xref: /openbmc/linux/net/ipv4/udp.c (revision dba8b469)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include "udp_impl.h"
110 
111 struct udp_table udp_table __read_mostly;
112 EXPORT_SYMBOL(udp_table);
113 
114 long sysctl_udp_mem[3] __read_mostly;
115 EXPORT_SYMBOL(sysctl_udp_mem);
116 
117 int sysctl_udp_rmem_min __read_mostly;
118 EXPORT_SYMBOL(sysctl_udp_rmem_min);
119 
120 int sysctl_udp_wmem_min __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_wmem_min);
122 
123 atomic_long_t udp_memory_allocated;
124 EXPORT_SYMBOL(udp_memory_allocated);
125 
126 #define MAX_UDP_PORTS 65536
127 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
128 
129 static int udp_lib_lport_inuse(struct net *net, __u16 num,
130 			       const struct udp_hslot *hslot,
131 			       unsigned long *bitmap,
132 			       struct sock *sk,
133 			       int (*saddr_comp)(const struct sock *sk1,
134 						 const struct sock *sk2),
135 			       unsigned int log)
136 {
137 	struct sock *sk2;
138 	struct hlist_nulls_node *node;
139 
140 	sk_nulls_for_each(sk2, node, &hslot->head)
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    (*saddr_comp)(sk, sk2)) {
148 			if (bitmap)
149 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
150 					  bitmap);
151 			else
152 				return 1;
153 		}
154 	return 0;
155 }
156 
157 /*
158  * Note: we still hold spinlock of primary hash chain, so no other writer
159  * can insert/delete a socket with local_port == num
160  */
161 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
162 			       struct udp_hslot *hslot2,
163 			       struct sock *sk,
164 			       int (*saddr_comp)(const struct sock *sk1,
165 						 const struct sock *sk2))
166 {
167 	struct sock *sk2;
168 	struct hlist_nulls_node *node;
169 	int res = 0;
170 
171 	spin_lock(&hslot2->lock);
172 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
173 		if (net_eq(sock_net(sk2), net) &&
174 		    sk2 != sk &&
175 		    (udp_sk(sk2)->udp_port_hash == num) &&
176 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
177 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
178 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
179 		    (*saddr_comp)(sk, sk2)) {
180 			res = 1;
181 			break;
182 		}
183 	spin_unlock(&hslot2->lock);
184 	return res;
185 }
186 
187 /**
188  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
189  *
190  *  @sk:          socket struct in question
191  *  @snum:        port number to look up
192  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
193  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
194  *                   with NULL address
195  */
196 int udp_lib_get_port(struct sock *sk, unsigned short snum,
197 		       int (*saddr_comp)(const struct sock *sk1,
198 					 const struct sock *sk2),
199 		     unsigned int hash2_nulladdr)
200 {
201 	struct udp_hslot *hslot, *hslot2;
202 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
203 	int    error = 1;
204 	struct net *net = sock_net(sk);
205 
206 	if (!snum) {
207 		int low, high, remaining;
208 		unsigned rand;
209 		unsigned short first, last;
210 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
211 
212 		inet_get_local_port_range(&low, &high);
213 		remaining = (high - low) + 1;
214 
215 		rand = net_random();
216 		first = (((u64)rand * remaining) >> 32) + low;
217 		/*
218 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
219 		 */
220 		rand = (rand | 1) * (udptable->mask + 1);
221 		last = first + udptable->mask + 1;
222 		do {
223 			hslot = udp_hashslot(udptable, net, first);
224 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
225 			spin_lock_bh(&hslot->lock);
226 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
227 					    saddr_comp, udptable->log);
228 
229 			snum = first;
230 			/*
231 			 * Iterate on all possible values of snum for this hash.
232 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
233 			 * give us randomization and full range coverage.
234 			 */
235 			do {
236 				if (low <= snum && snum <= high &&
237 				    !test_bit(snum >> udptable->log, bitmap) &&
238 				    !inet_is_reserved_local_port(snum))
239 					goto found;
240 				snum += rand;
241 			} while (snum != first);
242 			spin_unlock_bh(&hslot->lock);
243 		} while (++first != last);
244 		goto fail;
245 	} else {
246 		hslot = udp_hashslot(udptable, net, snum);
247 		spin_lock_bh(&hslot->lock);
248 		if (hslot->count > 10) {
249 			int exist;
250 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
251 
252 			slot2          &= udptable->mask;
253 			hash2_nulladdr &= udptable->mask;
254 
255 			hslot2 = udp_hashslot2(udptable, slot2);
256 			if (hslot->count < hslot2->count)
257 				goto scan_primary_hash;
258 
259 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
260 						     sk, saddr_comp);
261 			if (!exist && (hash2_nulladdr != slot2)) {
262 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
263 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
264 							     sk, saddr_comp);
265 			}
266 			if (exist)
267 				goto fail_unlock;
268 			else
269 				goto found;
270 		}
271 scan_primary_hash:
272 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
273 					saddr_comp, 0))
274 			goto fail_unlock;
275 	}
276 found:
277 	inet_sk(sk)->inet_num = snum;
278 	udp_sk(sk)->udp_port_hash = snum;
279 	udp_sk(sk)->udp_portaddr_hash ^= snum;
280 	if (sk_unhashed(sk)) {
281 		sk_nulls_add_node_rcu(sk, &hslot->head);
282 		hslot->count++;
283 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
284 
285 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
286 		spin_lock(&hslot2->lock);
287 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
288 					 &hslot2->head);
289 		hslot2->count++;
290 		spin_unlock(&hslot2->lock);
291 	}
292 	error = 0;
293 fail_unlock:
294 	spin_unlock_bh(&hslot->lock);
295 fail:
296 	return error;
297 }
298 EXPORT_SYMBOL(udp_lib_get_port);
299 
300 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
301 {
302 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
303 
304 	return 	(!ipv6_only_sock(sk2)  &&
305 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
306 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
307 }
308 
309 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
310 				       unsigned int port)
311 {
312 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
313 }
314 
315 int udp_v4_get_port(struct sock *sk, unsigned short snum)
316 {
317 	unsigned int hash2_nulladdr =
318 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
319 	unsigned int hash2_partial =
320 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
321 
322 	/* precompute partial secondary hash */
323 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
324 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
325 }
326 
327 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
328 			 unsigned short hnum,
329 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
330 {
331 	int score = -1;
332 
333 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
334 			!ipv6_only_sock(sk)) {
335 		struct inet_sock *inet = inet_sk(sk);
336 
337 		score = (sk->sk_family == PF_INET ? 1 : 0);
338 		if (inet->inet_rcv_saddr) {
339 			if (inet->inet_rcv_saddr != daddr)
340 				return -1;
341 			score += 2;
342 		}
343 		if (inet->inet_daddr) {
344 			if (inet->inet_daddr != saddr)
345 				return -1;
346 			score += 2;
347 		}
348 		if (inet->inet_dport) {
349 			if (inet->inet_dport != sport)
350 				return -1;
351 			score += 2;
352 		}
353 		if (sk->sk_bound_dev_if) {
354 			if (sk->sk_bound_dev_if != dif)
355 				return -1;
356 			score += 2;
357 		}
358 	}
359 	return score;
360 }
361 
362 /*
363  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
364  */
365 #define SCORE2_MAX (1 + 2 + 2 + 2)
366 static inline int compute_score2(struct sock *sk, struct net *net,
367 				 __be32 saddr, __be16 sport,
368 				 __be32 daddr, unsigned int hnum, int dif)
369 {
370 	int score = -1;
371 
372 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
373 		struct inet_sock *inet = inet_sk(sk);
374 
375 		if (inet->inet_rcv_saddr != daddr)
376 			return -1;
377 		if (inet->inet_num != hnum)
378 			return -1;
379 
380 		score = (sk->sk_family == PF_INET ? 1 : 0);
381 		if (inet->inet_daddr) {
382 			if (inet->inet_daddr != saddr)
383 				return -1;
384 			score += 2;
385 		}
386 		if (inet->inet_dport) {
387 			if (inet->inet_dport != sport)
388 				return -1;
389 			score += 2;
390 		}
391 		if (sk->sk_bound_dev_if) {
392 			if (sk->sk_bound_dev_if != dif)
393 				return -1;
394 			score += 2;
395 		}
396 	}
397 	return score;
398 }
399 
400 
401 /* called with read_rcu_lock() */
402 static struct sock *udp4_lib_lookup2(struct net *net,
403 		__be32 saddr, __be16 sport,
404 		__be32 daddr, unsigned int hnum, int dif,
405 		struct udp_hslot *hslot2, unsigned int slot2)
406 {
407 	struct sock *sk, *result;
408 	struct hlist_nulls_node *node;
409 	int score, badness;
410 
411 begin:
412 	result = NULL;
413 	badness = -1;
414 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
415 		score = compute_score2(sk, net, saddr, sport,
416 				      daddr, hnum, dif);
417 		if (score > badness) {
418 			result = sk;
419 			badness = score;
420 			if (score == SCORE2_MAX)
421 				goto exact_match;
422 		}
423 	}
424 	/*
425 	 * if the nulls value we got at the end of this lookup is
426 	 * not the expected one, we must restart lookup.
