xref: /openbmc/linux/net/ipv4/udp.c (revision e1f7c9ee)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119 
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122 
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125 
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128 
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134 
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 			       const struct udp_hslot *hslot,
137 			       unsigned long *bitmap,
138 			       struct sock *sk,
139 			       int (*saddr_comp)(const struct sock *sk1,
140 						 const struct sock *sk2),
141 			       unsigned int log)
142 {
143 	struct sock *sk2;
144 	struct hlist_nulls_node *node;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_nulls_for_each(sk2, node, &hslot->head)
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 		      !uid_eq(uid, sock_i_uid(sk2))) &&
156 		    (*saddr_comp)(sk, sk2)) {
157 			if (bitmap)
158 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 					  bitmap);
160 			else
161 				return 1;
162 		}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 			       struct udp_hslot *hslot2,
172 			       struct sock *sk,
173 			       int (*saddr_comp)(const struct sock *sk1,
174 						 const struct sock *sk2))
175 {
176 	struct sock *sk2;
177 	struct hlist_nulls_node *node;
178 	kuid_t uid = sock_i_uid(sk);
179 	int res = 0;
180 
181 	spin_lock(&hslot2->lock);
182 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
183 		if (net_eq(sock_net(sk2), net) &&
184 		    sk2 != sk &&
185 		    (udp_sk(sk2)->udp_port_hash == num) &&
186 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 		      !uid_eq(uid, sock_i_uid(sk2))) &&
191 		    (*saddr_comp)(sk, sk2)) {
192 			res = 1;
193 			break;
194 		}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
199 /**
200  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
201  *
202  *  @sk:          socket struct in question
203  *  @snum:        port number to look up
204  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
205  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206  *                   with NULL address
207  */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 		       int (*saddr_comp)(const struct sock *sk1,
210 					 const struct sock *sk2),
211 		     unsigned int hash2_nulladdr)
212 {
213 	struct udp_hslot *hslot, *hslot2;
214 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 	int    error = 1;
216 	struct net *net = sock_net(sk);
217 
218 	if (!snum) {
219 		int low, high, remaining;
220 		unsigned int rand;
221 		unsigned short first, last;
222 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223 
224 		inet_get_local_port_range(net, &low, &high);
225 		remaining = (high - low) + 1;
226 
227 		rand = prandom_u32();
228 		first = reciprocal_scale(rand, remaining) + low;
229 		/*
230 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 		 */
232 		rand = (rand | 1) * (udptable->mask + 1);
233 		last = first + udptable->mask + 1;
234 		do {
235 			hslot = udp_hashslot(udptable, net, first);
236 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 			spin_lock_bh(&hslot->lock);
238 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 					    saddr_comp, udptable->log);
240 
241 			snum = first;
242 			/*
243 			 * Iterate on all possible values of snum for this hash.
244 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 			 * give us randomization and full range coverage.
246 			 */
247 			do {
248 				if (low <= snum && snum <= high &&
249 				    !test_bit(snum >> udptable->log, bitmap) &&
250 				    !inet_is_local_reserved_port(net, snum))
251 					goto found;
252 				snum += rand;
253 			} while (snum != first);
254 			spin_unlock_bh(&hslot->lock);
255 		} while (++first != last);
256 		goto fail;
257 	} else {
258 		hslot = udp_hashslot(udptable, net, snum);
259 		spin_lock_bh(&hslot->lock);
260 		if (hslot->count > 10) {
261 			int exist;
262 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263 
264 			slot2          &= udptable->mask;
265 			hash2_nulladdr &= udptable->mask;
266 
267 			hslot2 = udp_hashslot2(udptable, slot2);
268 			if (hslot->count < hslot2->count)
269 				goto scan_primary_hash;
270 
271 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 						     sk, saddr_comp);
273 			if (!exist && (hash2_nulladdr != slot2)) {
274 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 							     sk, saddr_comp);
277 			}
278 			if (exist)
279 				goto fail_unlock;
280 			else
281 				goto found;
282 		}
283 scan_primary_hash:
284 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 					saddr_comp, 0))
286 			goto fail_unlock;
287 	}
288 found:
289 	inet_sk(sk)->inet_num = snum;
290 	udp_sk(sk)->udp_port_hash = snum;
291 	udp_sk(sk)->udp_portaddr_hash ^= snum;
292 	if (sk_unhashed(sk)) {
293 		sk_nulls_add_node_rcu(sk, &hslot->head);
294 		hslot->count++;
295 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296 
297 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 		spin_lock(&hslot2->lock);
299 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 					 &hslot2->head);
301 		hslot2->count++;
302 		spin_unlock(&hslot2->lock);
303 	}
304 	error = 0;
305 fail_unlock:
306 	spin_unlock_bh(&hslot->lock);
307 fail:
308 	return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311 
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315 
316 	return 	(!ipv6_only_sock(sk2)  &&
317 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320 
321 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
322 				       unsigned int port)
323 {
324 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326 
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 	unsigned int hash2_nulladdr =
330 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 	unsigned int hash2_partial =
332 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333 
334 	/* precompute partial secondary hash */
335 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338 
339 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
340 			 unsigned short hnum,
341 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
342 {
343 	int score = -1;
344 
345 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
346 			!ipv6_only_sock(sk)) {
347 		struct inet_sock *inet = inet_sk(sk);
348 
349 		score = (sk->sk_family == PF_INET ? 2 : 1);
350 		if (inet->inet_rcv_saddr) {
351 			if (inet->inet_rcv_saddr != daddr)
352 				return -1;
353 			score += 4;
354 		}
355 		if (inet->inet_daddr) {
356 			if (inet->inet_daddr != saddr)
357 				return -1;
358 			score += 4;
359 		}
360 		if (inet->inet_dport) {
361 			if (inet->inet_dport != sport)
362 				return -1;
363 			score += 4;
364 		}
365 		if (sk->sk_bound_dev_if) {
366 			if (sk->sk_bound_dev_if != dif)
367 				return -1;
368 			score += 4;
369 		}
370 	}
371 	return score;
372 }
373 
374 /*
375  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
376  */
377 static inline int compute_score2(struct sock *sk, struct net *net,
378 				 __be32 saddr, __be16 sport,
379 				 __be32 daddr, unsigned int hnum, int dif)
380 {
381 	int score = -1;
382 
383 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
384 		struct inet_sock *inet = inet_sk(sk);
385 
386 		if (inet->inet_rcv_saddr != daddr)
387 			return -1;
388 		if (inet->inet_num != hnum)
389 			return -1;
390 
391 		score = (sk->sk_family == PF_INET ? 2 : 1);
392 		if (inet->inet_daddr) {
393 			if (inet->inet_daddr != saddr)
394 				return -1;
395 			score += 4;
396 		}
397 		if (inet->inet_dport) {
398 			if (inet->inet_dport != sport)
399 				return -1;
400 			score += 4;
401 		}
402 		if (sk->sk_bound_dev_if) {
403 			if (sk->sk_bound_dev_if != dif)
404 				return -1;
405 			score += 4;
406 		}
407 	}
408 	return score;
409 }
410 
411 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
412 				 const __u16 lport, const __be32 faddr,
413 				 const __be16 fport)
414 {
415 	static u32 udp_ehash_secret __read_mostly;
416 
417 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418 
419 	return __inet_ehashfn(laddr, lport, faddr, fport,
420 			      udp_ehash_secret + net_hash_mix(net));
421 }
422 
423 
424 /* called with read_rcu_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 		__be32 saddr, __be16 sport,
427 		__be32 daddr, unsigned int hnum, int dif,
428 		struct udp_hslot *hslot2, unsigned int slot2)
429 {
430 	struct sock *sk, *result;
431 	struct hlist_nulls_node *node;
432 	int score, badness, matches = 0, reuseport = 0;
433 	u32 hash = 0;
434 
435 begin:
436 	result = NULL;
437 	badness = 0;
438 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
439 		score = compute_score2(sk, net, saddr, sport,
440 				      daddr, hnum, dif);
441 		if (score > badness) {
442 			result = sk;
443 			badness = score;
444 			reuseport = sk->sk_reuseport;
445 			if (reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				matches = 1;
449 			}
450 		} else if (score == badness && reuseport) {
451 			matches++;
452 			if (reciprocal_scale(hash, matches) == 0)
453 				result = sk;
454 			hash = next_pseudo_random32(hash);
455 		}
456 	}
457 	/*
458 	 * if the nulls value we got at the end of this lookup is
459 	 * not the expected one, we must restart lookup.
460 	 * We probably met an item that was moved to another chain.
