1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/in.h> 94 #include <linux/errno.h> 95 #include <linux/timer.h> 96 #include <linux/mm.h> 97 #include <linux/inet.h> 98 #include <linux/netdevice.h> 99 #include <linux/slab.h> 100 #include <net/tcp_states.h> 101 #include <linux/skbuff.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <net/net_namespace.h> 105 #include <net/icmp.h> 106 #include <net/route.h> 107 #include <net/checksum.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include <linux/static_key.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 115 struct udp_table udp_table __read_mostly; 116 EXPORT_SYMBOL(udp_table); 117 118 long sysctl_udp_mem[3] __read_mostly; 119 EXPORT_SYMBOL(sysctl_udp_mem); 120 121 int sysctl_udp_rmem_min __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_rmem_min); 123 124 int sysctl_udp_wmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_wmem_min); 126 127 atomic_long_t udp_memory_allocated; 128 EXPORT_SYMBOL(udp_memory_allocated); 129 130 #define MAX_UDP_PORTS 65536 131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 132 133 static int udp_lib_lport_inuse(struct net *net, __u16 num, 134 const struct udp_hslot *hslot, 135 unsigned long *bitmap, 136 struct sock *sk, 137 int (*saddr_comp)(const struct sock *sk1, 138 const struct sock *sk2), 139 unsigned int log) 140 { 141 struct sock *sk2; 142 struct hlist_nulls_node *node; 143 kuid_t uid = sock_i_uid(sk); 144 145 sk_nulls_for_each(sk2, node, &hslot->head) 146 if (net_eq(sock_net(sk2), net) && 147 sk2 != sk && 148 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 149 (!sk2->sk_reuse || !sk->sk_reuse) && 150 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 151 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 152 (!sk2->sk_reuseport || !sk->sk_reuseport || 153 !uid_eq(uid, sock_i_uid(sk2))) && 154 (*saddr_comp)(sk, sk2)) { 155 if (bitmap) 156 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 157 bitmap); 158 else 159 return 1; 160 } 161 return 0; 162 } 163 164 /* 165 * Note: we still hold spinlock of primary hash chain, so no other writer 166 * can insert/delete a socket with local_port == num 167 */ 168 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 169 struct udp_hslot *hslot2, 170 struct sock *sk, 171 int (*saddr_comp)(const struct sock *sk1, 172 const struct sock *sk2)) 173 { 174 struct sock *sk2; 175 struct hlist_nulls_node *node; 176 kuid_t uid = sock_i_uid(sk); 177 int res = 0; 178 179 spin_lock(&hslot2->lock); 180 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) 181 if (net_eq(sock_net(sk2), net) && 182 sk2 != sk && 183 (udp_sk(sk2)->udp_port_hash == num) && 184 (!sk2->sk_reuse || !sk->sk_reuse) && 185 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 186 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 187 (!sk2->sk_reuseport || !sk->sk_reuseport || 188 !uid_eq(uid, sock_i_uid(sk2))) && 189 (*saddr_comp)(sk, sk2)) { 190 res = 1; 191 break; 192 } 193 spin_unlock(&hslot2->lock); 194 return res; 195 } 196 197 /** 198 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 199 * 200 * @sk: socket struct in question 201 * @snum: port number to look up 202 * @saddr_comp: AF-dependent comparison of bound local IP addresses 203 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 204 * with NULL address 205 */ 206 int udp_lib_get_port(struct sock *sk, unsigned short snum, 207 int (*saddr_comp)(const struct sock *sk1, 208 const struct sock *sk2), 209 unsigned int hash2_nulladdr) 210 { 211 struct udp_hslot *hslot, *hslot2; 212 struct udp_table *udptable = sk->sk_prot->h.udp_table; 213 int error = 1; 214 struct net *net = sock_net(sk); 215 216 if (!snum) { 217 int low, high, remaining; 218 unsigned int rand; 219 unsigned short first, last; 220 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 221 222 inet_get_local_port_range(&low, &high); 223 remaining = (high - low) + 1; 224 225 rand = net_random(); 226 first = (((u64)rand * remaining) >> 32) + low; 227 /* 228 * force rand to be an odd multiple of UDP_HTABLE_SIZE 229 */ 230 rand = (rand | 1) * (udptable->mask + 1); 231 last = first + udptable->mask + 1; 232 do { 233 hslot = udp_hashslot(udptable, net, first); 234 bitmap_zero(bitmap, PORTS_PER_CHAIN); 235 spin_lock_bh(&hslot->lock); 236 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 237 saddr_comp, udptable->log); 238 239 snum = first; 240 /* 241 * Iterate on all possible values of snum for this hash. 242 * Using steps of an odd multiple of UDP_HTABLE_SIZE 243 * give us randomization and full range coverage. 244 */ 245 do { 246 if (low <= snum && snum <= high && 247 !test_bit(snum >> udptable->log, bitmap) && 248 !inet_is_reserved_local_port(snum)) 249 goto found; 250 snum += rand; 251 } while (snum != first); 252 spin_unlock_bh(&hslot->lock); 253 } while (++first != last); 254 goto fail; 255 } else { 256 hslot = udp_hashslot(udptable, net, snum); 257 spin_lock_bh(&hslot->lock); 258 if (hslot->count > 10) { 259 int exist; 260 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 261 262 slot2 &= udptable->mask; 263 hash2_nulladdr &= udptable->mask; 264 265 hslot2 = udp_hashslot2(udptable, slot2); 266 if (hslot->count < hslot2->count) 267 goto scan_primary_hash; 268 269 exist = udp_lib_lport_inuse2(net, snum, hslot2, 270 sk, saddr_comp); 271 if (!exist && (hash2_nulladdr != slot2)) { 272 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 273 exist = udp_lib_lport_inuse2(net, snum, hslot2, 274 sk, saddr_comp); 275 } 276 if (exist) 277 goto fail_unlock; 278 else 279 goto found; 280 } 281 scan_primary_hash: 282 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 283 saddr_comp, 0)) 284 goto fail_unlock; 285 } 286 found: 287 inet_sk(sk)->inet_num = snum; 288 udp_sk(sk)->udp_port_hash = snum; 289 udp_sk(sk)->udp_portaddr_hash ^= snum; 290 if (sk_unhashed(sk)) { 291 sk_nulls_add_node_rcu(sk, &hslot->head); 292 hslot->count++; 293 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 294 295 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 296 spin_lock(&hslot2->lock); 297 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 298 &hslot2->head); 299 hslot2->count++; 300 spin_unlock(&hslot2->lock); 301 } 302 error = 0; 303 fail_unlock: 304 spin_unlock_bh(&hslot->lock); 305 fail: 306 return error; 307 } 308 EXPORT_SYMBOL(udp_lib_get_port); 309 310 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 311 { 312 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 313 314 return (!ipv6_only_sock(sk2) && 315 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || 316 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); 317 } 318 319 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr, 320 unsigned int port) 321 { 322 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 323 } 324 325 int udp_v4_get_port(struct sock *sk, unsigned short snum) 326 { 327 unsigned int hash2_nulladdr = 328 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 329 unsigned int hash2_partial = 330 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 331 332 /* precompute partial secondary hash */ 333 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 334 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 335 } 336 337 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr, 338 unsigned short hnum, 339 __be16 sport, __be32 daddr, __be16 dport, int dif) 340 { 341 int score = -1; 342 343 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum && 344 !ipv6_only_sock(sk)) { 345 struct inet_sock *inet = inet_sk(sk); 346 347 score = (sk->sk_family == PF_INET ? 