1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <linux/btf_ids.h> 110 #include <trace/events/skb.h> 111 #include <net/busy_poll.h> 112 #include "udp_impl.h" 113 #include <net/sock_reuseport.h> 114 #include <net/addrconf.h> 115 #include <net/udp_tunnel.h> 116 #if IS_ENABLED(CONFIG_IPV6) 117 #include <net/ipv6_stubs.h> 118 #endif 119 120 struct udp_table udp_table __read_mostly; 121 EXPORT_SYMBOL(udp_table); 122 123 long sysctl_udp_mem[3] __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_mem); 125 126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 127 EXPORT_SYMBOL(udp_memory_allocated); 128 129 #define MAX_UDP_PORTS 65536 130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 131 132 static int udp_lib_lport_inuse(struct net *net, __u16 num, 133 const struct udp_hslot *hslot, 134 unsigned long *bitmap, 135 struct sock *sk, unsigned int log) 136 { 137 struct sock *sk2; 138 kuid_t uid = sock_i_uid(sk); 139 140 sk_for_each(sk2, &hslot->head) { 141 if (net_eq(sock_net(sk2), net) && 142 sk2 != sk && 143 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 144 (!sk2->sk_reuse || !sk->sk_reuse) && 145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 147 inet_rcv_saddr_equal(sk, sk2, true)) { 148 if (sk2->sk_reuseport && sk->sk_reuseport && 149 !rcu_access_pointer(sk->sk_reuseport_cb) && 150 uid_eq(uid, sock_i_uid(sk2))) { 151 if (!bitmap) 152 return 0; 153 } else { 154 if (!bitmap) 155 return 1; 156 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 157 bitmap); 158 } 159 } 160 } 161 return 0; 162 } 163 164 /* 165 * Note: we still hold spinlock of primary hash chain, so no other writer 166 * can insert/delete a socket with local_port == num 167 */ 168 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 169 struct udp_hslot *hslot2, 170 struct sock *sk) 171 { 172 struct sock *sk2; 173 kuid_t uid = sock_i_uid(sk); 174 int res = 0; 175 176 spin_lock(&hslot2->lock); 177 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 178 if (net_eq(sock_net(sk2), net) && 179 sk2 != sk && 180 (udp_sk(sk2)->udp_port_hash == num) && 181 (!sk2->sk_reuse || !sk->sk_reuse) && 182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 184 inet_rcv_saddr_equal(sk, sk2, true)) { 185 if (sk2->sk_reuseport && sk->sk_reuseport && 186 !rcu_access_pointer(sk->sk_reuseport_cb) && 187 uid_eq(uid, sock_i_uid(sk2))) { 188 res = 0; 189 } else { 190 res = 1; 191 } 192 break; 193 } 194 } 195 spin_unlock(&hslot2->lock); 196 return res; 197 } 198 199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 200 { 201 struct net *net = sock_net(sk); 202 kuid_t uid = sock_i_uid(sk); 203 struct sock *sk2; 204 205 sk_for_each(sk2, &hslot->head) { 206 if (net_eq(sock_net(sk2), net) && 207 sk2 != sk && 208 sk2->sk_family == sk->sk_family && 209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 213 inet_rcv_saddr_equal(sk, sk2, false)) { 214 return reuseport_add_sock(sk, sk2, 215 inet_rcv_saddr_any(sk)); 216 } 217 } 218 219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 220 } 221 222 /** 223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 224 * 225 * @sk: socket struct in question 226 * @snum: port number to look up 227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 228 * with NULL address 229 */ 230 int udp_lib_get_port(struct sock *sk, unsigned short snum, 231 unsigned int hash2_nulladdr) 232 { 233 struct udp_hslot *hslot, *hslot2; 234 struct udp_table *udptable = sk->sk_prot->h.udp_table; 235 int error = 1; 236 struct net *net = sock_net(sk); 237 238 if (!snum) { 239 int low, high, remaining; 240 unsigned int rand; 241 unsigned short first, last; 242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 243 244 inet_get_local_port_range(net, &low, &high); 245 remaining = (high - low) + 1; 246 247 rand = prandom_u32(); 248 first = reciprocal_scale(rand, remaining) + low; 249 /* 250 * force rand to be an odd multiple of UDP_HTABLE_SIZE 251 */ 252 rand = (rand | 1) * (udptable->mask + 1); 253 last = first + udptable->mask + 1; 254 do { 255 hslot = udp_hashslot(udptable, net, first); 256 bitmap_zero(bitmap, PORTS_PER_CHAIN); 257 spin_lock_bh(&hslot->lock); 258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 259 udptable->log); 260 261 snum = first; 262 /* 263 * Iterate on all possible values of snum for this hash. 264 * Using steps of an odd multiple of UDP_HTABLE_SIZE 265 * give us randomization and full range coverage. 