xref: /openbmc/linux/net/ipv4/udp.c (revision e4c881d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 
433 	result = NULL;
434 	badness = 0;
435 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 		score = compute_score(sk, net, saddr, sport,
437 				      daddr, hnum, dif, sdif);
438 		if (score > badness) {
439 			badness = score;
440 
441 			if (sk->sk_state == TCP_ESTABLISHED) {
442 				result = sk;
443 				continue;
444 			}
445 
446 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447 						       saddr, sport, daddr, hnum, udp_ehashfn);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470  * harder than this. -DaveM
471  */
472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 		__be16 sport, __be32 daddr, __be16 dport, int dif,
474 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475 {
476 	unsigned short hnum = ntohs(dport);
477 	unsigned int hash2, slot2;
478 	struct udp_hslot *hslot2;
479 	struct sock *result, *sk;
480 
481 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482 	slot2 = hash2 & udptable->mask;
483 	hslot2 = &udptable->hash2[slot2];
484 
485 	/* Lookup connected or non-wildcard socket */
486 	result = udp4_lib_lookup2(net, saddr, sport,
487 				  daddr, hnum, dif, sdif,
488 				  hslot2, skb);
489 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490 		goto done;
491 
492 	/* Lookup redirect from BPF */
493 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 	    udptable == net->ipv4.udp_table) {
495 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496 					       saddr, sport, daddr, hnum, dif,
497 					       udp_ehashfn);
498 		if (sk) {
499 			result = sk;
500 			goto done;
501 		}
502 	}
503 
504 	/* Got non-wildcard socket or error on first lookup */
505 	if (result)
506 		goto done;
507 
508 	/* Lookup wildcard sockets */
509 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 	slot2 = hash2 & udptable->mask;
511 	hslot2 = &udptable->hash2[slot2];
512 
513 	result = udp4_lib_lookup2(net, saddr, sport,
514 				  htonl(INADDR_ANY), hnum, dif, sdif,
515 				  hslot2, skb);
516 done:
517 	if (IS_ERR(result))
518 		return NULL;
519 	return result;
520 }
521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522 
523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 						 __be16 sport, __be16 dport,
525 						 struct udp_table *udptable)
526 {
527 	const struct iphdr *iph = ip_hdr(skb);
528 
529 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530 				 iph->daddr, dport, inet_iif(skb),
531 				 inet_sdif(skb), udptable, skb);
532 }
533 
534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 				 __be16 sport, __be16 dport)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 	struct net *net = dev_net(skb->dev);
539 	int iif, sdif;
540 
541 	inet_get_iif_sdif(skb, &iif, &sdif);
542 
543 	return __udp4_lib_lookup(net, iph->saddr, sport,
544 				 iph->daddr, dport, iif,
545 				 sdif, net->ipv4.udp_table, NULL);
546 }
547 
548 /* Must be called under rcu_read_lock().
549  * Does increment socket refcount.
550  */
551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 			     __be32 daddr, __be16 dport, int dif)
554 {
555 	struct sock *sk;
556 
557 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 			       dif, 0, net->ipv4.udp_table, NULL);
559 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560 		sk = NULL;
561 	return sk;
562 }
563 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 #endif
565 
566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 				       __be16 loc_port, __be32 loc_addr,
568 				       __be16 rmt_port, __be32 rmt_addr,
569 				       int dif, int sdif, unsigned short hnum)
570 {
571 	const struct inet_sock *inet = inet_sk(sk);
572 
573 	if (!net_eq(sock_net(sk), net) ||
574 	    udp_sk(sk)->udp_port_hash != hnum ||
575 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 	    ipv6_only_sock(sk) ||
579 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580 		return false;
581 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 		return false;
583 	return true;
584 }
585 
586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587 EXPORT_SYMBOL(udp_encap_needed_key);
588 
589 #if IS_ENABLED(CONFIG_IPV6)
590 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
591 EXPORT_SYMBOL(udpv6_encap_needed_key);
592 #endif
593 
594 void udp_encap_enable(void)
595 {
596 	static_branch_inc(&udp_encap_needed_key);
597 }
598 EXPORT_SYMBOL(udp_encap_enable);
599 
600 void udp_encap_disable(void)
601 {
602 	static_branch_dec(&udp_encap_needed_key);
603 }
604 EXPORT_SYMBOL(udp_encap_disable);
605 
606 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
607  * through error handlers in encapsulations looking for a match.
608  */
609 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
610 {
611 	int i;
612 
613 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
614 		int (*handler)(struct sk_buff *skb, u32 info);
615 		const struct ip_tunnel_encap_ops *encap;
616 
617 		encap = rcu_dereference(iptun_encaps[i]);
618 		if (!encap)
619 			continue;
620 		handler = encap->err_handler;
621 		if (handler && !handler(skb, info))
622 			return 0;
623 	}
624 
625 	return -ENOENT;
626 }
627 
628 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
629  * reversing source and destination port: this will match tunnels that force the
630  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
631  * lwtunnels might actually break this assumption by being configured with
632  * different destination ports on endpoints, in this case we won't be able to
633  * trace ICMP messages back to them.
634  *
635  * If this doesn't match any socket, probe tunnels with arbitrary destination
636  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
637  * we've sent packets to won't necessarily match the local destination port.
638  *
639  * Then ask the tunnel implementation to match the error against a valid
640  * association.
641  *
642  * Return an error if we can't find a match, the socket if we need further
643  * processing, zero otherwise.
644  */
645 static struct sock *__udp4_lib_err_encap(struct net *net,
646 					 const struct iphdr *iph,
647 					 struct udphdr *uh,
648 					 struct udp_table *udptable,
649 					 struct sock *sk,
650 					 struct sk_buff *skb, u32 info)
651 {
652 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
653 	int network_offset, transport_offset;
654 	struct udp_sock *up;
655 
656 	network_offset = skb_network_offset(skb);
657 	transport_offset = skb_transport_offset(skb);
658 
659 	/* Network header needs to point to the outer IPv4 header inside ICMP */
660 	skb_reset_network_header(skb);
661 
662 	/* Transport header needs to point to the UDP header */
663 	skb_set_transport_header(skb, iph->ihl << 2);
664 
665 	if (sk) {
666 		up = udp_sk(sk);
667 
668 		lookup = READ_ONCE(up->encap_err_lookup);
669 		if (lookup && lookup(sk, skb))
670 			sk = NULL;
671 
672 		goto out;
673 	}
674 
675 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
676 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
677 			       udptable, NULL);
678 	if (sk) {
679 		up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (!lookup || lookup(sk, skb))
683 			sk = NULL;
684 	}
685 
686 out:
687 	if (!sk)
688 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
689 
690 	skb_set_transport_header(skb, transport_offset);
691 	skb_set_network_header(skb, network_offset);
692 
693 	return sk;
694 }
695 
696 /*
697  * This routine is called by the ICMP module when it gets some
698  * sort of error condition.  If err < 0 then the socket should
699  * be closed and the error returned to the user.  If err > 0
700  * it's just the icmp type << 8 | icmp code.
701  * Header points to the ip header of the error packet. We move
702  * on past this. Then (as it used to claim before adjustment)
703  * header points to the first 8 bytes of the udp header.  We need
704  * to find the appropriate port.
705  */
706 
707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
708 {
709 	struct inet_sock *inet;
710 	const struct iphdr *iph = (const struct iphdr *)skb->data;
711 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
712 	const int type = icmp_hdr(skb)->type;
713 	const int code = icmp_hdr(skb)->code;
714 	bool tunnel = false;
715 	struct sock *sk;
716 	int harderr;
717 	int err;
718 	struct net *net = dev_net(skb->dev);
719 
720 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
721 			       iph->saddr, uh->source, skb->dev->ifindex,
722 			       inet_sdif(skb), udptable, NULL);
723 
724 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
725 		/* No socket for error: try tunnels before discarding */
726 		if (static_branch_unlikely(&udp_encap_needed_key)) {
727 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
728 						  info);
729 			if (!sk)
730 				return 0;
731 		} else
732 			sk = ERR_PTR(-ENOENT);
733 
734 		if (IS_ERR(sk)) {
735 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
736 			return PTR_ERR(sk);
737 		}
738 
739 		tunnel = true;
740 	}
741 
742 	err = 0;
743 	harderr = 0;
744 	inet = inet_sk(sk);
745 
746 	switch (type) {
747 	default:
748 	case ICMP_TIME_EXCEEDED:
749 		err = EHOSTUNREACH;
750 		break;
751 	case ICMP_SOURCE_QUENCH:
752 		goto out;
753 	case ICMP_PARAMETERPROB:
754 		err = EPROTO;
755 		harderr = 1;
756 		break;
757 	case ICMP_DEST_UNREACH:
758 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
759 			ipv4_sk_update_pmtu(skb, sk, info);
760 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
761 				err = EMSGSIZE;
762 				harderr = 1;
763 				break;
764 			}
765 			goto out;
766 		}
767 		err = EHOSTUNREACH;
768 		if (code <= NR_ICMP_UNREACH) {
769 			harderr = icmp_err_convert[code].fatal;
770 			err = icmp_err_convert[code].errno;
771 		}
772 		break;
773 	case ICMP_REDIRECT:
774 		ipv4_sk_redirect(skb, sk);
775 		goto out;
776 	}
777 
778 	/*
779 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
780 	 *	4.1.3.3.
781 	 */
782 	if (tunnel) {
783 		/* ...not for tunnels though: we don't have a sending socket */
784 		if (udp_sk(sk)->encap_err_rcv)
785 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
786 						  (u8 *)(uh+1));
787 		goto out;
788 	}
789 	if (!inet_test_bit(RECVERR, sk)) {
790 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
791 			goto out;
792 	} else
793 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
794 
795 	sk->sk_err = err;
796 	sk_error_report(sk);
797 out:
798 	return 0;
799 }
800 
801 int udp_err(struct sk_buff *skb, u32 info)
802 {
803 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
804 }
805 
806 /*
807  * Throw away all pending data and cancel the corking. Socket is locked.
808  */
809 void udp_flush_pending_frames(struct sock *sk)
810 {
811 	struct udp_sock *up = udp_sk(sk);
812 
813 	if (up->pending) {
814 		up->len = 0;
815 		WRITE_ONCE(up->pending, 0);
816 		ip_flush_pending_frames(sk);
817 	}
818 }
819 EXPORT_SYMBOL(udp_flush_pending_frames);
820 
821 /**
822  * 	udp4_hwcsum  -  handle outgoing HW checksumming
823  * 	@skb: 	sk_buff containing the filled-in UDP header
824  * 	        (checksum field must be zeroed out)
825  *	@src:	source IP address
826  *	@dst:	destination IP address
827  */
828 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
829 {
830 	struct udphdr *uh = udp_hdr(skb);
831 	int offset = skb_transport_offset(skb);
832 	int len = skb->len - offset;
833 	int hlen = len;
834 	__wsum csum = 0;
835 
836 	if (!skb_has_frag_list(skb)) {
837 		/*
838 		 * Only one fragment on the socket.
839 		 */
840 		skb->csum_start = skb_transport_header(skb) - skb->head;
841 		skb->csum_offset = offsetof(struct udphdr, check);
842 		uh->check = ~csum_tcpudp_magic(src, dst, len,
843 					       IPPROTO_UDP, 0);
844 	} else {
845 		struct sk_buff *frags;
846 
847 		/*
848 		 * HW-checksum won't work as there are two or more
849 		 * fragments on the socket so that all csums of sk_buffs
850 		 * should be together
851 		 */
852 		skb_walk_frags(skb, frags) {
853 			csum = csum_add(csum, frags->csum);
854 			hlen -= frags->len;
855 		}
856 
857 		csum = skb_checksum(skb, offset, hlen, csum);
858 		skb->ip_summed = CHECKSUM_NONE;
859 
860 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
861 		if (uh->check == 0)
862 			uh->check = CSUM_MANGLED_0;
863 	}
864 }
865 EXPORT_SYMBOL_GPL(udp4_hwcsum);
866 
867 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
868  * for the simple case like when setting the checksum for a UDP tunnel.