2 : 1); 348 if (inet->inet_rcv_saddr) { 349 if (inet->inet_rcv_saddr != daddr) 350 return -1; 351 score += 4; 352 } 353 if (inet->inet_daddr) { 354 if (inet->inet_daddr != saddr) 355 return -1; 356 score += 4; 357 } 358 if (inet->inet_dport) { 359 if (inet->inet_dport != sport) 360 return -1; 361 score += 4; 362 } 363 if (sk->sk_bound_dev_if) { 364 if (sk->sk_bound_dev_if != dif) 365 return -1; 366 score += 4; 367 } 368 } 369 return score; 370 } 371 372 /* 373 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 374 */ 375 static inline int compute_score2(struct sock *sk, struct net *net, 376 __be32 saddr, __be16 sport, 377 __be32 daddr, unsigned int hnum, int dif) 378 { 379 int score = -1; 380 381 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) { 382 struct inet_sock *inet = inet_sk(sk); 383 384 if (inet->inet_rcv_saddr != daddr) 385 return -1; 386 if (inet->inet_num != hnum) 387 return -1; 388 389 score = (sk->sk_family == PF_INET ? 2 : 1); 390 if (inet->inet_daddr) { 391 if (inet->inet_daddr != saddr) 392 return -1; 393 score += 4; 394 } 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 if (sk->sk_bound_dev_if) { 401 if (sk->sk_bound_dev_if != dif) 402 return -1; 403 score += 4; 404 } 405 } 406 return score; 407 } 408 409 410 /* called with read_rcu_lock() */ 411 static struct sock *udp4_lib_lookup2(struct net *net, 412 __be32 saddr, __be16 sport, 413 __be32 daddr, unsigned int hnum, int dif, 414 struct udp_hslot *hslot2, unsigned int slot2) 415 { 416 struct sock *sk, *result; 417 struct hlist_nulls_node *node; 418 int score, badness, matches = 0, reuseport = 0; 419 u32 hash = 0; 420 421 begin: 422 result = NULL; 423 badness = 0; 424 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 425 score = compute_score2(sk, net, saddr, sport, 426 daddr, hnum, dif); 427 if (score > badness) { 428 result = sk; 429 badness = score; 430 reuseport = sk->sk_reuseport; 431 if (reuseport) { 432 hash = inet_ehashfn(net, daddr, hnum, 433 saddr, sport); 434 matches = 1; 435 } 436 } else if (score == badness && reuseport) { 437 matches++; 438 if (((u64)hash * matches) >> 32 == 0) 439 result = sk; 440 hash = next_pseudo_random32(hash); 441 } 442 } 443 /* 444 * if the nulls value we got at the end of this lookup is 445 * not the expected one, we must restart lookup. 446 * We probably met an item that was moved to another chain. 447 */ 448 if (get_nulls_value(node) != slot2) 449 goto begin; 450 if (result) { 451 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 452 result = NULL; 453 else if (unlikely(compute_score2(result, net, saddr, sport, 454 daddr, hnum, dif) < badness)) { 455 sock_put(result); 456 goto begin; 457 } 458 } 459 return result; 460 } 461 462 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 463 * harder than this. -DaveM 464 */ 465 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 466 __be16 sport, __be32 daddr, __be16 dport, 467 int dif, struct udp_table *udptable) 468 { 469 struct sock *sk, *result; 470 struct hlist_nulls_node *node; 471 unsigned short hnum = ntohs(dport); 472 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 473 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 474 int score, badness, matches = 0, reuseport = 0; 475 u32 hash = 0; 476 477 rcu_read_lock(); 478 if (hslot->count > 10) { 479 hash2 = udp4_portaddr_hash(net, daddr, hnum); 480 slot2 = hash2 & udptable->mask; 481 hslot2 = &udptable->hash2[slot2]; 482 if (hslot->count < hslot2->count) 483 goto begin; 484 485 result = udp4_lib_lookup2(net, saddr, sport, 486 daddr, hnum, dif, 487 hslot2, slot2); 488 if (!result) { 489 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 490 slot2 = hash2 & udptable->mask; 491 hslot2 = &udptable->hash2[slot2]; 492 if (hslot->count < hslot2->count) 493 goto begin; 494 495 result = udp4_lib_lookup2(net, saddr, sport, 496 htonl(INADDR_ANY), hnum, dif, 497 hslot2, slot2); 498 } 499 rcu_read_unlock(); 500 return result; 501 } 502 begin: 503 result = NULL; 504 badness = 0; 505 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 506 score = compute_score(sk, net, saddr, hnum, sport, 507 daddr, dport, dif); 508 if (score > badness) { 509 result = sk; 510 badness = score; 511 reuseport = sk->sk_reuseport; 512 if (reuseport) { 513 hash = inet_ehashfn(net, daddr, hnum, 514 saddr, sport); 515 matches = 1; 516 } 517 } else if (score == badness && reuseport) { 518 matches++; 519 if (((u64)hash * matches) >> 32 == 0) 520 result = sk; 521 hash = next_pseudo_random32(hash); 522 } 523 } 524 /* 525 * if the nulls value we got at the end of this lookup is 526 * not the expected one, we must restart lookup. 527 * We probably met an item that was moved to another chain. 528 */ 529 if (get_nulls_value(node) != slot) 530 goto begin; 531 532 if (result) { 533 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 534 result = NULL; 535 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 536 daddr, dport, dif) < badness)) { 537 sock_put(result); 538 goto begin; 539 } 540 } 541 rcu_read_unlock(); 542 return result; 543 } 544 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 545 546 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 547 __be16 sport, __be16 dport, 548 struct udp_table *udptable) 549 { 550 struct sock *sk; 551 const struct iphdr *iph = ip_hdr(skb); 552 553 if (unlikely(sk = skb_steal_sock(skb))) 554 return sk; 555 else 556 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 557 iph->daddr, dport, inet_iif(skb), 558 udptable); 559 } 560 561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 562 __be32 daddr, __be16 dport, int dif) 563 { 564 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); 565 } 566 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 567 568 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk, 569 __be16 loc_port, __be32 loc_addr, 570 __be16 rmt_port, __be32 rmt_addr, 571 int dif) 572 { 573 struct hlist_nulls_node *node; 574 struct sock *s = sk; 575 unsigned short hnum = ntohs(loc_port); 576 577 sk_nulls_for_each_from(s, node) { 578 struct inet_sock *inet = inet_sk(s); 579 580 if (!net_eq(sock_net(s), net) || 581 udp_sk(s)->udp_port_hash != hnum || 582 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 583 (inet->inet_dport != rmt_port && inet->inet_dport) || 584 (inet->inet_rcv_saddr && 585 inet->inet_rcv_saddr != loc_addr) || 586 ipv6_only_sock(s) || 587 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 588 continue; 589 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 590 continue; 591 goto found; 592 } 593 s = NULL; 594 found: 595 return s; 596 } 597 598 /* 599 * This routine is called by the ICMP module when it gets some 600 * sort of error condition. If err < 0 then the socket should 601 * be closed and the error returned to the user. If err > 0 602 * it's just the icmp type << 8 | icmp code. 603 * Header points to the ip header of the error packet. We move 604 * on past this. Then (as it used to claim before adjustment) 605 * header points to the first 8 bytes of the udp header. We need 606 * to find the appropriate port. 607 */ 608 609 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 610 { 611 struct inet_sock *inet; 612 const struct iphdr *iph = (const struct iphdr *)skb->data; 613 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 614 const int type = icmp_hdr(skb)->type; 615 const int code = icmp_hdr(skb)->code; 616 struct sock *sk; 617 int harderr; 618 int err; 619 struct net *net = dev_net(skb->dev); 620 621 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 622 iph->saddr, uh->source, skb->dev->ifindex, udptable); 623 if (sk == NULL) { 624 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 625 return; /* No socket for error */ 626 } 627 628 err = 0; 629 harderr = 0; 630 inet = inet_sk(sk); 631 632 switch (type) { 633 default: 634 case ICMP_TIME_EXCEEDED: 635 err = EHOSTUNREACH; 636 break; 637 case ICMP_SOURCE_QUENCH: 638 goto out; 639 case ICMP_PARAMETERPROB: 640 err = EPROTO; 641 harderr = 1; 642 break; 643 case ICMP_DEST_UNREACH: 644 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 645 ipv4_sk_update_pmtu(skb, sk, info); 646 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 647 err = EMSGSIZE; 648 harderr = 1; 649 break; 650 } 651 goto out; 652 } 653 err = EHOSTUNREACH; 654 if (code <= NR_ICMP_UNREACH) { 655 harderr = icmp_err_convert[code].fatal; 656 err = icmp_err_convert[code].errno; 657 } 658 break; 659 case ICMP_REDIRECT: 660 ipv4_sk_redirect(skb, sk); 661 goto out; 662 } 663 664 /* 665 * RFC1122: OK. Passes ICMP errors back to application, as per 666 * 4.1.3.3. 