461 	 */
462 	if (get_nulls_value(node) != slot2)
463 		goto begin;
464 	if (result) {
465 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
466 			result = NULL;
467 		else if (unlikely(compute_score2(result, net, saddr, sport,
468 				  daddr, hnum, dif) < badness)) {
469 			sock_put(result);
470 			goto begin;
471 		}
472 	}
473 	return result;
474 }
475 
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477  * harder than this. -DaveM
478  */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 		__be16 sport, __be32 daddr, __be16 dport,
481 		int dif, struct udp_table *udptable)
482 {
483 	struct sock *sk, *result;
484 	struct hlist_nulls_node *node;
485 	unsigned short hnum = ntohs(dport);
486 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
487 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
488 	int score, badness, matches = 0, reuseport = 0;
489 	u32 hash = 0;
490 
491 	rcu_read_lock();
492 	if (hslot->count > 10) {
493 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
494 		slot2 = hash2 & udptable->mask;
495 		hslot2 = &udptable->hash2[slot2];
496 		if (hslot->count < hslot2->count)
497 			goto begin;
498 
499 		result = udp4_lib_lookup2(net, saddr, sport,
500 					  daddr, hnum, dif,
501 					  hslot2, slot2);
502 		if (!result) {
503 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 			slot2 = hash2 & udptable->mask;
505 			hslot2 = &udptable->hash2[slot2];
506 			if (hslot->count < hslot2->count)
507 				goto begin;
508 
509 			result = udp4_lib_lookup2(net, saddr, sport,
510 						  htonl(INADDR_ANY), hnum, dif,
511 						  hslot2, slot2);
512 		}
513 		rcu_read_unlock();
514 		return result;
515 	}
516 begin:
517 	result = NULL;
518 	badness = 0;
519 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
520 		score = compute_score(sk, net, saddr, hnum, sport,
521 				      daddr, dport, dif);
522 		if (score > badness) {
523 			result = sk;
524 			badness = score;
525 			reuseport = sk->sk_reuseport;
526 			if (reuseport) {
527 				hash = udp_ehashfn(net, daddr, hnum,
528 						   saddr, sport);
529 				matches = 1;
530 			}
531 		} else if (score == badness && reuseport) {
532 			matches++;
533 			if (reciprocal_scale(hash, matches) == 0)
534 				result = sk;
535 			hash = next_pseudo_random32(hash);
536 		}
537 	}
538 	/*
539 	 * if the nulls value we got at the end of this lookup is
540 	 * not the expected one, we must restart lookup.
541 	 * We probably met an item that was moved to another chain.
542 	 */
543 	if (get_nulls_value(node) != slot)
544 		goto begin;
545 
546 	if (result) {
547 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
548 			result = NULL;
549 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
550 				  daddr, dport, dif) < badness)) {
551 			sock_put(result);
552 			goto begin;
553 		}
554 	}
555 	rcu_read_unlock();
556 	return result;
557 }
558 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
559 
560 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
561 						 __be16 sport, __be16 dport,
562 						 struct udp_table *udptable)
563 {
564 	const struct iphdr *iph = ip_hdr(skb);
565 
566 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
567 				 iph->daddr, dport, inet_iif(skb),
568 				 udptable);
569 }
570 
571 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
572 			     __be32 daddr, __be16 dport, int dif)
573 {
574 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577 
578 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
579 				       __be16 loc_port, __be32 loc_addr,
580 				       __be16 rmt_port, __be32 rmt_addr,
581 				       int dif, unsigned short hnum)
582 {
583 	struct inet_sock *inet = inet_sk(sk);
584 
585 	if (!net_eq(sock_net(sk), net) ||
586 	    udp_sk(sk)->udp_port_hash != hnum ||
587 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
588 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
589 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
590 	    ipv6_only_sock(sk) ||
591 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
592 		return false;
593 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
594 		return false;
595 	return true;
596 }
597 
598 /*
599  * This routine is called by the ICMP module when it gets some
600  * sort of error condition.  If err < 0 then the socket should
601  * be closed and the error returned to the user.  If err > 0
602  * it's just the icmp type << 8 | icmp code.
603  * Header points to the ip header of the error packet. We move
604  * on past this. Then (as it used to claim before adjustment)
605  * header points to the first 8 bytes of the udp header.  We need
606  * to find the appropriate port.
607  */
608 
609 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
610 {
611 	struct inet_sock *inet;
612 	const struct iphdr *iph = (const struct iphdr *)skb->data;
613 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
614 	const int type = icmp_hdr(skb)->type;
615 	const int code = icmp_hdr(skb)->code;
616 	struct sock *sk;
617 	int harderr;
618 	int err;
619 	struct net *net = dev_net(skb->dev);
620 
621 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
622 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
623 	if (sk == NULL) {
624 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
625 		return;	/* No socket for error */
626 	}
627 
628 	err = 0;
629 	harderr = 0;
630 	inet = inet_sk(sk);
631 
632 	switch (type) {
633 	default:
634 	case ICMP_TIME_EXCEEDED:
635 		err = EHOSTUNREACH;
636 		break;
637 	case ICMP_SOURCE_QUENCH:
638 		goto out;
639 	case ICMP_PARAMETERPROB:
640 		err = EPROTO;
641 		harderr = 1;
642 		break;
643 	case ICMP_DEST_UNREACH:
644 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
645 			ipv4_sk_update_pmtu(skb, sk, info);
646 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
647 				err = EMSGSIZE;
648 				harderr = 1;
649 				break;
650 			}
651 			goto out;
652 		}
653 		err = EHOSTUNREACH;
654 		if (code <= NR_ICMP_UNREACH) {
655 			harderr = icmp_err_convert[code].fatal;
656 			err = icmp_err_convert[code].errno;
657 		}
658 		break;
659 	case ICMP_REDIRECT:
660 		ipv4_sk_redirect(skb, sk);
661 		goto out;
662 	}
663 
664 	/*
665 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
666 	 *	4.1.3.3.
667 	 */
668 	if (!inet->recverr) {
669 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
670 			goto out;
671 	} else
672 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
673 
674 	sk->sk_err = err;
675 	sk->sk_error_report(sk);
676 out:
677 	sock_put(sk);
678 }
679 
680 void udp_err(struct sk_buff *skb, u32 info)
681 {
682 	__udp4_lib_err(skb, info, &udp_table);
683 }
684 
685 /*
686  * Throw away all pending data and cancel the corking. Socket is locked.
687  */
688 void udp_flush_pending_frames(struct sock *sk)
689 {
690 	struct udp_sock *up = udp_sk(sk);
691 
692 	if (up->pending) {
693 		up->len = 0;
694 		up->pending = 0;
695 		ip_flush_pending_frames(sk);
696 	}
697 }
698 EXPORT_SYMBOL(udp_flush_pending_frames);
699 
700 /**
701  * 	udp4_hwcsum  -  handle outgoing HW checksumming
702  * 	@skb: 	sk_buff containing the filled-in UDP header
703  * 	        (checksum field must be zeroed out)
704  *	@src:	source IP address
705  *	@dst:	destination IP address
706  */
707 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
708 {
709 	struct udphdr *uh = udp_hdr(skb);
710 	int offset = skb_transport_offset(skb);
711 	int len = skb->len - offset;
712 	int hlen = len;
713 	__wsum csum = 0;
714 
715 	if (!skb_has_frag_list(skb)) {
716 		/*
717 		 * Only one fragment on the socket.
718 		 */
719 		skb->csum_start = skb_transport_header(skb) - skb->head;
720 		skb->csum_offset = offsetof(struct udphdr, check);
721 		uh->check = ~csum_tcpudp_magic(src, dst, len,
722 					       IPPROTO_UDP, 0);
723 	} else {
724 		struct sk_buff *frags;
725 
726 		/*
727 		 * HW-checksum won't work as there are two or more
728 		 * fragments on the socket so that all csums of sk_buffs
729 		 * should be together
730 		 */
731 		skb_walk_frags(skb, frags) {
732 			csum = csum_add(csum, frags->csum);
733 			hlen -= frags->len;
734 		}
735 
736 		csum = skb_checksum(skb, offset, hlen, csum);
737 		skb->ip_summed = CHECKSUM_NONE;
738 
739 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
740 		if (uh->check == 0)
741 			uh->check = CSUM_MANGLED_0;
742 	}
743 }
744 EXPORT_SYMBOL_GPL(udp4_hwcsum);
745 
746 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
747  * for the simple case like when setting the checksum for a UDP tunnel.