427 	 * We probably met an item that was moved to another chain.
428 	 */
429 	if (get_nulls_value(node) != slot2)
430 		goto begin;
431 
432 	if (result) {
433 exact_match:
434 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
435 			result = NULL;
436 		else if (unlikely(compute_score2(result, net, saddr, sport,
437 				  daddr, hnum, dif) < badness)) {
438 			sock_put(result);
439 			goto begin;
440 		}
441 	}
442 	return result;
443 }
444 
445 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
446  * harder than this. -DaveM
447  */
448 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
449 		__be16 sport, __be32 daddr, __be16 dport,
450 		int dif, struct udp_table *udptable)
451 {
452 	struct sock *sk, *result;
453 	struct hlist_nulls_node *node;
454 	unsigned short hnum = ntohs(dport);
455 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
456 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
457 	int score, badness;
458 
459 	rcu_read_lock();
460 	if (hslot->count > 10) {
461 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
462 		slot2 = hash2 & udptable->mask;
463 		hslot2 = &udptable->hash2[slot2];
464 		if (hslot->count < hslot2->count)
465 			goto begin;
466 
467 		result = udp4_lib_lookup2(net, saddr, sport,
468 					  daddr, hnum, dif,
469 					  hslot2, slot2);
470 		if (!result) {
471 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
472 			slot2 = hash2 & udptable->mask;
473 			hslot2 = &udptable->hash2[slot2];
474 			if (hslot->count < hslot2->count)
475 				goto begin;
476 
477 			result = udp4_lib_lookup2(net, saddr, sport,
478 						  htonl(INADDR_ANY), hnum, dif,
479 						  hslot2, slot2);
480 		}
481 		rcu_read_unlock();
482 		return result;
483 	}
484 begin:
485 	result = NULL;
486 	badness = -1;
487 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
488 		score = compute_score(sk, net, saddr, hnum, sport,
489 				      daddr, dport, dif);
490 		if (score > badness) {
491 			result = sk;
492 			badness = score;
493 		}
494 	}
495 	/*
496 	 * if the nulls value we got at the end of this lookup is
497 	 * not the expected one, we must restart lookup.
498 	 * We probably met an item that was moved to another chain.
499 	 */
500 	if (get_nulls_value(node) != slot)
501 		goto begin;
502 
503 	if (result) {
504 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
505 			result = NULL;
506 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
507 				  daddr, dport, dif) < badness)) {
508 			sock_put(result);
509 			goto begin;
510 		}
511 	}
512 	rcu_read_unlock();
513 	return result;
514 }
515 
516 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
517 						 __be16 sport, __be16 dport,
518 						 struct udp_table *udptable)
519 {
520 	struct sock *sk;
521 	const struct iphdr *iph = ip_hdr(skb);
522 
523 	if (unlikely(sk = skb_steal_sock(skb)))
524 		return sk;
525 	else
526 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
527 					 iph->daddr, dport, inet_iif(skb),
528 					 udptable);
529 }
530 
531 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
532 			     __be32 daddr, __be16 dport, int dif)
533 {
534 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
535 }
536 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
537 
538 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
539 					     __be16 loc_port, __be32 loc_addr,
540 					     __be16 rmt_port, __be32 rmt_addr,
541 					     int dif)
542 {
543 	struct hlist_nulls_node *node;
544 	struct sock *s = sk;
545 	unsigned short hnum = ntohs(loc_port);
546 
547 	sk_nulls_for_each_from(s, node) {
548 		struct inet_sock *inet = inet_sk(s);
549 
550 		if (!net_eq(sock_net(s), net) ||
551 		    udp_sk(s)->udp_port_hash != hnum ||
552 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
553 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
554 		    (inet->inet_rcv_saddr &&
555 		     inet->inet_rcv_saddr != loc_addr) ||
556 		    ipv6_only_sock(s) ||
557 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
558 			continue;
559 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
560 			continue;
561 		goto found;
562 	}
563 	s = NULL;
564 found:
565 	return s;
566 }
567 
568 /*
569  * This routine is called by the ICMP module when it gets some
570  * sort of error condition.  If err < 0 then the socket should
571  * be closed and the error returned to the user.  If err > 0
572  * it's just the icmp type << 8 | icmp code.
573  * Header points to the ip header of the error packet. We move
574  * on past this. Then (as it used to claim before adjustment)
575  * header points to the first 8 bytes of the udp header.  We need
576  * to find the appropriate port.
577  */
578 
579 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
580 {
581 	struct inet_sock *inet;
582 	const struct iphdr *iph = (const struct iphdr *)skb->data;
583 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
584 	const int type = icmp_hdr(skb)->type;
585 	const int code = icmp_hdr(skb)->code;
586 	struct sock *sk;
587 	int harderr;
588 	int err;
589 	struct net *net = dev_net(skb->dev);
590 
591 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
592 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
593 	if (sk == NULL) {
594 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
595 		return;	/* No socket for error */
596 	}
597 
598 	err = 0;
599 	harderr = 0;
600 	inet = inet_sk(sk);
601 
602 	switch (type) {
603 	default:
604 	case ICMP_TIME_EXCEEDED:
605 		err = EHOSTUNREACH;
606 		break;
607 	case ICMP_SOURCE_QUENCH:
608 		goto out;
609 	case ICMP_PARAMETERPROB:
610 		err = EPROTO;
611 		harderr = 1;
612 		break;
613 	case ICMP_DEST_UNREACH:
614 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
615 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
616 				err = EMSGSIZE;
617 				harderr = 1;
618 				break;
619 			}
620 			goto out;
621 		}
622 		err = EHOSTUNREACH;
623 		if (code <= NR_ICMP_UNREACH) {
624 			harderr = icmp_err_convert[code].fatal;
625 			err = icmp_err_convert[code].errno;
626 		}
627 		break;
628 	}
629 
630 	/*
631 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
632 	 *	4.1.3.3.
633 	 */
634 	if (!inet->recverr) {
635 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
636 			goto out;
637 	} else
638 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
639 
640 	sk->sk_err = err;
641 	sk->sk_error_report(sk);
642 out:
643 	sock_put(sk);
644 }
645 
646 void udp_err(struct sk_buff *skb, u32 info)
647 {
648 	__udp4_lib_err(skb, info, &udp_table);
649 }
650 
651 /*
652  * Throw away all pending data and cancel the corking. Socket is locked.
653  */
654 void udp_flush_pending_frames(struct sock *sk)
655 {
656 	struct udp_sock *up = udp_sk(sk);
657 
658 	if (up->pending) {
659 		up->len = 0;
660 		up->pending = 0;
661 		ip_flush_pending_frames(sk);
662 	}
663 }
664 EXPORT_SYMBOL(udp_flush_pending_frames);
665 
666 /**
667  * 	udp4_hwcsum  -  handle outgoing HW checksumming
668  * 	@skb: 	sk_buff containing the filled-in UDP header
669  * 	        (checksum field must be zeroed out)
670  *	@src:	source IP address
671  *	@dst:	destination IP address
672  */
673 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
674 {
675 	struct udphdr *uh = udp_hdr(skb);
676 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
677 	int offset = skb_transport_offset(skb);
678 	int len = skb->len - offset;
679 	int hlen = len;
680 	__wsum csum = 0;
681 
682 	if (!frags) {
683 		/*
684 		 * Only one fragment on the socket.