667 */ 668 if (!inet->recverr) { 669 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 670 goto out; 671 } else 672 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 673 674 sk->sk_err = err; 675 sk->sk_error_report(sk); 676 out: 677 sock_put(sk); 678 } 679 680 void udp_err(struct sk_buff *skb, u32 info) 681 { 682 __udp4_lib_err(skb, info, &udp_table); 683 } 684 685 /* 686 * Throw away all pending data and cancel the corking. Socket is locked. 687 */ 688 void udp_flush_pending_frames(struct sock *sk) 689 { 690 struct udp_sock *up = udp_sk(sk); 691 692 if (up->pending) { 693 up->len = 0; 694 up->pending = 0; 695 ip_flush_pending_frames(sk); 696 } 697 } 698 EXPORT_SYMBOL(udp_flush_pending_frames); 699 700 /** 701 * udp4_hwcsum - handle outgoing HW checksumming 702 * @skb: sk_buff containing the filled-in UDP header 703 * (checksum field must be zeroed out) 704 * @src: source IP address 705 * @dst: destination IP address 706 */ 707 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 708 { 709 struct udphdr *uh = udp_hdr(skb); 710 struct sk_buff *frags = skb_shinfo(skb)->frag_list; 711 int offset = skb_transport_offset(skb); 712 int len = skb->len - offset; 713 int hlen = len; 714 __wsum csum = 0; 715 716 if (!frags) { 717 /* 718 * Only one fragment on the socket. 719 */ 720 skb->csum_start = skb_transport_header(skb) - skb->head; 721 skb->csum_offset = offsetof(struct udphdr, check); 722 uh->check = ~csum_tcpudp_magic(src, dst, len, 723 IPPROTO_UDP, 0); 724 } else { 725 /* 726 * HW-checksum won't work as there are two or more 727 * fragments on the socket so that all csums of sk_buffs 728 * should be together 729 */ 730 do { 731 csum = csum_add(csum, frags->csum); 732 hlen -= frags->len; 733 } while ((frags = frags->next)); 734 735 csum = skb_checksum(skb, offset, hlen, csum); 736 skb->ip_summed = CHECKSUM_NONE; 737 738 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 739 if (uh->check == 0) 740 uh->check = CSUM_MANGLED_0; 741 } 742 } 743 EXPORT_SYMBOL_GPL(udp4_hwcsum); 744 745 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 746 { 747 struct sock *sk = skb->sk; 748 struct inet_sock *inet = inet_sk(sk); 749 struct udphdr *uh; 750 int err = 0; 751 int is_udplite = IS_UDPLITE(sk); 752 int offset = skb_transport_offset(skb); 753 int len = skb->len - offset; 754 __wsum csum = 0; 755 756 /* 757 * Create a UDP header 758 */ 759 uh = udp_hdr(skb); 760 uh->source = inet->inet_sport; 761 uh->dest = fl4->fl4_dport; 762 uh->len = htons(len); 763 uh->check = 0; 764 765 if (is_udplite) /* UDP-Lite */ 766 csum = udplite_csum(skb); 767 768 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */ 769 770 skb->ip_summed = CHECKSUM_NONE; 771 goto send; 772 773 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 774 775 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 776 goto send; 777 778 } else 779 csum = udp_csum(skb); 780 781 /* add protocol-dependent pseudo-header */ 782 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 783 sk->sk_protocol, csum); 784 if (uh->check == 0) 785 uh->check = CSUM_MANGLED_0; 786 787 send: 788 err = ip_send_skb(sock_net(sk), skb); 789 if (err) { 790 if (err == -ENOBUFS && !inet->recverr) { 791 UDP_INC_STATS_USER(sock_net(sk), 792 UDP_MIB_SNDBUFERRORS, is_udplite); 793 err = 0; 794 } 795 } else 796 UDP_INC_STATS_USER(sock_net(sk), 797 UDP_MIB_OUTDATAGRAMS, is_udplite); 798 return err; 799 } 800 801 /* 802 * Push out all pending data as one UDP datagram. Socket is locked. 803 */ 804 int udp_push_pending_frames(struct sock *sk) 805 { 806 struct udp_sock *up = udp_sk(sk); 807 struct inet_sock *inet = inet_sk(sk); 808 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 809 struct sk_buff *skb; 810 int err = 0; 811 812 skb = ip_finish_skb(sk, fl4); 813 if (!skb) 814 goto out; 815 816 err = udp_send_skb(skb, fl4); 817 818 out: 819 up->len = 0; 820 up->pending = 0; 821 return err; 822 } 823 EXPORT_SYMBOL(udp_push_pending_frames); 824 825 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 826 size_t len) 827 { 828 struct inet_sock *inet = inet_sk(sk); 829 struct udp_sock *up = udp_sk(sk); 830 struct flowi4 fl4_stack; 831 struct flowi4 *fl4; 832 int ulen = len; 833 struct ipcm_cookie ipc; 834 struct rtable *rt = NULL; 835 int free = 0; 836 int connected = 0; 837 __be32 daddr, faddr, saddr; 838 __be16 dport; 839 u8 tos; 840 int err, is_udplite = IS_UDPLITE(sk); 841 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 842 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 843 struct sk_buff *skb; 844 struct ip_options_data opt_copy; 845 846 if (len > 0xFFFF) 847 return -EMSGSIZE; 848 849 /* 850 * Check the flags. 851 */ 852 853 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 854 return -EOPNOTSUPP; 855 856 ipc.opt = NULL; 857 ipc.tx_flags = 0; 858 859 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 860 861 fl4 = &inet->cork.fl.u.ip4; 862 if (up->pending) { 863 /* 864 * There are pending frames. 865 * The socket lock must be held while it's corked. 866 */ 867 lock_sock(sk); 868 if (likely(up->pending)) { 869 if (unlikely(up->pending != AF_INET)) { 870 release_sock(sk); 871 return -EINVAL; 872 } 873 goto do_append_data; 874 } 875 release_sock(sk); 876 } 877 ulen += sizeof(struct udphdr); 878 879 /* 880 * Get and verify the address. 881 */ 882 if (msg->msg_name) { 883 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name; 884 if (msg->msg_namelen < sizeof(*usin)) 885 return -EINVAL; 886 if (usin->sin_family != AF_INET) { 887 if (usin->sin_family != AF_UNSPEC) 888 return -EAFNOSUPPORT; 889 } 890 891 daddr = usin->sin_addr.s_addr; 892 dport = usin->sin_port; 893 if (dport == 0) 894 return -EINVAL; 895 } else { 896 if (sk->sk_state != TCP_ESTABLISHED) 897 return -EDESTADDRREQ; 898 daddr = inet->inet_daddr; 899 dport = inet->inet_dport; 900 /* Open fast path for connected socket. 901 Route will not be used, if at least one option is set. 902 */ 903 connected = 1; 904 } 905 ipc.addr = inet->inet_saddr; 906 907 ipc.oif = sk->sk_bound_dev_if; 908 909 sock_tx_timestamp(sk, &ipc.tx_flags); 910 911 if (msg->msg_controllen) { 912 err = ip_cmsg_send(sock_net(sk), msg, &ipc); 913 if (err) 914 return err; 915 if (ipc.opt) 916 free = 1; 917 connected = 0; 918 } 919 if (!ipc.opt) { 920 struct ip_options_rcu *inet_opt; 921 922 rcu_read_lock(); 923 inet_opt = rcu_dereference(inet->inet_opt); 924 if (inet_opt) { 925 memcpy(&opt_copy, inet_opt, 926 sizeof(*inet_opt) + inet_opt->opt.optlen); 927 ipc.opt = &opt_copy.opt; 928 } 929 rcu_read_unlock(); 930 } 931 932 saddr = ipc.addr; 933 ipc.addr = faddr = daddr; 934 935 if (ipc.opt && ipc.opt->opt.srr) { 936 if (!daddr) 937 return -EINVAL; 938 faddr = ipc.opt->opt.faddr; 939 connected = 0; 940 } 941 tos = RT_TOS(inet->tos); 942 if (sock_flag(sk, SOCK_LOCALROUTE) || 943 (msg->msg_flags & MSG_DONTROUTE) || 944 (ipc.opt && ipc.opt->opt.is_strictroute)) { 945 tos |= RTO_ONLINK; 946 connected = 0; 947 } 948 949 if (ipv4_is_multicast(daddr)) { 950 if (!ipc.oif) 951 ipc.oif = inet->mc_index; 952 if (!saddr) 953 saddr = inet->mc_addr; 954 connected = 0; 955 } else if (!ipc.oif) 956 ipc.oif = inet->uc_index; 957 958 if (connected) 959 rt = (struct rtable *)sk_dst_check(sk, 0); 960 961 if (rt == NULL) { 962 struct net *net = sock_net(sk); 963 964 fl4 = &fl4_stack; 965 