748  */
749 void udp_set_csum(bool nocheck, struct sk_buff *skb,
750 		  __be32 saddr, __be32 daddr, int len)
751 {
752 	struct udphdr *uh = udp_hdr(skb);
753 
754 	if (nocheck)
755 		uh->check = 0;
756 	else if (skb_is_gso(skb))
757 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
758 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
759 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
760 
761 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
762 
763 		skb->ip_summed = CHECKSUM_PARTIAL;
764 		skb->csum_start = skb_transport_header(skb) - skb->head;
765 		skb->csum_offset = offsetof(struct udphdr, check);
766 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
767 	} else {
768 		__wsum csum;
769 
770 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
771 
772 		uh->check = 0;
773 		csum = skb_checksum(skb, 0, len, 0);
774 		uh->check = udp_v4_check(len, saddr, daddr, csum);
775 		if (uh->check == 0)
776 			uh->check = CSUM_MANGLED_0;
777 
778 		skb->ip_summed = CHECKSUM_UNNECESSARY;
779 	}
780 }
781 EXPORT_SYMBOL(udp_set_csum);
782 
783 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
784 {
785 	struct sock *sk = skb->sk;
786 	struct inet_sock *inet = inet_sk(sk);
787 	struct udphdr *uh;
788 	int err = 0;
789 	int is_udplite = IS_UDPLITE(sk);
790 	int offset = skb_transport_offset(skb);
791 	int len = skb->len - offset;
792 	__wsum csum = 0;
793 
794 	/*
795 	 * Create a UDP header
796 	 */
797 	uh = udp_hdr(skb);
798 	uh->source = inet->inet_sport;
799 	uh->dest = fl4->fl4_dport;
800 	uh->len = htons(len);
801 	uh->check = 0;
802 
803 	if (is_udplite)  				 /*     UDP-Lite      */
804 		csum = udplite_csum(skb);
805 
806 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
807 
808 		skb->ip_summed = CHECKSUM_NONE;
809 		goto send;
810 
811 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
812 
813 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
814 		goto send;
815 
816 	} else
817 		csum = udp_csum(skb);
818 
819 	/* add protocol-dependent pseudo-header */
820 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
821 				      sk->sk_protocol, csum);
822 	if (uh->check == 0)
823 		uh->check = CSUM_MANGLED_0;
824 
825 send:
826 	err = ip_send_skb(sock_net(sk), skb);
827 	if (err) {
828 		if (err == -ENOBUFS && !inet->recverr) {
829 			UDP_INC_STATS_USER(sock_net(sk),
830 					   UDP_MIB_SNDBUFERRORS, is_udplite);
831 			err = 0;
832 		}
833 	} else
834 		UDP_INC_STATS_USER(sock_net(sk),
835 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
836 	return err;
837 }
838 
839 /*
840  * Push out all pending data as one UDP datagram. Socket is locked.
841  */
842 int udp_push_pending_frames(struct sock *sk)
843 {
844 	struct udp_sock  *up = udp_sk(sk);
845 	struct inet_sock *inet = inet_sk(sk);
846 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
847 	struct sk_buff *skb;
848 	int err = 0;
849 
850 	skb = ip_finish_skb(sk, fl4);
851 	if (!skb)
852 		goto out;
853 
854 	err = udp_send_skb(skb, fl4);
855 
856 out:
857 	up->len = 0;
858 	up->pending = 0;
859 	return err;
860 }
861 EXPORT_SYMBOL(udp_push_pending_frames);
862 
863 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
864 		size_t len)
865 {
866 	struct inet_sock *inet = inet_sk(sk);
867 	struct udp_sock *up = udp_sk(sk);
868 	struct flowi4 fl4_stack;
869 	struct flowi4 *fl4;
870 	int ulen = len;
871 	struct ipcm_cookie ipc;
872 	struct rtable *rt = NULL;
873 	int free = 0;
874 	int connected = 0;
875 	__be32 daddr, faddr, saddr;
876 	__be16 dport;
877 	u8  tos;
878 	int err, is_udplite = IS_UDPLITE(sk);
879 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
880 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
881 	struct sk_buff *skb;
882 	struct ip_options_data opt_copy;
883 
884 	if (len > 0xFFFF)
885 		return -EMSGSIZE;
886 
887 	/*
888 	 *	Check the flags.
889 	 */
890 
891 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
892 		return -EOPNOTSUPP;
893 
894 	ipc.opt = NULL;
895 	ipc.tx_flags = 0;
896 	ipc.ttl = 0;
897 	ipc.tos = -1;
898 
899 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
900 
901 	fl4 = &inet->cork.fl.u.ip4;
902 	if (up->pending) {
903 		/*
904 		 * There are pending frames.
905 		 * The socket lock must be held while it's corked.
906 		 */
907 		lock_sock(sk);
908 		if (likely(up->pending)) {
909 			if (unlikely(up->pending != AF_INET)) {
910 				release_sock(sk);
911 				return -EINVAL;
912 			}
913 			goto do_append_data;
914 		}
915 		release_sock(sk);
916 	}
917 	ulen += sizeof(struct udphdr);
918 
919 	/*
920 	 *	Get and verify the address.
921 	 */
922 	if (msg->msg_name) {
923 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
924 		if (msg->msg_namelen < sizeof(*usin))
925 			return -EINVAL;
926 		if (usin->sin_family != AF_INET) {
927 			if (usin->sin_family != AF_UNSPEC)
928 				return -EAFNOSUPPORT;
929 		}
930 
931 		daddr = usin->sin_addr.s_addr;
932 		dport = usin->sin_port;
933 		if (dport == 0)
934 			return -EINVAL;
935 	} else {
936 		if (sk->sk_state != TCP_ESTABLISHED)
937 			return -EDESTADDRREQ;
938 		daddr = inet->inet_daddr;
939 		dport = inet->inet_dport;
940 		/* Open fast path for connected socket.
941 		   Route will not be used, if at least one option is set.
942 		 */
943 		connected = 1;
944 	}
945 	ipc.addr = inet->inet_saddr;
946 
947 	ipc.oif = sk->sk_bound_dev_if;
948 
949 	sock_tx_timestamp(sk, &ipc.tx_flags);
950 
951 	if (msg->msg_controllen) {
952 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
953 				   sk->sk_family == AF_INET6);
954 		if (err)
955 			return err;
956 		if (ipc.opt)
957 			free = 1;
958 		connected = 0;
959 	}
960 	if (!ipc.opt) {
961 		struct ip_options_rcu *inet_opt;
962 
963 		rcu_read_lock();
964 		inet_opt = rcu_dereference(inet->inet_opt);
965 		if (inet_opt) {
966 			memcpy(&opt_copy, inet_opt,
967 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
968 			ipc.opt = &opt_copy.opt;
969 		}
970 		rcu_read_unlock();
971 	}
972 
973 	saddr = ipc.addr;
974 	ipc.addr = faddr = daddr;
975 
976 	if (ipc.opt && ipc.opt->opt.srr) {
977 		if (!daddr)
978 			return -EINVAL;
979 		faddr = ipc.opt->opt.faddr;
980 		connected = 0;
981 	}
982 	tos = get_rttos(&ipc, inet);
983 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 	    (msg->msg_flags & MSG_DONTROUTE) ||
985 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 		tos |= RTO_ONLINK;
987 		connected = 0;
988 	}
989 
990 	if (ipv4_is_multicast(daddr)) {
991 		if (!ipc.oif)
992 			ipc.oif = inet->mc_index;
993 		if (!saddr)
994 			saddr = inet->mc_addr;
995 		connected = 0;
996 	} else if (!ipc.oif)
997 		ipc.oif = inet->uc_index;
998 
999 	if (connected)
1000 		rt = (struct rtable *)sk_dst_check(sk, 0);
1001 
1002 	if (rt == NULL) {
1003 		struct net *net = sock_net(sk);
1004 
1005 		fl4 = &fl4_stack;
1006 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1007 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1008 				   inet_sk_flowi_flags(sk),
1009 				   faddr, saddr, dport, inet->inet_sport);
1010 
1011 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012 		rt = ip_route_output_flow(net, fl4, sk);
1013 		if (IS_ERR(rt)) {
1014 			err = PTR_ERR(rt);
1015 			rt = NULL;
1016 			if (err == -ENETUNREACH)
1017 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018 			goto out;
1019 		}
1020 
1021 		err = -EACCES;
1022 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1023 		    !sock_flag(sk, SOCK_BROADCAST))
1024 			goto out;
1025 		if (connected)
1026 			sk_dst_set(sk, dst_clone(&rt->dst));
1027 	}
1028 
1029 	if (msg->msg_flags&MSG_CONFIRM)
1030 		goto do_confirm;
1031 back_from_confirm:
1032 
1033 	saddr = fl4->saddr;
1034 	if (!ipc.addr)
1035 		daddr = ipc.addr = fl4->daddr;
1036 
1037 	/* Lockless fast path for the non-corking case. */
1038 	if (!corkreq) {
1039 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1040 				  sizeof(struct udphdr), &ipc, &rt,
1041 				  msg->msg_flags);
1042 		err = PTR_ERR(skb);
1043 		if (!IS_ERR_OR_NULL(skb))
1044 			err = udp_send_skb(skb, fl4);
1045 		goto out;
1046 	}
1047 
1048 	lock_sock(sk);
1049 	if (unlikely(up->pending)) {
1050 		/* The socket is already corked while preparing it. */
1051 		/* ... which is an evident application bug. --ANK */
1052 		release_sock(sk);
1053 
1054 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1055 		err = -EINVAL;
1056 		goto out;
1057 	}
1058 	/*
1059 	 *	Now cork the socket to pend data.