869  */
870 void udp_set_csum(bool nocheck, struct sk_buff *skb,
871 		  __be32 saddr, __be32 daddr, int len)
872 {
873 	struct udphdr *uh = udp_hdr(skb);
874 
875 	if (nocheck) {
876 		uh->check = 0;
877 	} else if (skb_is_gso(skb)) {
878 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
879 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
880 		uh->check = 0;
881 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
882 		if (uh->check == 0)
883 			uh->check = CSUM_MANGLED_0;
884 	} else {
885 		skb->ip_summed = CHECKSUM_PARTIAL;
886 		skb->csum_start = skb_transport_header(skb) - skb->head;
887 		skb->csum_offset = offsetof(struct udphdr, check);
888 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
889 	}
890 }
891 EXPORT_SYMBOL(udp_set_csum);
892 
893 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
894 			struct inet_cork *cork)
895 {
896 	struct sock *sk = skb->sk;
897 	struct inet_sock *inet = inet_sk(sk);
898 	struct udphdr *uh;
899 	int err;
900 	int is_udplite = IS_UDPLITE(sk);
901 	int offset = skb_transport_offset(skb);
902 	int len = skb->len - offset;
903 	int datalen = len - sizeof(*uh);
904 	__wsum csum = 0;
905 
906 	/*
907 	 * Create a UDP header
908 	 */
909 	uh = udp_hdr(skb);
910 	uh->source = inet->inet_sport;
911 	uh->dest = fl4->fl4_dport;
912 	uh->len = htons(len);
913 	uh->check = 0;
914 
915 	if (cork->gso_size) {
916 		const int hlen = skb_network_header_len(skb) +
917 				 sizeof(struct udphdr);
918 
919 		if (hlen + cork->gso_size > cork->fragsize) {
920 			kfree_skb(skb);
921 			return -EINVAL;
922 		}
923 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
924 			kfree_skb(skb);
925 			return -EINVAL;
926 		}
927 		if (sk->sk_no_check_tx) {
928 			kfree_skb(skb);
929 			return -EINVAL;
930 		}
931 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
932 		    dst_xfrm(skb_dst(skb))) {
933 			kfree_skb(skb);
934 			return -EIO;
935 		}
936 
937 		if (datalen > cork->gso_size) {
938 			skb_shinfo(skb)->gso_size = cork->gso_size;
939 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
940 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
941 								 cork->gso_size);
942 		}
943 		goto csum_partial;
944 	}
945 
946 	if (is_udplite)  				 /*     UDP-Lite      */
947 		csum = udplite_csum(skb);
948 
949 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
950 
951 		skb->ip_summed = CHECKSUM_NONE;
952 		goto send;
953 
954 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
955 csum_partial:
956 
957 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
958 		goto send;
959 
960 	} else
961 		csum = udp_csum(skb);
962 
963 	/* add protocol-dependent pseudo-header */
964 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
965 				      sk->sk_protocol, csum);
966 	if (uh->check == 0)
967 		uh->check = CSUM_MANGLED_0;
968 
969 send:
970 	err = ip_send_skb(sock_net(sk), skb);
971 	if (err) {
972 		if (err == -ENOBUFS &&
973 		    !inet_test_bit(RECVERR, sk)) {
974 			UDP_INC_STATS(sock_net(sk),
975 				      UDP_MIB_SNDBUFERRORS, is_udplite);
976 			err = 0;
977 		}
978 	} else
979 		UDP_INC_STATS(sock_net(sk),
980 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
981 	return err;
982 }
983 
984 /*
985  * Push out all pending data as one UDP datagram. Socket is locked.
986  */
987 int udp_push_pending_frames(struct sock *sk)
988 {
989 	struct udp_sock  *up = udp_sk(sk);
990 	struct inet_sock *inet = inet_sk(sk);
991 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
992 	struct sk_buff *skb;
993 	int err = 0;
994 
995 	skb = ip_finish_skb(sk, fl4);
996 	if (!skb)
997 		goto out;
998 
999 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1000 
1001 out:
1002 	up->len = 0;
1003 	WRITE_ONCE(up->pending, 0);
1004 	return err;
1005 }
1006 EXPORT_SYMBOL(udp_push_pending_frames);
1007 
1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1009 {
1010 	switch (cmsg->cmsg_type) {
1011 	case UDP_SEGMENT:
1012 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1013 			return -EINVAL;
1014 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1015 		return 0;
1016 	default:
1017 		return -EINVAL;
1018 	}
1019 }
1020 
1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1022 {
1023 	struct cmsghdr *cmsg;
1024 	bool need_ip = false;
1025 	int err;
1026 
1027 	for_each_cmsghdr(cmsg, msg) {
1028 		if (!CMSG_OK(msg, cmsg))
1029 			return -EINVAL;
1030 
1031 		if (cmsg->cmsg_level != SOL_UDP) {
1032 			need_ip = true;
1033 			continue;
1034 		}
1035 
1036 		err = __udp_cmsg_send(cmsg, gso_size);
1037 		if (err)
1038 			return err;
1039 	}
1040 
1041 	return need_ip;
1042 }
1043 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1044 
1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct udp_sock *up = udp_sk(sk);
1049 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1050 	struct flowi4 fl4_stack;
1051 	struct flowi4 *fl4;
1052 	int ulen = len;
1053 	struct ipcm_cookie ipc;
1054 	struct rtable *rt = NULL;
1055 	int free = 0;
1056 	int connected = 0;
1057 	__be32 daddr, faddr, saddr;
1058 	u8 tos, scope;
1059 	__be16 dport;
1060 	int err, is_udplite = IS_UDPLITE(sk);
1061 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1062 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1063 	struct sk_buff *skb;
1064 	struct ip_options_data opt_copy;
1065 
1066 	if (len > 0xFFFF)
1067 		return -EMSGSIZE;
1068 
1069 	/*
1070 	 *	Check the flags.
1071 	 */
1072 
1073 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074 		return -EOPNOTSUPP;
1075 
1076 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078 	fl4 = &inet->cork.fl.u.ip4;
1079 	if (READ_ONCE(up->pending)) {
1080 		/*
1081 		 * There are pending frames.
1082 		 * The socket lock must be held while it's corked.
1083 		 */
1084 		lock_sock(sk);
1085 		if (likely(up->pending)) {
1086 			if (unlikely(up->pending != AF_INET)) {
1087 				release_sock(sk);
1088 				return -EINVAL;
1089 			}
1090 			goto do_append_data;
1091 		}
1092 		release_sock(sk);
1093 	}
1094 	ulen += sizeof(struct udphdr);
1095 
1096 	/*
1097 	 *	Get and verify the address.
1098 	 */
1099 	if (usin) {
1100 		if (msg->msg_namelen < sizeof(*usin))
1101 			return -EINVAL;
1102 		if (usin->sin_family != AF_INET) {
1103 			if (usin->sin_family != AF_UNSPEC)
1104 				return -EAFNOSUPPORT;
1105 		}
1106 
1107 		daddr = usin->sin_addr.s_addr;
1108 		dport = usin->sin_port;
1109 		if (dport == 0)
1110 			return -EINVAL;
1111 	} else {
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			return -EDESTADDRREQ;
1114 		daddr = inet->inet_daddr;
1115 		dport = inet->inet_dport;
1116 		/* Open fast path for connected socket.
1117 		   Route will not be used, if at least one option is set.
1118 		 */
1119 		connected = 1;
1120 	}
1121 
1122 	ipcm_init_sk(&ipc, inet);
1123 	ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125 	if (msg->msg_controllen) {
1126 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127 		if (err > 0) {
1128 			err = ip_cmsg_send(sk, msg, &ipc,
1129 					   sk->sk_family == AF_INET6);
1130 			connected = 0;
1131 		}
1132 		if (unlikely(err < 0)) {
1133 			kfree(ipc.opt);
1134 			return err;
1135 		}
1136 		if (ipc.opt)
1137 			free = 1;
1138 	}
1139 	if (!ipc.opt) {
1140 		struct ip_options_rcu *inet_opt;
1141 
1142 		rcu_read_lock();
1143 		inet_opt = rcu_dereference(inet->inet_opt);
1144 		if (inet_opt) {
1145 			memcpy(&opt_copy, inet_opt,
1146 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1147 			ipc.opt = &opt_copy.opt;
1148 		}
1149 		rcu_read_unlock();
1150 	}
1151 
1152 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1153 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1154 					    (struct sockaddr *)usin,
1155 					    &msg->msg_namelen,
1156 					    &ipc.addr);
1157 		if (err)
1158 			goto out_free;
1159 		if (usin) {
1160 			if (usin->sin_port == 0) {
1161 				/* BPF program set invalid port. Reject it. */
1162 				err = -EINVAL;
1163 				goto out_free;
1164 			}
1165 			daddr = usin->sin_addr.s_addr;
1166 			dport = usin->sin_port;
1167 		}
1168 	}
1169 
1170 	saddr = ipc.addr;
1171 	ipc.addr = faddr = daddr;
1172 
1173 	if (ipc.opt && ipc.opt->opt.srr) {
1174 		if (!daddr) {
1175 			err = -EINVAL;
1176 			goto out_free;
1177 		}
1178 		faddr = ipc.opt->opt.faddr;
1179 		connected = 0;
1180 	}
1181 	tos = get_rttos(&ipc, inet);
1182 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1183 	if (scope == RT_SCOPE_LINK)
1184 		connected = 0;
1185 
1186 	if (ipv4_is_multicast(daddr)) {
1187 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1188 			ipc.oif = inet->mc_index;
1189 		if (!saddr)
1190 			saddr = inet->mc_addr;
1191 		connected = 0;
1192 	} else if (!ipc.oif) {
1193 		ipc.oif = inet->uc_index;
1194 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1195 		/* oif is set, packet is to local broadcast and
1196 		 * uc_index is set. oif is most likely set
1197 		 * by sk_bound_dev_if. If uc_index != oif check if the
1198 		 * oif is an L3 master and uc_index is an L3 slave.
1199 		 * If so, we want to allow the send using the uc_index.
1200 		 */
1201 		if (ipc.oif != inet->uc_index &&
1202 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1203 							      inet->uc_index)) {
1204 			ipc.oif = inet->uc_index;
1205 		}
1206 	}
1207 
1208 	if (connected)
1209 		rt = (struct rtable *)sk_dst_check(sk, 0);
1210 
1211 	if (!rt) {
1212 		struct net *net = sock_net(sk);
1213 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1214 
1215 		fl4 = &fl4_stack;
1216 
1217 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1218 				   sk->sk_protocol, flow_flags, faddr, saddr,
1219 				   dport, inet->inet_sport, sk->sk_uid);
1220 
1221 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1222 		rt = ip_route_output_flow(net, fl4, sk);
1223 		if (IS_ERR(rt)) {
1224 			err = PTR_ERR(rt);
1225 			rt = NULL;
1226 			if (err == -ENETUNREACH)
1227 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1228 			goto out;
1229 		}
1230 
1231 		err = -EACCES;
1232 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1233 		    !sock_flag(sk, SOCK_BROADCAST))
1234 			goto out;
1235 		if (connected)
1236 			sk_dst_set(sk, dst_clone(&rt->dst));
1237 	}
1238 
1239 	if (msg->msg_flags&MSG_CONFIRM)
1240 		goto do_confirm;
1241 back_from_confirm:
1242 
1243 	saddr = fl4->saddr;
1244 	if (!ipc.addr)
1245 		daddr = ipc.addr = fl4->daddr;
1246 
1247 	/* Lockless fast path for the non-corking case. */
1248 	if (!corkreq) {
1249 		struct inet_cork cork;
1250 
1251 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1252 				  sizeof(struct udphdr), &ipc, &rt,
1253 				  &cork, msg->msg_flags);
1254 		err = PTR_ERR(skb);
1255 		if (!IS_ERR_OR_NULL(skb))
1256 			err = udp_send_skb(skb, fl4, &cork);
1257 		goto out;
1258 	}
1259 
1260 	lock_sock(sk);
1261 	if (unlikely(up->pending)) {
1262 		/* The socket is already corked while preparing it. */
1263 		/* ... which is an evident application bug. --ANK */
1264 		release_sock(sk);
1265 
1266 		net_dbg_ratelimited("socket already corked\n");
1267 		err = -EINVAL;
1268 		goto out;
1269 	}
1270 	/*
1271 	 *	Now cork the socket to pend data.