266 */ 267 do { 268 if (low <= snum && snum <= high && 269 !test_bit(snum >> udptable->log, bitmap) && 270 !inet_is_local_reserved_port(net, snum)) 271 goto found; 272 snum += rand; 273 } while (snum != first); 274 spin_unlock_bh(&hslot->lock); 275 cond_resched(); 276 } while (++first != last); 277 goto fail; 278 } else { 279 hslot = udp_hashslot(udptable, net, snum); 280 spin_lock_bh(&hslot->lock); 281 if (hslot->count > 10) { 282 int exist; 283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 284 285 slot2 &= udptable->mask; 286 hash2_nulladdr &= udptable->mask; 287 288 hslot2 = udp_hashslot2(udptable, slot2); 289 if (hslot->count < hslot2->count) 290 goto scan_primary_hash; 291 292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 293 if (!exist && (hash2_nulladdr != slot2)) { 294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 295 exist = udp_lib_lport_inuse2(net, snum, hslot2, 296 sk); 297 } 298 if (exist) 299 goto fail_unlock; 300 else 301 goto found; 302 } 303 scan_primary_hash: 304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 305 goto fail_unlock; 306 } 307 found: 308 inet_sk(sk)->inet_num = snum; 309 udp_sk(sk)->udp_port_hash = snum; 310 udp_sk(sk)->udp_portaddr_hash ^= snum; 311 if (sk_unhashed(sk)) { 312 if (sk->sk_reuseport && 313 udp_reuseport_add_sock(sk, hslot)) { 314 inet_sk(sk)->inet_num = 0; 315 udp_sk(sk)->udp_port_hash = 0; 316 udp_sk(sk)->udp_portaddr_hash ^= snum; 317 goto fail_unlock; 318 } 319 320 sk_add_node_rcu(sk, &hslot->head); 321 hslot->count++; 322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 323 324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 325 spin_lock(&hslot2->lock); 326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 327 sk->sk_family == AF_INET6) 328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 329 &hslot2->head); 330 else 331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 332 &hslot2->head); 333 hslot2->count++; 334 spin_unlock(&hslot2->lock); 335 } 336 sock_set_flag(sk, SOCK_RCU_FREE); 337 error = 0; 338 fail_unlock: 339 spin_unlock_bh(&hslot->lock); 340 fail: 341 return error; 342 } 343 EXPORT_SYMBOL(udp_lib_get_port); 344 345 int udp_v4_get_port(struct sock *sk, unsigned short snum) 346 { 347 unsigned int hash2_nulladdr = 348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 349 unsigned int hash2_partial = 350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 351 352 /* precompute partial secondary hash */ 353 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 354 return udp_lib_get_port(sk, snum, hash2_nulladdr); 355 } 356 357 static int compute_score(struct sock *sk, struct net *net, 358 __be32 saddr, __be16 sport, 359 __be32 daddr, unsigned short hnum, 360 int dif, int sdif) 361 { 362 int score; 363 struct inet_sock *inet; 364 bool dev_match; 365 366 if (!net_eq(sock_net(sk), net) || 367 udp_sk(sk)->udp_port_hash != hnum || 368 ipv6_only_sock(sk)) 369 return -1; 370 371 if (sk->sk_rcv_saddr != daddr) 372 return -1; 373 374 score = (sk->sk_family == PF_INET) ? 2 : 1; 375 376 inet = inet_sk(sk); 377 if (inet->inet_daddr) { 378 if (inet->inet_daddr != saddr) 379 return -1; 380 score += 4; 381 } 382 383 if (inet->inet_dport) { 384 if (inet->inet_dport != sport) 385 return -1; 386 score += 4; 387 } 388 389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 390 dif, sdif); 391 if (!dev_match) 392 return -1; 393 if (sk->sk_bound_dev_if) 394 score += 4; 395 396 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 397 score++; 398 return score; 399 } 400 401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 402 const __u16 lport, const __be32 faddr, 403 const __be16 fport) 404 { 405 static u32 udp_ehash_secret __read_mostly; 406 407 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 408 409 return __inet_ehashfn(laddr, lport, faddr, fport, 410 udp_ehash_secret + net_hash_mix(net)); 411 } 412 413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 414 struct sk_buff *skb, 415 __be32 saddr, __be16 sport, 416 __be32 daddr, unsigned short hnum) 417 { 418 struct sock *reuse_sk = NULL; 419 u32 hash; 420 421 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 422 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 423 reuse_sk = reuseport_select_sock(sk, hash, skb, 424 sizeof(struct udphdr)); 425 } 426 return reuse_sk; 427 } 428 429 /* called with rcu_read_lock() */ 430 static struct sock *udp4_lib_lookup2(struct net *net, 431 __be32 saddr, __be16 sport, 432 __be32 daddr, unsigned int hnum, 433 int dif, int sdif, 434 struct udp_hslot *hslot2, 435 struct sk_buff *skb) 436 { 437 struct sock *sk, *result; 438 int score, badness; 439 440 result = NULL; 441 badness = 0; 442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 443 score = compute_score(sk, net, saddr, sport, 444 daddr, hnum, dif, sdif); 445 if (score > badness) { 446 result = lookup_reuseport(net, sk, skb, 447 saddr, sport, daddr, hnum); 448 /* Fall back to scoring if group has connections */ 449 if (result && !reuseport_has_conns(sk, false)) 450 return result; 451 452 result = result ? : sk; 453 badness = score; 454 } 455 } 456 return result; 457 } 458 459 static struct sock *udp4_lookup_run_bpf(struct net *net, 460 struct udp_table *udptable, 461 struct sk_buff *skb, 462 __be32 saddr, __be16 sport, 463 __be32 daddr, u16 hnum, const int dif) 464 { 465 struct sock *sk, *reuse_sk; 466 bool no_reuseport; 467 468 if (udptable != &udp_table) 469 return NULL; /* only UDP is supported */ 470 471 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 472 daddr, hnum, dif, &sk); 