1060 	 */
1061 	fl4 = &inet->cork.fl.u.ip4;
1062 	fl4->daddr = daddr;
1063 	fl4->saddr = saddr;
1064 	fl4->fl4_dport = dport;
1065 	fl4->fl4_sport = inet->inet_sport;
1066 	up->pending = AF_INET;
1067 
1068 do_append_data:
1069 	up->len += ulen;
1070 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1071 			     sizeof(struct udphdr), &ipc, &rt,
1072 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073 	if (err)
1074 		udp_flush_pending_frames(sk);
1075 	else if (!corkreq)
1076 		err = udp_push_pending_frames(sk);
1077 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078 		up->pending = 0;
1079 	release_sock(sk);
1080 
1081 out:
1082 	ip_rt_put(rt);
1083 	if (free)
1084 		kfree(ipc.opt);
1085 	if (!err)
1086 		return len;
1087 	/*
1088 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1089 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1091 	 * things).  We could add another new stat but at least for now that
1092 	 * seems like overkill.
1093 	 */
1094 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095 		UDP_INC_STATS_USER(sock_net(sk),
1096 				UDP_MIB_SNDBUFERRORS, is_udplite);
1097 	}
1098 	return err;
1099 
1100 do_confirm:
1101 	dst_confirm(&rt->dst);
1102 	if (!(msg->msg_flags&MSG_PROBE) || len)
1103 		goto back_from_confirm;
1104 	err = 0;
1105 	goto out;
1106 }
1107 EXPORT_SYMBOL(udp_sendmsg);
1108 
1109 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1110 		 size_t size, int flags)
1111 {
1112 	struct inet_sock *inet = inet_sk(sk);
1113 	struct udp_sock *up = udp_sk(sk);
1114 	int ret;
1115 
1116 	if (flags & MSG_SENDPAGE_NOTLAST)
1117 		flags |= MSG_MORE;
1118 
1119 	if (!up->pending) {
1120 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1121 
1122 		/* Call udp_sendmsg to specify destination address which
1123 		 * sendpage interface can't pass.
1124 		 * This will succeed only when the socket is connected.
1125 		 */
1126 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1127 		if (ret < 0)
1128 			return ret;
1129 	}
1130 
1131 	lock_sock(sk);
1132 
1133 	if (unlikely(!up->pending)) {
1134 		release_sock(sk);
1135 
1136 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1137 		return -EINVAL;
1138 	}
1139 
1140 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1141 			     page, offset, size, flags);
1142 	if (ret == -EOPNOTSUPP) {
1143 		release_sock(sk);
1144 		return sock_no_sendpage(sk->sk_socket, page, offset,
1145 					size, flags);
1146 	}
1147 	if (ret < 0) {
1148 		udp_flush_pending_frames(sk);
1149 		goto out;
1150 	}
1151 
1152 	up->len += size;
1153 	if (!(up->corkflag || (flags&MSG_MORE)))
1154 		ret = udp_push_pending_frames(sk);
1155 	if (!ret)
1156 		ret = size;
1157 out:
1158 	release_sock(sk);
1159 	return ret;
1160 }
1161 
1162 
1163 /**
1164  *	first_packet_length	- return length of first packet in receive queue
1165  *	@sk: socket
1166  *
1167  *	Drops all bad checksum frames, until a valid one is found.
1168  *	Returns the length of found skb, or 0 if none is found.
1169  */
1170 static unsigned int first_packet_length(struct sock *sk)
1171 {
1172 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1173 	struct sk_buff *skb;
1174 	unsigned int res;
1175 
1176 	__skb_queue_head_init(&list_kill);
1177 
1178 	spin_lock_bh(&rcvq->lock);
1179 	while ((skb = skb_peek(rcvq)) != NULL &&
1180 		udp_lib_checksum_complete(skb)) {
1181 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1182 				 IS_UDPLITE(sk));
1183 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1184 				 IS_UDPLITE(sk));
1185 		atomic_inc(&sk->sk_drops);
1186 		__skb_unlink(skb, rcvq);
1187 		__skb_queue_tail(&list_kill, skb);
1188 	}
1189 	res = skb ? skb->len : 0;
1190 	spin_unlock_bh(&rcvq->lock);
1191 
1192 	if (!skb_queue_empty(&list_kill)) {
1193 		bool slow = lock_sock_fast(sk);
1194 
1195 		__skb_queue_purge(&list_kill);
1196 		sk_mem_reclaim_partial(sk);
1197 		unlock_sock_fast(sk, slow);
1198 	}
1199 	return res;
1200 }
1201 
1202 /*
1203  *	IOCTL requests applicable to the UDP protocol
1204  */
1205 
1206 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1207 {
1208 	switch (cmd) {
1209 	case SIOCOUTQ:
1210 	{
1211 		int amount = sk_wmem_alloc_get(sk);
1212 
1213 		return put_user(amount, (int __user *)arg);
1214 	}
1215 
1216 	case SIOCINQ:
1217 	{
1218 		unsigned int amount = first_packet_length(sk);
1219 
1220 		if (amount)
1221 			/*
1222 			 * We will only return the amount
1223 			 * of this packet since that is all
1224 			 * that will be read.
1225 			 */
1226 			amount -= sizeof(struct udphdr);
1227 
1228 		return put_user(amount, (int __user *)arg);
1229 	}
1230 
1231 	default:
1232 		return -ENOIOCTLCMD;
1233 	}
1234 
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL(udp_ioctl);
1238 
1239 /*
1240  * 	This should be easy, if there is something there we
1241  * 	return it, otherwise we block.
1242  */
1243 
1244 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1245 		size_t len, int noblock, int flags, int *addr_len)
1246 {
1247 	struct inet_sock *inet = inet_sk(sk);
1248 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1249 	struct sk_buff *skb;
1250 	unsigned int ulen, copied;
1251 	int peeked, off = 0;
1252 	int err;
1253 	int is_udplite = IS_UDPLITE(sk);
1254 	bool slow;
1255 
1256 	if (flags & MSG_ERRQUEUE)
1257 		return ip_recv_error(sk, msg, len, addr_len);
1258 
1259 try_again:
1260 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1261 				  &peeked, &off, &err);
1262 	if (!skb)
1263 		goto out;
1264 
1265 	ulen = skb->len - sizeof(struct udphdr);
1266 	copied = len;
1267 	if (copied > ulen)
1268 		copied = ulen;
1269 	else if (copied < ulen)
1270 		msg->msg_flags |= MSG_TRUNC;
1271 
1272 	/*
1273 	 * If checksum is needed at all, try to do it while copying the
1274 	 * data.  If the data is truncated, or if we only want a partial
1275 	 * coverage checksum (UDP-Lite), do it before the copy.
1276 	 */
1277 
1278 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1279 		if (udp_lib_checksum_complete(skb))
1280 			goto csum_copy_err;
1281 	}
1282 
1283 	if (skb_csum_unnecessary(skb))
1284 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1285 					      msg->msg_iov, copied);
1286 	else {
1287 		err = skb_copy_and_csum_datagram_iovec(skb,
1288 						       sizeof(struct udphdr),
1289 						       msg->msg_iov);
1290 
1291 		if (err == -EINVAL)
1292 			goto csum_copy_err;
1293 	}
1294 
1295 	if (unlikely(err)) {
1296 		trace_kfree_skb(skb, udp_recvmsg);
1297 		if (!peeked) {
1298 			atomic_inc(&sk->sk_drops);
1299 			UDP_INC_STATS_USER(sock_net(sk),
1300 					   UDP_MIB_INERRORS, is_udplite);
1301 		}
1302 		goto out_free;
1303 	}
1304 
1305 	if (!peeked)
1306 		UDP_INC_STATS_USER(sock_net(sk),
1307 				UDP_MIB_INDATAGRAMS, is_udplite);
1308 
1309 	sock_recv_ts_and_drops(msg, sk, skb);
1310 
1311 	/* Copy the address. */
1312 	if (sin) {
1313 		sin->sin_family = AF_INET;
1314 		sin->sin_port = udp_hdr(skb)->source;
1315 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1316 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1317 		*addr_len = sizeof(*sin);
1318 	}
1319 	if (inet->cmsg_flags)
1320 		ip_cmsg_recv(msg, skb);
1321 
1322 	err = copied;
1323 	if (flags & MSG_TRUNC)
1324 		err = ulen;
1325 
1326 out_free:
1327 	skb_free_datagram_locked(sk, skb);
1328 out:
1329 	return err;
1330 
1331 csum_copy_err:
1332 	slow = lock_sock_fast(sk);
1333 	if (!skb_kill_datagram(sk, skb, flags)) {
1334 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1335 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1336 	}
1337 	unlock_sock_fast(sk, slow);
1338 
1339 	if (noblock)
1340 		return -EAGAIN;
1341 
1342 	/* starting over for a new packet */
1343 	msg->msg_flags &= ~MSG_TRUNC;
1344 	goto try_again;
1345 }
1346 
1347 
1348 int udp_disconnect(struct sock *sk, int flags)
1349 {
1350 	struct inet_sock *inet = inet_sk(sk);
1351 	/*
1352 	 *	1003.1g - break association.