1272 	 */
1273 	fl4 = &inet->cork.fl.u.ip4;
1274 	fl4->daddr = daddr;
1275 	fl4->saddr = saddr;
1276 	fl4->fl4_dport = dport;
1277 	fl4->fl4_sport = inet->inet_sport;
1278 	WRITE_ONCE(up->pending, AF_INET);
1279 
1280 do_append_data:
1281 	up->len += ulen;
1282 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1283 			     sizeof(struct udphdr), &ipc, &rt,
1284 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1285 	if (err)
1286 		udp_flush_pending_frames(sk);
1287 	else if (!corkreq)
1288 		err = udp_push_pending_frames(sk);
1289 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1290 		WRITE_ONCE(up->pending, 0);
1291 	release_sock(sk);
1292 
1293 out:
1294 	ip_rt_put(rt);
1295 out_free:
1296 	if (free)
1297 		kfree(ipc.opt);
1298 	if (!err)
1299 		return len;
1300 	/*
1301 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1302 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1303 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1304 	 * things).  We could add another new stat but at least for now that
1305 	 * seems like overkill.
1306 	 */
1307 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1308 		UDP_INC_STATS(sock_net(sk),
1309 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1310 	}
1311 	return err;
1312 
1313 do_confirm:
1314 	if (msg->msg_flags & MSG_PROBE)
1315 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1316 	if (!(msg->msg_flags&MSG_PROBE) || len)
1317 		goto back_from_confirm;
1318 	err = 0;
1319 	goto out;
1320 }
1321 EXPORT_SYMBOL(udp_sendmsg);
1322 
1323 void udp_splice_eof(struct socket *sock)
1324 {
1325 	struct sock *sk = sock->sk;
1326 	struct udp_sock *up = udp_sk(sk);
1327 
1328 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1329 		return;
1330 
1331 	lock_sock(sk);
1332 	if (up->pending && !udp_test_bit(CORK, sk))
1333 		udp_push_pending_frames(sk);
1334 	release_sock(sk);
1335 }
1336 EXPORT_SYMBOL_GPL(udp_splice_eof);
1337 
1338 #define UDP_SKB_IS_STATELESS 0x80000000
1339 
1340 /* all head states (dst, sk, nf conntrack) except skb extensions are
1341  * cleared by udp_rcv().
1342  *
1343  * We need to preserve secpath, if present, to eventually process
1344  * IP_CMSG_PASSSEC at recvmsg() time.
1345  *
1346  * Other extensions can be cleared.
1347  */
1348 static bool udp_try_make_stateless(struct sk_buff *skb)
1349 {
1350 	if (!skb_has_extensions(skb))
1351 		return true;
1352 
1353 	if (!secpath_exists(skb)) {
1354 		skb_ext_reset(skb);
1355 		return true;
1356 	}
1357 
1358 	return false;
1359 }
1360 
1361 static void udp_set_dev_scratch(struct sk_buff *skb)
1362 {
1363 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1364 
1365 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1366 	scratch->_tsize_state = skb->truesize;
1367 #if BITS_PER_LONG == 64
1368 	scratch->len = skb->len;
1369 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1370 	scratch->is_linear = !skb_is_nonlinear(skb);
1371 #endif
1372 	if (udp_try_make_stateless(skb))
1373 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1374 }
1375 
1376 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1377 {
1378 	/* We come here after udp_lib_checksum_complete() returned 0.
1379 	 * This means that __skb_checksum_complete() might have
1380 	 * set skb->csum_valid to 1.
1381 	 * On 64bit platforms, we can set csum_unnecessary
1382 	 * to true, but only if the skb is not shared.
1383 	 */
1384 #if BITS_PER_LONG == 64
1385 	if (!skb_shared(skb))
1386 		udp_skb_scratch(skb)->csum_unnecessary = true;
1387 #endif
1388 }
1389 
1390 static int udp_skb_truesize(struct sk_buff *skb)
1391 {
1392 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1393 }
1394 
1395 static bool udp_skb_has_head_state(struct sk_buff *skb)
1396 {
1397 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1398 }
1399 
1400 /* fully reclaim rmem/fwd memory allocated for skb */
1401 static void udp_rmem_release(struct sock *sk, int size, int partial,
1402 			     bool rx_queue_lock_held)
1403 {
1404 	struct udp_sock *up = udp_sk(sk);
1405 	struct sk_buff_head *sk_queue;
1406 	int amt;
1407 
1408 	if (likely(partial)) {
1409 		up->forward_deficit += size;
1410 		size = up->forward_deficit;
1411 		if (size < READ_ONCE(up->forward_threshold) &&
1412 		    !skb_queue_empty(&up->reader_queue))
1413 			return;
1414 	} else {
1415 		size += up->forward_deficit;
1416 	}
1417 	up->forward_deficit = 0;
1418 
1419 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1420 	 * if the called don't held it already
1421 	 */
1422 	sk_queue = &sk->sk_receive_queue;
1423 	if (!rx_queue_lock_held)
1424 		spin_lock(&sk_queue->lock);
1425 
1426 
1427 	sk_forward_alloc_add(sk, size);
1428 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1429 	sk_forward_alloc_add(sk, -amt);
1430 
1431 	if (amt)
1432 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1433 
1434 	atomic_sub(size, &sk->sk_rmem_alloc);
1435 
1436 	/* this can save us from acquiring the rx queue lock on next receive */
1437 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1438 
1439 	if (!rx_queue_lock_held)
1440 		spin_unlock(&sk_queue->lock);
1441 }
1442 
1443 /* Note: called with reader_queue.lock held.
1444  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1445  * This avoids a cache line miss while receive_queue lock is held.
1446  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1447  */
1448 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1449 {
1450 	prefetch(&skb->data);
1451 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1452 }
1453 EXPORT_SYMBOL(udp_skb_destructor);
1454 
1455 /* as above, but the caller held the rx queue lock, too */
1456 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1457 {
1458 	prefetch(&skb->data);
1459 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1460 }
1461 
1462 /* Idea of busylocks is to let producers grab an extra spinlock
1463  * to relieve pressure on the receive_queue spinlock shared by consumer.
1464  * Under flood, this means that only one producer can be in line
1465  * trying to acquire the receive_queue spinlock.
1466  * These busylock can be allocated on a per cpu manner, instead of a
1467  * per socket one (that would consume a cache line per socket)
1468  */
1469 static int udp_busylocks_log __read_mostly;
1470 static spinlock_t *udp_busylocks __read_mostly;
1471 
1472 static spinlock_t *busylock_acquire(void *ptr)
1473 {
1474 	spinlock_t *busy;
1475 
1476 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1477 	spin_lock(busy);
1478 	return busy;
1479 }
1480 
1481 static void busylock_release(spinlock_t *busy)
1482 {
1483 	if (busy)
1484 		spin_unlock(busy);
1485 }
1486 
1487 static int udp_rmem_schedule(struct sock *sk, int size)
1488 {
1489 	int delta;
1490 
1491 	delta = size - sk->sk_forward_alloc;
1492 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1493 		return -ENOBUFS;
1494 
1495 	return 0;
1496 }
1497 
1498 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 	struct sk_buff_head *list = &sk->sk_receive_queue;
1501 	int rmem, err = -ENOMEM;
1502 	spinlock_t *busy = NULL;
1503 	int size;
1504 
1505 	/* try to avoid the costly atomic add/sub pair when the receive
1506 	 * queue is full; always allow at least a packet
1507 	 */
1508 	rmem = atomic_read(&sk->sk_rmem_alloc);
1509 	if (rmem > sk->sk_rcvbuf)
1510 		goto drop;
1511 
1512 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1513 	 * having linear skbs :
1514 	 * - Reduce memory overhead and thus increase receive queue capacity
1515 	 * - Less cache line misses at copyout() time
1516 	 * - Less work at consume_skb() (less alien page frag freeing)
1517 	 */
1518 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1519 		skb_condense(skb);
1520 
1521 		busy = busylock_acquire(sk);
1522 	}
1523 	size = skb->truesize;
1524 	udp_set_dev_scratch(skb);
1525 
1526 	/* we drop only if the receive buf is full and the receive
1527 	 * queue contains some other skb
1528 	 */
1529 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1530 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1531 		goto uncharge_drop;
1532 
1533 	spin_lock(&list->lock);
1534 	err = udp_rmem_schedule(sk, size);
1535 	if (err) {
1536 		spin_unlock(&list->lock);
1537 		goto uncharge_drop;
1538 	}
1539 
1540 	sk_forward_alloc_add(sk, -size);
1541 
1542 	/* no need to setup a destructor, we will explicitly release the
1543 	 * forward allocated memory on dequeue
1544 	 */
1545 	sock_skb_set_dropcount(sk, skb);
1546 
1547 	__skb_queue_tail(list, skb);
1548 	spin_unlock(&list->lock);
1549 
1550 	if (!sock_flag(sk, SOCK_DEAD))
1551 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1552 
1553 	busylock_release(busy);
1554 	return 0;
1555 
1556 uncharge_drop:
1557 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1558 
1559 drop:
1560 	atomic_inc(&sk->sk_drops);
1561 	busylock_release(busy);
1562 	return err;
1563 }
1564 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1565 
1566 void udp_destruct_common(struct sock *sk)
1567 {
1568 	/* reclaim completely the forward allocated memory */
1569 	struct udp_sock *up = udp_sk(sk);
1570 	unsigned int total = 0;
1571 	struct sk_buff *skb;
1572 
1573 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1574 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1575 		total += skb->truesize;
1576 		kfree_skb(skb);
1577 	}
1578 	udp_rmem_release(sk, total, 0, true);
1579 }
1580 EXPORT_SYMBOL_GPL(udp_destruct_common);
1581 
1582 static void udp_destruct_sock(struct sock *sk)
1583 {
1584 	udp_destruct_common(sk);
1585 	inet_sock_destruct(sk);
1586 }
1587 
1588 int udp_init_sock(struct sock *sk)
1589 {
1590 	udp_lib_init_sock(sk);
1591 	sk->sk_destruct = udp_destruct_sock;
1592 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1593 	return 0;
1594 }
1595 
1596 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1597 {
1598 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1599 		bool slow = lock_sock_fast(sk);
1600 
1601 		sk_peek_offset_bwd(sk, len);
1602 		unlock_sock_fast(sk, slow);
1603 	}
1604 
1605 	if (!skb_unref(skb))
1606 		return;
1607 
1608 	/* In the more common cases we cleared the head states previously,
1609 	 * see __udp_queue_rcv_skb().
1610 	 */
1611 	if (unlikely(udp_skb_has_head_state(skb)))
1612 		skb_release_head_state(skb);
1613 	__consume_stateless_skb(skb);
1614 }
1615 EXPORT_SYMBOL_GPL(skb_consume_udp);
1616 
1617 static struct sk_buff *__first_packet_length(struct sock *sk,
1618 					     struct sk_buff_head *rcvq,
1619 					     int *total)
1620 {
1621 	struct sk_buff *skb;
1622 
1623 	while ((skb = skb_peek(rcvq)) != NULL) {
1624 		if (udp_lib_checksum_complete(skb)) {
1625 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1626 					IS_UDPLITE(sk));
1627 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1628 					IS_UDPLITE(sk));
1629 			atomic_inc(&sk->sk_drops);
1630 			__skb_unlink(skb, rcvq);
1631 			*total += skb->truesize;
1632 			kfree_skb(skb);
1633 		} else {
1634 			udp_skb_csum_unnecessary_set(skb);
1635 			break;
1636 		}
1637 	}
1638 	return skb;
1639 }
1640 
1641 /**
1642  *	first_packet_length	- return length of first packet in receive queue
1643  *	@sk: socket
1644  *
1645  *	Drops all bad checksum frames, until a valid one is found.
1646  *	Returns the length of found skb, or -1 if none is found.