473 if (no_reuseport || IS_ERR_OR_NULL(sk)) 474 return sk; 475 476 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 477 if (reuse_sk) 478 sk = reuse_sk; 479 return sk; 480 } 481 482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 483 * harder than this. -DaveM 484 */ 485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 486 __be16 sport, __be32 daddr, __be16 dport, int dif, 487 int sdif, struct udp_table *udptable, struct sk_buff *skb) 488 { 489 unsigned short hnum = ntohs(dport); 490 unsigned int hash2, slot2; 491 struct udp_hslot *hslot2; 492 struct sock *result, *sk; 493 494 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 495 slot2 = hash2 & udptable->mask; 496 hslot2 = &udptable->hash2[slot2]; 497 498 /* Lookup connected or non-wildcard socket */ 499 result = udp4_lib_lookup2(net, saddr, sport, 500 daddr, hnum, dif, sdif, 501 hslot2, skb); 502 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 503 goto done; 504 505 /* Lookup redirect from BPF */ 506 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 507 sk = udp4_lookup_run_bpf(net, udptable, skb, 508 saddr, sport, daddr, hnum, dif); 509 if (sk) { 510 result = sk; 511 goto done; 512 } 513 } 514 515 /* Got non-wildcard socket or error on first lookup */ 516 if (result) 517 goto done; 518 519 /* Lookup wildcard sockets */ 520 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 521 slot2 = hash2 & udptable->mask; 522 hslot2 = &udptable->hash2[slot2]; 523 524 result = udp4_lib_lookup2(net, saddr, sport, 525 htonl(INADDR_ANY), hnum, dif, sdif, 526 hslot2, skb); 527 done: 528 if (IS_ERR(result)) 529 return NULL; 530 return result; 531 } 532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 533 534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 535 __be16 sport, __be16 dport, 536 struct udp_table *udptable) 537 { 538 const struct iphdr *iph = ip_hdr(skb); 539 540 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 541 iph->daddr, dport, inet_iif(skb), 542 inet_sdif(skb), udptable, skb); 543 } 544 545 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 546 __be16 sport, __be16 dport) 547 { 548 const struct iphdr *iph = ip_hdr(skb); 549 550 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 551 iph->daddr, dport, inet_iif(skb), 552 inet_sdif(skb), &udp_table, NULL); 553 } 554 555 /* Must be called under rcu_read_lock(). 556 * Does increment socket refcount. 557 */ 558 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 559 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 560 __be32 daddr, __be16 dport, int dif) 561 { 562 struct sock *sk; 563 564 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 565 dif, 0, &udp_table, NULL); 566 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 567 sk = NULL; 568 return sk; 569 } 570 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 571 #endif 572 573 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 574 __be16 loc_port, __be32 loc_addr, 575 __be16 rmt_port, __be32 rmt_addr, 576 int dif, int sdif, unsigned short hnum) 577 { 578 struct inet_sock *inet = inet_sk(sk); 579 580 if (!net_eq(sock_net(sk), net) || 581 udp_sk(sk)->udp_port_hash != hnum || 582 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 583 (inet->inet_dport != rmt_port && inet->inet_dport) || 584 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 585 ipv6_only_sock(sk) || 586 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 587 return false; 588 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 589 return false; 590 return true; 591 } 592 593 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 594 void udp_encap_enable(void) 595 { 596 static_branch_inc(&udp_encap_needed_key); 597 } 598 EXPORT_SYMBOL(udp_encap_enable); 599 600 void udp_encap_disable(void) 601 { 602 static_branch_dec(&udp_encap_needed_key); 603 } 604 EXPORT_SYMBOL(udp_encap_disable); 605 606 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 607 * through error handlers in encapsulations looking for a match. 608 */ 609 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 610 { 611 int i; 612 613 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 614 int (*handler)(struct sk_buff *skb, u32 info); 615 const struct ip_tunnel_encap_ops *encap; 616 617 encap = rcu_dereference(iptun_encaps[i]); 618 if (!encap) 619 continue; 620 handler = encap->err_handler; 621 if (handler && !handler(skb, info)) 622 return 0; 623 } 624 625 return -ENOENT; 626 } 627 628 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 629 * reversing source and destination port: this will match tunnels that force the 630 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 631 * lwtunnels might actually break this assumption by being configured with 632 * different destination ports on endpoints, in this case we won't be able to 633 * trace ICMP messages back to them. 634 * 635 * If this doesn't match any socket, probe tunnels with arbitrary destination 636 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 637 * we've sent packets to won't necessarily match the local destination port. 638 * 639 * Then ask the tunnel implementation to match the error against a valid 640 * association. 