1353 	 */
1354 
1355 	sk->sk_state = TCP_CLOSE;
1356 	inet->inet_daddr = 0;
1357 	inet->inet_dport = 0;
1358 	sock_rps_reset_rxhash(sk);
1359 	sk->sk_bound_dev_if = 0;
1360 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1361 		inet_reset_saddr(sk);
1362 
1363 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1364 		sk->sk_prot->unhash(sk);
1365 		inet->inet_sport = 0;
1366 	}
1367 	sk_dst_reset(sk);
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL(udp_disconnect);
1371 
1372 void udp_lib_unhash(struct sock *sk)
1373 {
1374 	if (sk_hashed(sk)) {
1375 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1376 		struct udp_hslot *hslot, *hslot2;
1377 
1378 		hslot  = udp_hashslot(udptable, sock_net(sk),
1379 				      udp_sk(sk)->udp_port_hash);
1380 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1381 
1382 		spin_lock_bh(&hslot->lock);
1383 		if (sk_nulls_del_node_init_rcu(sk)) {
1384 			hslot->count--;
1385 			inet_sk(sk)->inet_num = 0;
1386 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1387 
1388 			spin_lock(&hslot2->lock);
1389 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1390 			hslot2->count--;
1391 			spin_unlock(&hslot2->lock);
1392 		}
1393 		spin_unlock_bh(&hslot->lock);
1394 	}
1395 }
1396 EXPORT_SYMBOL(udp_lib_unhash);
1397 
1398 /*
1399  * inet_rcv_saddr was changed, we must rehash secondary hash
1400  */
1401 void udp_lib_rehash(struct sock *sk, u16 newhash)
1402 {
1403 	if (sk_hashed(sk)) {
1404 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1405 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1406 
1407 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1408 		nhslot2 = udp_hashslot2(udptable, newhash);
1409 		udp_sk(sk)->udp_portaddr_hash = newhash;
1410 		if (hslot2 != nhslot2) {
1411 			hslot = udp_hashslot(udptable, sock_net(sk),
1412 					     udp_sk(sk)->udp_port_hash);
1413 			/* we must lock primary chain too */
1414 			spin_lock_bh(&hslot->lock);
1415 
1416 			spin_lock(&hslot2->lock);
1417 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1418 			hslot2->count--;
1419 			spin_unlock(&hslot2->lock);
1420 
1421 			spin_lock(&nhslot2->lock);
1422 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1423 						 &nhslot2->head);
1424 			nhslot2->count++;
1425 			spin_unlock(&nhslot2->lock);
1426 
1427 			spin_unlock_bh(&hslot->lock);
1428 		}
1429 	}
1430 }
1431 EXPORT_SYMBOL(udp_lib_rehash);
1432 
1433 static void udp_v4_rehash(struct sock *sk)
1434 {
1435 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1436 					  inet_sk(sk)->inet_rcv_saddr,
1437 					  inet_sk(sk)->inet_num);
1438 	udp_lib_rehash(sk, new_hash);
1439 }
1440 
1441 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1442 {
1443 	int rc;
1444 
1445 	if (inet_sk(sk)->inet_daddr) {
1446 		sock_rps_save_rxhash(sk, skb);
1447 		sk_mark_napi_id(sk, skb);
1448 	}
1449 
1450 	rc = sock_queue_rcv_skb(sk, skb);
1451 	if (rc < 0) {
1452 		int is_udplite = IS_UDPLITE(sk);
1453 
1454 		/* Note that an ENOMEM error is charged twice */
1455 		if (rc == -ENOMEM)
1456 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1457 					 is_udplite);
1458 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1459 		kfree_skb(skb);
1460 		trace_udp_fail_queue_rcv_skb(rc, sk);
1461 		return -1;
1462 	}
1463 
1464 	return 0;
1465 
1466 }
1467 
1468 static struct static_key udp_encap_needed __read_mostly;
1469 void udp_encap_enable(void)
1470 {
1471 	if (!static_key_enabled(&udp_encap_needed))
1472 		static_key_slow_inc(&udp_encap_needed);
1473 }
1474 EXPORT_SYMBOL(udp_encap_enable);
1475 
1476 /* returns:
1477  *  -1: error
1478  *   0: success
1479  *  >0: "udp encap" protocol resubmission
1480  *
1481  * Note that in the success and error cases, the skb is assumed to
1482  * have either been requeued or freed.
1483  */
1484 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1485 {
1486 	struct udp_sock *up = udp_sk(sk);
1487 	int rc;
1488 	int is_udplite = IS_UDPLITE(sk);
1489 
1490 	/*
1491 	 *	Charge it to the socket, dropping if the queue is full.
1492 	 */
1493 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1494 		goto drop;
1495 	nf_reset(skb);
1496 
1497 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1498 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1499 
1500 		/*
1501 		 * This is an encapsulation socket so pass the skb to
1502 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1503 		 * fall through and pass this up the UDP socket.
1504 		 * up->encap_rcv() returns the following value:
1505 		 * =0 if skb was successfully passed to the encap
1506 		 *    handler or was discarded by it.
1507 		 * >0 if skb should be passed on to UDP.
1508 		 * <0 if skb should be resubmitted as proto -N
1509 		 */
1510 
1511 		/* if we're overly short, let UDP handle it */
1512 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1513 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1514 			int ret;
1515 
1516 			/* Verify checksum before giving to encap */
1517 			if (udp_lib_checksum_complete(skb))
1518 				goto csum_error;
1519 
1520 			ret = encap_rcv(sk, skb);
1521 			if (ret <= 0) {
1522 				UDP_INC_STATS_BH(sock_net(sk),
1523 						 UDP_MIB_INDATAGRAMS,
1524 						 is_udplite);
1525 				return -ret;
1526 			}
1527 		}
1528 
1529 		/* FALLTHROUGH -- it's a UDP Packet */
1530 	}
1531 
1532 	/*
1533 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1534 	 */
1535 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1536 
1537 		/*
1538 		 * MIB statistics other than incrementing the error count are
1539 		 * disabled for the following two types of errors: these depend
1540 		 * on the application settings, not on the functioning of the
1541 		 * protocol stack as such.
1542 		 *
1543 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1544 		 * way ... to ... at least let the receiving application block
1545 		 * delivery of packets with coverage values less than a value
1546 		 * provided by the application."
1547 		 */
1548 		if (up->pcrlen == 0) {          /* full coverage was set  */
1549 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1550 				       UDP_SKB_CB(skb)->cscov, skb->len);
1551 			goto drop;
1552 		}
1553 		/* The next case involves violating the min. coverage requested
1554 		 * by the receiver. This is subtle: if receiver wants x and x is
1555 		 * greater than the buffersize/MTU then receiver will complain
1556 		 * that it wants x while sender emits packets of smaller size y.
1557 		 * Therefore the above ...()->partial_cov statement is essential.
1558 		 */
1559 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1560 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1561 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1562 			goto drop;
1563 		}
1564 	}
1565 
1566 	if (rcu_access_pointer(sk->sk_filter) &&
1567 	    udp_lib_checksum_complete(skb))
1568 		goto csum_error;
1569 
1570 
1571 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1572 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1573 				 is_udplite);
1574 		goto drop;
1575 	}
1576 
1577 	rc = 0;
1578 
1579 	ipv4_pktinfo_prepare(sk, skb);
1580 	bh_lock_sock(sk);
1581 	if (!sock_owned_by_user(sk))
1582 		rc = __udp_queue_rcv_skb(sk, skb);
1583 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1584 		bh_unlock_sock(sk);
1585 		goto drop;
1586 	}
1587 	bh_unlock_sock(sk);
1588 
1589 	return rc;
1590 
1591 csum_error:
1592 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1593 drop:
1594 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1595 	atomic_inc(&sk->sk_drops);
1596 	kfree_skb(skb);
1597 	return -1;
1598 }
1599 
1600 
1601 static void flush_stack(struct sock **stack, unsigned int count,
1602 			struct sk_buff *skb, unsigned int final)
1603 {
1604 	unsigned int i;
1605 	struct sk_buff *skb1 = NULL;
1606 	struct sock *sk;
1607 
1608 	for (i = 0; i < count; i++) {
1609 		sk = stack[i];
1610 		if (likely(skb1 == NULL))
1611 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1612 
1613 		if (!skb1) {
1614 			atomic_inc(&sk->sk_drops);
1615 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1616 					 IS_UDPLITE(sk));
1617 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1618 					 IS_UDPLITE(sk));
1619 		}
1620 
1621 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1622 			skb1 = NULL;
1623 
1624 		sock_put(sk);
1625 	}
1626 	if (unlikely(skb1))
1627 		kfree_skb(skb1);
1628 }
1629 
1630 /* For TCP sockets, sk_rx_dst is protected by socket lock
1631  * For UDP, we use xchg() to guard against concurrent changes.
1632  */
1633 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1634 {
1635 	struct dst_entry *old;
1636 
1637 	dst_hold(dst);
1638 	old = xchg(&sk->sk_rx_dst, dst);
1639 	dst_release(old);
1640 }
1641 
1642 /*
1643  *	Multicasts and broadcasts go to each listener.
1644  *
1645  *	Note: called only from the BH handler context.