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 966 RT_SCOPE_UNIVERSE, sk->sk_protocol, 967 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP, 968 faddr, saddr, dport, inet->inet_sport); 969 970 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 971 rt = ip_route_output_flow(net, fl4, sk); 972 if (IS_ERR(rt)) { 973 err = PTR_ERR(rt); 974 rt = NULL; 975 if (err == -ENETUNREACH) 976 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); 977 goto out; 978 } 979 980 err = -EACCES; 981 if ((rt->rt_flags & RTCF_BROADCAST) && 982 !sock_flag(sk, SOCK_BROADCAST)) 983 goto out; 984 if (connected) 985 sk_dst_set(sk, dst_clone(&rt->dst)); 986 } 987 988 if (msg->msg_flags&MSG_CONFIRM) 989 goto do_confirm; 990 back_from_confirm: 991 992 saddr = fl4->saddr; 993 if (!ipc.addr) 994 daddr = ipc.addr = fl4->daddr; 995 996 /* Lockless fast path for the non-corking case. */ 997 if (!corkreq) { 998 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen, 999 sizeof(struct udphdr), &ipc, &rt, 1000 msg->msg_flags); 1001 err = PTR_ERR(skb); 1002 if (!IS_ERR_OR_NULL(skb)) 1003 err = udp_send_skb(skb, fl4); 1004 goto out; 1005 } 1006 1007 lock_sock(sk); 1008 if (unlikely(up->pending)) { 1009 /* The socket is already corked while preparing it. */ 1010 /* ... which is an evident application bug. --ANK */ 1011 release_sock(sk); 1012 1013 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n")); 1014 err = -EINVAL; 1015 goto out; 1016 } 1017 /* 1018 * Now cork the socket to pend data. 1019 */ 1020 fl4 = &inet->cork.fl.u.ip4; 1021 fl4->daddr = daddr; 1022 fl4->saddr = saddr; 1023 fl4->fl4_dport = dport; 1024 fl4->fl4_sport = inet->inet_sport; 1025 up->pending = AF_INET; 1026 1027 do_append_data: 1028 up->len += ulen; 1029 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen, 1030 sizeof(struct udphdr), &ipc, &rt, 1031 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1032 if (err) 1033 udp_flush_pending_frames(sk); 1034 else if (!corkreq) 1035 err = udp_push_pending_frames(sk); 1036 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1037 up->pending = 0; 1038 release_sock(sk); 1039 1040 out: 1041 ip_rt_put(rt); 1042 if (free) 1043 kfree(ipc.opt); 1044 if (!err) 1045 return len; 1046 /* 1047 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1048 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1049 * we don't have a good statistic (IpOutDiscards but it can be too many 1050 * things). We could add another new stat but at least for now that 1051 * seems like overkill. 1052 */ 1053 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1054 UDP_INC_STATS_USER(sock_net(sk), 1055 UDP_MIB_SNDBUFERRORS, is_udplite); 1056 } 1057 return err; 1058 1059 do_confirm: 1060 dst_confirm(&rt->dst); 1061 if (!(msg->msg_flags&MSG_PROBE) || len) 1062 goto back_from_confirm; 1063 err = 0; 1064 goto out; 1065 } 1066 EXPORT_SYMBOL(udp_sendmsg); 1067 1068 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1069 size_t size, int flags) 1070 { 1071 struct inet_sock *inet = inet_sk(sk); 1072 struct udp_sock *up = udp_sk(sk); 1073 int ret; 1074 1075 if (!up->pending) { 1076 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1077 1078 /* Call udp_sendmsg to specify destination address which 1079 * sendpage interface can't pass. 1080 * This will succeed only when the socket is connected. 1081 */ 1082 ret = udp_sendmsg(NULL, sk, &msg, 0); 1083 if (ret < 0) 1084 return ret; 1085 } 1086 1087 lock_sock(sk); 1088 1089 if (unlikely(!up->pending)) { 1090 release_sock(sk); 1091 1092 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n")); 1093 return -EINVAL; 1094 } 1095 1096 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1097 page, offset, size, flags); 1098 if (ret == -EOPNOTSUPP) { 1099 release_sock(sk); 1100 return sock_no_sendpage(sk->sk_socket, page, offset, 1101 size, flags); 1102 } 1103 if (ret < 0) { 1104 udp_flush_pending_frames(sk); 1105 goto out; 1106 } 1107 1108 up->len += size; 1109 if (!(up->corkflag || (flags&MSG_MORE))) 1110 ret = udp_push_pending_frames(sk); 1111 if (!ret) 1112 ret = size; 1113 out: 1114 release_sock(sk); 1115 return ret; 1116 } 1117 1118 1119 /** 1120 * first_packet_length - return length of first packet in receive queue 1121 * @sk: socket 1122 * 1123 * Drops all bad checksum frames, until a valid one is found. 1124 * Returns the length of found skb, or 0 if none is found. 1125 */ 1126 static unsigned int first_packet_length(struct sock *sk) 1127 { 1128 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1129 struct sk_buff *skb; 1130 unsigned int res; 1131 1132 __skb_queue_head_init(&list_kill); 1133 1134 spin_lock_bh(&rcvq->lock); 1135 while ((skb = skb_peek(rcvq)) != NULL && 1136 udp_lib_checksum_complete(skb)) { 1137 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, 1138 IS_UDPLITE(sk)); 1139 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1140 IS_UDPLITE(sk)); 1141 atomic_inc(&sk->sk_drops); 1142 __skb_unlink(skb, rcvq); 1143 __skb_queue_tail(&list_kill, skb); 1144 } 1145 res = skb ? skb->len : 0; 1146 spin_unlock_bh(&rcvq->lock); 1147 1148 if (!skb_queue_empty(&list_kill)) { 1149 bool slow = lock_sock_fast(sk); 1150 1151 __skb_queue_purge(&list_kill); 1152 sk_mem_reclaim_partial(sk); 1153 unlock_sock_fast(sk, slow); 1154 } 1155 return res; 1156 } 1157 1158 /* 1159 * IOCTL requests applicable to the UDP protocol 1160 */ 1161 1162 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1163 { 1164 switch (cmd) { 1165 case SIOCOUTQ: 1166 { 1167 int amount = sk_wmem_alloc_get(sk); 1168 1169 return put_user(amount, (int __user *)arg); 1170 } 1171 1172 case SIOCINQ: 1173 { 1174 unsigned int amount = first_packet_length(sk); 1175 1176 if (amount) 1177 /* 1178 * We will only return the amount 1179 * of this packet since that is all 1180 * that will be read. 1181 */ 1182 amount -= sizeof(struct udphdr); 1183 1184 return put_user(amount, (int __user *)arg); 1185 } 1186 1187 default: 1188 return -ENOIOCTLCMD; 1189 } 1190 1191 return 0; 1192 } 1193 EXPORT_SYMBOL(udp_ioctl); 1194 1195 /* 1196 * This should be easy, if there is something there we 1197 * return it, otherwise we block. 1198 */ 1199 1200 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1201 size_t len, int noblock, int flags, int *addr_len) 1202 { 1203 struct inet_sock *inet = inet_sk(sk); 1204 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 1205 struct sk_buff *skb; 1206 unsigned int ulen, copied; 1207 int peeked, off = 0; 1208 int err; 1209 int is_udplite = IS_UDPLITE(sk); 1210 bool slow; 1211 1212 /* 1213 * Check any passed addresses 1214 */ 1215 if (addr_len) 1216 *addr_len = sizeof(*sin); 1217 1218 if (flags & MSG_ERRQUEUE) 1219 return ip_recv_error(sk, msg, len); 1220 1221 try_again: 1222 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1223 &peeked, &off, &err); 1224 if (!skb) 1225 goto out; 1226 1227 ulen = skb->len - sizeof(struct udphdr); 1228 copied = len; 1229 if (copied > ulen) 1230 copied = ulen; 1231 else if (copied < ulen) 1232 msg->msg_flags |= MSG_TRUNC; 1233 1234 /* 1235 * If checksum is needed at all, try to do it while copying the 1236 * data. If the data is truncated, or if we only want a partial 1237 * coverage checksum (UDP-Lite), do it before the copy. 1238 */ 1239 1240 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1241 if (udp_lib_checksum_complete(skb)) 1242 goto csum_copy_err; 1243 } 1244 1245 if (skb_csum_unnecessary(skb)) 1246 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), 1247 msg->msg_iov, copied); 1248 else { 1249 err = skb_copy_and_csum_datagram_iovec(skb, 1250 sizeof(struct udphdr), 1251 msg->msg_iov); 1252 1253 if (err == -EINVAL) 1254 goto csum_copy_err; 1255 } 1256 1257 if (unlikely(err)) { 1258 trace_kfree_skb(skb, udp_recvmsg); 1259 if (!peeked) { 1260 atomic_inc(&sk->sk_drops); 1261 UDP_INC_STATS_USER(sock_net(sk), 1262 