685 		 */
686 		skb->csum_start = skb_transport_header(skb) - skb->head;
687 		skb->csum_offset = offsetof(struct udphdr, check);
688 		uh->check = ~csum_tcpudp_magic(src, dst, len,
689 					       IPPROTO_UDP, 0);
690 	} else {
691 		/*
692 		 * HW-checksum won't work as there are two or more
693 		 * fragments on the socket so that all csums of sk_buffs
694 		 * should be together
695 		 */
696 		do {
697 			csum = csum_add(csum, frags->csum);
698 			hlen -= frags->len;
699 		} while ((frags = frags->next));
700 
701 		csum = skb_checksum(skb, offset, hlen, csum);
702 		skb->ip_summed = CHECKSUM_NONE;
703 
704 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
705 		if (uh->check == 0)
706 			uh->check = CSUM_MANGLED_0;
707 	}
708 }
709 
710 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
711 {
712 	struct sock *sk = skb->sk;
713 	struct inet_sock *inet = inet_sk(sk);
714 	struct udphdr *uh;
715 	int err = 0;
716 	int is_udplite = IS_UDPLITE(sk);
717 	int offset = skb_transport_offset(skb);
718 	int len = skb->len - offset;
719 	__wsum csum = 0;
720 
721 	/*
722 	 * Create a UDP header
723 	 */
724 	uh = udp_hdr(skb);
725 	uh->source = inet->inet_sport;
726 	uh->dest = fl4->fl4_dport;
727 	uh->len = htons(len);
728 	uh->check = 0;
729 
730 	if (is_udplite)  				 /*     UDP-Lite      */
731 		csum = udplite_csum(skb);
732 
733 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
734 
735 		skb->ip_summed = CHECKSUM_NONE;
736 		goto send;
737 
738 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
739 
740 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
741 		goto send;
742 
743 	} else
744 		csum = udp_csum(skb);
745 
746 	/* add protocol-dependent pseudo-header */
747 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
748 				      sk->sk_protocol, csum);
749 	if (uh->check == 0)
750 		uh->check = CSUM_MANGLED_0;
751 
752 send:
753 	err = ip_send_skb(skb);
754 	if (err) {
755 		if (err == -ENOBUFS && !inet->recverr) {
756 			UDP_INC_STATS_USER(sock_net(sk),
757 					   UDP_MIB_SNDBUFERRORS, is_udplite);
758 			err = 0;
759 		}
760 	} else
761 		UDP_INC_STATS_USER(sock_net(sk),
762 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
763 	return err;
764 }
765 
766 /*
767  * Push out all pending data as one UDP datagram. Socket is locked.
768  */
769 static int udp_push_pending_frames(struct sock *sk)
770 {
771 	struct udp_sock  *up = udp_sk(sk);
772 	struct inet_sock *inet = inet_sk(sk);
773 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
774 	struct sk_buff *skb;
775 	int err = 0;
776 
777 	skb = ip_finish_skb(sk, fl4);
778 	if (!skb)
779 		goto out;
780 
781 	err = udp_send_skb(skb, fl4);
782 
783 out:
784 	up->len = 0;
785 	up->pending = 0;
786 	return err;
787 }
788 
789 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
790 		size_t len)
791 {
792 	struct inet_sock *inet = inet_sk(sk);
793 	struct udp_sock *up = udp_sk(sk);
794 	struct flowi4 fl4_stack;
795 	struct flowi4 *fl4;
796 	int ulen = len;
797 	struct ipcm_cookie ipc;
798 	struct rtable *rt = NULL;
799 	int free = 0;
800 	int connected = 0;
801 	__be32 daddr, faddr, saddr;
802 	__be16 dport;
803 	u8  tos;
804 	int err, is_udplite = IS_UDPLITE(sk);
805 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
806 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
807 	struct sk_buff *skb;
808 	struct ip_options_data opt_copy;
809 
810 	if (len > 0xFFFF)
811 		return -EMSGSIZE;
812 
813 	/*
814 	 *	Check the flags.
815 	 */
816 
817 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
818 		return -EOPNOTSUPP;
819 
820 	ipc.opt = NULL;
821 	ipc.tx_flags = 0;
822 
823 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
824 
825 	fl4 = &inet->cork.fl.u.ip4;
826 	if (up->pending) {
827 		/*
828 		 * There are pending frames.
829 		 * The socket lock must be held while it's corked.
830 		 */
831 		lock_sock(sk);
832 		if (likely(up->pending)) {
833 			if (unlikely(up->pending != AF_INET)) {
834 				release_sock(sk);
835 				return -EINVAL;
836 			}
837 			goto do_append_data;
838 		}
839 		release_sock(sk);
840 	}
841 	ulen += sizeof(struct udphdr);
842 
843 	/*
844 	 *	Get and verify the address.
845 	 */
846 	if (msg->msg_name) {
847 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
848 		if (msg->msg_namelen < sizeof(*usin))
849 			return -EINVAL;
850 		if (usin->sin_family != AF_INET) {
851 			if (usin->sin_family != AF_UNSPEC)
852 				return -EAFNOSUPPORT;
853 		}
854 
855 		daddr = usin->sin_addr.s_addr;
856 		dport = usin->sin_port;
857 		if (dport == 0)
858 			return -EINVAL;
859 	} else {
860 		if (sk->sk_state != TCP_ESTABLISHED)
861 			return -EDESTADDRREQ;
862 		daddr = inet->inet_daddr;
863 		dport = inet->inet_dport;
864 		/* Open fast path for connected socket.
865 		   Route will not be used, if at least one option is set.
866 		 */
867 		connected = 1;
868 	}
869 	ipc.addr = inet->inet_saddr;
870 
871 	ipc.oif = sk->sk_bound_dev_if;
872 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
873 	if (err)
874 		return err;
875 	if (msg->msg_controllen) {
876 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
877 		if (err)
878 			return err;
879 		if (ipc.opt)
880 			free = 1;
881 		connected = 0;
882 	}
883 	if (!ipc.opt) {
884 		struct ip_options_rcu *inet_opt;
885 
886 		rcu_read_lock();
887 		inet_opt = rcu_dereference(inet->inet_opt);
888 		if (inet_opt) {
889 			memcpy(&opt_copy, inet_opt,
890 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
891 			ipc.opt = &opt_copy.opt;
892 		}
893 		rcu_read_unlock();
894 	}
895 
896 	saddr = ipc.addr;
897 	ipc.addr = faddr = daddr;
898 
899 	if (ipc.opt && ipc.opt->opt.srr) {
900 		if (!daddr)
901 			return -EINVAL;
902 		faddr = ipc.opt->opt.faddr;
903 		connected = 0;
904 	}
905 	tos = RT_TOS(inet->tos);
906 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
907 	    (msg->msg_flags & MSG_DONTROUTE) ||
908 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
909 		tos |= RTO_ONLINK;
910 		connected = 0;
911 	}
912 
913 	if (ipv4_is_multicast(daddr)) {
914 		if (!ipc.oif)
915 			ipc.oif = inet->mc_index;
916 		if (!saddr)
917 			saddr = inet->mc_addr;
918 		connected = 0;
919 	}
920 
921 	if (connected)
922 		rt = (struct rtable *)sk_dst_check(sk, 0);
923 
924 	if (rt == NULL) {
925 		struct net *net = sock_net(sk);
926 
927 		fl4 = &fl4_stack;
928 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
929 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
930 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
931 				   faddr, saddr, dport, inet->inet_sport);
932 
933 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
934 		rt = ip_route_output_flow(net, fl4, sk);
935 		if (IS_ERR(rt)) {
936 			err = PTR_ERR(rt);
937 			rt = NULL;
938 			if (err == -ENETUNREACH)
939 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
940 			goto out;
941 		}
942 
943 		err = -EACCES;
944 		if ((rt->rt_flags & RTCF_BROADCAST) &&
945 		    !sock_flag(sk, SOCK_BROADCAST))
946 			goto out;
947 		if (connected)
948 			sk_dst_set(sk, dst_clone(&rt->dst));
949 	}
950 
951 	if (msg->msg_flags&MSG_CONFIRM)
952 		goto do_confirm;
953 back_from_confirm:
954 
955 	saddr = fl4->saddr;
956 	if (!ipc.addr)
957 		daddr = ipc.addr = fl4->daddr;
958 
959 	/* Lockless fast path for the non-corking case. */
960 	if (!corkreq) {
961 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
962 				  sizeof(struct udphdr), &ipc, &rt,
963 				  msg->msg_flags);
964 		err = PTR_ERR(skb);
965 		if (skb && !IS_ERR(skb))
966 			err = udp_send_skb(skb, fl4);
967 		goto out;
968 	}
969 
970 	lock_sock(sk);
971 	if (unlikely(up->pending)) {
972 		/* The socket is already corked while preparing it. */
973 		/* ... which is an evident application bug. --ANK */
974 		release_sock(sk);
975 
976 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
977 		err = -EINVAL;
978 		goto out;
979 	}
980 	/*
981 	 *	Now cork the socket to pend data.