641 * 642 * Return an error if we can't find a match, the socket if we need further 643 * processing, zero otherwise. 644 */ 645 static struct sock *__udp4_lib_err_encap(struct net *net, 646 const struct iphdr *iph, 647 struct udphdr *uh, 648 struct udp_table *udptable, 649 struct sock *sk, 650 struct sk_buff *skb, u32 info) 651 { 652 int (*lookup)(struct sock *sk, struct sk_buff *skb); 653 int network_offset, transport_offset; 654 struct udp_sock *up; 655 656 network_offset = skb_network_offset(skb); 657 transport_offset = skb_transport_offset(skb); 658 659 /* Network header needs to point to the outer IPv4 header inside ICMP */ 660 skb_reset_network_header(skb); 661 662 /* Transport header needs to point to the UDP header */ 663 skb_set_transport_header(skb, iph->ihl << 2); 664 665 if (sk) { 666 up = udp_sk(sk); 667 668 lookup = READ_ONCE(up->encap_err_lookup); 669 if (lookup && lookup(sk, skb)) 670 sk = NULL; 671 672 goto out; 673 } 674 675 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 676 iph->saddr, uh->dest, skb->dev->ifindex, 0, 677 udptable, NULL); 678 if (sk) { 679 up = udp_sk(sk); 680 681 lookup = READ_ONCE(up->encap_err_lookup); 682 if (!lookup || lookup(sk, skb)) 683 sk = NULL; 684 } 685 686 out: 687 if (!sk) 688 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 689 690 skb_set_transport_header(skb, transport_offset); 691 skb_set_network_header(skb, network_offset); 692 693 return sk; 694 } 695 696 /* 697 * This routine is called by the ICMP module when it gets some 698 * sort of error condition. If err < 0 then the socket should 699 * be closed and the error returned to the user. If err > 0 700 * it's just the icmp type << 8 | icmp code. 701 * Header points to the ip header of the error packet. We move 702 * on past this. Then (as it used to claim before adjustment) 703 * header points to the first 8 bytes of the udp header. We need 704 * to find the appropriate port. 705 */ 706 707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 708 { 709 struct inet_sock *inet; 710 const struct iphdr *iph = (const struct iphdr *)skb->data; 711 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 712 const int type = icmp_hdr(skb)->type; 713 const int code = icmp_hdr(skb)->code; 714 bool tunnel = false; 715 struct sock *sk; 716 int harderr; 717 int err; 718 struct net *net = dev_net(skb->dev); 719 720 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 721 iph->saddr, uh->source, skb->dev->ifindex, 722 inet_sdif(skb), udptable, NULL); 723 724 if (!sk || udp_sk(sk)->encap_type) { 725 /* No socket for error: try tunnels before discarding */ 726 if (static_branch_unlikely(&udp_encap_needed_key)) { 727 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 728 info); 729 if (!sk) 730 return 0; 731 } else 732 sk = ERR_PTR(-ENOENT); 733 734 if (IS_ERR(sk)) { 735 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 736 return PTR_ERR(sk); 737 } 738 739 tunnel = true; 740 } 741 742 err = 0; 743 harderr = 0; 744 inet = inet_sk(sk); 745 746 switch (type) { 747 default: 748 case ICMP_TIME_EXCEEDED: 749 err = EHOSTUNREACH; 750 break; 751 case ICMP_SOURCE_QUENCH: 752 goto out; 753 case ICMP_PARAMETERPROB: 754 err = EPROTO; 755 harderr = 1; 756 break; 757 case ICMP_DEST_UNREACH: 758 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 759 ipv4_sk_update_pmtu(skb, sk, info); 760 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 761 err = EMSGSIZE; 762 harderr = 1; 763 break; 764 } 765 goto out; 766 } 767 err = EHOSTUNREACH; 768 if (code <= NR_ICMP_UNREACH) { 769 harderr = icmp_err_convert[code].fatal; 770 err = icmp_err_convert[code].errno; 771 } 772 break; 773 case ICMP_REDIRECT: 774 ipv4_sk_redirect(skb, sk); 775 goto out; 776 } 777 778 /* 779 * RFC1122: OK. Passes ICMP errors back to application, as per 780 * 4.1.3.3. 781 */ 782 if (tunnel) { 783 /* ...not for tunnels though: we don't have a sending socket */ 784 goto out; 785 } 786 if (!inet->recverr) { 787 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 788 goto out; 789 } else 790 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 791 792 sk->sk_err = err; 793 sk_error_report(sk); 794 out: 795 return 0; 796 } 797 798 int udp_err(struct sk_buff *skb, u32 info) 799 { 800 return __udp4_lib_err(skb, info, &udp_table); 801 } 802 803 /* 804 * Throw away all pending data and cancel the corking. Socket is locked. 805 */ 806 void udp_flush_pending_frames(struct sock *sk) 807 { 808 struct udp_sock *up = udp_sk(sk); 809 810 if (up->pending) { 811 up->len = 0; 812 up->pending = 0; 813 ip_flush_pending_frames(sk); 814 } 815 } 816 EXPORT_SYMBOL(udp_flush_pending_frames); 817 818 /** 819 * udp4_hwcsum - handle outgoing HW checksumming 820 * @skb: sk_buff containing the filled-in UDP header 821 * (checksum field must be zeroed out) 822 * @src: source IP address 823 * @dst: destination IP address 824 */ 825 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 826 { 827 struct udphdr *uh = udp_hdr(skb); 828 int offset = skb_transport_offset(skb); 829 int len = skb->len - offset; 830 int hlen = len; 831 __wsum csum = 0; 832 833 if (!skb_has_frag_list(skb)) { 834 /* 835 * Only one fragment on the socket. 