1646  */
1647 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1648 				    struct udphdr  *uh,
1649 				    __be32 saddr, __be32 daddr,
1650 				    struct udp_table *udptable)
1651 {
1652 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1653 	struct hlist_nulls_node *node;
1654 	unsigned short hnum = ntohs(uh->dest);
1655 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1656 	int dif = skb->dev->ifindex;
1657 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1658 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1659 
1660 	if (use_hash2) {
1661 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1662 			    udp_table.mask;
1663 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1664 start_lookup:
1665 		hslot = &udp_table.hash2[hash2];
1666 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1667 	}
1668 
1669 	spin_lock(&hslot->lock);
1670 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1671 		if (__udp_is_mcast_sock(net, sk,
1672 					uh->dest, daddr,
1673 					uh->source, saddr,
1674 					dif, hnum)) {
1675 			if (unlikely(count == ARRAY_SIZE(stack))) {
1676 				flush_stack(stack, count, skb, ~0);
1677 				count = 0;
1678 			}
1679 			stack[count++] = sk;
1680 			sock_hold(sk);
1681 		}
1682 	}
1683 
1684 	spin_unlock(&hslot->lock);
1685 
1686 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1687 	if (use_hash2 && hash2 != hash2_any) {
1688 		hash2 = hash2_any;
1689 		goto start_lookup;
1690 	}
1691 
1692 	/*
1693 	 * do the slow work with no lock held
1694 	 */
1695 	if (count) {
1696 		flush_stack(stack, count, skb, count - 1);
1697 	} else {
1698 		kfree_skb(skb);
1699 	}
1700 	return 0;
1701 }
1702 
1703 /* Initialize UDP checksum. If exited with zero value (success),
1704  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1705  * Otherwise, csum completion requires chacksumming packet body,
1706  * including udp header and folding it to skb->csum.
1707  */
1708 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1709 				 int proto)
1710 {
1711 	int err;
1712 
1713 	UDP_SKB_CB(skb)->partial_cov = 0;
1714 	UDP_SKB_CB(skb)->cscov = skb->len;
1715 
1716 	if (proto == IPPROTO_UDPLITE) {
1717 		err = udplite_checksum_init(skb, uh);
1718 		if (err)
1719 			return err;
1720 	}
1721 
1722 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1723 					    inet_compute_pseudo);
1724 }
1725 
1726 /*
1727  *	All we need to do is get the socket, and then do a checksum.
1728  */
1729 
1730 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1731 		   int proto)
1732 {
1733 	struct sock *sk;
1734 	struct udphdr *uh;
1735 	unsigned short ulen;
1736 	struct rtable *rt = skb_rtable(skb);
1737 	__be32 saddr, daddr;
1738 	struct net *net = dev_net(skb->dev);
1739 
1740 	/*
1741 	 *  Validate the packet.
1742 	 */
1743 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1744 		goto drop;		/* No space for header. */
1745 
1746 	uh   = udp_hdr(skb);
1747 	ulen = ntohs(uh->len);
1748 	saddr = ip_hdr(skb)->saddr;
1749 	daddr = ip_hdr(skb)->daddr;
1750 
1751 	if (ulen > skb->len)
1752 		goto short_packet;
1753 
1754 	if (proto == IPPROTO_UDP) {
1755 		/* UDP validates ulen. */
1756 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1757 			goto short_packet;
1758 		uh = udp_hdr(skb);
1759 	}
1760 
1761 	if (udp4_csum_init(skb, uh, proto))
1762 		goto csum_error;
1763 
1764 	sk = skb_steal_sock(skb);
1765 	if (sk) {
1766 		struct dst_entry *dst = skb_dst(skb);
1767 		int ret;
1768 
1769 		if (unlikely(sk->sk_rx_dst != dst))
1770 			udp_sk_rx_dst_set(sk, dst);
1771 
1772 		ret = udp_queue_rcv_skb(sk, skb);
1773 		sock_put(sk);
1774 		/* a return value > 0 means to resubmit the input, but
1775 		 * it wants the return to be -protocol, or 0
1776 		 */
1777 		if (ret > 0)
1778 			return -ret;
1779 		return 0;
1780 	} else {
1781 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1782 			return __udp4_lib_mcast_deliver(net, skb, uh,
1783 					saddr, daddr, udptable);
1784 
1785 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1786 	}
1787 
1788 	if (sk != NULL) {
1789 		int ret;
1790 
1791 		if (udp_sk(sk)->convert_csum && uh->check && !IS_UDPLITE(sk))
1792 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1793 						 inet_compute_pseudo);
1794 
1795 		ret = udp_queue_rcv_skb(sk, skb);
1796 		sock_put(sk);
1797 
1798 		/* a return value > 0 means to resubmit the input, but
1799 		 * it wants the return to be -protocol, or 0
1800 		 */
1801 		if (ret > 0)
1802 			return -ret;
1803 		return 0;
1804 	}
1805 
1806 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1807 		goto drop;
1808 	nf_reset(skb);
1809 
1810 	/* No socket. Drop packet silently, if checksum is wrong */
1811 	if (udp_lib_checksum_complete(skb))
1812 		goto csum_error;
1813 
1814 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1815 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1816 
1817 	/*
1818 	 * Hmm.  We got an UDP packet to a port to which we
1819 	 * don't wanna listen.  Ignore it.
1820 	 */
1821 	kfree_skb(skb);
1822 	return 0;
1823 
1824 short_packet:
1825 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1826 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1827 		       &saddr, ntohs(uh->source),
1828 		       ulen, skb->len,
1829 		       &daddr, ntohs(uh->dest));
1830 	goto drop;
1831 
1832 csum_error:
1833 	/*
1834 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1835 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1836 	 */
1837 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1838 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1839 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1840 		       ulen);
1841 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1842 drop:
1843 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1844 	kfree_skb(skb);
1845 	return 0;
1846 }
1847 
1848 /* We can only early demux multicast if there is a single matching socket.
1849  * If more than one socket found returns NULL
1850  */
1851 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1852 						  __be16 loc_port, __be32 loc_addr,
1853 						  __be16 rmt_port, __be32 rmt_addr,
1854 						  int dif)
1855 {
1856 	struct sock *sk, *result;
1857 	struct hlist_nulls_node *node;
1858 	unsigned short hnum = ntohs(loc_port);
1859 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1860 	struct udp_hslot *hslot = &udp_table.hash[slot];
1861 
1862 	/* Do not bother scanning a too big list */
1863 	if (hslot->count > 10)
1864 		return NULL;
1865 
1866 	rcu_read_lock();
1867 begin:
1868 	count = 0;
1869 	result = NULL;
1870 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1871 		if (__udp_is_mcast_sock(net, sk,
1872 					loc_port, loc_addr,
1873 					rmt_port, rmt_addr,
1874 					dif, hnum)) {
1875 			result = sk;
1876 			++count;
1877 		}
1878 	}
1879 	/*
1880 	 * if the nulls value we got at the end of this lookup is
1881 	 * not the expected one, we must restart lookup.
1882 	 * We probably met an item that was moved to another chain.
1883 	 */
1884 	if (get_nulls_value(node) != slot)
1885 		goto begin;
1886 
1887 	if (result) {
1888 		if (count != 1 ||
1889 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1890 			result = NULL;
1891 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1892 						       loc_port, loc_addr,
1893 						       rmt_port, rmt_addr,
1894 						       dif, hnum))) {
1895 			sock_put(result);
1896 			result = NULL;
1897 		}
1898 	}
1899 	rcu_read_unlock();
1900 	return result;
1901 }
1902 
1903 /* For unicast we should only early demux connected sockets or we can
1904  * break forwarding setups.  The chains here can be long so only check
1905  * if the first socket is an exact match and if not move on.