982 	 */
983 	fl4 = &inet->cork.fl.u.ip4;
984 	fl4->daddr = daddr;
985 	fl4->saddr = saddr;
986 	fl4->fl4_dport = dport;
987 	fl4->fl4_sport = inet->inet_sport;
988 	up->pending = AF_INET;
989 
990 do_append_data:
991 	up->len += ulen;
992 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
993 			     sizeof(struct udphdr), &ipc, &rt,
994 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
995 	if (err)
996 		udp_flush_pending_frames(sk);
997 	else if (!corkreq)
998 		err = udp_push_pending_frames(sk);
999 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1000 		up->pending = 0;
1001 	release_sock(sk);
1002 
1003 out:
1004 	ip_rt_put(rt);
1005 	if (free)
1006 		kfree(ipc.opt);
1007 	if (!err)
1008 		return len;
1009 	/*
1010 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1011 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1012 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1013 	 * things).  We could add another new stat but at least for now that
1014 	 * seems like overkill.
1015 	 */
1016 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1017 		UDP_INC_STATS_USER(sock_net(sk),
1018 				UDP_MIB_SNDBUFERRORS, is_udplite);
1019 	}
1020 	return err;
1021 
1022 do_confirm:
1023 	dst_confirm(&rt->dst);
1024 	if (!(msg->msg_flags&MSG_PROBE) || len)
1025 		goto back_from_confirm;
1026 	err = 0;
1027 	goto out;
1028 }
1029 EXPORT_SYMBOL(udp_sendmsg);
1030 
1031 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1032 		 size_t size, int flags)
1033 {
1034 	struct inet_sock *inet = inet_sk(sk);
1035 	struct udp_sock *up = udp_sk(sk);
1036 	int ret;
1037 
1038 	if (!up->pending) {
1039 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1040 
1041 		/* Call udp_sendmsg to specify destination address which
1042 		 * sendpage interface can't pass.
1043 		 * This will succeed only when the socket is connected.
1044 		 */
1045 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1046 		if (ret < 0)
1047 			return ret;
1048 	}
1049 
1050 	lock_sock(sk);
1051 
1052 	if (unlikely(!up->pending)) {
1053 		release_sock(sk);
1054 
1055 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1056 		return -EINVAL;
1057 	}
1058 
1059 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1060 			     page, offset, size, flags);
1061 	if (ret == -EOPNOTSUPP) {
1062 		release_sock(sk);
1063 		return sock_no_sendpage(sk->sk_socket, page, offset,
1064 					size, flags);
1065 	}
1066 	if (ret < 0) {
1067 		udp_flush_pending_frames(sk);
1068 		goto out;
1069 	}
1070 
1071 	up->len += size;
1072 	if (!(up->corkflag || (flags&MSG_MORE)))
1073 		ret = udp_push_pending_frames(sk);
1074 	if (!ret)
1075 		ret = size;
1076 out:
1077 	release_sock(sk);
1078 	return ret;
1079 }
1080 
1081 
1082 /**
1083  *	first_packet_length	- return length of first packet in receive queue
1084  *	@sk: socket
1085  *
1086  *	Drops all bad checksum frames, until a valid one is found.
1087  *	Returns the length of found skb, or 0 if none is found.
1088  */
1089 static unsigned int first_packet_length(struct sock *sk)
1090 {
1091 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1092 	struct sk_buff *skb;
1093 	unsigned int res;
1094 
1095 	__skb_queue_head_init(&list_kill);
1096 
1097 	spin_lock_bh(&rcvq->lock);
1098 	while ((skb = skb_peek(rcvq)) != NULL &&
1099 		udp_lib_checksum_complete(skb)) {
1100 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1101 				 IS_UDPLITE(sk));
1102 		atomic_inc(&sk->sk_drops);
1103 		__skb_unlink(skb, rcvq);
1104 		__skb_queue_tail(&list_kill, skb);
1105 	}
1106 	res = skb ? skb->len : 0;
1107 	spin_unlock_bh(&rcvq->lock);
1108 
1109 	if (!skb_queue_empty(&list_kill)) {
1110 		bool slow = lock_sock_fast(sk);
1111 
1112 		__skb_queue_purge(&list_kill);
1113 		sk_mem_reclaim_partial(sk);
1114 		unlock_sock_fast(sk, slow);
1115 	}
1116 	return res;
1117 }
1118 
1119 /*
1120  *	IOCTL requests applicable to the UDP protocol
1121  */
1122 
1123 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1124 {
1125 	switch (cmd) {
1126 	case SIOCOUTQ:
1127 	{
1128 		int amount = sk_wmem_alloc_get(sk);
1129 
1130 		return put_user(amount, (int __user *)arg);
1131 	}
1132 
1133 	case SIOCINQ:
1134 	{
1135 		unsigned int amount = first_packet_length(sk);
1136 
1137 		if (amount)
1138 			/*
1139 			 * We will only return the amount
1140 			 * of this packet since that is all
1141 			 * that will be read.
1142 			 */
1143 			amount -= sizeof(struct udphdr);
1144 
1145 		return put_user(amount, (int __user *)arg);
1146 	}
1147 
1148 	default:
1149 		return -ENOIOCTLCMD;
1150 	}
1151 
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(udp_ioctl);
1155 
1156 /*
1157  * 	This should be easy, if there is something there we
1158  * 	return it, otherwise we block.
1159  */
1160 
1161 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1162 		size_t len, int noblock, int flags, int *addr_len)
1163 {
1164 	struct inet_sock *inet = inet_sk(sk);
1165 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1166 	struct sk_buff *skb;
1167 	unsigned int ulen;
1168 	int peeked;
1169 	int err;
1170 	int is_udplite = IS_UDPLITE(sk);
1171 	bool slow;
1172 
1173 	/*
1174 	 *	Check any passed addresses
1175 	 */
1176 	if (addr_len)
1177 		*addr_len = sizeof(*sin);
1178 
1179 	if (flags & MSG_ERRQUEUE)
1180 		return ip_recv_error(sk, msg, len);
1181 
1182 try_again:
1183 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1184 				  &peeked, &err);
1185 	if (!skb)
1186 		goto out;
1187 
1188 	ulen = skb->len - sizeof(struct udphdr);
1189 	if (len > ulen)
1190 		len = ulen;
1191 	else if (len < ulen)
1192 		msg->msg_flags |= MSG_TRUNC;
1193 
1194 	/*
1195 	 * If checksum is needed at all, try to do it while copying the
1196 	 * data.  If the data is truncated, or if we only want a partial
1197 	 * coverage checksum (UDP-Lite), do it before the copy.
1198 	 */
1199 
1200 	if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1201 		if (udp_lib_checksum_complete(skb))
1202 			goto csum_copy_err;
1203 	}
1204 
1205 	if (skb_csum_unnecessary(skb))
1206 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1207 					      msg->msg_iov, len);
1208 	else {
1209 		err = skb_copy_and_csum_datagram_iovec(skb,
1210 						       sizeof(struct udphdr),
1211 						       msg->msg_iov);
1212 
1213 		if (err == -EINVAL)
1214 			goto csum_copy_err;
1215 	}
1216 
1217 	if (err)
1218 		goto out_free;
1219 
1220 	if (!peeked)
1221 		UDP_INC_STATS_USER(sock_net(sk),
1222 				UDP_MIB_INDATAGRAMS, is_udplite);
1223 
1224 	sock_recv_ts_and_drops(msg, sk, skb);
1225 
1226 	/* Copy the address. */
1227 	if (sin) {
1228 		sin->sin_family = AF_INET;
1229 		sin->sin_port = udp_hdr(skb)->source;
1230 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1231 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1232 	}
1233 	if (inet->cmsg_flags)
1234 		ip_cmsg_recv(msg, skb);
1235 
1236 	err = len;
1237 	if (flags & MSG_TRUNC)
1238 		err = ulen;
1239 
1240 out_free:
1241 	skb_free_datagram_locked(sk, skb);
1242 out:
1243 	return err;
1244 
1245 csum_copy_err:
1246 	slow = lock_sock_fast(sk);
1247 	if (!skb_kill_datagram(sk, skb, flags))
1248 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1249 	unlock_sock_fast(sk, slow);
1250 
1251 	if (noblock)
1252 		return -EAGAIN;
1253 
1254 	/* starting over for a new packet */
1255 	msg->msg_flags &= ~MSG_TRUNC;
1256 	goto try_again;
1257 }
1258 
1259 
1260 int udp_disconnect(struct sock *sk, int flags)
1261 {
1262 	struct inet_sock *inet = inet_sk(sk);
1263 	/*
1264 	 *	1003.1g - break association.