UDP_MIB_INERRORS, is_udplite); 1263 } 1264 goto out_free; 1265 } 1266 1267 if (!peeked) 1268 UDP_INC_STATS_USER(sock_net(sk), 1269 UDP_MIB_INDATAGRAMS, is_udplite); 1270 1271 sock_recv_ts_and_drops(msg, sk, skb); 1272 1273 /* Copy the address. */ 1274 if (sin) { 1275 sin->sin_family = AF_INET; 1276 sin->sin_port = udp_hdr(skb)->source; 1277 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1278 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1279 } 1280 if (inet->cmsg_flags) 1281 ip_cmsg_recv(msg, skb); 1282 1283 err = copied; 1284 if (flags & MSG_TRUNC) 1285 err = ulen; 1286 1287 out_free: 1288 skb_free_datagram_locked(sk, skb); 1289 out: 1290 return err; 1291 1292 csum_copy_err: 1293 slow = lock_sock_fast(sk); 1294 if (!skb_kill_datagram(sk, skb, flags)) { 1295 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1296 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1297 } 1298 unlock_sock_fast(sk, slow); 1299 1300 if (noblock) 1301 return -EAGAIN; 1302 1303 /* starting over for a new packet */ 1304 msg->msg_flags &= ~MSG_TRUNC; 1305 goto try_again; 1306 } 1307 1308 1309 int udp_disconnect(struct sock *sk, int flags) 1310 { 1311 struct inet_sock *inet = inet_sk(sk); 1312 /* 1313 * 1003.1g - break association. 1314 */ 1315 1316 sk->sk_state = TCP_CLOSE; 1317 inet->inet_daddr = 0; 1318 inet->inet_dport = 0; 1319 sock_rps_reset_rxhash(sk); 1320 sk->sk_bound_dev_if = 0; 1321 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1322 inet_reset_saddr(sk); 1323 1324 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1325 sk->sk_prot->unhash(sk); 1326 inet->inet_sport = 0; 1327 } 1328 sk_dst_reset(sk); 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(udp_disconnect); 1332 1333 void udp_lib_unhash(struct sock *sk) 1334 { 1335 if (sk_hashed(sk)) { 1336 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1337 struct udp_hslot *hslot, *hslot2; 1338 1339 hslot = udp_hashslot(udptable, sock_net(sk), 1340 udp_sk(sk)->udp_port_hash); 1341 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1342 1343 spin_lock_bh(&hslot->lock); 1344 if (sk_nulls_del_node_init_rcu(sk)) { 1345 hslot->count--; 1346 inet_sk(sk)->inet_num = 0; 1347 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1348 1349 spin_lock(&hslot2->lock); 1350 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1351 hslot2->count--; 1352 spin_unlock(&hslot2->lock); 1353 } 1354 spin_unlock_bh(&hslot->lock); 1355 } 1356 } 1357 EXPORT_SYMBOL(udp_lib_unhash); 1358 1359 /* 1360 * inet_rcv_saddr was changed, we must rehash secondary hash 1361 */ 1362 void udp_lib_rehash(struct sock *sk, u16 newhash) 1363 { 1364 if (sk_hashed(sk)) { 1365 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1366 struct udp_hslot *hslot, *hslot2, *nhslot2; 1367 1368 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1369 nhslot2 = udp_hashslot2(udptable, newhash); 1370 udp_sk(sk)->udp_portaddr_hash = newhash; 1371 if (hslot2 != nhslot2) { 1372 hslot = udp_hashslot(udptable, sock_net(sk), 1373 udp_sk(sk)->udp_port_hash); 1374 /* we must lock primary chain too */ 1375 spin_lock_bh(&hslot->lock); 1376 1377 spin_lock(&hslot2->lock); 1378 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1379 hslot2->count--; 1380 spin_unlock(&hslot2->lock); 1381 1382 spin_lock(&nhslot2->lock); 1383 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1384 &nhslot2->head); 1385 nhslot2->count++; 1386 spin_unlock(&nhslot2->lock); 1387 1388 spin_unlock_bh(&hslot->lock); 1389 } 1390 } 1391 } 1392 EXPORT_SYMBOL(udp_lib_rehash); 1393 1394 static void udp_v4_rehash(struct sock *sk) 1395 { 1396 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1397 inet_sk(sk)->inet_rcv_saddr, 1398 inet_sk(sk)->inet_num); 1399 udp_lib_rehash(sk, new_hash); 1400 } 1401 1402 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1403 { 1404 int rc; 1405 1406 if (inet_sk(sk)->inet_daddr) 1407 sock_rps_save_rxhash(sk, skb); 1408 1409 rc = sock_queue_rcv_skb(sk, skb); 1410 if (rc < 0) { 1411 int is_udplite = IS_UDPLITE(sk); 1412 1413 /* Note that an ENOMEM error is charged twice */ 1414 if (rc == -ENOMEM) 1415 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1416 is_udplite); 1417 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1418 kfree_skb(skb); 1419 trace_udp_fail_queue_rcv_skb(rc, sk); 1420 return -1; 1421 } 1422 1423 return 0; 1424 1425 } 1426 1427 static struct static_key udp_encap_needed __read_mostly; 1428 void udp_encap_enable(void) 1429 { 1430 if (!static_key_enabled(&udp_encap_needed)) 1431 static_key_slow_inc(&udp_encap_needed); 1432 } 1433 EXPORT_SYMBOL(udp_encap_enable); 1434 1435 /* returns: 1436 * -1: error 1437 * 0: success 1438 * >0: "udp encap" protocol resubmission 1439 * 1440 * Note that in the success and error cases, the skb is assumed to 1441 * have either been requeued or freed. 1442 */ 1443 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1444 { 1445 struct udp_sock *up = udp_sk(sk); 1446 int rc; 1447 int is_udplite = IS_UDPLITE(sk); 1448 1449 /* 1450 * Charge it to the socket, dropping if the queue is full. 1451 */ 1452 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1453 goto drop; 1454 nf_reset(skb); 1455 1456 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1457 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1458 1459 /* 1460 * This is an encapsulation socket so pass the skb to 1461 * the socket's udp_encap_rcv() hook. Otherwise, just 1462 * fall through and pass this up the UDP socket. 1463 * up->encap_rcv() returns the following value: 1464 * =0 if skb was successfully passed to the encap 1465 * handler or was discarded by it. 1466 * >0 if skb should be passed on to UDP. 1467 * <0 if skb should be resubmitted as proto -N 1468 */ 1469 1470 /* if we're overly short, let UDP handle it */ 1471 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1472 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) { 1473 int ret; 1474 1475 ret = encap_rcv(sk, skb); 1476 if (ret <= 0) { 1477 UDP_INC_STATS_BH(sock_net(sk), 1478 UDP_MIB_INDATAGRAMS, 1479 is_udplite); 1480 return -ret; 1481 } 1482 } 1483 1484 /* FALLTHROUGH -- it's a UDP Packet */ 1485 } 1486 1487 /* 1488 * UDP-Lite specific tests, ignored on UDP sockets 1489 */ 1490 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1491 1492 /* 1493 * MIB statistics other than incrementing the error count are 1494 * disabled for the following two types of errors: these depend 1495 * on the application settings, not on the functioning of the 1496 * protocol stack as such. 1497 * 1498 * RFC 3828 here recommends (sec 3.3): "There should also be a 1499 * way ... to ... at least let the receiving application block 1500 * delivery of packets with coverage values less than a value 1501 * provided by the application." 1502 */ 1503 if (up->pcrlen == 0) { /* full coverage was set */ 1504 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n", 1505 UDP_SKB_CB(skb)->cscov, skb->len); 1506 goto drop; 1507 } 1508 /* The next case involves violating the min. coverage requested 1509 * by the receiver. This is subtle: if receiver wants x and x is 1510 * greater than the buffersize/MTU then receiver will complain 1511 * that it wants x while sender emits packets of smaller size y. 1512 * Therefore the above ...()->partial_cov statement is essential. 