1647  */
1648 static int first_packet_length(struct sock *sk)
1649 {
1650 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1651 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1652 	struct sk_buff *skb;
1653 	int total = 0;
1654 	int res;
1655 
1656 	spin_lock_bh(&rcvq->lock);
1657 	skb = __first_packet_length(sk, rcvq, &total);
1658 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1659 		spin_lock(&sk_queue->lock);
1660 		skb_queue_splice_tail_init(sk_queue, rcvq);
1661 		spin_unlock(&sk_queue->lock);
1662 
1663 		skb = __first_packet_length(sk, rcvq, &total);
1664 	}
1665 	res = skb ? skb->len : -1;
1666 	if (total)
1667 		udp_rmem_release(sk, total, 1, false);
1668 	spin_unlock_bh(&rcvq->lock);
1669 	return res;
1670 }
1671 
1672 /*
1673  *	IOCTL requests applicable to the UDP protocol
1674  */
1675 
1676 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1677 {
1678 	switch (cmd) {
1679 	case SIOCOUTQ:
1680 	{
1681 		*karg = sk_wmem_alloc_get(sk);
1682 		return 0;
1683 	}
1684 
1685 	case SIOCINQ:
1686 	{
1687 		*karg = max_t(int, 0, first_packet_length(sk));
1688 		return 0;
1689 	}
1690 
1691 	default:
1692 		return -ENOIOCTLCMD;
1693 	}
1694 
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(udp_ioctl);
1698 
1699 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1700 			       int *off, int *err)
1701 {
1702 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1703 	struct sk_buff_head *queue;
1704 	struct sk_buff *last;
1705 	long timeo;
1706 	int error;
1707 
1708 	queue = &udp_sk(sk)->reader_queue;
1709 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1710 	do {
1711 		struct sk_buff *skb;
1712 
1713 		error = sock_error(sk);
1714 		if (error)
1715 			break;
1716 
1717 		error = -EAGAIN;
1718 		do {
1719 			spin_lock_bh(&queue->lock);
1720 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1721 							err, &last);
1722 			if (skb) {
1723 				if (!(flags & MSG_PEEK))
1724 					udp_skb_destructor(sk, skb);
1725 				spin_unlock_bh(&queue->lock);
1726 				return skb;
1727 			}
1728 
1729 			if (skb_queue_empty_lockless(sk_queue)) {
1730 				spin_unlock_bh(&queue->lock);
1731 				goto busy_check;
1732 			}
1733 
1734 			/* refill the reader queue and walk it again
1735 			 * keep both queues locked to avoid re-acquiring
1736 			 * the sk_receive_queue lock if fwd memory scheduling
1737 			 * is needed.
1738 			 */
1739 			spin_lock(&sk_queue->lock);
1740 			skb_queue_splice_tail_init(sk_queue, queue);
1741 
1742 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1743 							err, &last);
1744 			if (skb && !(flags & MSG_PEEK))
1745 				udp_skb_dtor_locked(sk, skb);
1746 			spin_unlock(&sk_queue->lock);
1747 			spin_unlock_bh(&queue->lock);
1748 			if (skb)
1749 				return skb;
1750 
1751 busy_check:
1752 			if (!sk_can_busy_loop(sk))
1753 				break;
1754 
1755 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1756 		} while (!skb_queue_empty_lockless(sk_queue));
1757 
1758 		/* sk_queue is empty, reader_queue may contain peeked packets */
1759 	} while (timeo &&
1760 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1761 					      &error, &timeo,
1762 					      (struct sk_buff *)sk_queue));
1763 
1764 	*err = error;
1765 	return NULL;
1766 }
1767 EXPORT_SYMBOL(__skb_recv_udp);
1768 
1769 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1770 {
1771 	struct sk_buff *skb;
1772 	int err;
1773 
1774 try_again:
1775 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1776 	if (!skb)
1777 		return err;
1778 
1779 	if (udp_lib_checksum_complete(skb)) {
1780 		int is_udplite = IS_UDPLITE(sk);
1781 		struct net *net = sock_net(sk);
1782 
1783 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1784 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1785 		atomic_inc(&sk->sk_drops);
1786 		kfree_skb(skb);
1787 		goto try_again;
1788 	}
1789 
1790 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1791 	return recv_actor(sk, skb);
1792 }
1793 EXPORT_SYMBOL(udp_read_skb);
1794 
1795 /*
1796  * 	This should be easy, if there is something there we
1797  * 	return it, otherwise we block.
1798  */
1799 
1800 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1801 		int *addr_len)
1802 {
1803 	struct inet_sock *inet = inet_sk(sk);
1804 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1805 	struct sk_buff *skb;
1806 	unsigned int ulen, copied;
1807 	int off, err, peeking = flags & MSG_PEEK;
1808 	int is_udplite = IS_UDPLITE(sk);
1809 	bool checksum_valid = false;
1810 
1811 	if (flags & MSG_ERRQUEUE)
1812 		return ip_recv_error(sk, msg, len, addr_len);
1813 
1814 try_again:
1815 	off = sk_peek_offset(sk, flags);
1816 	skb = __skb_recv_udp(sk, flags, &off, &err);
1817 	if (!skb)
1818 		return err;
1819 
1820 	ulen = udp_skb_len(skb);
1821 	copied = len;
1822 	if (copied > ulen - off)
1823 		copied = ulen - off;
1824 	else if (copied < ulen)
1825 		msg->msg_flags |= MSG_TRUNC;
1826 
1827 	/*
1828 	 * If checksum is needed at all, try to do it while copying the
1829 	 * data.  If the data is truncated, or if we only want a partial
1830 	 * coverage checksum (UDP-Lite), do it before the copy.
1831 	 */
1832 
1833 	if (copied < ulen || peeking ||
1834 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1835 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1836 				!__udp_lib_checksum_complete(skb);
1837 		if (!checksum_valid)
1838 			goto csum_copy_err;
1839 	}
1840 
1841 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1842 		if (udp_skb_is_linear(skb))
1843 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1844 		else
1845 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1846 	} else {
1847 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1848 
1849 		if (err == -EINVAL)
1850 			goto csum_copy_err;
1851 	}
1852 
1853 	if (unlikely(err)) {
1854 		if (!peeking) {
1855 			atomic_inc(&sk->sk_drops);
1856 			UDP_INC_STATS(sock_net(sk),
1857 				      UDP_MIB_INERRORS, is_udplite);
1858 		}
1859 		kfree_skb(skb);
1860 		return err;
1861 	}
1862 
1863 	if (!peeking)
1864 		UDP_INC_STATS(sock_net(sk),
1865 			      UDP_MIB_INDATAGRAMS, is_udplite);
1866 
1867 	sock_recv_cmsgs(msg, sk, skb);
1868 
1869 	/* Copy the address. */
1870 	if (sin) {
1871 		sin->sin_family = AF_INET;
1872 		sin->sin_port = udp_hdr(skb)->source;
1873 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1874 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1875 		*addr_len = sizeof(*sin);
1876 
1877 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1878 						      (struct sockaddr *)sin,
1879 						      addr_len);
1880 	}
1881 
1882 	if (udp_test_bit(GRO_ENABLED, sk))
1883 		udp_cmsg_recv(msg, sk, skb);
1884 
1885 	if (inet_cmsg_flags(inet))
1886 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1887 
1888 	err = copied;
1889 	if (flags & MSG_TRUNC)
1890 		err = ulen;
1891 
1892 	skb_consume_udp(sk, skb, peeking ? -err : err);
1893 	return err;
1894 
1895 csum_copy_err:
1896 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1897 				 udp_skb_destructor)) {
1898 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1899 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1900 	}
1901 	kfree_skb(skb);
1902 
1903 	/* starting over for a new packet, but check if we need to yield */
1904 	cond_resched();
1905 	msg->msg_flags &= ~MSG_TRUNC;
1906 	goto try_again;
1907 }
1908 
1909 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1910 {
1911 	/* This check is replicated from __ip4_datagram_connect() and
1912 	 * intended to prevent BPF program called below from accessing bytes
1913 	 * that are out of the bound specified by user in addr_len.
1914 	 */
1915 	if (addr_len < sizeof(struct sockaddr_in))
1916 		return -EINVAL;
1917 
1918 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1919 }
1920 EXPORT_SYMBOL(udp_pre_connect);
1921 
1922 int __udp_disconnect(struct sock *sk, int flags)
1923 {
1924 	struct inet_sock *inet = inet_sk(sk);
1925 	/*
1926 	 *	1003.1g - break association.
1927 	 */
1928 
1929 	sk->sk_state = TCP_CLOSE;
1930 	inet->inet_daddr = 0;
1931 	inet->inet_dport = 0;
1932 	sock_rps_reset_rxhash(sk);
1933 	sk->sk_bound_dev_if = 0;
1934 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1935 		inet_reset_saddr(sk);
1936 		if (sk->sk_prot->rehash &&
1937 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1938 			sk->sk_prot->rehash(sk);
1939 	}
1940 
1941 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1942 		sk->sk_prot->unhash(sk);
1943 		inet->inet_sport = 0;
1944 	}
1945 	sk_dst_reset(sk);
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL(__udp_disconnect);
1949 
1950 int udp_disconnect(struct sock *sk, int flags)
1951 {
1952 	lock_sock(sk);
1953 	__udp_disconnect(sk, flags);
1954 	release_sock(sk);
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL(udp_disconnect);
1958 
1959 void udp_lib_unhash(struct sock *sk)
1960 {
1961 	if (sk_hashed(sk)) {
1962 		struct udp_table *udptable = udp_get_table_prot(sk);
1963 		struct udp_hslot *hslot, *hslot2;
1964 
1965 		hslot  = udp_hashslot(udptable, sock_net(sk),
1966 				      udp_sk(sk)->udp_port_hash);
1967 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1968 
1969 		spin_lock_bh(&hslot->lock);
1970 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1971 			reuseport_detach_sock(sk);
1972 		if (sk_del_node_init_rcu(sk)) {
1973 			hslot->count--;
1974 			inet_sk(sk)->inet_num = 0;
1975 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1976 
1977 			spin_lock(&hslot2->lock);
1978 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1979 			hslot2->count--;
1980 			spin_unlock(&hslot2->lock);
1981 		}
1982 		spin_unlock_bh(&hslot->lock);
1983 	}
1984 }
1985 EXPORT_SYMBOL(udp_lib_unhash);
1986 
1987 /*
1988  * inet_rcv_saddr was changed, we must rehash secondary hash
1989  */
1990 void udp_lib_rehash(struct sock *sk, u16 newhash)
1991 {
1992 	if (sk_hashed(sk)) {
1993 		struct udp_table *udptable = udp_get_table_prot(sk);
1994 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1995 
1996 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1997 		nhslot2 = udp_hashslot2(udptable, newhash);
1998 		udp_sk(sk)->udp_portaddr_hash = newhash;
1999 
2000 		if (hslot2 != nhslot2 ||
2001 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2002 			hslot = udp_hashslot(udptable, sock_net(sk),
2003 					     udp_sk(sk)->udp_port_hash);
2004 			/* we must lock primary chain too */
2005 			spin_lock_bh(&hslot->lock);
2006 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2007 				reuseport_detach_sock(sk);
2008 
2009 			if (hslot2 != nhslot2) {
2010 				spin_lock(&hslot2->lock);
2011 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2012 				hslot2->count--;
2013 				spin_unlock(&hslot2->lock);
2014 
2015 				spin_lock(&nhslot2->lock);
2016 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2017 							 &nhslot2->head);
2018 				nhslot2->count++;
2019 				spin_unlock(&nhslot2->lock);
2020 			}
2021 
2022 			spin_unlock_bh(&hslot->lock);
2023 		}
2024 	}
2025 }
2026 EXPORT_SYMBOL(udp_lib_rehash);
2027 
2028 void udp_v4_rehash(struct sock *sk)
2029 {
2030 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2031 					  inet_sk(sk)->inet_rcv_saddr,
2032 					  inet_sk(sk)->inet_num);
2033 	udp_lib_rehash(sk, new_hash);
2034 }
2035 
2036 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2037 {
2038 	int rc;
2039 
2040 	if (inet_sk(sk)->inet_daddr) {
2041 		sock_rps_save_rxhash(sk, skb);
2042 		sk_mark_napi_id(sk, skb);
2043 		sk_incoming_cpu_update(sk);
2044 	} else {
2045 		sk_mark_napi_id_once(sk, skb);
2046 	}
2047 
2048 	rc = __udp_enqueue_schedule_skb(sk, skb);
2049 	if (rc < 0) {
2050 		int is_udplite = IS_UDPLITE(sk);
2051 		int drop_reason;
2052 
2053 		/* Note that an ENOMEM error is charged twice */
2054 		if (rc == -ENOMEM) {
2055 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2056 					is_udplite);
2057 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2058 		} else {
2059 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2060 				      is_udplite);
2061 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2062 		}
2063 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2064 		kfree_skb_reason(skb, drop_reason);
2065 		trace_udp_fail_queue_rcv_skb(rc, sk);
2066 		return -1;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /* returns:
2073  *  -1: error
2074  *   0: success
2075  *  >0: "udp encap" protocol resubmission
2076  *
2077  * Note that in the success and error cases, the skb is assumed to
2078  * have either been requeued or freed.