1265 	 */
1266 
1267 	sk->sk_state = TCP_CLOSE;
1268 	inet->inet_daddr = 0;
1269 	inet->inet_dport = 0;
1270 	sock_rps_save_rxhash(sk, 0);
1271 	sk->sk_bound_dev_if = 0;
1272 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1273 		inet_reset_saddr(sk);
1274 
1275 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1276 		sk->sk_prot->unhash(sk);
1277 		inet->inet_sport = 0;
1278 	}
1279 	sk_dst_reset(sk);
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(udp_disconnect);
1283 
1284 void udp_lib_unhash(struct sock *sk)
1285 {
1286 	if (sk_hashed(sk)) {
1287 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1288 		struct udp_hslot *hslot, *hslot2;
1289 
1290 		hslot  = udp_hashslot(udptable, sock_net(sk),
1291 				      udp_sk(sk)->udp_port_hash);
1292 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1293 
1294 		spin_lock_bh(&hslot->lock);
1295 		if (sk_nulls_del_node_init_rcu(sk)) {
1296 			hslot->count--;
1297 			inet_sk(sk)->inet_num = 0;
1298 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1299 
1300 			spin_lock(&hslot2->lock);
1301 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1302 			hslot2->count--;
1303 			spin_unlock(&hslot2->lock);
1304 		}
1305 		spin_unlock_bh(&hslot->lock);
1306 	}
1307 }
1308 EXPORT_SYMBOL(udp_lib_unhash);
1309 
1310 /*
1311  * inet_rcv_saddr was changed, we must rehash secondary hash
1312  */
1313 void udp_lib_rehash(struct sock *sk, u16 newhash)
1314 {
1315 	if (sk_hashed(sk)) {
1316 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1317 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1318 
1319 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1320 		nhslot2 = udp_hashslot2(udptable, newhash);
1321 		udp_sk(sk)->udp_portaddr_hash = newhash;
1322 		if (hslot2 != nhslot2) {
1323 			hslot = udp_hashslot(udptable, sock_net(sk),
1324 					     udp_sk(sk)->udp_port_hash);
1325 			/* we must lock primary chain too */
1326 			spin_lock_bh(&hslot->lock);
1327 
1328 			spin_lock(&hslot2->lock);
1329 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1330 			hslot2->count--;
1331 			spin_unlock(&hslot2->lock);
1332 
1333 			spin_lock(&nhslot2->lock);
1334 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1335 						 &nhslot2->head);
1336 			nhslot2->count++;
1337 			spin_unlock(&nhslot2->lock);
1338 
1339 			spin_unlock_bh(&hslot->lock);
1340 		}
1341 	}
1342 }
1343 EXPORT_SYMBOL(udp_lib_rehash);
1344 
1345 static void udp_v4_rehash(struct sock *sk)
1346 {
1347 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1348 					  inet_sk(sk)->inet_rcv_saddr,
1349 					  inet_sk(sk)->inet_num);
1350 	udp_lib_rehash(sk, new_hash);
1351 }
1352 
1353 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1354 {
1355 	int rc;
1356 
1357 	if (inet_sk(sk)->inet_daddr)
1358 		sock_rps_save_rxhash(sk, skb->rxhash);
1359 
1360 	rc = ip_queue_rcv_skb(sk, skb);
1361 	if (rc < 0) {
1362 		int is_udplite = IS_UDPLITE(sk);
1363 
1364 		/* Note that an ENOMEM error is charged twice */
1365 		if (rc == -ENOMEM)
1366 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1367 					 is_udplite);
1368 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1369 		kfree_skb(skb);
1370 		trace_udp_fail_queue_rcv_skb(rc, sk);
1371 		return -1;
1372 	}
1373 
1374 	return 0;
1375 
1376 }
1377 
1378 /* returns:
1379  *  -1: error
1380  *   0: success
1381  *  >0: "udp encap" protocol resubmission
1382  *
1383  * Note that in the success and error cases, the skb is assumed to
1384  * have either been requeued or freed.
1385  */
1386 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1387 {
1388 	struct udp_sock *up = udp_sk(sk);
1389 	int rc;
1390 	int is_udplite = IS_UDPLITE(sk);
1391 
1392 	/*
1393 	 *	Charge it to the socket, dropping if the queue is full.
1394 	 */
1395 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1396 		goto drop;
1397 	nf_reset(skb);
1398 
1399 	if (up->encap_type) {
1400 		/*
1401 		 * This is an encapsulation socket so pass the skb to
1402 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1403 		 * fall through and pass this up the UDP socket.
1404 		 * up->encap_rcv() returns the following value:
1405 		 * =0 if skb was successfully passed to the encap
1406 		 *    handler or was discarded by it.
1407 		 * >0 if skb should be passed on to UDP.
1408 		 * <0 if skb should be resubmitted as proto -N
1409 		 */
1410 
1411 		/* if we're overly short, let UDP handle it */
1412 		if (skb->len > sizeof(struct udphdr) &&
1413 		    up->encap_rcv != NULL) {
1414 			int ret;
1415 
1416 			ret = (*up->encap_rcv)(sk, skb);
1417 			if (ret <= 0) {
1418 				UDP_INC_STATS_BH(sock_net(sk),
1419 						 UDP_MIB_INDATAGRAMS,
1420 						 is_udplite);
1421 				return -ret;
1422 			}
1423 		}
1424 
1425 		/* FALLTHROUGH -- it's a UDP Packet */
1426 	}
1427 
1428 	/*
1429 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1430 	 */
1431 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1432 
1433 		/*
1434 		 * MIB statistics other than incrementing the error count are
1435 		 * disabled for the following two types of errors: these depend
1436 		 * on the application settings, not on the functioning of the
1437 		 * protocol stack as such.
1438 		 *
1439 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1440 		 * way ... to ... at least let the receiving application block
1441 		 * delivery of packets with coverage values less than a value
1442 		 * provided by the application."
1443 		 */
1444 		if (up->pcrlen == 0) {          /* full coverage was set  */
1445 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1446 				"%d while full coverage %d requested\n",
1447 				UDP_SKB_CB(skb)->cscov, skb->len);
1448 			goto drop;
1449 		}
1450 		/* The next case involves violating the min. coverage requested
1451 		 * by the receiver. This is subtle: if receiver wants x and x is
1452 		 * greater than the buffersize/MTU then receiver will complain
1453 		 * that it wants x while sender emits packets of smaller size y.
1454 		 * Therefore the above ...()->partial_cov statement is essential.