1513 */ 1514 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1515 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n", 1516 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1517 goto drop; 1518 } 1519 } 1520 1521 if (rcu_access_pointer(sk->sk_filter) && 1522 udp_lib_checksum_complete(skb)) 1523 goto csum_error; 1524 1525 1526 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) 1527 goto drop; 1528 1529 rc = 0; 1530 1531 ipv4_pktinfo_prepare(skb); 1532 bh_lock_sock(sk); 1533 if (!sock_owned_by_user(sk)) 1534 rc = __udp_queue_rcv_skb(sk, skb); 1535 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1536 bh_unlock_sock(sk); 1537 goto drop; 1538 } 1539 bh_unlock_sock(sk); 1540 1541 return rc; 1542 1543 csum_error: 1544 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1545 drop: 1546 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1547 atomic_inc(&sk->sk_drops); 1548 kfree_skb(skb); 1549 return -1; 1550 } 1551 1552 1553 static void flush_stack(struct sock **stack, unsigned int count, 1554 struct sk_buff *skb, unsigned int final) 1555 { 1556 unsigned int i; 1557 struct sk_buff *skb1 = NULL; 1558 struct sock *sk; 1559 1560 for (i = 0; i < count; i++) { 1561 sk = stack[i]; 1562 if (likely(skb1 == NULL)) 1563 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1564 1565 if (!skb1) { 1566 atomic_inc(&sk->sk_drops); 1567 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1568 IS_UDPLITE(sk)); 1569 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1570 IS_UDPLITE(sk)); 1571 } 1572 1573 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1574 skb1 = NULL; 1575 } 1576 if (unlikely(skb1)) 1577 kfree_skb(skb1); 1578 } 1579 1580 /* 1581 * Multicasts and broadcasts go to each listener. 1582 * 1583 * Note: called only from the BH handler context. 1584 */ 1585 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1586 struct udphdr *uh, 1587 __be32 saddr, __be32 daddr, 1588 struct udp_table *udptable) 1589 { 1590 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1591 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest)); 1592 int dif; 1593 unsigned int i, count = 0; 1594 1595 spin_lock(&hslot->lock); 1596 sk = sk_nulls_head(&hslot->head); 1597 dif = skb->dev->ifindex; 1598 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif); 1599 while (sk) { 1600 stack[count++] = sk; 1601 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest, 1602 daddr, uh->source, saddr, dif); 1603 if (unlikely(count == ARRAY_SIZE(stack))) { 1604 if (!sk) 1605 break; 1606 flush_stack(stack, count, skb, ~0); 1607 count = 0; 1608 } 1609 } 1610 /* 1611 * before releasing chain lock, we must take a reference on sockets 1612 */ 1613 for (i = 0; i < count; i++) 1614 sock_hold(stack[i]); 1615 1616 spin_unlock(&hslot->lock); 1617 1618 /* 1619 * do the slow work with no lock held 1620 */ 1621 if (count) { 1622 flush_stack(stack, count, skb, count - 1); 1623 1624 for (i = 0; i < count; i++) 1625 sock_put(stack[i]); 1626 } else { 1627 kfree_skb(skb); 1628 } 1629 return 0; 1630 } 1631 1632 /* Initialize UDP checksum. If exited with zero value (success), 1633 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1634 * Otherwise, csum completion requires chacksumming packet body, 1635 * including udp header and folding it to skb->csum. 1636 */ 1637 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1638 int proto) 1639 { 1640 const struct iphdr *iph; 1641 int err; 1642 1643 UDP_SKB_CB(skb)->partial_cov = 0; 1644 UDP_SKB_CB(skb)->cscov = skb->len; 1645 1646 if (proto == IPPROTO_UDPLITE) { 1647 err = udplite_checksum_init(skb, uh); 1648 if (err) 1649 return err; 1650 } 1651 1652 iph = ip_hdr(skb); 1653 if (uh->check == 0) { 1654 skb->ip_summed = CHECKSUM_UNNECESSARY; 1655 } else if (skb->ip_summed == CHECKSUM_COMPLETE) { 1656 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 1657 proto, skb->csum)) 1658 skb->ip_summed = CHECKSUM_UNNECESSARY; 1659 } 1660 if (!skb_csum_unnecessary(skb)) 1661 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1662 skb->len, proto, 0); 1663 /* Probably, we should checksum udp header (it should be in cache 1664 * in any case) and data in tiny packets (< rx copybreak). 1665 */ 1666 1667 return 0; 1668 } 1669 1670 /* 1671 * All we need to do is get the socket, and then do a checksum. 1672 */ 1673 1674 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1675 int proto) 1676 { 1677 struct sock *sk; 1678 struct udphdr *uh; 1679 unsigned short ulen; 1680 struct rtable *rt = skb_rtable(skb); 1681 __be32 saddr, daddr; 1682 struct net *net = dev_net(skb->dev); 1683 1684 /* 1685 * Validate the packet. 1686 */ 1687 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1688 goto drop; /* No space for header. */ 1689 1690 uh = udp_hdr(skb); 1691 ulen = ntohs(uh->len); 1692 saddr = ip_hdr(skb)->saddr; 1693 daddr = ip_hdr(skb)->daddr; 1694 1695 if (ulen > skb->len) 1696 goto short_packet; 1697 1698 if (proto == IPPROTO_UDP) { 1699 /* UDP validates ulen. */ 1700 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1701 goto short_packet; 1702 uh = udp_hdr(skb); 1703 } 1704 1705 if (udp4_csum_init(skb, uh, proto)) 1706 goto csum_error; 1707 1708 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1709 return __udp4_lib_mcast_deliver(net, skb, uh, 1710 saddr, daddr, udptable); 1711 1712 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1713 1714 if (sk != NULL) { 1715 int ret; 1716 1717 sk_mark_napi_id(sk, skb); 1718 ret = udp_queue_rcv_skb(sk, skb); 1719 sock_put(sk); 1720 1721 /* a return value > 0 means to resubmit the input, but 1722 * it wants the return to be -protocol, or 0 1723 */ 1724 if (ret > 0) 1725 return -ret; 1726 return 0; 1727 } 1728 1729 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1730 goto drop; 1731 nf_reset(skb); 1732 1733 /* No socket. Drop packet silently, if checksum is wrong */ 1734 if (udp_lib_checksum_complete(skb)) 1735 goto csum_error; 1736 1737 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1738 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1739 1740 /* 1741 * Hmm. We got an UDP packet to a port to which we 1742 * don't wanna listen. Ignore it. 1743 */ 1744 kfree_skb(skb); 1745 return 0; 1746 1747 short_packet: 1748 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1749 proto == IPPROTO_UDPLITE ? "Lite" : "", 1750 &saddr, ntohs(uh->source), 1751 ulen, skb->len, 1752 &daddr, ntohs(uh->dest)); 1753 goto drop; 1754 1755 csum_error: 1756 /* 1757 * RFC1122: OK. Discards the bad packet silently (as far as 1758 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1759 */ 1760 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1761 proto == IPPROTO_UDPLITE ? "Lite" : "", 1762 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1763 ulen); 1764 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1765 drop: 1766 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1767 kfree_skb(skb); 1768 return 0; 1769 } 1770 1771 int udp_rcv(struct sk_buff *skb) 1772 { 1773 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1774 } 1775 1776 void udp_destroy_sock(struct sock *sk) 1777 { 1778 struct udp_sock *up = udp_sk(sk); 1779 bool slow = lock_sock_fast(sk); 1780 udp_flush_pending_frames(sk); 1781 unlock_sock_fast(sk, slow); 1782 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1783 void (*encap_destroy)(struct sock *sk); 1784 encap_destroy = ACCESS_ONCE(up->encap_destroy); 1785 if (encap_destroy) 1786 encap_destroy(sk); 1787 } 1788 } 1789 1790 /* 1791 * Socket option code for UDP 1792 */ 1793 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1794 char __user *optval, unsigned int optlen, 1795 int (*push_pending_frames)(struct sock *)) 1796 { 1797 struct udp_sock *up = udp_sk(sk); 1798 int val; 1799 int err = 0; 1800 int is_udplite = IS_UDPLITE(sk); 1801 1802 if (optlen < sizeof(int)) 1803 return -EINVAL; 1804 1805 if (get_user(val, (int __user *)optval)) 1806 return -EFAULT; 1807 1808 switch (optname) { 1809 case UDP_CORK: 1810 if (val != 0) { 1811 up->corkflag = 1; 1812 } else { 1813 up->corkflag = 0; 1814 lock_sock(sk); 1815 (*push_pending_frames)(sk); 1816 release_sock(sk); 1817 } 1818 break; 1819 1820 case UDP_ENCAP: 1821 switch (val) { 1822 case 0: 1823 case UDP_ENCAP_ESPINUDP: 1824 case UDP_ENCAP_ESPINUDP_NON_IKE: 1825 up->encap_rcv = xfrm4_udp_encap_rcv; 1826 /* FALLTHROUGH */ 1827 case UDP_ENCAP_L2TPINUDP: 1828 up->encap_type = val; 1829 udp_encap_enable(); 1830 break; 1831 default: 1832 err = -ENOPROTOOPT; 1833 break; 1834 } 1835 break; 1836 1837 /* 1838 * UDP-Lite's partial checksum coverage (RFC 3828). 