836 */ 837 skb->csum_start = skb_transport_header(skb) - skb->head; 838 skb->csum_offset = offsetof(struct udphdr, check); 839 uh->check = ~csum_tcpudp_magic(src, dst, len, 840 IPPROTO_UDP, 0); 841 } else { 842 struct sk_buff *frags; 843 844 /* 845 * HW-checksum won't work as there are two or more 846 * fragments on the socket so that all csums of sk_buffs 847 * should be together 848 */ 849 skb_walk_frags(skb, frags) { 850 csum = csum_add(csum, frags->csum); 851 hlen -= frags->len; 852 } 853 854 csum = skb_checksum(skb, offset, hlen, csum); 855 skb->ip_summed = CHECKSUM_NONE; 856 857 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 858 if (uh->check == 0) 859 uh->check = CSUM_MANGLED_0; 860 } 861 } 862 EXPORT_SYMBOL_GPL(udp4_hwcsum); 863 864 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 865 * for the simple case like when setting the checksum for a UDP tunnel. 866 */ 867 void udp_set_csum(bool nocheck, struct sk_buff *skb, 868 __be32 saddr, __be32 daddr, int len) 869 { 870 struct udphdr *uh = udp_hdr(skb); 871 872 if (nocheck) { 873 uh->check = 0; 874 } else if (skb_is_gso(skb)) { 875 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 876 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 877 uh->check = 0; 878 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 879 if (uh->check == 0) 880 uh->check = CSUM_MANGLED_0; 881 } else { 882 skb->ip_summed = CHECKSUM_PARTIAL; 883 skb->csum_start = skb_transport_header(skb) - skb->head; 884 skb->csum_offset = offsetof(struct udphdr, check); 885 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 886 } 887 } 888 EXPORT_SYMBOL(udp_set_csum); 889 890 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 891 struct inet_cork *cork) 892 { 893 struct sock *sk = skb->sk; 894 struct inet_sock *inet = inet_sk(sk); 895 struct udphdr *uh; 896 int err; 897 int is_udplite = IS_UDPLITE(sk); 898 int offset = skb_transport_offset(skb); 899 int len = skb->len - offset; 900 int datalen = len - sizeof(*uh); 901 __wsum csum = 0; 902 903 /* 904 * Create a UDP header 905 */ 906 uh = udp_hdr(skb); 907 uh->source = inet->inet_sport; 908 uh->dest = fl4->fl4_dport; 909 uh->len = htons(len); 910 uh->check = 0; 911 912 if (cork->gso_size) { 913 const int hlen = skb_network_header_len(skb) + 914 sizeof(struct udphdr); 915 916 if (hlen + cork->gso_size > cork->fragsize) { 917 kfree_skb(skb); 918 return -EINVAL; 919 } 920 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 921 kfree_skb(skb); 922 return -EINVAL; 923 } 924 if (sk->sk_no_check_tx) { 925 kfree_skb(skb); 926 return -EINVAL; 927 } 928 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 929 dst_xfrm(skb_dst(skb))) { 930 kfree_skb(skb); 931 return -EIO; 932 } 933 934 if (datalen > cork->gso_size) { 935 skb_shinfo(skb)->gso_size = cork->gso_size; 936 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 937 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 938 cork->gso_size); 939 } 940 goto csum_partial; 941 } 942 943 if (is_udplite) /* UDP-Lite */ 944 csum = udplite_csum(skb); 945 946 else if (sk->sk_no_check_tx) { /* UDP csum off */ 947 948 skb->ip_summed = CHECKSUM_NONE; 949 goto send; 950 951 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 952 csum_partial: 953 954 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 955 goto send; 956 957 } else 958 csum = udp_csum(skb); 959 960 /* add protocol-dependent pseudo-header */ 961 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 962 sk->sk_protocol, csum); 963 if (uh->check == 0) 964 uh->check = CSUM_MANGLED_0; 965 966 send: 967 err = ip_send_skb(sock_net(sk), skb); 968 if (err) { 969 if (err == -ENOBUFS && !inet->recverr) { 970 UDP_INC_STATS(sock_net(sk), 971 UDP_MIB_SNDBUFERRORS, is_udplite); 972 err = 0; 973 } 974 } else 975 UDP_INC_STATS(sock_net(sk), 976 UDP_MIB_OUTDATAGRAMS, is_udplite); 977 return err; 978 } 979 980 /* 981 * Push out all pending data as one UDP datagram. Socket is locked. 