1455 		 */
1456 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1457 			LIMIT_NETDEBUG(KERN_WARNING
1458 				"UDPLITE: coverage %d too small, need min %d\n",
1459 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1460 			goto drop;
1461 		}
1462 	}
1463 
1464 	if (rcu_dereference_raw(sk->sk_filter)) {
1465 		if (udp_lib_checksum_complete(skb))
1466 			goto drop;
1467 	}
1468 
1469 
1470 	if (sk_rcvqueues_full(sk, skb))
1471 		goto drop;
1472 
1473 	rc = 0;
1474 
1475 	bh_lock_sock(sk);
1476 	if (!sock_owned_by_user(sk))
1477 		rc = __udp_queue_rcv_skb(sk, skb);
1478 	else if (sk_add_backlog(sk, skb)) {
1479 		bh_unlock_sock(sk);
1480 		goto drop;
1481 	}
1482 	bh_unlock_sock(sk);
1483 
1484 	return rc;
1485 
1486 drop:
1487 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1488 	atomic_inc(&sk->sk_drops);
1489 	kfree_skb(skb);
1490 	return -1;
1491 }
1492 
1493 
1494 static void flush_stack(struct sock **stack, unsigned int count,
1495 			struct sk_buff *skb, unsigned int final)
1496 {
1497 	unsigned int i;
1498 	struct sk_buff *skb1 = NULL;
1499 	struct sock *sk;
1500 
1501 	for (i = 0; i < count; i++) {
1502 		sk = stack[i];
1503 		if (likely(skb1 == NULL))
1504 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1505 
1506 		if (!skb1) {
1507 			atomic_inc(&sk->sk_drops);
1508 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1509 					 IS_UDPLITE(sk));
1510 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1511 					 IS_UDPLITE(sk));
1512 		}
1513 
1514 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1515 			skb1 = NULL;
1516 	}
1517 	if (unlikely(skb1))
1518 		kfree_skb(skb1);
1519 }
1520 
1521 /*
1522  *	Multicasts and broadcasts go to each listener.
1523  *
1524  *	Note: called only from the BH handler context.
1525  */
1526 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1527 				    struct udphdr  *uh,
1528 				    __be32 saddr, __be32 daddr,
1529 				    struct udp_table *udptable)
1530 {
1531 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1532 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1533 	int dif;
1534 	unsigned int i, count = 0;
1535 
1536 	spin_lock(&hslot->lock);
1537 	sk = sk_nulls_head(&hslot->head);
1538 	dif = skb->dev->ifindex;
1539 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1540 	while (sk) {
1541 		stack[count++] = sk;
1542 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1543 				       daddr, uh->source, saddr, dif);
1544 		if (unlikely(count == ARRAY_SIZE(stack))) {
1545 			if (!sk)
1546 				break;
1547 			flush_stack(stack, count, skb, ~0);
1548 			count = 0;
1549 		}
1550 	}
1551 	/*
1552 	 * before releasing chain lock, we must take a reference on sockets
1553 	 */
1554 	for (i = 0; i < count; i++)
1555 		sock_hold(stack[i]);
1556 
1557 	spin_unlock(&hslot->lock);
1558 
1559 	/*
1560 	 * do the slow work with no lock held
1561 	 */
1562 	if (count) {
1563 		flush_stack(stack, count, skb, count - 1);
1564 
1565 		for (i = 0; i < count; i++)
1566 			sock_put(stack[i]);
1567 	} else {
1568 		kfree_skb(skb);
1569 	}
1570 	return 0;
1571 }
1572 
1573 /* Initialize UDP checksum. If exited with zero value (success),
1574  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1575  * Otherwise, csum completion requires chacksumming packet body,
1576  * including udp header and folding it to skb->csum.
1577  */
1578 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1579 				 int proto)
1580 {
1581 	const struct iphdr *iph;
1582 	int err;
1583 
1584 	UDP_SKB_CB(skb)->partial_cov = 0;
1585 	UDP_SKB_CB(skb)->cscov = skb->len;
1586 
1587 	if (proto == IPPROTO_UDPLITE) {
1588 		err = udplite_checksum_init(skb, uh);
1589 		if (err)
1590 			return err;
1591 	}
1592 
1593 	iph = ip_hdr(skb);
1594 	if (uh->check == 0) {
1595 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1596 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1597 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1598 				      proto, skb->csum))
1599 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1600 	}
1601 	if (!skb_csum_unnecessary(skb))
1602 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1603 					       skb->len, proto, 0);
1604 	/* Probably, we should checksum udp header (it should be in cache
1605 	 * in any case) and data in tiny packets (< rx copybreak).
1606 	 */
1607 
1608 	return 0;
1609 }
1610 
1611 /*
1612  *	All we need to do is get the socket, and then do a checksum.
1613  */
1614 
1615 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1616 		   int proto)
1617 {
1618 	struct sock *sk;
1619 	struct udphdr *uh;
1620 	unsigned short ulen;
1621 	struct rtable *rt = skb_rtable(skb);
1622 	__be32 saddr, daddr;
1623 	struct net *net = dev_net(skb->dev);
1624 
1625 	/*
1626 	 *  Validate the packet.
1627 	 */
1628 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1629 		goto drop;		/* No space for header. */
1630 
1631 	uh   = udp_hdr(skb);
1632 	ulen = ntohs(uh->len);
1633 	saddr = ip_hdr(skb)->saddr;
1634 	daddr = ip_hdr(skb)->daddr;
1635 
1636 	if (ulen > skb->len)
1637 		goto short_packet;
1638 
1639 	if (proto == IPPROTO_UDP) {
1640 		/* UDP validates ulen. */
1641 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1642 			goto short_packet;
1643 		uh = udp_hdr(skb);
1644 	}
1645 
1646 	if (udp4_csum_init(skb, uh, proto))
1647 		goto csum_error;
1648 
1649 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1650 		return __udp4_lib_mcast_deliver(net, skb, uh,
1651 				saddr, daddr, udptable);
1652 
1653 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1654 
1655 	if (sk != NULL) {
1656 		int ret = udp_queue_rcv_skb(sk, skb);
1657 		sock_put(sk);
1658 
1659 		/* a return value > 0 means to resubmit the input, but
1660 		 * it wants the return to be -protocol, or 0
1661 		 */
1662 		if (ret > 0)
1663 			return -ret;
1664 		return 0;
1665 	}
1666 
1667 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1668 		goto drop;
1669 	nf_reset(skb);
1670 
1671 	/* No socket. Drop packet silently, if checksum is wrong */
1672 	if (udp_lib_checksum_complete(skb))
1673 		goto csum_error;
1674 
1675 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1676 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1677 
1678 	/*
1679 	 * Hmm.  We got an UDP packet to a port to which we
1680 	 * don't wanna listen.  Ignore it.
1681 	 */
1682 	kfree_skb(skb);
1683 	return 0;
1684 
1685 short_packet:
1686 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1687 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1688 		       &saddr,
1689 		       ntohs(uh->source),
1690 		       ulen,
1691 		       skb->len,
1692 		       &daddr,
1693 		       ntohs(uh->dest));
1694 	goto drop;
1695 
1696 csum_error:
1697 	/*
1698 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1699 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1700 	 */
1701 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1702 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1703 		       &saddr,
1704 		       ntohs(uh->source),
1705 		       &daddr,
1706 		       ntohs(uh->dest),
1707 		       ulen);
1708 drop:
1709 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1710 	kfree_skb(skb);
1711 	return 0;
1712 }
1713 
1714 int udp_rcv(struct sk_buff *skb)
1715 {
1716 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1717 }
1718 
1719 void udp_destroy_sock(struct sock *sk)
1720 {
1721 	bool slow = lock_sock_fast(sk);
1722 	udp_flush_pending_frames(sk);
1723 	unlock_sock_fast(sk, slow);
1724 }
1725 
1726 /*
1727  *	Socket option code for UDP
1728  */
1729 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1730 		       char __user *optval, unsigned int optlen,
1731 		       int (*push_pending_frames)(struct sock *))
1732 {
1733 	struct udp_sock *up = udp_sk(sk);
1734 	int val;
1735 	int err = 0;
1736 	int is_udplite = IS_UDPLITE(sk);
1737 
1738 	if (optlen < sizeof(int))
1739 		return -EINVAL;
1740 
1741 	if (get_user(val, (int __user *)optval))
1742 		return -EFAULT;
1743 
1744 	switch (optname) {
1745 	case UDP_CORK:
1746 		if (val != 0) {
1747 			up->corkflag = 1;
1748 		} else {
1749 			up->corkflag = 0;
1750 			lock_sock(sk);
1751 			(*push_pending_frames)(sk);
1752 			release_sock(sk);
1753 		}
1754 		break;
1755 
1756 	case UDP_ENCAP:
1757 		switch (val) {
1758 		case 0:
1759 		case UDP_ENCAP_ESPINUDP:
1760 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1761 			up->encap_rcv = xfrm4_udp_encap_rcv;
1762 			/* FALLTHROUGH */
1763 		case UDP_ENCAP_L2TPINUDP:
1764 			up->encap_type = val;
1765 			break;
1766 		default:
1767 			err = -ENOPROTOOPT;
1768 			break;
1769 		}
1770 		break;
1771 
1772 	/*
1773 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1774 	 */
1775 	/* The sender sets actual checksum coverage length via this option.
