3305 { 3306 while (iter->cur_sk < iter->end_sk) 3307 sock_put(iter->batch[iter->cur_sk++]); 3308 } 3309 3310 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3311 { 3312 struct bpf_udp_iter_state *iter = seq->private; 3313 struct bpf_iter_meta meta; 3314 struct bpf_prog *prog; 3315 3316 if (!v) { 3317 meta.seq = seq; 3318 prog = bpf_iter_get_info(&meta, true); 3319 if (prog) 3320 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3321 } 3322 3323 if (iter->cur_sk < iter->end_sk) { 3324 bpf_iter_udp_put_batch(iter); 3325 iter->st_bucket_done = false; 3326 } 3327 } 3328 3329 static const struct seq_operations bpf_iter_udp_seq_ops = { 3330 .start = bpf_iter_udp_seq_start, 3331 .next = bpf_iter_udp_seq_next, 3332 .stop = bpf_iter_udp_seq_stop, 3333 .show = bpf_iter_udp_seq_show, 3334 }; 3335 #endif 3336 3337 static unsigned short seq_file_family(const struct seq_file *seq) 3338 { 3339 const struct udp_seq_afinfo *afinfo; 3340 3341 #ifdef CONFIG_BPF_SYSCALL 3342 /* BPF iterator: bpf programs to filter sockets. */ 3343 if (seq->op == &bpf_iter_udp_seq_ops) 3344 return AF_UNSPEC; 3345 #endif 3346 3347 /* Proc fs iterator */ 3348 afinfo = pde_data(file_inode(seq->file)); 3349 return afinfo->family; 3350 } 3351 3352 const struct seq_operations udp_seq_ops = { 3353 .start = udp_seq_start, 3354 .next = udp_seq_next, 3355 .stop = udp_seq_stop, 3356 .show = udp4_seq_show, 3357 }; 3358 EXPORT_SYMBOL(udp_seq_ops); 3359 3360 static struct udp_seq_afinfo udp4_seq_afinfo = { 3361 .family = AF_INET, 3362 .udp_table = NULL, 3363 }; 3364 3365 static int __net_init udp4_proc_init_net(struct net *net) 3366 { 3367 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3368 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3369 return -ENOMEM; 3370 return 0; 3371 } 3372 3373 static void __net_exit udp4_proc_exit_net(struct net *net) 3374 { 3375 remove_proc_entry("udp", net->proc_net); 3376 } 3377 3378 static struct pernet_operations udp4_net_ops = { 3379 .init = udp4_proc_init_net, 3380 .exit = udp4_proc_exit_net, 3381 }; 3382 3383 int __init udp4_proc_init(void) 3384 { 3385 return register_pernet_subsys(&udp4_net_ops); 3386 } 3387 3388 void udp4_proc_exit(void) 3389 { 3390 unregister_pernet_subsys(&udp4_net_ops); 3391 } 3392 #endif /* CONFIG_PROC_FS */ 3393 3394 static __initdata unsigned long uhash_entries; 3395 static int __init set_uhash_entries(char *str) 3396 { 3397 ssize_t ret; 3398 3399 if (!str) 3400 return 0; 3401 3402 ret = kstrtoul(str, 0, &uhash_entries); 3403 if (ret) 3404 return 0; 3405 3406 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3407 uhash_entries = UDP_HTABLE_SIZE_MIN; 3408 return 1; 3409 } 3410 __setup("uhash_entries=", set_uhash_entries); 3411 3412 void __init udp_table_init(struct udp_table *table, const char *name) 3413 { 3414 unsigned int i; 3415 3416 table->hash = alloc_large_system_hash(name, 3417 2 * sizeof(struct udp_hslot), 3418 uhash_entries, 3419 21, /* one slot per 2 MB */ 3420 0, 3421 &table->log, 3422 &table->mask, 3423 UDP_HTABLE_SIZE_MIN, 3424 UDP_HTABLE_SIZE_MAX); 3425 3426 table->hash2 = table->hash + (table->mask + 1); 3427 for (i = 0; i <= table->mask; i++) { 3428 INIT_HLIST_HEAD(&table->hash[i].head); 3429 table->hash[i].count = 0; 3430 spin_lock_init(&table->hash[i].lock); 3431 } 3432 for (i = 0; i <= table->mask; i++) { 3433 INIT_HLIST_HEAD(&table->hash2[i].head); 3434 table->hash2[i].count = 0; 3435 spin_lock_init(&table->hash2[i].lock); 3436 } 3437 } 3438 3439 u32 udp_flow_hashrnd(void) 3440 { 3441 static u32 hashrnd __read_mostly; 3442 3443 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3444 3445 return hashrnd; 3446 } 3447 EXPORT_SYMBOL(udp_flow_hashrnd); 3448 3449 static void __net_init udp_sysctl_init(struct net *net) 3450 { 3451 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3452 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3453 3454 #ifdef CONFIG_NET_L3_MASTER_DEV 3455 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3456 #endif 3457 } 3458 3459 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3460 { 3461 struct udp_table *udptable; 3462 int i; 3463 3464 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3465 if (!udptable) 3466 goto out; 3467 3468 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3469 GFP_KERNEL_ACCOUNT); 3470 if (!udptable->hash) 3471 goto free_table; 3472 3473 udptable->hash2 = udptable->hash + hash_entries; 3474 udptable->mask = hash_entries - 1; 3475 udptable->log = ilog2(hash_entries); 3476 3477 for (i = 0; i < hash_entries; i++) { 3478 INIT_HLIST_HEAD(&udptable->hash[i].head); 3479 udptable->hash[i].count = 0; 3480 spin_lock_init(&udptable->hash[i].lock); 3481 3482 