982 */ 983 int udp_push_pending_frames(struct sock *sk) 984 { 985 struct udp_sock *up = udp_sk(sk); 986 struct inet_sock *inet = inet_sk(sk); 987 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 988 struct sk_buff *skb; 989 int err = 0; 990 991 skb = ip_finish_skb(sk, fl4); 992 if (!skb) 993 goto out; 994 995 err = udp_send_skb(skb, fl4, &inet->cork.base); 996 997 out: 998 up->len = 0; 999 up->pending = 0; 1000 return err; 1001 } 1002 EXPORT_SYMBOL(udp_push_pending_frames); 1003 1004 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1005 { 1006 switch (cmsg->cmsg_type) { 1007 case UDP_SEGMENT: 1008 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1009 return -EINVAL; 1010 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1011 return 0; 1012 default: 1013 return -EINVAL; 1014 } 1015 } 1016 1017 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1018 { 1019 struct cmsghdr *cmsg; 1020 bool need_ip = false; 1021 int err; 1022 1023 for_each_cmsghdr(cmsg, msg) { 1024 if (!CMSG_OK(msg, cmsg)) 1025 return -EINVAL; 1026 1027 if (cmsg->cmsg_level != SOL_UDP) { 1028 need_ip = true; 1029 continue; 1030 } 1031 1032 err = __udp_cmsg_send(cmsg, gso_size); 1033 if (err) 1034 return err; 1035 } 1036 1037 return need_ip; 1038 } 1039 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1040 1041 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1042 { 1043 struct inet_sock *inet = inet_sk(sk); 1044 struct udp_sock *up = udp_sk(sk); 1045 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1046 struct flowi4 fl4_stack; 1047 struct flowi4 *fl4; 1048 int ulen = len; 1049 struct ipcm_cookie ipc; 1050 struct rtable *rt = NULL; 1051 int free = 0; 1052 int connected = 0; 1053 __be32 daddr, faddr, saddr; 1054 __be16 dport; 1055 u8 tos; 1056 int err, is_udplite = IS_UDPLITE(sk); 1057 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1058 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1059 struct sk_buff *skb; 1060 struct ip_options_data opt_copy; 1061 1062 if (len > 0xFFFF) 1063 return -EMSGSIZE; 1064 1065 /* 1066 * Check the flags. 1067 */ 1068 1069 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1070 return -EOPNOTSUPP; 1071 1072 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1073 1074 fl4 = &inet->cork.fl.u.ip4; 1075 if (up->pending) { 1076 /* 1077 * There are pending frames. 1078 * The socket lock must be held while it's corked. 1079 */ 1080 lock_sock(sk); 1081 if (likely(up->pending)) { 1082 if (unlikely(up->pending != AF_INET)) { 1083 release_sock(sk); 1084 return -EINVAL; 1085 } 1086 goto do_append_data; 1087 } 1088 release_sock(sk); 1089 } 1090 ulen += sizeof(struct udphdr); 1091 1092 /* 1093 * Get and verify the address. 1094 */ 1095 if (usin) { 1096 if (msg->msg_namelen < sizeof(*usin)) 1097 return -EINVAL; 1098 if (usin->sin_family != AF_INET) { 1099 if (usin->sin_family != AF_UNSPEC) 1100 return -EAFNOSUPPORT; 1101 } 1102 1103 daddr = usin->sin_addr.s_addr; 1104 dport = usin->sin_port; 1105 if (dport == 0) 1106 return -EINVAL; 1107 } else { 1108 if (sk->sk_state != TCP_ESTABLISHED) 1109 return -EDESTADDRREQ; 1110 daddr = inet->inet_daddr; 1111 dport = inet->inet_dport; 1112 /* Open fast path for connected socket. 1113 Route will not be used, if at least one option is set. 1114 */ 1115 connected = 1; 1116 } 1117 1118 ipcm_init_sk(&ipc, inet); 1119 ipc.gso_size = READ_ONCE(up->gso_size); 1120 1121 if (msg->msg_controllen) { 1122 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1123 if (err > 0) 1124 err = ip_cmsg_send(sk, msg, &ipc, 1125 sk->sk_family == AF_INET6); 1126 if (unlikely(err < 0)) { 1127 kfree(ipc.opt); 1128 return err; 1129 } 1130 if (ipc.opt) 1131 free = 1; 1132 connected = 0; 1133 } 1134 if (!ipc.opt) { 1135 struct ip_options_rcu *inet_opt; 1136 1137 rcu_read_lock(); 1138 inet_opt = rcu_dereference(inet->inet_opt); 1139 if (inet_opt) { 1140 memcpy(&opt_copy, inet_opt, 1141 sizeof(*inet_opt) + inet_opt->opt.optlen); 1142 ipc.opt = &opt_copy.opt; 1143 } 1144 rcu_read_unlock(); 1145 } 1146 1147 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1148 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1149 (struct sockaddr *)usin, &ipc.addr); 1150 if (err) 1151 goto out_free; 1152 if (usin) { 1153 if (usin->sin_port == 0) { 1154 /* BPF program set invalid port. Reject it. */ 1155 err = -EINVAL; 1156 goto out_free; 1157 } 1158 daddr = usin->sin_addr.s_addr; 1159 dport = usin->sin_port; 1160 } 1161 } 1162 1163 saddr = ipc.addr; 1164 ipc.addr = faddr = daddr; 1165 1166 if (ipc.opt && ipc.opt->opt.srr) { 1167 if (!daddr) { 1168 err = -EINVAL; 1169 goto out_free; 1170 } 1171 faddr = ipc.opt->opt.faddr; 1172 connected = 0; 1173 } 1174 tos = get_rttos(&ipc, inet); 1175 if (sock_flag(sk, SOCK_LOCALROUTE) || 1176 (msg->msg_flags & MSG_DONTROUTE) || 1177 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1178 tos |= RTO_ONLINK; 1179 connected = 0; 1180 } 1181 1182 if (ipv4_is_multicast(daddr)) { 1183 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1184 ipc.oif = inet->mc_index; 1185 if (!saddr) 1186 saddr = inet->mc_addr; 1187 connected = 0; 1188 } else if (!ipc.oif) { 1189 ipc.oif = inet->uc_index; 1190 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1191 /* oif is set, packet is to local broadcast and 1192 * uc_index is set. oif is most likely set 1193 * by sk_bound_dev_if. If uc_index != oif check if the 1194 * oif is an L3 master and uc_index is an L3 slave. 1195 * If so, we want to allow the send using the uc_index. 