1776 	 * The case coverage > packet length is handled by send module. */
1777 	case UDPLITE_SEND_CSCOV:
1778 		if (!is_udplite)         /* Disable the option on UDP sockets */
1779 			return -ENOPROTOOPT;
1780 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1781 			val = 8;
1782 		else if (val > USHRT_MAX)
1783 			val = USHRT_MAX;
1784 		up->pcslen = val;
1785 		up->pcflag |= UDPLITE_SEND_CC;
1786 		break;
1787 
1788 	/* The receiver specifies a minimum checksum coverage value. To make
1789 	 * sense, this should be set to at least 8 (as done below). If zero is
1790 	 * used, this again means full checksum coverage.                     */
1791 	case UDPLITE_RECV_CSCOV:
1792 		if (!is_udplite)         /* Disable the option on UDP sockets */
1793 			return -ENOPROTOOPT;
1794 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1795 			val = 8;
1796 		else if (val > USHRT_MAX)
1797 			val = USHRT_MAX;
1798 		up->pcrlen = val;
1799 		up->pcflag |= UDPLITE_RECV_CC;
1800 		break;
1801 
1802 	default:
1803 		err = -ENOPROTOOPT;
1804 		break;
1805 	}
1806 
1807 	return err;
1808 }
1809 EXPORT_SYMBOL(udp_lib_setsockopt);
1810 
1811 int udp_setsockopt(struct sock *sk, int level, int optname,
1812 		   char __user *optval, unsigned int optlen)
1813 {
1814 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1815 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1816 					  udp_push_pending_frames);
1817 	return ip_setsockopt(sk, level, optname, optval, optlen);
1818 }
1819 
1820 #ifdef CONFIG_COMPAT
1821 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1822 			  char __user *optval, unsigned int optlen)
1823 {
1824 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1825 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1826 					  udp_push_pending_frames);
1827 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1828 }
1829 #endif
1830 
1831 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1832 		       char __user *optval, int __user *optlen)
1833 {
1834 	struct udp_sock *up = udp_sk(sk);
1835 	int val, len;
1836 
1837 	if (get_user(len, optlen))
1838 		return -EFAULT;
1839 
1840 	len = min_t(unsigned int, len, sizeof(int));
1841 
1842 	if (len < 0)
1843 		return -EINVAL;
1844 
1845 	switch (optname) {
1846 	case UDP_CORK:
1847 		val = up->corkflag;
1848 		break;
1849 
1850 	case UDP_ENCAP:
1851 		val = up->encap_type;
1852 		break;
1853 
1854 	/* The following two cannot be changed on UDP sockets, the return is
1855 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1856 	case UDPLITE_SEND_CSCOV:
1857 		val = up->pcslen;
1858 		break;
1859 
1860 	case UDPLITE_RECV_CSCOV:
1861 		val = up->pcrlen;
1862 		break;
1863 
1864 	default:
1865 		return -ENOPROTOOPT;
1866 	}
1867 
1868 	if (put_user(len, optlen))
1869 		return -EFAULT;
1870 	if (copy_to_user(optval, &val, len))
1871 		return -EFAULT;
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL(udp_lib_getsockopt);
1875 
1876 int udp_getsockopt(struct sock *sk, int level, int optname,
1877 		   char __user *optval, int __user *optlen)
1878 {
1879 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1880 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1881 	return ip_getsockopt(sk, level, optname, optval, optlen);
1882 }
1883 
1884 #ifdef CONFIG_COMPAT
1885 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1886 				 char __user *optval, int __user *optlen)
1887 {
1888 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1889 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1890 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1891 }
1892 #endif
1893 /**
1894  * 	udp_poll - wait for a UDP event.
1895  *	@file - file struct
1896  *	@sock - socket
1897  *	@wait - poll table
1898  *
1899  *	This is same as datagram poll, except for the special case of
1900  *	blocking sockets. If application is using a blocking fd
1901  *	and a packet with checksum error is in the queue;
1902  *	then it could get return from select indicating data available
1903  *	but then block when reading it. Add special case code
1904  *	to work around these arguably broken applications.
1905  */
1906 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1907 {
1908 	unsigned int mask = datagram_poll(file, sock, wait);
1909 	struct sock *sk = sock->sk;
1910 
1911 	/* Check for false positives due to checksum errors */
1912 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1913 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1914 		mask &= ~(POLLIN | POLLRDNORM);
1915 
1916 	return mask;
1917 
1918 }
1919 EXPORT_SYMBOL(udp_poll);
1920 
1921 struct proto udp_prot = {
1922 	.name		   = "UDP",
1923 	.owner		   = THIS_MODULE,
1924 	.close		   = udp_lib_close,
1925 	.connect	   = ip4_datagram_connect,
1926 	.disconnect	   = udp_disconnect,
1927 	.ioctl		   = udp_ioctl,
1928 	.destroy	   = udp_destroy_sock,
1929 	.setsockopt	   = udp_setsockopt,
1930 	.getsockopt	   = udp_getsockopt,
1931 	.sendmsg	   = udp_sendmsg,
1932 	.recvmsg	   = udp_recvmsg,
1933 	.sendpage	   = udp_sendpage,
1934 	.backlog_rcv	   = __udp_queue_rcv_skb,
1935 	.hash		   = udp_lib_hash,
1936 	.unhash		   = udp_lib_unhash,
1937 	.rehash		   = udp_v4_rehash,
1938 	.get_port	   = udp_v4_get_port,
1939 	.memory_allocated  = &udp_memory_allocated,
1940 	.sysctl_mem	   = sysctl_udp_mem,
1941 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1942 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1943 	.obj_size	   = sizeof(struct udp_sock),
1944 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1945 	.h.udp_table	   = &udp_table,
1946 #ifdef CONFIG_COMPAT
1947 	.compat_setsockopt = compat_udp_setsockopt,
1948 	.compat_getsockopt = compat_udp_getsockopt,
1949 #endif
1950 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1951 };
1952 EXPORT_SYMBOL(udp_prot);
1953 
1954 /* ------------------------------------------------------------------------ */
1955 #ifdef CONFIG_PROC_FS
1956 
1957 static struct sock *udp_get_first(struct seq_file *seq, int start)
1958 {
1959 	struct sock *sk;
1960 	struct udp_iter_state *state = seq->private;
1961 	struct net *net = seq_file_net(seq);
1962 
1963 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1964 	     ++state->bucket) {
1965 		struct hlist_nulls_node *node;
1966 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1967 
1968 		if (hlist_nulls_empty(&hslot->head))
1969 			continue;
1970 
1971 		spin_lock_bh(&hslot->lock);
1972 		sk_nulls_for_each(sk, node, &hslot->head) {
1973 			if (!net_eq(sock_net(sk), net))
1974 				continue;
1975 			if (sk->sk_family == state->family)
1976 				goto found;
1977 		}
1978 		spin_unlock_bh(&hslot->lock);
1979 	}
1980 	sk = NULL;
1981 found:
1982 	return sk;
1983 }
1984 
1985 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1986 {
1987 	struct udp_iter_state *state = seq->private;
1988 	struct net *net = seq_file_net(seq);
1989 
1990 	do {
1991 		sk = sk_nulls_next(sk);
1992 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1993 
1994 	if (!sk) {
1995 		if (state->bucket <= state->udp_table->mask)
1996 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1997 		return udp_get_first(seq, state->bucket + 1);
1998 	}
1999 	return sk;
2000 }
2001 
2002 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2003 {
2004 	struct sock *sk = udp_get_first(seq, 0);
2005 
2006 	if (sk)
2007 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2008 			--pos;
2009 	return pos ? NULL : sk;
2010 }
2011 
2012 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2013 {
2014 	struct udp_iter_state *state = seq->private;
2015 	state->bucket = MAX_UDP_PORTS;
2016 
2017 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2018 }
2019 
2020 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2021 {
2022 	struct sock *sk;
2023 
2024 	if (v == SEQ_START_TOKEN)
2025 		sk = udp_get_idx(seq, 0);
2026 	else
2027 		sk = udp_get_next(seq, v);