2079  */
2080 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2081 {
2082 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2083 	struct udp_sock *up = udp_sk(sk);
2084 	int is_udplite = IS_UDPLITE(sk);
2085 
2086 	/*
2087 	 *	Charge it to the socket, dropping if the queue is full.
2088 	 */
2089 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2090 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2091 		goto drop;
2092 	}
2093 	nf_reset_ct(skb);
2094 
2095 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2096 	    READ_ONCE(up->encap_type)) {
2097 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2098 
2099 		/*
2100 		 * This is an encapsulation socket so pass the skb to
2101 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2102 		 * fall through and pass this up the UDP socket.
2103 		 * up->encap_rcv() returns the following value:
2104 		 * =0 if skb was successfully passed to the encap
2105 		 *    handler or was discarded by it.
2106 		 * >0 if skb should be passed on to UDP.
2107 		 * <0 if skb should be resubmitted as proto -N
2108 		 */
2109 
2110 		/* if we're overly short, let UDP handle it */
2111 		encap_rcv = READ_ONCE(up->encap_rcv);
2112 		if (encap_rcv) {
2113 			int ret;
2114 
2115 			/* Verify checksum before giving to encap */
2116 			if (udp_lib_checksum_complete(skb))
2117 				goto csum_error;
2118 
2119 			ret = encap_rcv(sk, skb);
2120 			if (ret <= 0) {
2121 				__UDP_INC_STATS(sock_net(sk),
2122 						UDP_MIB_INDATAGRAMS,
2123 						is_udplite);
2124 				return -ret;
2125 			}
2126 		}
2127 
2128 		/* FALLTHROUGH -- it's a UDP Packet */
2129 	}
2130 
2131 	/*
2132 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2133 	 */
2134 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2135 		u16 pcrlen = READ_ONCE(up->pcrlen);
2136 
2137 		/*
2138 		 * MIB statistics other than incrementing the error count are
2139 		 * disabled for the following two types of errors: these depend
2140 		 * on the application settings, not on the functioning of the
2141 		 * protocol stack as such.
2142 		 *
2143 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2144 		 * way ... to ... at least let the receiving application block
2145 		 * delivery of packets with coverage values less than a value
2146 		 * provided by the application."
2147 		 */
2148 		if (pcrlen == 0) {          /* full coverage was set  */
2149 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2150 					    UDP_SKB_CB(skb)->cscov, skb->len);
2151 			goto drop;
2152 		}
2153 		/* The next case involves violating the min. coverage requested
2154 		 * by the receiver. This is subtle: if receiver wants x and x is
2155 		 * greater than the buffersize/MTU then receiver will complain
2156 		 * that it wants x while sender emits packets of smaller size y.
2157 		 * Therefore the above ...()->partial_cov statement is essential.
2158 		 */
2159 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2160 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2161 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2162 			goto drop;
2163 		}
2164 	}
2165 
2166 	prefetch(&sk->sk_rmem_alloc);
2167 	if (rcu_access_pointer(sk->sk_filter) &&
2168 	    udp_lib_checksum_complete(skb))
2169 			goto csum_error;
2170 
2171 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2172 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2173 		goto drop;
2174 	}
2175 
2176 	udp_csum_pull_header(skb);
2177 
2178 	ipv4_pktinfo_prepare(sk, skb, true);
2179 	return __udp_queue_rcv_skb(sk, skb);
2180 
2181 csum_error:
2182 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2183 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2184 drop:
2185 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2186 	atomic_inc(&sk->sk_drops);
2187 	kfree_skb_reason(skb, drop_reason);
2188 	return -1;
2189 }
2190 
2191 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2192 {
2193 	struct sk_buff *next, *segs;
2194 	int ret;
2195 
2196 	if (likely(!udp_unexpected_gso(sk, skb)))
2197 		return udp_queue_rcv_one_skb(sk, skb);
2198 
2199 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2200 	__skb_push(skb, -skb_mac_offset(skb));
2201 	segs = udp_rcv_segment(sk, skb, true);
2202 	skb_list_walk_safe(segs, skb, next) {
2203 		__skb_pull(skb, skb_transport_offset(skb));
2204 
2205 		udp_post_segment_fix_csum(skb);
2206 		ret = udp_queue_rcv_one_skb(sk, skb);
2207 		if (ret > 0)
2208 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2209 	}
2210 	return 0;
2211 }
2212 
2213 /* For TCP sockets, sk_rx_dst is protected by socket lock
2214  * For UDP, we use xchg() to guard against concurrent changes.
2215  */
2216 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2217 {
2218 	struct dst_entry *old;
2219 
2220 	if (dst_hold_safe(dst)) {
2221 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2222 		dst_release(old);
2223 		return old != dst;
2224 	}
2225 	return false;
2226 }
2227 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2228 
2229 /*
2230  *	Multicasts and broadcasts go to each listener.
2231  *
2232  *	Note: called only from the BH handler context.
2233  */
2234 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2235 				    struct udphdr  *uh,
2236 				    __be32 saddr, __be32 daddr,
2237 				    struct udp_table *udptable,
2238 				    int proto)
2239 {
2240 	struct sock *sk, *first = NULL;
2241 	unsigned short hnum = ntohs(uh->dest);
2242 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2243 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2244 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2245 	int dif = skb->dev->ifindex;
2246 	int sdif = inet_sdif(skb);
2247 	struct hlist_node *node;
2248 	struct sk_buff *nskb;
2249 
2250 	if (use_hash2) {
2251 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2252 			    udptable->mask;
2253 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2254 start_lookup:
2255 		hslot = &udptable->hash2[hash2];
2256 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2257 	}
2258 
2259 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2260 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2261 					 uh->source, saddr, dif, sdif, hnum))
2262 			continue;
2263 
2264 		if (!first) {
2265 			first = sk;
2266 			continue;
2267 		}
2268 		nskb = skb_clone(skb, GFP_ATOMIC);
2269 
2270 		if (unlikely(!nskb)) {
2271 			atomic_inc(&sk->sk_drops);
2272 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2273 					IS_UDPLITE(sk));
2274 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2275 					IS_UDPLITE(sk));
2276 			continue;
2277 		}
2278 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2279 			consume_skb(nskb);
2280 	}
2281 
2282 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2283 	if (use_hash2 && hash2 != hash2_any) {
2284 		hash2 = hash2_any;
2285 		goto start_lookup;
2286 	}
2287 
2288 	if (first) {
2289 		if (udp_queue_rcv_skb(first, skb) > 0)
2290 			consume_skb(skb);
2291 	} else {
2292 		kfree_skb(skb);
2293 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2294 				proto == IPPROTO_UDPLITE);
2295 	}
2296 	return 0;
2297 }
2298 
2299 /* Initialize UDP checksum. If exited with zero value (success),
2300  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2301  * Otherwise, csum completion requires checksumming packet body,
2302  * including udp header and folding it to skb->csum.
2303  */
2304 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2305 				 int proto)
2306 {
2307 	int err;
2308 
2309 	UDP_SKB_CB(skb)->partial_cov = 0;
2310 	UDP_SKB_CB(skb)->cscov = skb->len;
2311 
2312 	if (proto == IPPROTO_UDPLITE) {
2313 		err = udplite_checksum_init(skb, uh);
2314 		if (err)
2315 			return err;
2316 
2317 		if (UDP_SKB_CB(skb)->partial_cov) {
2318 			skb->csum = inet_compute_pseudo(skb, proto);
2319 			return 0;
2320 		}
2321 	}
2322 
2323 	/* Note, we are only interested in != 0 or == 0, thus the
2324 	 * force to int.
2325 	 */
2326 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2327 							inet_compute_pseudo);
2328 	if (err)
2329 		return err;
2330 
2331 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2332 		/* If SW calculated the value, we know it's bad */
2333 		if (skb->csum_complete_sw)
2334 			return 1;
2335 
2336 		/* HW says the value is bad. Let's validate that.
2337 		 * skb->csum is no longer the full packet checksum,
2338 		 * so don't treat it as such.
2339 		 */
2340 		skb_checksum_complete_unset(skb);
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2347  * return code conversion for ip layer consumption
2348  */
2349 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2350 			       struct udphdr *uh)
2351 {
2352 	int ret;
2353 
2354 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2355 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2356 
2357 	ret = udp_queue_rcv_skb(sk, skb);
2358 
2359 	/* a return value > 0 means to resubmit the input, but
2360 	 * it wants the return to be -protocol, or 0
2361 	 */
2362 	if (ret > 0)
2363 		return -ret;
2364 	return 0;
2365 }
2366 
2367 /*
2368  *	All we need to do is get the socket, and then do a checksum.
2369  */
2370 
2371 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2372 		   int proto)
2373 {
2374 	struct sock *sk;
2375 	struct udphdr *uh;
2376 	unsigned short ulen;
2377 	struct rtable *rt = skb_rtable(skb);
2378 	__be32 saddr, daddr;
2379 	struct net *net = dev_net(skb->dev);
2380 	bool refcounted;
2381 	int drop_reason;
2382 
2383 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2384 
2385 	/*
2386 	 *  Validate the packet.
2387 	 */
2388 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2389 		goto drop;		/* No space for header. */
2390 
2391 	uh   = udp_hdr(skb);
2392 	ulen = ntohs(uh->len);
2393 	saddr = ip_hdr(skb)->saddr;
2394 	daddr = ip_hdr(skb)->daddr;
2395 
2396 	if (ulen > skb->len)
2397 		goto short_packet;
2398 
2399 	if (proto == IPPROTO_UDP) {
2400 		/* UDP validates ulen. */
2401 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2402 			goto short_packet;
2403 		uh = udp_hdr(skb);
2404 	}
2405 
2406 	if (udp4_csum_init(skb, uh, proto))
2407 		goto csum_error;
2408 
2409 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2410 			     &refcounted, udp_ehashfn);
2411 	if (IS_ERR(sk))
2412 		goto no_sk;
2413 
2414 	if (sk) {
2415 		struct dst_entry *dst = skb_dst(skb);
2416 		int ret;
2417 
2418 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2419 			udp_sk_rx_dst_set(sk, dst);
2420 
2421 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2422 		if (refcounted)
2423 			sock_put(sk);
2424 		return ret;
2425 	}
2426 
2427 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2428 		return __udp4_lib_mcast_deliver(net, skb, uh,
2429 						saddr, daddr, udptable, proto);
2430 
2431 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2432 	if (sk)
2433 		return udp_unicast_rcv_skb(sk, skb, uh);
2434 no_sk:
2435 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2436 		goto drop;
2437 	nf_reset_ct(skb);
2438 
2439 	/* No socket. Drop packet silently, if checksum is wrong */
2440 	if (udp_lib_checksum_complete(skb))
2441 		goto csum_error;
2442 
2443 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2444 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2445 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2446 
2447 	/*
2448 	 * Hmm.  We got an UDP packet to a port to which we
2449 	 * don't wanna listen.  Ignore it.
2450 	 */
2451 	kfree_skb_reason(skb, drop_reason);
2452 	return 0;
2453 
2454 short_packet:
2455 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2456 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2457 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2458 			    &saddr, ntohs(uh->source),
2459 			    ulen, skb->len,
2460 			    &daddr, ntohs(uh->dest));
2461 	goto drop;
2462 
2463 csum_error:
2464 	/*
2465 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2466 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2467 	 */
2468 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2469 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2470 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2471 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2472 			    ulen);
2473 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2474 drop:
2475 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2476 	kfree_skb_reason(skb, drop_reason);
2477 	return 0;
2478 }
2479 
2480 /* We can only early demux multicast if there is a single matching socket.