1839 */ 1840 /* The sender sets actual checksum coverage length via this option. 1841 * The case coverage > packet length is handled by send module. */ 1842 case UDPLITE_SEND_CSCOV: 1843 if (!is_udplite) /* Disable the option on UDP sockets */ 1844 return -ENOPROTOOPT; 1845 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 1846 val = 8; 1847 else if (val > USHRT_MAX) 1848 val = USHRT_MAX; 1849 up->pcslen = val; 1850 up->pcflag |= UDPLITE_SEND_CC; 1851 break; 1852 1853 /* The receiver specifies a minimum checksum coverage value. To make 1854 * sense, this should be set to at least 8 (as done below). If zero is 1855 * used, this again means full checksum coverage. */ 1856 case UDPLITE_RECV_CSCOV: 1857 if (!is_udplite) /* Disable the option on UDP sockets */ 1858 return -ENOPROTOOPT; 1859 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 1860 val = 8; 1861 else if (val > USHRT_MAX) 1862 val = USHRT_MAX; 1863 up->pcrlen = val; 1864 up->pcflag |= UDPLITE_RECV_CC; 1865 break; 1866 1867 default: 1868 err = -ENOPROTOOPT; 1869 break; 1870 } 1871 1872 return err; 1873 } 1874 EXPORT_SYMBOL(udp_lib_setsockopt); 1875 1876 int udp_setsockopt(struct sock *sk, int level, int optname, 1877 char __user *optval, unsigned int optlen) 1878 { 1879 if (level == SOL_UDP || level == SOL_UDPLITE) 1880 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1881 udp_push_pending_frames); 1882 return ip_setsockopt(sk, level, optname, optval, optlen); 1883 } 1884 1885 #ifdef CONFIG_COMPAT 1886 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 1887 char __user *optval, unsigned int optlen) 1888 { 1889 if (level == SOL_UDP || level == SOL_UDPLITE) 1890 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1891 udp_push_pending_frames); 1892 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 1893 } 1894 #endif 1895 1896 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 1897 char __user *optval, int __user *optlen) 1898 { 1899 struct udp_sock *up = udp_sk(sk); 1900 int val, len; 1901 1902 if (get_user(len, optlen)) 1903 return -EFAULT; 1904 1905 len = min_t(unsigned int, len, sizeof(int)); 1906 1907 if (len < 0) 1908 return -EINVAL; 1909 1910 switch (optname) { 1911 case UDP_CORK: 1912 val = up->corkflag; 1913 break; 1914 1915 case UDP_ENCAP: 1916 val = up->encap_type; 1917 break; 1918 1919 /* The following two cannot be changed on UDP sockets, the return is 1920 * always 0 (which corresponds to the full checksum coverage of UDP). */ 1921 case UDPLITE_SEND_CSCOV: 1922 val = up->pcslen; 1923 break; 1924 1925 case UDPLITE_RECV_CSCOV: 1926 val = up->pcrlen; 1927 break; 1928 1929 default: 1930 return -ENOPROTOOPT; 1931 } 1932 1933 if (put_user(len, optlen)) 1934 return -EFAULT; 1935 if (copy_to_user(optval, &val, len)) 1936 return -EFAULT; 1937 return 0; 1938 } 1939 EXPORT_SYMBOL(udp_lib_getsockopt); 1940 1941 int udp_getsockopt(struct sock *sk, int level, int optname, 1942 char __user *optval, int __user *optlen) 1943 { 1944 if (level == SOL_UDP || level == SOL_UDPLITE) 1945 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1946 return ip_getsockopt(sk, level, optname, optval, optlen); 1947 } 1948 1949 #ifdef CONFIG_COMPAT 1950 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 1951 char __user *optval, int __user *optlen) 1952 { 1953 if (level == SOL_UDP || level == SOL_UDPLITE) 1954 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1955 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 1956 } 1957 #endif 1958 /** 1959 * udp_poll - wait for a UDP event. 1960 * @file - file struct 1961 * @sock - socket 1962 * @wait - poll table 1963 * 1964 * This is same as datagram poll, except for the special case of 1965 * blocking sockets. If application is using a blocking fd 1966 * and a packet with checksum error is in the queue; 1967 * then it could get return from select indicating data available 1968 * but then block when reading it. Add special case code 1969 * to work around these arguably broken applications. 1970 */ 1971 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1972 { 1973 unsigned int mask = datagram_poll(file, sock, wait); 1974 struct sock *sk = sock->sk; 1975 1976 sock_rps_record_flow(sk); 1977 1978 /* Check for false positives due to checksum errors */ 1979 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 1980 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 1981 mask &= ~(POLLIN | POLLRDNORM); 1982 1983 return mask; 1984 1985 } 1986 EXPORT_SYMBOL(udp_poll); 1987 1988 struct proto udp_prot = { 1989 .name = "UDP", 1990 .owner = THIS_MODULE, 1991 .close = udp_lib_close, 1992 .connect = ip4_datagram_connect, 1993 .disconnect = udp_disconnect, 1994 .ioctl = udp_ioctl, 1995 .destroy = udp_destroy_sock, 1996 .setsockopt = udp_setsockopt, 1997 .getsockopt = udp_getsockopt, 1998 .sendmsg = udp_sendmsg, 1999 .recvmsg = udp_recvmsg, 2000 .sendpage = udp_sendpage, 2001 .backlog_rcv = __udp_queue_rcv_skb, 2002 .release_cb = ip4_datagram_release_cb, 2003 .hash = udp_lib_hash, 2004 .unhash = udp_lib_unhash, 2005 .rehash = udp_v4_rehash, 2006 .get_port = udp_v4_get_port, 2007 .memory_allocated = &udp_memory_allocated, 2008 .sysctl_mem = sysctl_udp_mem, 2009 .sysctl_wmem = &sysctl_udp_wmem_min, 2010 .sysctl_rmem = &sysctl_udp_rmem_min, 2011 .obj_size = sizeof(struct udp_sock), 2012 .slab_flags = SLAB_DESTROY_BY_RCU, 2013 .h.udp_table = &udp_table, 2014 #ifdef CONFIG_COMPAT 2015 .compat_setsockopt = compat_udp_setsockopt, 2016 .compat_getsockopt = compat_udp_getsockopt, 2017 #endif 2018 .clear_sk = sk_prot_clear_portaddr_nulls, 2019 }; 2020 EXPORT_SYMBOL(udp_prot); 2021 2022 /* ------------------------------------------------------------------------ */ 2023 #ifdef CONFIG_PROC_FS 2024 2025 static struct sock *udp_get_first(struct seq_file *seq, int start) 2026 { 2027 struct sock *sk; 2028 struct udp_iter_state *state = seq->private; 2029 struct net *net = seq_file_net(seq); 2030 2031 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2032 ++state->bucket) { 2033 struct hlist_nulls_node *node; 2034 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2035 2036 if (hlist_nulls_empty(&hslot->head)) 2037 continue; 2038 2039 spin_lock_bh(&hslot->lock); 2040 sk_nulls_for_each(sk, node, &hslot->head) { 2041 if (!net_eq(sock_net(sk), net)) 2042 continue; 2043 if (sk->sk_family == state->family) 2044 goto found; 2045 } 2046 spin_unlock_bh(&hslot->lock); 2047 } 2048 sk = NULL; 2049 found: 2050 return sk; 2051 } 2052 2053 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2054 { 2055 struct udp_iter_state *state = seq->private; 2056 struct net *net = seq_file_net(seq); 2057 2058 do { 2059 sk = sk_nulls_next(sk); 2060 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2061 2062 if (!sk) { 2063 if (state->bucket <= state->udp_table->mask) 2064 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2065 return udp_get_first(seq, state->bucket + 1); 2066 } 2067 return sk; 2068 } 2069 2070 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2071 { 2072 struct sock *sk = udp_get_first(seq, 0); 2073 2074 if (sk) 2075 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2076 --pos; 2077 return pos ? NULL : sk; 2078 } 2079 2080 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2081 { 2082 struct udp_iter_state *state = seq->private; 2083 state->bucket = MAX_UDP_PORTS; 2084 2085 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2086 } 2087 2088 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2089 { 2090 struct sock *sk; 2091 2092 if (v == SEQ_START_TOKEN) 2093 sk = udp_get_idx(seq, 0); 2094 else 2095 sk = udp_get_next(seq, v); 2096 2097 ++*pos; 2098 return sk; 