2028 
2029 	++*pos;
2030 	return sk;
2031 }
2032 
2033 static void udp_seq_stop(struct seq_file *seq, void *v)
2034 {
2035 	struct udp_iter_state *state = seq->private;
2036 
2037 	if (state->bucket <= state->udp_table->mask)
2038 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2039 }
2040 
2041 static int udp_seq_open(struct inode *inode, struct file *file)
2042 {
2043 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2044 	struct udp_iter_state *s;
2045 	int err;
2046 
2047 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2048 			   sizeof(struct udp_iter_state));
2049 	if (err < 0)
2050 		return err;
2051 
2052 	s = ((struct seq_file *)file->private_data)->private;
2053 	s->family		= afinfo->family;
2054 	s->udp_table		= afinfo->udp_table;
2055 	return err;
2056 }
2057 
2058 /* ------------------------------------------------------------------------ */
2059 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2060 {
2061 	struct proc_dir_entry *p;
2062 	int rc = 0;
2063 
2064 	afinfo->seq_fops.open		= udp_seq_open;
2065 	afinfo->seq_fops.read		= seq_read;
2066 	afinfo->seq_fops.llseek		= seq_lseek;
2067 	afinfo->seq_fops.release	= seq_release_net;
2068 
2069 	afinfo->seq_ops.start		= udp_seq_start;
2070 	afinfo->seq_ops.next		= udp_seq_next;
2071 	afinfo->seq_ops.stop		= udp_seq_stop;
2072 
2073 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2074 			     &afinfo->seq_fops, afinfo);
2075 	if (!p)
2076 		rc = -ENOMEM;
2077 	return rc;
2078 }
2079 EXPORT_SYMBOL(udp_proc_register);
2080 
2081 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2082 {
2083 	proc_net_remove(net, afinfo->name);
2084 }
2085 EXPORT_SYMBOL(udp_proc_unregister);
2086 
2087 /* ------------------------------------------------------------------------ */
2088 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2089 		int bucket, int *len)
2090 {
2091 	struct inet_sock *inet = inet_sk(sp);
2092 	__be32 dest = inet->inet_daddr;
2093 	__be32 src  = inet->inet_rcv_saddr;
2094 	__u16 destp	  = ntohs(inet->inet_dport);
2095 	__u16 srcp	  = ntohs(inet->inet_sport);
2096 
2097 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2098 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2099 		bucket, src, srcp, dest, destp, sp->sk_state,
2100 		sk_wmem_alloc_get(sp),
2101 		sk_rmem_alloc_get(sp),
2102 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2103 		atomic_read(&sp->sk_refcnt), sp,
2104 		atomic_read(&sp->sk_drops), len);
2105 }
2106 
2107 int udp4_seq_show(struct seq_file *seq, void *v)
2108 {
2109 	if (v == SEQ_START_TOKEN)
2110 		seq_printf(seq, "%-127s\n",
2111 			   "  sl  local_address rem_address   st tx_queue "
2112 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2113 			   "inode ref pointer drops");
2114 	else {
2115 		struct udp_iter_state *state = seq->private;
2116 		int len;
2117 
2118 		udp4_format_sock(v, seq, state->bucket, &len);
2119 		seq_printf(seq, "%*s\n", 127 - len, "");
2120 	}
2121 	return 0;
2122 }
2123 
2124 /* ------------------------------------------------------------------------ */
2125 static struct udp_seq_afinfo udp4_seq_afinfo = {
2126 	.name		= "udp",
2127 	.family		= AF_INET,
2128 	.udp_table	= &udp_table,
2129 	.seq_fops	= {
2130 		.owner	=	THIS_MODULE,
2131 	},
2132 	.seq_ops	= {
2133 		.show		= udp4_seq_show,
2134 	},
2135 };
2136 
2137 static int __net_init udp4_proc_init_net(struct net *net)
2138 {
2139 	return udp_proc_register(net, &udp4_seq_afinfo);
2140 }
2141 
2142 static void __net_exit udp4_proc_exit_net(struct net *net)
2143 {
2144 	udp_proc_unregister(net, &udp4_seq_afinfo);
2145 }
2146 
2147 static struct pernet_operations udp4_net_ops = {
2148 	.init = udp4_proc_init_net,
2149 	.exit = udp4_proc_exit_net,
2150 };
2151 
2152 int __init udp4_proc_init(void)
2153 {
2154 	return register_pernet_subsys(&udp4_net_ops);
2155 }
2156 
2157 void udp4_proc_exit(void)
2158 {
2159 	unregister_pernet_subsys(&udp4_net_ops);
2160 }
2161 #endif /* CONFIG_PROC_FS */
2162 
2163 static __initdata unsigned long uhash_entries;
2164 static int __init set_uhash_entries(char *str)
2165 {
2166 	if (!str)
2167 		return 0;
2168 	uhash_entries = simple_strtoul(str, &str, 0);
2169 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2170 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2171 	return 1;
2172 }
2173 __setup("uhash_entries=", set_uhash_entries);
2174 
2175 void __init udp_table_init(struct udp_table *table, const char *name)
2176 {
2177 	unsigned int i;
2178 
2179 	if (!CONFIG_BASE_SMALL)
2180 		table->hash = alloc_large_system_hash(name,
2181 			2 * sizeof(struct udp_hslot),
2182 			uhash_entries,
2183 			21, /* one slot per 2 MB */
2184 			0,
2185 			&table->log,
2186 			&table->mask,
2187 			64 * 1024);
2188 	/*
2189 	 * Make sure hash table has the minimum size
2190 	 */
2191 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2192 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2193 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2194 		if (!table->hash)
2195 			panic(name);
2196 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2197 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2198 	}
2199 	table->hash2 = table->hash + (table->mask + 1);
2200 	for (i = 0; i <= table->mask; i++) {
2201 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2202 		table->hash[i].count = 0;
2203 		spin_lock_init(&table->hash[i].lock);
2204 	}
2205 	for (i = 0; i <= table->mask; i++) {
2206 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2207 		table->hash2[i].count = 0;
2208 		spin_lock_init(&table->hash2[i].lock);
2209 	}
2210 }
2211 
2212 void __init udp_init(void)
2213 {
2214 	unsigned long limit;
2215 
2216 	udp_table_init(&udp_table, "UDP");
2217 	limit = nr_free_buffer_pages() / 8;
2218 	limit = max(limit, 128UL);
2219 	sysctl_udp_mem[0] = limit / 4 * 3;
2220 	sysctl_udp_mem[1] = limit;
2221 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2222 
2223 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2224 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2225 }
2226 
2227 int udp4_ufo_send_check(struct sk_buff *skb)
2228 {
2229 	const struct iphdr *iph;
2230 	struct udphdr *uh;
2231 
2232 	if (!pskb_may_pull(skb, sizeof(*uh)))
2233 		return -EINVAL;
2234 
2235 	iph = ip_hdr(skb);
2236 	uh = udp_hdr(skb);
2237 
2238 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2239 				       IPPROTO_UDP, 0);
2240 	skb->csum_start = skb_transport_header(skb) - skb->head;
2241 	skb->csum_offset = offsetof(struct udphdr, check);
2242 	skb->ip_summed = CHECKSUM_PARTIAL;
2243 	return 0;
2244 }
2245 
2246 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, u32 features)
2247 {
2248 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2249 	unsigned int mss;
2250 	int offset;
2251 	__wsum csum;
2252 
2253 	mss = skb_shinfo(skb)->gso_size;
2254 	if (unlikely(skb->len <= mss))
2255 		goto out;
2256 
2257 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2258 		/* Packet is from an untrusted source, reset gso_segs. */
2259 		int type = skb_shinfo(skb)->gso_type;
2260 
2261 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2262 			     !(type & (SKB_GSO_UDP))))
2263 			goto out;
2264 
2265 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2266 
2267 		segs = NULL;
2268 		goto out;
2269 	}
2270 
2271 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2272 	 * do checksum of UDP packets sent as multiple IP fragments.
2273 	 */
2274 	offset = skb_checksum_start_offset(skb);
2275 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2276 	offset += skb->csum_offset;
2277 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2278 	skb->ip_summed = CHECKSUM_NONE;
2279 
2280 	/* Fragment the skb. IP headers of the fragments are updated in
2281 	 * inet_gso_segment()
2282 	 */
2283 	segs = skb_segment(skb, features);
2284 out:
2285 	return segs;
2286 }
2287 
2288