2481  * If more than one socket found returns NULL
2482  */
2483 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2484 						  __be16 loc_port, __be32 loc_addr,
2485 						  __be16 rmt_port, __be32 rmt_addr,
2486 						  int dif, int sdif)
2487 {
2488 	struct udp_table *udptable = net->ipv4.udp_table;
2489 	unsigned short hnum = ntohs(loc_port);
2490 	struct sock *sk, *result;
2491 	struct udp_hslot *hslot;
2492 	unsigned int slot;
2493 
2494 	slot = udp_hashfn(net, hnum, udptable->mask);
2495 	hslot = &udptable->hash[slot];
2496 
2497 	/* Do not bother scanning a too big list */
2498 	if (hslot->count > 10)
2499 		return NULL;
2500 
2501 	result = NULL;
2502 	sk_for_each_rcu(sk, &hslot->head) {
2503 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2504 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2505 			if (result)
2506 				return NULL;
2507 			result = sk;
2508 		}
2509 	}
2510 
2511 	return result;
2512 }
2513 
2514 /* For unicast we should only early demux connected sockets or we can
2515  * break forwarding setups.  The chains here can be long so only check
2516  * if the first socket is an exact match and if not move on.
2517  */
2518 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2519 					    __be16 loc_port, __be32 loc_addr,
2520 					    __be16 rmt_port, __be32 rmt_addr,
2521 					    int dif, int sdif)
2522 {
2523 	struct udp_table *udptable = net->ipv4.udp_table;
2524 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2525 	unsigned short hnum = ntohs(loc_port);
2526 	unsigned int hash2, slot2;
2527 	struct udp_hslot *hslot2;
2528 	__portpair ports;
2529 	struct sock *sk;
2530 
2531 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2532 	slot2 = hash2 & udptable->mask;
2533 	hslot2 = &udptable->hash2[slot2];
2534 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2535 
2536 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2537 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2538 			return sk;
2539 		/* Only check first socket in chain */
2540 		break;
2541 	}
2542 	return NULL;
2543 }
2544 
2545 int udp_v4_early_demux(struct sk_buff *skb)
2546 {
2547 	struct net *net = dev_net(skb->dev);
2548 	struct in_device *in_dev = NULL;
2549 	const struct iphdr *iph;
2550 	const struct udphdr *uh;
2551 	struct sock *sk = NULL;
2552 	struct dst_entry *dst;
2553 	int dif = skb->dev->ifindex;
2554 	int sdif = inet_sdif(skb);
2555 	int ours;
2556 
2557 	/* validate the packet */
2558 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2559 		return 0;
2560 
2561 	iph = ip_hdr(skb);
2562 	uh = udp_hdr(skb);
2563 
2564 	if (skb->pkt_type == PACKET_MULTICAST) {
2565 		in_dev = __in_dev_get_rcu(skb->dev);
2566 
2567 		if (!in_dev)
2568 			return 0;
2569 
2570 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2571 				       iph->protocol);
2572 		if (!ours)
2573 			return 0;
2574 
2575 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2576 						   uh->source, iph->saddr,
2577 						   dif, sdif);
2578 	} else if (skb->pkt_type == PACKET_HOST) {
2579 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2580 					     uh->source, iph->saddr, dif, sdif);
2581 	}
2582 
2583 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2584 		return 0;
2585 
2586 	skb->sk = sk;
2587 	skb->destructor = sock_efree;
2588 	dst = rcu_dereference(sk->sk_rx_dst);
2589 
2590 	if (dst)
2591 		dst = dst_check(dst, 0);
2592 	if (dst) {
2593 		u32 itag = 0;
2594 
2595 		/* set noref for now.
2596 		 * any place which wants to hold dst has to call
2597 		 * dst_hold_safe()
2598 		 */
2599 		skb_dst_set_noref(skb, dst);
2600 
2601 		/* for unconnected multicast sockets we need to validate
2602 		 * the source on each packet
2603 		 */
2604 		if (!inet_sk(sk)->inet_daddr && in_dev)
2605 			return ip_mc_validate_source(skb, iph->daddr,
2606 						     iph->saddr,
2607 						     iph->tos & IPTOS_RT_MASK,
2608 						     skb->dev, in_dev, &itag);
2609 	}
2610 	return 0;
2611 }
2612 
2613 int udp_rcv(struct sk_buff *skb)
2614 {
2615 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2616 }
2617 
2618 void udp_destroy_sock(struct sock *sk)
2619 {
2620 	struct udp_sock *up = udp_sk(sk);
2621 	bool slow = lock_sock_fast(sk);
2622 
2623 	/* protects from races with udp_abort() */
2624 	sock_set_flag(sk, SOCK_DEAD);
2625 	udp_flush_pending_frames(sk);
2626 	unlock_sock_fast(sk, slow);
2627 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2628 		if (up->encap_type) {
2629 			void (*encap_destroy)(struct sock *sk);
2630 			encap_destroy = READ_ONCE(up->encap_destroy);
2631 			if (encap_destroy)
2632 				encap_destroy(sk);
2633 		}
2634 		if (udp_test_bit(ENCAP_ENABLED, sk))
2635 			static_branch_dec(&udp_encap_needed_key);
2636 	}
2637 }
2638 
2639 /*
2640  *	Socket option code for UDP
2641  */
2642 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2643 		       sockptr_t optval, unsigned int optlen,
2644 		       int (*push_pending_frames)(struct sock *))
2645 {
2646 	struct udp_sock *up = udp_sk(sk);
2647 	int val, valbool;
2648 	int err = 0;
2649 	int is_udplite = IS_UDPLITE(sk);
2650 
2651 	if (level == SOL_SOCKET) {
2652 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2653 
2654 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2655 			sockopt_lock_sock(sk);
2656 			/* paired with READ_ONCE in udp_rmem_release() */
2657 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2658 			sockopt_release_sock(sk);
2659 		}
2660 		return err;
2661 	}
2662 
2663 	if (optlen < sizeof(int))
2664 		return -EINVAL;
2665 
2666 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2667 		return -EFAULT;
2668 
2669 	valbool = val ? 1 : 0;
2670 
2671 	switch (optname) {
2672 	case UDP_CORK:
2673 		if (val != 0) {
2674 			udp_set_bit(CORK, sk);
2675 		} else {
2676 			udp_clear_bit(CORK, sk);
2677 			lock_sock(sk);
2678 			push_pending_frames(sk);
2679 			release_sock(sk);
2680 		}
2681 		break;
2682 
2683 	case UDP_ENCAP:
2684 		switch (val) {
2685 		case 0:
2686 #ifdef CONFIG_XFRM
2687 		case UDP_ENCAP_ESPINUDP:
2688 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2689 #if IS_ENABLED(CONFIG_IPV6)
2690 			if (sk->sk_family == AF_INET6)
2691 				WRITE_ONCE(up->encap_rcv,
2692 					   ipv6_stub->xfrm6_udp_encap_rcv);
2693 			else
2694 #endif
2695 				WRITE_ONCE(up->encap_rcv,
2696 					   xfrm4_udp_encap_rcv);
2697 #endif
2698 			fallthrough;
2699 		case UDP_ENCAP_L2TPINUDP:
2700 			WRITE_ONCE(up->encap_type, val);
2701 			udp_tunnel_encap_enable(sk);
2702 			break;
2703 		default:
2704 			err = -ENOPROTOOPT;
2705 			break;
2706 		}
2707 		break;
2708 
2709 	case UDP_NO_CHECK6_TX:
2710 		udp_set_no_check6_tx(sk, valbool);
2711 		break;
2712 
2713 	case UDP_NO_CHECK6_RX:
2714 		udp_set_no_check6_rx(sk, valbool);
2715 		break;
2716 
2717 	case UDP_SEGMENT:
2718 		if (val < 0 || val > USHRT_MAX)
2719 			return -EINVAL;
2720 		WRITE_ONCE(up->gso_size, val);
2721 		break;
2722 
2723 	case UDP_GRO:
2724 
2725 		/* when enabling GRO, accept the related GSO packet type */
2726 		if (valbool)
2727 			udp_tunnel_encap_enable(sk);
2728 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2729 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2730 		break;
2731 
2732 	/*
2733 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2734 	 */
2735 	/* The sender sets actual checksum coverage length via this option.
2736 	 * The case coverage > packet length is handled by send module. */
2737 	case UDPLITE_SEND_CSCOV:
2738 		if (!is_udplite)         /* Disable the option on UDP sockets */
2739 			return -ENOPROTOOPT;
2740 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2741 			val = 8;
2742 		else if (val > USHRT_MAX)
2743 			val = USHRT_MAX;
2744 		WRITE_ONCE(up->pcslen, val);
2745 		udp_set_bit(UDPLITE_SEND_CC, sk);
2746 		break;
2747 
2748 	/* The receiver specifies a minimum checksum coverage value. To make
2749 	 * sense, this should be set to at least 8 (as done below). If zero is
2750 	 * used, this again means full checksum coverage.                     */
2751 	case UDPLITE_RECV_CSCOV:
2752 		if (!is_udplite)         /* Disable the option on UDP sockets */
2753 			return -ENOPROTOOPT;
2754 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2755 			val = 8;
2756 		else if (val > USHRT_MAX)
2757 			val = USHRT_MAX;
2758 		WRITE_ONCE(up->pcrlen, val);
2759 		udp_set_bit(UDPLITE_RECV_CC, sk);
2760 		break;
2761 
2762 	default:
2763 		err = -ENOPROTOOPT;
2764 		break;
2765 	}
2766 
2767 	return err;
2768 }
2769 EXPORT_SYMBOL(udp_lib_setsockopt);
2770 
2771 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2772 		   unsigned int optlen)
2773 {
2774 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2775 		return udp_lib_setsockopt(sk, level, optname,
2776 					  optval, optlen,
2777 					  udp_push_pending_frames);
2778 	return ip_setsockopt(sk, level, optname, optval, optlen);
2779 }
2780 
2781 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2782 		       char __user *optval, int __user *optlen)
2783 {
2784 	struct udp_sock *up = udp_sk(sk);
2785 	int val, len;
2786 
2787 	if (get_user(len, optlen))
2788 		return -EFAULT;
2789 
2790 	if (len < 0)
2791 		return -EINVAL;
2792 
2793 	len = min_t(unsigned int, len, sizeof(int));
2794 
2795 	switch (optname) {
2796 	case UDP_CORK:
2797 		val = udp_test_bit(CORK, sk);
2798 		break;
2799 
2800 	case UDP_ENCAP:
2801 		val = READ_ONCE(up->encap_type);
2802 		break;
2803 
2804 	case UDP_NO_CHECK6_TX:
2805 		val = udp_get_no_check6_tx(sk);
2806 		break;
2807 
2808 	case UDP_NO_CHECK6_RX:
2809 		val = udp_get_no_check6_rx(sk);
2810 		break;
2811 
2812 	case UDP_SEGMENT:
2813 		val = READ_ONCE(up->gso_size);
2814 		break;
2815 
2816 	case UDP_GRO:
2817 		val = udp_test_bit(GRO_ENABLED, sk);
2818 		break;
2819 
2820 	/* The following two cannot be changed on UDP sockets, the return is
2821 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2822 	case UDPLITE_SEND_CSCOV:
2823 		val = READ_ONCE(up->pcslen);
2824 		break;
2825 
2826 	case UDPLITE_RECV_CSCOV:
2827 		val = READ_ONCE(up->pcrlen);
2828 		break;
2829 
2830 	default:
2831 		return -ENOPROTOOPT;
2832 	}
2833 
2834 	if (put_user(len, optlen))
2835 		return -EFAULT;
2836 	if (copy_to_user(optval, &val, len))
2837 		return -EFAULT;
2838 	return 0;
2839 }
2840 EXPORT_SYMBOL(udp_lib_getsockopt);
2841 
2842 int udp_getsockopt(struct sock *sk, int level, int optname,
2843 		   char __user *optval, int __user *optlen)
2844 {
2845 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2846 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2847 	return ip_getsockopt(sk, level, optname, optval, optlen);
2848 }
2849 
2850 /**
2851  * 	udp_poll - wait for a UDP event.
2852  *	@file: - file struct
2853  *	@sock: - socket
2854  *	@wait: - poll table
2855  *
2856  *	This is same as datagram poll, except for the special case of
2857  *	blocking sockets. If application is using a blocking fd
2858  *	and a packet with checksum error is in the queue;
2859  *	then it could get return from select indicating data available
2860  *	but then block when reading it. Add special case code
2861  *	to work around these arguably broken applications.