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3483 udptable->hash2[i].count = 0; 3484 spin_lock_init(&udptable->hash2[i].lock); 3485 } 3486 3487 return udptable; 3488 3489 free_table: 3490 kfree(udptable); 3491 out: 3492 return NULL; 3493 } 3494 3495 static void __net_exit udp_pernet_table_free(struct net *net) 3496 { 3497 struct udp_table *udptable = net->ipv4.udp_table; 3498 3499 if (udptable == &udp_table) 3500 return; 3501 3502 kvfree(udptable->hash); 3503 kfree(udptable); 3504 } 3505 3506 static void __net_init udp_set_table(struct net *net) 3507 { 3508 struct udp_table *udptable; 3509 unsigned int hash_entries; 3510 struct net *old_net; 3511 3512 if (net_eq(net, &init_net)) 3513 goto fallback; 3514 3515 old_net = current->nsproxy->net_ns; 3516 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3517 if (!hash_entries) 3518 goto fallback; 3519 3520 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3521 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3522 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3523 else 3524 hash_entries = roundup_pow_of_two(hash_entries); 3525 3526 udptable = udp_pernet_table_alloc(hash_entries); 3527 if (udptable) { 3528 net->ipv4.udp_table = udptable; 3529 } else { 3530 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3531 "for a netns, fallback to the global one\n", 3532 hash_entries); 3533 fallback: 3534 net->ipv4.udp_table = &udp_table; 3535 } 3536 } 3537 3538 static int __net_init udp_pernet_init(struct net *net) 3539 { 3540 udp_sysctl_init(net); 3541 udp_set_table(net); 3542 3543 return 0; 3544 } 3545 3546 static void __net_exit udp_pernet_exit(struct net *net) 3547 { 3548 udp_pernet_table_free(net); 3549 } 3550 3551 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3552 .init = udp_pernet_init, 3553 .exit = udp_pernet_exit, 3554 }; 3555 3556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3557 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3558 struct udp_sock *udp_sk, uid_t uid, int bucket) 3559 3560 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3561 unsigned int new_batch_sz) 3562 { 3563 struct sock **new_batch; 3564 3565 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3566 GFP_USER | __GFP_NOWARN); 3567 if (!new_batch) 3568 return -ENOMEM; 3569 3570 bpf_iter_udp_put_batch(iter); 3571 kvfree(iter->batch); 3572 iter->batch = new_batch; 3573 iter->max_sk = new_batch_sz; 3574 3575 return 0; 3576 } 3577 3578 #define INIT_BATCH_SZ 16 3579 3580 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3581 { 3582 struct bpf_udp_iter_state *iter = priv_data; 3583 int ret; 3584 3585 ret = bpf_iter_init_seq_net(priv_data, aux); 3586 if (ret) 3587 return ret; 3588 3589 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3590 if (ret) 3591 bpf_iter_fini_seq_net(priv_data); 3592 3593 return ret; 3594 } 3595 3596 static void bpf_iter_fini_udp(void *priv_data) 3597 { 3598 struct bpf_udp_iter_state *iter = priv_data; 3599 3600 bpf_iter_fini_seq_net(priv_data); 3601 kvfree(iter->batch); 3602 } 3603 3604 static const struct bpf_iter_seq_info udp_seq_info = { 3605 .seq_ops = &bpf_iter_udp_seq_ops, 3606 .init_seq_private = bpf_iter_init_udp, 3607 .fini_seq_private = bpf_iter_fini_udp, 3608 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3609 }; 3610 3611 static struct bpf_iter_reg udp_reg_info = { 3612 .target = "udp", 3613 .ctx_arg_info_size = 1, 3614 .ctx_arg_info = { 3615 { offsetof(struct bpf_iter__udp, udp_sk), 3616 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3617 }, 3618 .seq_info = &udp_seq_info, 3619 }; 3620 3621 static void __init bpf_iter_register(void) 3622 { 3623 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3624 if (bpf_iter_reg_target(&udp_reg_info)) 3625 pr_warn("Warning: could not register bpf iterator udp\n"); 3626 } 3627 #endif 3628 3629 void __init udp_init(void) 3630 { 3631 unsigned long limit; 3632 unsigned int i; 3633 3634 udp_table_init(&udp_table, "UDP"); 3635 limit = nr_free_buffer_pages() / 8; 3636 limit = max(limit, 128UL); 3637 sysctl_udp_mem[0] = limit / 4 * 3; 3638 sysctl_udp_mem[1] = limit; 3639 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3640 3641 /* 16 spinlocks per cpu */ 3642 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3643 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3644 GFP_KERNEL); 3645 if (!udp_busylocks) 3646 panic("UDP: failed to alloc udp_busylocks\n"); 3647 for (i = 0; i < (1U << udp_busylocks_log); i++) 3648 spin_lock_init(udp_busylocks + i); 3649 3650 if (register_pernet_subsys(&udp_sysctl_ops)) 3651 panic("UDP: failed to init sysctl parameters.\n"); 3652 3653 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3654 bpf_iter_register(); 3655 #endif 3656 } 3657