1196 */ 1197 if (ipc.oif != inet->uc_index && 1198 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1199 inet->uc_index)) { 1200 ipc.oif = inet->uc_index; 1201 } 1202 } 1203 1204 if (connected) 1205 rt = (struct rtable *)sk_dst_check(sk, 0); 1206 1207 if (!rt) { 1208 struct net *net = sock_net(sk); 1209 __u8 flow_flags = inet_sk_flowi_flags(sk); 1210 1211 fl4 = &fl4_stack; 1212 1213 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1214 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1215 flow_flags, 1216 faddr, saddr, dport, inet->inet_sport, 1217 sk->sk_uid); 1218 1219 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1220 rt = ip_route_output_flow(net, fl4, sk); 1221 if (IS_ERR(rt)) { 1222 err = PTR_ERR(rt); 1223 rt = NULL; 1224 if (err == -ENETUNREACH) 1225 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1226 goto out; 1227 } 1228 1229 err = -EACCES; 1230 if ((rt->rt_flags & RTCF_BROADCAST) && 1231 !sock_flag(sk, SOCK_BROADCAST)) 1232 goto out; 1233 if (connected) 1234 sk_dst_set(sk, dst_clone(&rt->dst)); 1235 } 1236 1237 if (msg->msg_flags&MSG_CONFIRM) 1238 goto do_confirm; 1239 back_from_confirm: 1240 1241 saddr = fl4->saddr; 1242 if (!ipc.addr) 1243 daddr = ipc.addr = fl4->daddr; 1244 1245 /* Lockless fast path for the non-corking case. */ 1246 if (!corkreq) { 1247 struct inet_cork cork; 1248 1249 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1250 sizeof(struct udphdr), &ipc, &rt, 1251 &cork, msg->msg_flags); 1252 err = PTR_ERR(skb); 1253 if (!IS_ERR_OR_NULL(skb)) 1254 err = udp_send_skb(skb, fl4, &cork); 1255 goto out; 1256 } 1257 1258 lock_sock(sk); 1259 if (unlikely(up->pending)) { 1260 /* The socket is already corked while preparing it. */ 1261 /* ... which is an evident application bug. --ANK */ 1262 release_sock(sk); 1263 1264 net_dbg_ratelimited("socket already corked\n"); 1265 err = -EINVAL; 1266 goto out; 1267 } 1268 /* 1269 * Now cork the socket to pend data. 1270 */ 1271 fl4 = &inet->cork.fl.u.ip4; 1272 fl4->daddr = daddr; 1273 fl4->saddr = saddr; 1274 fl4->fl4_dport = dport; 1275 fl4->fl4_sport = inet->inet_sport; 1276 up->pending = AF_INET; 1277 1278 do_append_data: 1279 up->len += ulen; 1280 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1281 sizeof(struct udphdr), &ipc, &rt, 1282 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1283 if (err) 1284 udp_flush_pending_frames(sk); 1285 else if (!corkreq) 1286 err = udp_push_pending_frames(sk); 1287 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1288 up->pending = 0; 1289 release_sock(sk); 1290 1291 out: 1292 ip_rt_put(rt); 1293 out_free: 1294 if (free) 1295 kfree(ipc.opt); 1296 if (!err) 1297 return len; 1298 /* 1299 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1300 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1301 * we don't have a good statistic (IpOutDiscards but it can be too many 1302 * things). We could add another new stat but at least for now that 1303 * seems like overkill. 1304 */ 1305 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1306 UDP_INC_STATS(sock_net(sk), 1307 UDP_MIB_SNDBUFERRORS, is_udplite); 1308 } 1309 return err; 1310 1311 do_confirm: 1312 if (msg->msg_flags & MSG_PROBE) 1313 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1314 if (!(msg->msg_flags&MSG_PROBE) || len) 1315 goto back_from_confirm; 1316 err = 0; 1317 goto out; 1318 } 1319 EXPORT_SYMBOL(udp_sendmsg); 1320 1321 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1322 size_t size, int flags) 1323 { 1324 struct inet_sock *inet = inet_sk(sk); 1325 struct udp_sock *up = udp_sk(sk); 1326 int ret; 1327 1328 if (flags & MSG_SENDPAGE_NOTLAST) 1329 flags |= MSG_MORE; 1330 1331 if (!up->pending) { 1332 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1333 1334 /* Call udp_sendmsg to specify destination address which 1335 * sendpage interface can't pass. 1336 * This will succeed only when the socket is connected. 1337 */ 1338 ret = udp_sendmsg(sk, &msg, 0); 1339 if (ret < 0) 1340 return ret; 1341 } 1342 1343 lock_sock(sk); 1344 1345 if (unlikely(!up->pending)) { 1346 release_sock(sk); 1347 1348 net_dbg_ratelimited("cork failed\n"); 1349 return -EINVAL; 1350 } 1351 1352 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1353 page, offset, size, flags); 1354 if (ret == -EOPNOTSUPP) { 1355 release_sock(sk); 1356 return sock_no_sendpage(sk->sk_socket, page, offset, 1357 size, flags); 1358 } 1359 if (ret < 0) { 1360 udp_flush_pending_frames(sk); 1361 goto out; 1362 } 1363 1364 up->len += size; 1365 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE))) 1366 ret = udp_push_pending_frames(sk); 1367 if (!ret) 1368 ret = size; 1369 out: 1370 release_sock(sk); 1371 return ret; 1372 } 1373 1374 #define UDP_SKB_IS_STATELESS 0x80000000 1375 1376 /* all head states (dst, sk, nf conntrack) except skb extensions are 1377 * cleared by udp_rcv(). 1378 * 1379 * We need to preserve secpath, if present, to eventually process 1380 * IP_CMSG_PASSSEC at recvmsg() time. 1381 * 1382 * Other extensions can be cleared. 