2862  */
2863 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2864 {
2865 	__poll_t mask = datagram_poll(file, sock, wait);
2866 	struct sock *sk = sock->sk;
2867 
2868 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2869 		mask |= EPOLLIN | EPOLLRDNORM;
2870 
2871 	/* Check for false positives due to checksum errors */
2872 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2873 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2874 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2875 
2876 	/* psock ingress_msg queue should not contain any bad checksum frames */
2877 	if (sk_is_readable(sk))
2878 		mask |= EPOLLIN | EPOLLRDNORM;
2879 	return mask;
2880 
2881 }
2882 EXPORT_SYMBOL(udp_poll);
2883 
2884 int udp_abort(struct sock *sk, int err)
2885 {
2886 	if (!has_current_bpf_ctx())
2887 		lock_sock(sk);
2888 
2889 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2890 	 * with close()
2891 	 */
2892 	if (sock_flag(sk, SOCK_DEAD))
2893 		goto out;
2894 
2895 	sk->sk_err = err;
2896 	sk_error_report(sk);
2897 	__udp_disconnect(sk, 0);
2898 
2899 out:
2900 	if (!has_current_bpf_ctx())
2901 		release_sock(sk);
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(udp_abort);
2906 
2907 struct proto udp_prot = {
2908 	.name			= "UDP",
2909 	.owner			= THIS_MODULE,
2910 	.close			= udp_lib_close,
2911 	.pre_connect		= udp_pre_connect,
2912 	.connect		= ip4_datagram_connect,
2913 	.disconnect		= udp_disconnect,
2914 	.ioctl			= udp_ioctl,
2915 	.init			= udp_init_sock,
2916 	.destroy		= udp_destroy_sock,
2917 	.setsockopt		= udp_setsockopt,
2918 	.getsockopt		= udp_getsockopt,
2919 	.sendmsg		= udp_sendmsg,
2920 	.recvmsg		= udp_recvmsg,
2921 	.splice_eof		= udp_splice_eof,
2922 	.release_cb		= ip4_datagram_release_cb,
2923 	.hash			= udp_lib_hash,
2924 	.unhash			= udp_lib_unhash,
2925 	.rehash			= udp_v4_rehash,
2926 	.get_port		= udp_v4_get_port,
2927 	.put_port		= udp_lib_unhash,
2928 #ifdef CONFIG_BPF_SYSCALL
2929 	.psock_update_sk_prot	= udp_bpf_update_proto,
2930 #endif
2931 	.memory_allocated	= &udp_memory_allocated,
2932 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2933 
2934 	.sysctl_mem		= sysctl_udp_mem,
2935 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2936 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2937 	.obj_size		= sizeof(struct udp_sock),
2938 	.h.udp_table		= NULL,
2939 	.diag_destroy		= udp_abort,
2940 };
2941 EXPORT_SYMBOL(udp_prot);
2942 
2943 /* ------------------------------------------------------------------------ */
2944 #ifdef CONFIG_PROC_FS
2945 
2946 static unsigned short seq_file_family(const struct seq_file *seq);
2947 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2948 {
2949 	unsigned short family = seq_file_family(seq);
2950 
2951 	/* AF_UNSPEC is used as a match all */
2952 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2953 		net_eq(sock_net(sk), seq_file_net(seq)));
2954 }
2955 
2956 #ifdef CONFIG_BPF_SYSCALL
2957 static const struct seq_operations bpf_iter_udp_seq_ops;
2958 #endif
2959 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2960 					   struct net *net)
2961 {
2962 	const struct udp_seq_afinfo *afinfo;
2963 
2964 #ifdef CONFIG_BPF_SYSCALL
2965 	if (seq->op == &bpf_iter_udp_seq_ops)
2966 		return net->ipv4.udp_table;
2967 #endif
2968 
2969 	afinfo = pde_data(file_inode(seq->file));
2970 	return afinfo->udp_table ? : net->ipv4.udp_table;
2971 }
2972 
2973 static struct sock *udp_get_first(struct seq_file *seq, int start)
2974 {
2975 	struct udp_iter_state *state = seq->private;
2976 	struct net *net = seq_file_net(seq);
2977 	struct udp_table *udptable;
2978 	struct sock *sk;
2979 
2980 	udptable = udp_get_table_seq(seq, net);
2981 
2982 	for (state->bucket = start; state->bucket <= udptable->mask;
2983 	     ++state->bucket) {
2984 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2985 
2986 		if (hlist_empty(&hslot->head))
2987 			continue;
2988 
2989 		spin_lock_bh(&hslot->lock);
2990 		sk_for_each(sk, &hslot->head) {
2991 			if (seq_sk_match(seq, sk))
2992 				goto found;
2993 		}
2994 		spin_unlock_bh(&hslot->lock);
2995 	}
2996 	sk = NULL;
2997 found:
2998 	return sk;
2999 }
3000 
3001 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3002 {
3003 	struct udp_iter_state *state = seq->private;
3004 	struct net *net = seq_file_net(seq);
3005 	struct udp_table *udptable;
3006 
3007 	do {
3008 		sk = sk_next(sk);
3009 	} while (sk && !seq_sk_match(seq, sk));
3010 
3011 	if (!sk) {
3012 		udptable = udp_get_table_seq(seq, net);
3013 
3014 		if (state->bucket <= udptable->mask)
3015 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3016 
3017 		return udp_get_first(seq, state->bucket + 1);
3018 	}
3019 	return sk;
3020 }
3021 
3022 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3023 {
3024 	struct sock *sk = udp_get_first(seq, 0);
3025 
3026 	if (sk)
3027 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3028 			--pos;
3029 	return pos ? NULL : sk;
3030 }
3031 
3032 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3033 {
3034 	struct udp_iter_state *state = seq->private;
3035 	state->bucket = MAX_UDP_PORTS;
3036 
3037 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3038 }
3039 EXPORT_SYMBOL(udp_seq_start);
3040 
3041 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042 {
3043 	struct sock *sk;
3044 
3045 	if (v == SEQ_START_TOKEN)
3046 		sk = udp_get_idx(seq, 0);
3047 	else
3048 		sk = udp_get_next(seq, v);
3049 
3050 	++*pos;
3051 	return sk;
3052 }
3053 EXPORT_SYMBOL(udp_seq_next);
3054 
3055 void udp_seq_stop(struct seq_file *seq, void *v)
3056 {
3057 	struct udp_iter_state *state = seq->private;
3058 	struct udp_table *udptable;
3059 
3060 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3061 
3062 	if (state->bucket <= udptable->mask)
3063 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3064 }
3065 EXPORT_SYMBOL(udp_seq_stop);
3066 
3067 /* ------------------------------------------------------------------------ */
3068 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3069 		int bucket)
3070 {
3071 	struct inet_sock *inet = inet_sk(sp);
3072 	__be32 dest = inet->inet_daddr;
3073 	__be32 src  = inet->inet_rcv_saddr;
3074 	__u16 destp	  = ntohs(inet->inet_dport);
3075 	__u16 srcp	  = ntohs(inet->inet_sport);
3076 
3077 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3078 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3079 		bucket, src, srcp, dest, destp, sp->sk_state,
3080 		sk_wmem_alloc_get(sp),
3081 		udp_rqueue_get(sp),
3082 		0, 0L, 0,
3083 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3084 		0, sock_i_ino(sp),
3085 		refcount_read(&sp->sk_refcnt), sp,
3086 		atomic_read(&sp->sk_drops));
3087 }
3088 
3089 int udp4_seq_show(struct seq_file *seq, void *v)
3090 {
3091 	seq_setwidth(seq, 127);
3092 	if (v == SEQ_START_TOKEN)
3093 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3094 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3095 			   "inode ref pointer drops");
3096 	else {
3097 		struct udp_iter_state *state = seq->private;
3098 
3099 		udp4_format_sock(v, seq, state->bucket);
3100 	}
3101 	seq_pad(seq, '\n');
3102 	return 0;
3103 }
3104 
3105 #ifdef CONFIG_BPF_SYSCALL
3106 struct bpf_iter__udp {
3107 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3108 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3109 	uid_t uid __aligned(8);
3110 	int bucket __aligned(8);
3111 };
3112 
3113 struct bpf_udp_iter_state {
3114 	struct udp_iter_state state;
3115 	unsigned int cur_sk;
3116 	unsigned int end_sk;
3117 	unsigned int max_sk;
3118 	int offset;
3119 	struct sock **batch;
3120 	bool st_bucket_done;
3121 };
3122 
3123 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3124 				      unsigned int new_batch_sz);
3125 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3126 {
3127 	struct bpf_udp_iter_state *iter = seq->private;
3128 	struct udp_iter_state *state = &iter->state;
3129 	struct net *net = seq_file_net(seq);
3130 	int resume_bucket, resume_offset;
3131 	struct udp_table *udptable;
3132 	unsigned int batch_sks = 0;
3133 	bool resized = false;
3134 	struct sock *sk;
3135 
3136 	resume_bucket = state->bucket;
3137 	resume_offset = iter->offset;
3138 
3139 	/* The current batch is done, so advance the bucket. */
3140 	if (iter->st_bucket_done)
3141 		state->bucket++;
3142 
3143 	udptable = udp_get_table_seq(seq, net);
3144 
3145 again:
3146 	/* New batch for the next bucket.
3147 	 * Iterate over the hash table to find a bucket with sockets matching
3148 	 * the iterator attributes, and return the first matching socket from
3149 	 * the bucket. The remaining matched sockets from the bucket are batched
3150 	 * before releasing the bucket lock. This allows BPF programs that are
3151 	 * called in seq_show to acquire the bucket lock if needed.
3152 	 */
3153 	iter->cur_sk = 0;
3154 	iter->end_sk = 0;
3155 	iter->st_bucket_done = false;
3156 	batch_sks = 0;
3157 
3158 	for (; state->bucket <= udptable->mask; state->bucket++) {
3159 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3160 
3161 		if (hlist_empty(&hslot2->head))
3162 			continue;
3163 
3164 		iter->offset = 0;
3165 		spin_lock_bh(&hslot2->lock);
3166 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3167 			if (seq_sk_match(seq, sk)) {
3168 				/* Resume from the last iterated socket at the
3169 				 * offset in the bucket before iterator was stopped.
3170 				 */
3171 				if (state->bucket == resume_bucket &&
3172 				    iter->offset < resume_offset) {
3173 					++iter->offset;
3174 					continue;
3175 				}
3176 				if (iter->end_sk < iter->max_sk) {
3177 					sock_hold(sk);
3178 					iter->batch[iter->end_sk++] = sk;
3179 				}
3180 				batch_sks++;
3181 			}
3182 		}
3183 		spin_unlock_bh(&hslot2->lock);
3184 
3185 		if (iter->end_sk)
3186 			break;
3187 	}
3188 
3189 	/* All done: no batch made. */
3190 	if (!iter->end_sk)
3191 		return NULL;
3192 
3193 	if (iter->end_sk == batch_sks) {
3194 		/* Batching is done for the current bucket; return the first
3195 		 * socket to be iterated from the batch.
3196 		 */
3197 		iter->st_bucket_done = true;
3198 		goto done;
3199 	}
3200 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3201 		resized = true;
3202 		/* After allocating a larger batch, retry one more time to grab
3203 		 * the whole bucket.
3204 		 */
3205 		goto again;
3206 	}
3207 done:
3208 	return iter->batch[0];
3209 }
3210 
3211 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3212 {
3213 	struct bpf_udp_iter_state *iter = seq->private;
3214 	struct sock *sk;
3215 
3216 	/* Whenever seq_next() is called, the iter->cur_sk is
3217 	 * done with seq_show(), so unref the iter->cur_sk.
3218 	 */
3219 	if (iter->cur_sk < iter->end_sk) {
3220 		sock_put(iter->batch[iter->cur_sk++]);
3221 		++iter->offset;
3222 	}
3223 
3224 	/* After updating iter->cur_sk, check if there are more sockets
3225 	 * available in the current bucket batch.
3226 	 */
3227 	if (iter->cur_sk < iter->end_sk)
3228 		sk = iter->batch[iter->cur_sk];
3229 	else
3230 		/* Prepare a new batch. */
3231 		sk = bpf_iter_udp_batch(seq);
3232 
3233 	++*pos;
3234 	return sk;
3235 }
3236 
3237 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3238 {
3239 	/* bpf iter does not support lseek, so it always
3240 	 * continue from where it was stop()-ped.