1906  */
1907 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1908 					    __be16 loc_port, __be32 loc_addr,
1909 					    __be16 rmt_port, __be32 rmt_addr,
1910 					    int dif)
1911 {
1912 	struct sock *sk, *result;
1913 	struct hlist_nulls_node *node;
1914 	unsigned short hnum = ntohs(loc_port);
1915 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1916 	unsigned int slot2 = hash2 & udp_table.mask;
1917 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1918 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1919 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1920 
1921 	rcu_read_lock();
1922 	result = NULL;
1923 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1924 		if (INET_MATCH(sk, net, acookie,
1925 			       rmt_addr, loc_addr, ports, dif))
1926 			result = sk;
1927 		/* Only check first socket in chain */
1928 		break;
1929 	}
1930 
1931 	if (result) {
1932 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1933 			result = NULL;
1934 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1935 					      rmt_addr, loc_addr,
1936 					      ports, dif))) {
1937 			sock_put(result);
1938 			result = NULL;
1939 		}
1940 	}
1941 	rcu_read_unlock();
1942 	return result;
1943 }
1944 
1945 void udp_v4_early_demux(struct sk_buff *skb)
1946 {
1947 	struct net *net = dev_net(skb->dev);
1948 	const struct iphdr *iph;
1949 	const struct udphdr *uh;
1950 	struct sock *sk;
1951 	struct dst_entry *dst;
1952 	int dif = skb->dev->ifindex;
1953 
1954 	/* validate the packet */
1955 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1956 		return;
1957 
1958 	iph = ip_hdr(skb);
1959 	uh = udp_hdr(skb);
1960 
1961 	if (skb->pkt_type == PACKET_BROADCAST ||
1962 	    skb->pkt_type == PACKET_MULTICAST)
1963 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1964 						   uh->source, iph->saddr, dif);
1965 	else if (skb->pkt_type == PACKET_HOST)
1966 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1967 					     uh->source, iph->saddr, dif);
1968 	else
1969 		return;
1970 
1971 	if (!sk)
1972 		return;
1973 
1974 	skb->sk = sk;
1975 	skb->destructor = sock_efree;
1976 	dst = sk->sk_rx_dst;
1977 
1978 	if (dst)
1979 		dst = dst_check(dst, 0);
1980 	if (dst)
1981 		skb_dst_set_noref(skb, dst);
1982 }
1983 
1984 int udp_rcv(struct sk_buff *skb)
1985 {
1986 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1987 }
1988 
1989 void udp_destroy_sock(struct sock *sk)
1990 {
1991 	struct udp_sock *up = udp_sk(sk);
1992 	bool slow = lock_sock_fast(sk);
1993 	udp_flush_pending_frames(sk);
1994 	unlock_sock_fast(sk, slow);
1995 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1996 		void (*encap_destroy)(struct sock *sk);
1997 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1998 		if (encap_destroy)
1999 			encap_destroy(sk);
2000 	}
2001 }
2002 
2003 /*
2004  *	Socket option code for UDP
2005  */
2006 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2007 		       char __user *optval, unsigned int optlen,
2008 		       int (*push_pending_frames)(struct sock *))
2009 {
2010 	struct udp_sock *up = udp_sk(sk);
2011 	int val, valbool;
2012 	int err = 0;
2013 	int is_udplite = IS_UDPLITE(sk);
2014 
2015 	if (optlen < sizeof(int))
2016 		return -EINVAL;
2017 
2018 	if (get_user(val, (int __user *)optval))
2019 		return -EFAULT;
2020 
2021 	valbool = val ? 1 : 0;
2022 
2023 	switch (optname) {
2024 	case UDP_CORK:
2025 		if (val != 0) {
2026 			up->corkflag = 1;
2027 		} else {
2028 			up->corkflag = 0;
2029 			lock_sock(sk);
2030 			(*push_pending_frames)(sk);
2031 			release_sock(sk);
2032 		}
2033 		break;
2034 
2035 	case UDP_ENCAP:
2036 		switch (val) {
2037 		case 0:
2038 		case UDP_ENCAP_ESPINUDP:
2039 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2040 			up->encap_rcv = xfrm4_udp_encap_rcv;
2041 			/* FALLTHROUGH */
2042 		case UDP_ENCAP_L2TPINUDP:
2043 			up->encap_type = val;
2044 			udp_encap_enable();
2045 			break;
2046 		default:
2047 			err = -ENOPROTOOPT;
2048 			break;
2049 		}
2050 		break;
2051 
2052 	case UDP_NO_CHECK6_TX:
2053 		up->no_check6_tx = valbool;
2054 		break;
2055 
2056 	case UDP_NO_CHECK6_RX:
2057 		up->no_check6_rx = valbool;
2058 		break;
2059 
2060 	/*
2061 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2062 	 */
2063 	/* The sender sets actual checksum coverage length via this option.
2064 	 * The case coverage > packet length is handled by send module. */
2065 	case UDPLITE_SEND_CSCOV:
2066 		if (!is_udplite)         /* Disable the option on UDP sockets */
2067 			return -ENOPROTOOPT;
2068 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2069 			val = 8;
2070 		else if (val > USHRT_MAX)
2071 			val = USHRT_MAX;
2072 		up->pcslen = val;
2073 		up->pcflag |= UDPLITE_SEND_CC;
2074 		break;
2075 
2076 	/* The receiver specifies a minimum checksum coverage value. To make
2077 	 * sense, this should be set to at least 8 (as done below). If zero is
2078 	 * used, this again means full checksum coverage.                     */
2079 	case UDPLITE_RECV_CSCOV:
2080 		if (!is_udplite)         /* Disable the option on UDP sockets */
2081 			return -ENOPROTOOPT;
2082 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2083 			val = 8;
2084 		else if (val > USHRT_MAX)
2085 			val = USHRT_MAX;
2086 		up->pcrlen = val;
2087 		up->pcflag |= UDPLITE_RECV_CC;
2088 		break;
2089 
2090 	default:
2091 		err = -ENOPROTOOPT;
2092 		break;
2093 	}
2094 
2095 	return err;
2096 }
2097 EXPORT_SYMBOL(udp_lib_setsockopt);
2098 
2099 int udp_setsockopt(struct sock *sk, int level, int optname,
2100 		   char __user *optval, unsigned int optlen)
2101 {
2102 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2103 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2104 					  udp_push_pending_frames);
2105 	return ip_setsockopt(sk, level, optname, optval, optlen);
2106 }
2107 
2108 #ifdef CONFIG_COMPAT
2109 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2110 			  char __user *optval, unsigned int optlen)
2111 {
2112 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2113 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2114 					  udp_push_pending_frames);
2115 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2116 }
2117 #endif
2118 
2119 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2120 		       char __user *optval, int __user *optlen)
2121 {
2122 	struct udp_sock *up = udp_sk(sk);
2123 	int val, len;
2124 
2125 	if (get_user(len, optlen))
2126 		return -EFAULT;
2127 
2128 	len = min_t(unsigned int, len, sizeof(int));
2129 
2130 	if (len < 0)
2131 		return -EINVAL;
2132 
2133 	switch (optname) {
2134 	case UDP_CORK:
2135 		val = up->corkflag;
2136 		break;
2137 
2138 	case UDP_ENCAP:
2139 		val = up->encap_type;
2140 		break;
2141 
2142 	case UDP_NO_CHECK6_TX:
2143 		val = up->no_check6_tx;
2144 		break;
2145 
2146 	case UDP_NO_CHECK6_RX:
2147 		val = up->no_check6_rx;
2148 		break;
2149 
2150 	/* The following two cannot be changed on UDP sockets, the return is
2151 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2152 	case UDPLITE_SEND_CSCOV:
2153 		val = up->pcslen;
2154 		break;
2155 
2156 	case UDPLITE_RECV_CSCOV:
2157 		val = up->pcrlen;
2158 		break;
2159 
2160 	default:
2161 		return -ENOPROTOOPT;
2162 	}
2163 
2164 	if (put_user(len, optlen))
2165 		return -EFAULT;
2166 	if (copy_to_user(optval, &val, len))
2167 		return -EFAULT;
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL(udp_lib_getsockopt);
2171 
2172 int udp_getsockopt(struct sock *sk, int level, int optname,
2173 		   char __user *optval, int __user *optlen)
2174 {
2175 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2176 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2177 	return ip_getsockopt(sk, level, optname, optval, optlen);
2178 }
2179 
2180 #ifdef CONFIG_COMPAT
2181 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2182 				 char __user *optval, int __user *optlen)
2183 {
2184 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2185 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2186 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2187 }
2188 #endif
2189 /**
2190  * 	udp_poll - wait for a UDP event.
2191  *	@file - file struct
2192  *	@sock - socket
2193  *	@wait - poll table
2194  *
2195  *	This is same as datagram poll, except for the special case of
2196  *	blocking sockets. If application is using a blocking fd
2197  *	and a packet with checksum error is in the queue;
2198  *	then it could get return from select indicating data available
2199  *	but then block when reading it. Add special case code
2200  *	to work around these arguably broken applications.