2099 } 2100 2101 static void udp_seq_stop(struct seq_file *seq, void *v) 2102 { 2103 struct udp_iter_state *state = seq->private; 2104 2105 if (state->bucket <= state->udp_table->mask) 2106 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2107 } 2108 2109 int udp_seq_open(struct inode *inode, struct file *file) 2110 { 2111 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2112 struct udp_iter_state *s; 2113 int err; 2114 2115 err = seq_open_net(inode, file, &afinfo->seq_ops, 2116 sizeof(struct udp_iter_state)); 2117 if (err < 0) 2118 return err; 2119 2120 s = ((struct seq_file *)file->private_data)->private; 2121 s->family = afinfo->family; 2122 s->udp_table = afinfo->udp_table; 2123 return err; 2124 } 2125 EXPORT_SYMBOL(udp_seq_open); 2126 2127 /* ------------------------------------------------------------------------ */ 2128 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2129 { 2130 struct proc_dir_entry *p; 2131 int rc = 0; 2132 2133 afinfo->seq_ops.start = udp_seq_start; 2134 afinfo->seq_ops.next = udp_seq_next; 2135 afinfo->seq_ops.stop = udp_seq_stop; 2136 2137 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2138 afinfo->seq_fops, afinfo); 2139 if (!p) 2140 rc = -ENOMEM; 2141 return rc; 2142 } 2143 EXPORT_SYMBOL(udp_proc_register); 2144 2145 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2146 { 2147 remove_proc_entry(afinfo->name, net->proc_net); 2148 } 2149 EXPORT_SYMBOL(udp_proc_unregister); 2150 2151 /* ------------------------------------------------------------------------ */ 2152 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2153 int bucket, int *len) 2154 { 2155 struct inet_sock *inet = inet_sk(sp); 2156 __be32 dest = inet->inet_daddr; 2157 __be32 src = inet->inet_rcv_saddr; 2158 __u16 destp = ntohs(inet->inet_dport); 2159 __u16 srcp = ntohs(inet->inet_sport); 2160 2161 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2162 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d%n", 2163 bucket, src, srcp, dest, destp, sp->sk_state, 2164 sk_wmem_alloc_get(sp), 2165 sk_rmem_alloc_get(sp), 2166 0, 0L, 0, 2167 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2168 0, sock_i_ino(sp), 2169 atomic_read(&sp->sk_refcnt), sp, 2170 atomic_read(&sp->sk_drops), len); 2171 } 2172 2173 int udp4_seq_show(struct seq_file *seq, void *v) 2174 { 2175 if (v == SEQ_START_TOKEN) 2176 seq_printf(seq, "%-127s\n", 2177 " sl local_address rem_address st tx_queue " 2178 "rx_queue tr tm->when retrnsmt uid timeout " 2179 "inode ref pointer drops"); 2180 else { 2181 struct udp_iter_state *state = seq->private; 2182 int len; 2183 2184 udp4_format_sock(v, seq, state->bucket, &len); 2185 seq_printf(seq, "%*s\n", 127 - len, ""); 2186 } 2187 return 0; 2188 } 2189 2190 static const struct file_operations udp_afinfo_seq_fops = { 2191 .owner = THIS_MODULE, 2192 .open = udp_seq_open, 2193 .read = seq_read, 2194 .llseek = seq_lseek, 2195 .release = seq_release_net 2196 }; 2197 2198 /* ------------------------------------------------------------------------ */ 2199 static struct udp_seq_afinfo udp4_seq_afinfo = { 2200 .name = "udp", 2201 .family = AF_INET, 2202 .udp_table = &udp_table, 2203 .seq_fops = &udp_afinfo_seq_fops, 2204 .seq_ops = { 2205 .show = udp4_seq_show, 2206 }, 2207 }; 2208 2209 static int __net_init udp4_proc_init_net(struct net *net) 2210 { 2211 return udp_proc_register(net, &udp4_seq_afinfo); 2212 } 2213 2214 static void __net_exit udp4_proc_exit_net(struct net *net) 2215 { 2216 udp_proc_unregister(net, &udp4_seq_afinfo); 2217 } 2218 2219 static struct pernet_operations udp4_net_ops = { 2220 .init = udp4_proc_init_net, 2221 .exit = udp4_proc_exit_net, 2222 }; 2223 2224 int __init udp4_proc_init(void) 2225 { 2226 return register_pernet_subsys(&udp4_net_ops); 2227 } 2228 2229 void udp4_proc_exit(void) 2230 { 2231 unregister_pernet_subsys(&udp4_net_ops); 2232 } 2233 #endif /* CONFIG_PROC_FS */ 2234 2235 static __initdata unsigned long uhash_entries; 2236 static int __init set_uhash_entries(char *str) 2237 { 2238 ssize_t ret; 2239 2240 if (!str) 2241 return 0; 2242 2243 ret = kstrtoul(str, 0, &uhash_entries); 2244 if (ret) 2245 return 0; 2246 2247 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2248 uhash_entries = UDP_HTABLE_SIZE_MIN; 2249 return 1; 2250 } 2251 __setup("uhash_entries=", set_uhash_entries); 2252 2253 void __init udp_table_init(struct udp_table *table, const char *name) 2254 { 2255 unsigned int i; 2256 2257 table->hash = alloc_large_system_hash(name, 2258 2 * sizeof(struct udp_hslot), 2259 uhash_entries, 2260 21, /* one slot per 2 MB */ 2261 0, 2262 &table->log, 2263 &table->mask, 2264 UDP_HTABLE_SIZE_MIN, 2265 64 * 1024); 2266 2267 table->hash2 = table->hash + (table->mask + 1); 2268 for (i = 0; i <= table->mask; i++) { 2269 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2270 table->hash[i].count = 0; 2271 spin_lock_init(&table->hash[i].lock); 2272 } 2273 for (i = 0; i <= table->mask; i++) { 2274 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2275 table->hash2[i].count = 0; 2276 spin_lock_init(&table->hash2[i].lock); 2277 } 2278 } 2279 2280 void __init udp_init(void) 2281 { 2282 unsigned long limit; 2283 2284 udp_table_init(&udp_table, "UDP"); 2285 limit = nr_free_buffer_pages() / 8; 2286 limit = max(limit, 128UL); 2287 sysctl_udp_mem[0] = limit / 4 * 3; 2288 sysctl_udp_mem[1] = limit; 2289 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2290 2291 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2292 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2293 } 2294 2295 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, 2296 netdev_features_t features) 2297 { 2298 struct sk_buff *segs = ERR_PTR(-EINVAL); 2299 int mac_len = skb->mac_len; 2300 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb); 2301 __be16 protocol = skb->protocol; 2302 netdev_features_t enc_features; 2303 int outer_hlen; 2304 2305 if (unlikely(!pskb_may_pull(skb, tnl_hlen))) 2306 goto out; 2307 2308 skb->encapsulation = 0; 2309 __skb_pull(skb, tnl_hlen); 2310 skb_reset_mac_header(skb); 2311 skb_set_network_header(skb, skb_inner_network_offset(skb)); 2312 skb->mac_len = skb_inner_network_offset(skb); 2313 skb->protocol = htons(ETH_P_TEB); 2314 2315 /* segment inner packet. */ 2316 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb); 2317 segs = skb_mac_gso_segment(skb, enc_features); 2318 if (!segs || IS_ERR(segs)) 2319 goto out; 2320 2321 outer_hlen = skb_tnl_header_len(skb); 2322 skb = segs; 2323 do { 2324 struct udphdr *uh; 2325 int udp_offset = outer_hlen - tnl_hlen; 2326 2327 skb_reset_inner_headers(skb); 2328 skb->encapsulation = 1; 2329 2330 skb->mac_len = mac_len; 2331 2332 skb_push(skb, outer_hlen); 2333 skb_reset_mac_header(skb); 2334 skb_set_network_header(skb, mac_len); 2335 skb_set_transport_header(skb, udp_offset); 2336 uh = udp_hdr(skb); 2337 uh->len = htons(skb->len - udp_offset); 2338 2339 /* csum segment if tunnel sets skb with csum. */ 2340 if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) { 2341 struct iphdr *iph = ip_hdr(skb); 2342 2343 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 2344 skb->len - udp_offset, 2345 IPPROTO_UDP, 0); 2346 uh->check = csum_fold(skb_checksum(skb, udp_offset, 2347 skb->len - udp_offset, 0)); 2348 if (uh->check == 0) 2349 uh->check = CSUM_MANGLED_0; 2350 2351 } else if (protocol == htons(ETH_P_IPV6)) { 2352 struct ipv6hdr *ipv6h = ipv6_hdr(skb); 2353 u32 len = skb->len - udp_offset; 2354 2355 uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 2356 len, IPPROTO_UDP, 0); 2357 uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0)); 2358 if (uh->check == 0) 2359 uh->check = CSUM_MANGLED_0; 2360 skb->ip_summed = CHECKSUM_NONE; 2361 } 2362 2363 skb->protocol = protocol; 2364 } while ((skb = skb->next)); 2365 out: 2366 return segs; 2367 } 2368