3241 	 */
3242 	if (*pos)
3243 		return bpf_iter_udp_batch(seq);
3244 
3245 	return SEQ_START_TOKEN;
3246 }
3247 
3248 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3249 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3250 {
3251 	struct bpf_iter__udp ctx;
3252 
3253 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3254 	ctx.meta = meta;
3255 	ctx.udp_sk = udp_sk;
3256 	ctx.uid = uid;
3257 	ctx.bucket = bucket;
3258 	return bpf_iter_run_prog(prog, &ctx);
3259 }
3260 
3261 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3262 {
3263 	struct udp_iter_state *state = seq->private;
3264 	struct bpf_iter_meta meta;
3265 	struct bpf_prog *prog;
3266 	struct sock *sk = v;
3267 	uid_t uid;
3268 	int ret;
3269 
3270 	if (v == SEQ_START_TOKEN)
3271 		return 0;
3272 
3273 	lock_sock(sk);
3274 
3275 	if (unlikely(sk_unhashed(sk))) {
3276 		ret = SEQ_SKIP;
3277 		goto unlock;
3278 	}
3279 
3280 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3281 	meta.seq = seq;
3282 	prog = bpf_iter_get_info(&meta, false);
3283 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3284 
3285 unlock:
3286 	release_sock(sk);
3287 	return ret;
3288 }
3289 
3290 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3291 {
3292 	while (iter->cur_sk < iter->end_sk)
3293 		sock_put(iter->batch[iter->cur_sk++]);
3294 }
3295 
3296 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3297 {
3298 	struct bpf_udp_iter_state *iter = seq->private;
3299 	struct bpf_iter_meta meta;
3300 	struct bpf_prog *prog;
3301 
3302 	if (!v) {
3303 		meta.seq = seq;
3304 		prog = bpf_iter_get_info(&meta, true);
3305 		if (prog)
3306 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3307 	}
3308 
3309 	if (iter->cur_sk < iter->end_sk) {
3310 		bpf_iter_udp_put_batch(iter);
3311 		iter->st_bucket_done = false;
3312 	}
3313 }
3314 
3315 static const struct seq_operations bpf_iter_udp_seq_ops = {
3316 	.start		= bpf_iter_udp_seq_start,
3317 	.next		= bpf_iter_udp_seq_next,
3318 	.stop		= bpf_iter_udp_seq_stop,
3319 	.show		= bpf_iter_udp_seq_show,
3320 };
3321 #endif
3322 
3323 static unsigned short seq_file_family(const struct seq_file *seq)
3324 {
3325 	const struct udp_seq_afinfo *afinfo;
3326 
3327 #ifdef CONFIG_BPF_SYSCALL
3328 	/* BPF iterator: bpf programs to filter sockets. */
3329 	if (seq->op == &bpf_iter_udp_seq_ops)
3330 		return AF_UNSPEC;
3331 #endif
3332 
3333 	/* Proc fs iterator */
3334 	afinfo = pde_data(file_inode(seq->file));
3335 	return afinfo->family;
3336 }
3337 
3338 const struct seq_operations udp_seq_ops = {
3339 	.start		= udp_seq_start,
3340 	.next		= udp_seq_next,
3341 	.stop		= udp_seq_stop,
3342 	.show		= udp4_seq_show,
3343 };
3344 EXPORT_SYMBOL(udp_seq_ops);
3345 
3346 static struct udp_seq_afinfo udp4_seq_afinfo = {
3347 	.family		= AF_INET,
3348 	.udp_table	= NULL,
3349 };
3350 
3351 static int __net_init udp4_proc_init_net(struct net *net)
3352 {
3353 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3354 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3355 		return -ENOMEM;
3356 	return 0;
3357 }
3358 
3359 static void __net_exit udp4_proc_exit_net(struct net *net)
3360 {
3361 	remove_proc_entry("udp", net->proc_net);
3362 }
3363 
3364 static struct pernet_operations udp4_net_ops = {
3365 	.init = udp4_proc_init_net,
3366 	.exit = udp4_proc_exit_net,
3367 };
3368 
3369 int __init udp4_proc_init(void)
3370 {
3371 	return register_pernet_subsys(&udp4_net_ops);
3372 }
3373 
3374 void udp4_proc_exit(void)
3375 {
3376 	unregister_pernet_subsys(&udp4_net_ops);
3377 }
3378 #endif /* CONFIG_PROC_FS */
3379 
3380 static __initdata unsigned long uhash_entries;
3381 static int __init set_uhash_entries(char *str)
3382 {
3383 	ssize_t ret;
3384 
3385 	if (!str)
3386 		return 0;
3387 
3388 	ret = kstrtoul(str, 0, &uhash_entries);
3389 	if (ret)
3390 		return 0;
3391 
3392 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3393 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3394 	return 1;
3395 }
3396 __setup("uhash_entries=", set_uhash_entries);
3397 
3398 void __init udp_table_init(struct udp_table *table, const char *name)
3399 {
3400 	unsigned int i;
3401 
3402 	table->hash = alloc_large_system_hash(name,
3403 					      2 * sizeof(struct udp_hslot),
3404 					      uhash_entries,
3405 					      21, /* one slot per 2 MB */
3406 					      0,
3407 					      &table->log,
3408 					      &table->mask,
3409 					      UDP_HTABLE_SIZE_MIN,
3410 					      UDP_HTABLE_SIZE_MAX);
3411 
3412 	table->hash2 = table->hash + (table->mask + 1);
3413 	for (i = 0; i <= table->mask; i++) {
3414 		INIT_HLIST_HEAD(&table->hash[i].head);
3415 		table->hash[i].count = 0;
3416 		spin_lock_init(&table->hash[i].lock);
3417 	}
3418 	for (i = 0; i <= table->mask; i++) {
3419 		INIT_HLIST_HEAD(&table->hash2[i].head);
3420 		table->hash2[i].count = 0;
3421 		spin_lock_init(&table->hash2[i].lock);
3422 	}
3423 }
3424 
3425 u32 udp_flow_hashrnd(void)
3426 {
3427 	static u32 hashrnd __read_mostly;
3428 
3429 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3430 
3431 	return hashrnd;
3432 }
3433 EXPORT_SYMBOL(udp_flow_hashrnd);
3434 
3435 static void __net_init udp_sysctl_init(struct net *net)
3436 {
3437 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3438 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3439 
3440 #ifdef CONFIG_NET_L3_MASTER_DEV
3441 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3442 #endif
3443 }
3444 
3445 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3446 {
3447 	struct udp_table *udptable;
3448 	int i;
3449 
3450 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3451 	if (!udptable)
3452 		goto out;
3453 
3454 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3455 				      GFP_KERNEL_ACCOUNT);
3456 	if (!udptable->hash)
3457 		goto free_table;
3458 
3459 	udptable->hash2 = udptable->hash + hash_entries;
3460 	udptable->mask = hash_entries - 1;
3461 	udptable->log = ilog2(hash_entries);
3462 
3463 	for (i = 0; i < hash_entries; i++) {
3464 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3465 		udptable->hash[i].count = 0;
3466 		spin_lock_init(&udptable->hash[i].lock);
3467 
3468 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3469 		udptable->hash2[i].count = 0;
3470 		spin_lock_init(&udptable->hash2[i].lock);
3471 	}
3472 
3473 	return udptable;
3474 
3475 free_table:
3476 	kfree(udptable);
3477 out:
3478 	return NULL;
3479 }
3480 
3481 static void __net_exit udp_pernet_table_free(struct net *net)
3482 {
3483 	struct udp_table *udptable = net->ipv4.udp_table;
3484 
3485 	if (udptable == &udp_table)
3486 		return;
3487 
3488 	kvfree(udptable->hash);
3489 	kfree(udptable);
3490 }
3491 
3492 static void __net_init udp_set_table(struct net *net)
3493 {
3494 	struct udp_table *udptable;
3495 	unsigned int hash_entries;
3496 	struct net *old_net;
3497 
3498 	if (net_eq(net, &init_net))
3499 		goto fallback;
3500 
3501 	old_net = current->nsproxy->net_ns;
3502 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3503 	if (!hash_entries)
3504 		goto fallback;
3505 
3506 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3507 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3508 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3509 	else
3510 		hash_entries = roundup_pow_of_two(hash_entries);
3511 
3512 	udptable = udp_pernet_table_alloc(hash_entries);
3513 	if (udptable) {
3514 		net->ipv4.udp_table = udptable;
3515 	} else {
3516 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3517 			"for a netns, fallback to the global one\n",
3518 			hash_entries);
3519 fallback:
3520 		net->ipv4.udp_table = &udp_table;
3521 	}
3522 }
3523 
3524 static int __net_init udp_pernet_init(struct net *net)
3525 {
3526 	udp_sysctl_init(net);
3527 	udp_set_table(net);
3528 
3529 	return 0;
3530 }
3531 
3532 static void __net_exit udp_pernet_exit(struct net *net)
3533 {
3534 	udp_pernet_table_free(net);
3535 }
3536 
3537 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3538 	.init	= udp_pernet_init,
3539 	.exit	= udp_pernet_exit,
3540 };
3541 
3542 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3543 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3544 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3545 
3546 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3547 				      unsigned int new_batch_sz)
3548 {
3549 	struct sock **new_batch;
3550 
3551 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3552 				   GFP_USER | __GFP_NOWARN);
3553 	if (!new_batch)
3554 		return -ENOMEM;
3555 
3556 	bpf_iter_udp_put_batch(iter);
3557 	kvfree(iter->batch);
3558 	iter->batch = new_batch;
3559 	iter->max_sk = new_batch_sz;
3560 
3561 	return 0;
3562 }
3563 
3564 #define INIT_BATCH_SZ 16
3565 
3566 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3567 {
3568 	struct bpf_udp_iter_state *iter = priv_data;
3569 	int ret;
3570 
3571 	ret = bpf_iter_init_seq_net(priv_data, aux);
3572 	if (ret)
3573 		return ret;
3574 
3575 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3576 	if (ret)
3577 		bpf_iter_fini_seq_net(priv_data);
3578 
3579 	return ret;
3580 }
3581 
3582 static void bpf_iter_fini_udp(void *priv_data)
3583 {
3584 	struct bpf_udp_iter_state *iter = priv_data;
3585 
3586 	bpf_iter_fini_seq_net(priv_data);
3587 	kvfree(iter->batch);
3588 }
3589 
3590 static const struct bpf_iter_seq_info udp_seq_info = {
3591 	.seq_ops		= &bpf_iter_udp_seq_ops,
3592 	.init_seq_private	= bpf_iter_init_udp,
3593 	.fini_seq_private	= bpf_iter_fini_udp,
3594 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3595 };
3596 
3597 static struct bpf_iter_reg udp_reg_info = {
3598 	.target			= "udp",
3599 	.ctx_arg_info_size	= 1,
3600 	.ctx_arg_info		= {
3601 		{ offsetof(struct bpf_iter__udp, udp_sk),
3602 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3603 	},
3604 	.seq_info		= &udp_seq_info,
3605 };
3606 
3607 static void __init bpf_iter_register(void)
3608 {
3609 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3610 	if (bpf_iter_reg_target(&udp_reg_info))
3611 		pr_warn("Warning: could not register bpf iterator udp\n");
3612 }
3613 #endif
3614 
3615 void __init udp_init(void)
3616 {
3617 	unsigned long limit;
3618 	unsigned int i;
3619 
3620 	udp_table_init(&udp_table, "UDP");
3621 	limit = nr_free_buffer_pages() / 8;
3622 	limit = max(limit, 128UL);
3623 	sysctl_udp_mem[0] = limit / 4 * 3;
3624 	sysctl_udp_mem[1] = limit;
3625 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3626 
3627 	/* 16 spinlocks per cpu */
3628 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3629 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3630 				GFP_KERNEL);
3631 	if (!udp_busylocks)
3632 		panic("UDP: failed to alloc udp_busylocks\n");
3633 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3634 		spin_lock_init(udp_busylocks + i);
3635 
3636 	if (register_pernet_subsys(&udp_sysctl_ops))
3637 		panic("UDP: failed to init sysctl parameters.\n");
3638 
3639 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3640 	bpf_iter_register();
3641 #endif
3642 }
3643