2201  */
2202 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2203 {
2204 	unsigned int mask = datagram_poll(file, sock, wait);
2205 	struct sock *sk = sock->sk;
2206 
2207 	sock_rps_record_flow(sk);
2208 
2209 	/* Check for false positives due to checksum errors */
2210 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2211 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2212 		mask &= ~(POLLIN | POLLRDNORM);
2213 
2214 	return mask;
2215 
2216 }
2217 EXPORT_SYMBOL(udp_poll);
2218 
2219 struct proto udp_prot = {
2220 	.name		   = "UDP",
2221 	.owner		   = THIS_MODULE,
2222 	.close		   = udp_lib_close,
2223 	.connect	   = ip4_datagram_connect,
2224 	.disconnect	   = udp_disconnect,
2225 	.ioctl		   = udp_ioctl,
2226 	.destroy	   = udp_destroy_sock,
2227 	.setsockopt	   = udp_setsockopt,
2228 	.getsockopt	   = udp_getsockopt,
2229 	.sendmsg	   = udp_sendmsg,
2230 	.recvmsg	   = udp_recvmsg,
2231 	.sendpage	   = udp_sendpage,
2232 	.backlog_rcv	   = __udp_queue_rcv_skb,
2233 	.release_cb	   = ip4_datagram_release_cb,
2234 	.hash		   = udp_lib_hash,
2235 	.unhash		   = udp_lib_unhash,
2236 	.rehash		   = udp_v4_rehash,
2237 	.get_port	   = udp_v4_get_port,
2238 	.memory_allocated  = &udp_memory_allocated,
2239 	.sysctl_mem	   = sysctl_udp_mem,
2240 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2241 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2242 	.obj_size	   = sizeof(struct udp_sock),
2243 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2244 	.h.udp_table	   = &udp_table,
2245 #ifdef CONFIG_COMPAT
2246 	.compat_setsockopt = compat_udp_setsockopt,
2247 	.compat_getsockopt = compat_udp_getsockopt,
2248 #endif
2249 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2250 };
2251 EXPORT_SYMBOL(udp_prot);
2252 
2253 /* ------------------------------------------------------------------------ */
2254 #ifdef CONFIG_PROC_FS
2255 
2256 static struct sock *udp_get_first(struct seq_file *seq, int start)
2257 {
2258 	struct sock *sk;
2259 	struct udp_iter_state *state = seq->private;
2260 	struct net *net = seq_file_net(seq);
2261 
2262 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2263 	     ++state->bucket) {
2264 		struct hlist_nulls_node *node;
2265 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2266 
2267 		if (hlist_nulls_empty(&hslot->head))
2268 			continue;
2269 
2270 		spin_lock_bh(&hslot->lock);
2271 		sk_nulls_for_each(sk, node, &hslot->head) {
2272 			if (!net_eq(sock_net(sk), net))
2273 				continue;
2274 			if (sk->sk_family == state->family)
2275 				goto found;
2276 		}
2277 		spin_unlock_bh(&hslot->lock);
2278 	}
2279 	sk = NULL;
2280 found:
2281 	return sk;
2282 }
2283 
2284 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2285 {
2286 	struct udp_iter_state *state = seq->private;
2287 	struct net *net = seq_file_net(seq);
2288 
2289 	do {
2290 		sk = sk_nulls_next(sk);
2291 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2292 
2293 	if (!sk) {
2294 		if (state->bucket <= state->udp_table->mask)
2295 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2296 		return udp_get_first(seq, state->bucket + 1);
2297 	}
2298 	return sk;
2299 }
2300 
2301 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2302 {
2303 	struct sock *sk = udp_get_first(seq, 0);
2304 
2305 	if (sk)
2306 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2307 			--pos;
2308 	return pos ? NULL : sk;
2309 }
2310 
2311 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2312 {
2313 	struct udp_iter_state *state = seq->private;
2314 	state->bucket = MAX_UDP_PORTS;
2315 
2316 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2317 }
2318 
2319 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2320 {
2321 	struct sock *sk;
2322 
2323 	if (v == SEQ_START_TOKEN)
2324 		sk = udp_get_idx(seq, 0);
2325 	else
2326 		sk = udp_get_next(seq, v);
2327 
2328 	++*pos;
2329 	return sk;
2330 }
2331 
2332 static void udp_seq_stop(struct seq_file *seq, void *v)
2333 {
2334 	struct udp_iter_state *state = seq->private;
2335 
2336 	if (state->bucket <= state->udp_table->mask)
2337 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2338 }
2339 
2340 int udp_seq_open(struct inode *inode, struct file *file)
2341 {
2342 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2343 	struct udp_iter_state *s;
2344 	int err;
2345 
2346 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2347 			   sizeof(struct udp_iter_state));
2348 	if (err < 0)
2349 		return err;
2350 
2351 	s = ((struct seq_file *)file->private_data)->private;
2352 	s->family		= afinfo->family;
2353 	s->udp_table		= afinfo->udp_table;
2354 	return err;
2355 }
2356 EXPORT_SYMBOL(udp_seq_open);
2357 
2358 /* ------------------------------------------------------------------------ */
2359 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2360 {
2361 	struct proc_dir_entry *p;
2362 	int rc = 0;
2363 
2364 	afinfo->seq_ops.start		= udp_seq_start;
2365 	afinfo->seq_ops.next		= udp_seq_next;
2366 	afinfo->seq_ops.stop		= udp_seq_stop;
2367 
2368 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2369 			     afinfo->seq_fops, afinfo);
2370 	if (!p)
2371 		rc = -ENOMEM;
2372 	return rc;
2373 }
2374 EXPORT_SYMBOL(udp_proc_register);
2375 
2376 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2377 {
2378 	remove_proc_entry(afinfo->name, net->proc_net);
2379 }
2380 EXPORT_SYMBOL(udp_proc_unregister);
2381 
2382 /* ------------------------------------------------------------------------ */
2383 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2384 		int bucket)
2385 {
2386 	struct inet_sock *inet = inet_sk(sp);
2387 	__be32 dest = inet->inet_daddr;
2388 	__be32 src  = inet->inet_rcv_saddr;
2389 	__u16 destp	  = ntohs(inet->inet_dport);
2390 	__u16 srcp	  = ntohs(inet->inet_sport);
2391 
2392 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2393 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2394 		bucket, src, srcp, dest, destp, sp->sk_state,
2395 		sk_wmem_alloc_get(sp),
2396 		sk_rmem_alloc_get(sp),
2397 		0, 0L, 0,
2398 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2399 		0, sock_i_ino(sp),
2400 		atomic_read(&sp->sk_refcnt), sp,
2401 		atomic_read(&sp->sk_drops));
2402 }
2403 
2404 int udp4_seq_show(struct seq_file *seq, void *v)
2405 {
2406 	seq_setwidth(seq, 127);
2407 	if (v == SEQ_START_TOKEN)
2408 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2409 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2410 			   "inode ref pointer drops");
2411 	else {
2412 		struct udp_iter_state *state = seq->private;
2413 
2414 		udp4_format_sock(v, seq, state->bucket);
2415 	}
2416 	seq_pad(seq, '\n');
2417 	return 0;
2418 }
2419 
2420 static const struct file_operations udp_afinfo_seq_fops = {
2421 	.owner    = THIS_MODULE,
2422 	.open     = udp_seq_open,
2423 	.read     = seq_read,
2424 	.llseek   = seq_lseek,
2425 	.release  = seq_release_net
2426 };
2427 
2428 /* ------------------------------------------------------------------------ */
2429 static struct udp_seq_afinfo udp4_seq_afinfo = {
2430 	.name		= "udp",
2431 	.family		= AF_INET,
2432 	.udp_table	= &udp_table,
2433 	.seq_fops	= &udp_afinfo_seq_fops,
2434 	.seq_ops	= {
2435 		.show		= udp4_seq_show,
2436 	},
2437 };
2438 
2439 static int __net_init udp4_proc_init_net(struct net *net)
2440 {
2441 	return udp_proc_register(net, &udp4_seq_afinfo);
2442 }
2443 
2444 static void __net_exit udp4_proc_exit_net(struct net *net)
2445 {
2446 	udp_proc_unregister(net, &udp4_seq_afinfo);
2447 }
2448 
2449 static struct pernet_operations udp4_net_ops = {
2450 	.init = udp4_proc_init_net,
2451 	.exit = udp4_proc_exit_net,
2452 };
2453 
2454 int __init udp4_proc_init(void)
2455 {
2456 	return register_pernet_subsys(&udp4_net_ops);
2457 }
2458 
2459 void udp4_proc_exit(void)
2460 {
2461 	unregister_pernet_subsys(&udp4_net_ops);
2462 }
2463 #endif /* CONFIG_PROC_FS */
2464 
2465 static __initdata unsigned long uhash_entries;
2466 static int __init set_uhash_entries(char *str)
2467 {
2468 	ssize_t ret;
2469 
2470 	if (!str)
2471 		return 0;
2472 
2473 	ret = kstrtoul(str, 0, &uhash_entries);
2474 	if (ret)
2475 		return 0;
2476 
2477 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2478 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2479 	return 1;
2480 }
2481 __setup("uhash_entries=", set_uhash_entries);
2482 
2483 void __init udp_table_init(struct udp_table *table, const char *name)
2484 {
2485 	unsigned int i;
2486 
2487 	table->hash = alloc_large_system_hash(name,
2488 					      2 * sizeof(struct udp_hslot),
2489 					      uhash_entries,
2490 					      21, /* one slot per 2 MB */
2491 					      0,
2492 					      &table->log,
2493 					      &table->mask,
2494 					      UDP_HTABLE_SIZE_MIN,
2495 					      64 * 1024);
2496 
2497 	table->hash2 = table->hash + (table->mask + 1);
2498 	for (i = 0; i <= table->mask; i++) {
2499 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2500 		table->hash[i].count = 0;
2501 		spin_lock_init(&table->hash[i].lock);
2502 	}
2503 	for (i = 0; i <= table->mask; i++) {
2504 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2505 		table->hash2[i].count = 0;
2506 		spin_lock_init(&table->hash2[i].lock);
2507 	}
2508 }
2509 
2510 void __init udp_init(void)
2511 {
2512 	unsigned long limit;
2513 
2514 	udp_table_init(&udp_table, "UDP");
2515 	limit = nr_free_buffer_pages() / 8;
2516 	limit = max(limit, 128UL);
2517 	sysctl_udp_mem[0] = limit / 4 * 3;
2518 	sysctl_udp_mem[1] = limit;
2519 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2520 
2521 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2522 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2523 }
2524