1383 */ 1384 static bool udp_try_make_stateless(struct sk_buff *skb) 1385 { 1386 if (!skb_has_extensions(skb)) 1387 return true; 1388 1389 if (!secpath_exists(skb)) { 1390 skb_ext_reset(skb); 1391 return true; 1392 } 1393 1394 return false; 1395 } 1396 1397 static void udp_set_dev_scratch(struct sk_buff *skb) 1398 { 1399 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1400 1401 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1402 scratch->_tsize_state = skb->truesize; 1403 #if BITS_PER_LONG == 64 1404 scratch->len = skb->len; 1405 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1406 scratch->is_linear = !skb_is_nonlinear(skb); 1407 #endif 1408 if (udp_try_make_stateless(skb)) 1409 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1410 } 1411 1412 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1413 { 1414 /* We come here after udp_lib_checksum_complete() returned 0. 1415 * This means that __skb_checksum_complete() might have 1416 * set skb->csum_valid to 1. 1417 * On 64bit platforms, we can set csum_unnecessary 1418 * to true, but only if the skb is not shared. 1419 */ 1420 #if BITS_PER_LONG == 64 1421 if (!skb_shared(skb)) 1422 udp_skb_scratch(skb)->csum_unnecessary = true; 1423 #endif 1424 } 1425 1426 static int udp_skb_truesize(struct sk_buff *skb) 1427 { 1428 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1429 } 1430 1431 static bool udp_skb_has_head_state(struct sk_buff *skb) 1432 { 1433 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1434 } 1435 1436 /* fully reclaim rmem/fwd memory allocated for skb */ 1437 static void udp_rmem_release(struct sock *sk, int size, int partial, 1438 bool rx_queue_lock_held) 1439 { 1440 struct udp_sock *up = udp_sk(sk); 1441 struct sk_buff_head *sk_queue; 1442 int amt; 1443 1444 if (likely(partial)) { 1445 up->forward_deficit += size; 1446 size = up->forward_deficit; 1447 if (size < (sk->sk_rcvbuf >> 2) && 1448 !skb_queue_empty(&up->reader_queue)) 1449 return; 1450 } else { 1451 size += up->forward_deficit; 1452 } 1453 up->forward_deficit = 0; 1454 1455 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1456 * if the called don't held it already 1457 */ 1458 sk_queue = &sk->sk_receive_queue; 1459 if (!rx_queue_lock_held) 1460 spin_lock(&sk_queue->lock); 1461 1462 1463 sk->sk_forward_alloc += size; 1464 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1465 sk->sk_forward_alloc -= amt; 1466 1467 if (amt) 1468 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1469 1470 atomic_sub(size, &sk->sk_rmem_alloc); 1471 1472 /* this can save us from acquiring the rx queue lock on next receive */ 1473 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1474 1475 if (!rx_queue_lock_held) 1476 spin_unlock(&sk_queue->lock); 1477 } 1478 1479 /* Note: called with reader_queue.lock held. 1480 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1481 * This avoids a cache line miss while receive_queue lock is held. 1482 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1483 */ 1484 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1485 { 1486 prefetch(&skb->data); 1487 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1488 } 1489 EXPORT_SYMBOL(udp_skb_destructor); 1490 1491 /* as above, but the caller held the rx queue lock, too */ 1492 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1493 { 1494 prefetch(&skb->data); 1495 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1496 } 1497 1498 /* Idea of busylocks is to let producers grab an extra spinlock 1499 * to relieve pressure on the receive_queue spinlock shared by consumer. 1500 * Under flood, this means that only one producer can be in line 1501 * trying to acquire the receive_queue spinlock. 1502 * These busylock can be allocated on a per cpu manner, instead of a 1503 * per socket one (that would consume a cache line per socket) 1504 */ 1505 static int udp_busylocks_log __read_mostly; 1506 static spinlock_t *udp_busylocks __read_mostly; 1507 1508 static spinlock_t *busylock_acquire(void *ptr) 1509 { 1510 spinlock_t *busy; 1511 1512 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1513 spin_lock(busy); 1514 return busy; 1515 } 1516 1517 static void busylock_release(spinlock_t *busy) 1518 { 1519 if (busy) 1520 spin_unlock(busy); 1521 } 1522 1523 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1524 { 1525 struct sk_buff_head *list = &sk->sk_receive_queue; 1526 int rmem, delta, amt, err = -ENOMEM; 1527 spinlock_t *busy = NULL; 1528 int size; 1529 1530 /* try to avoid the costly atomic add/sub pair when the receive 1531 * queue is full; always allow at least a packet 1532 */ 1533 rmem = atomic_read(&sk->sk_rmem_alloc); 1534 if (rmem > sk->sk_rcvbuf) 1535 goto drop; 1536 1537 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1538 * having linear skbs : 1539 * - Reduce memory overhead and thus increase receive queue capacity 1540 * - Less cache line misses at copyout() time 1541 * - Less work at consume_skb() (less alien page frag freeing) 1542 */ 1543 if (rmem > (sk->sk_rcvbuf >> 1)) { 1544 skb_condense(skb); 1545 1546 busy = busylock_acquire(sk); 1547 } 1548 size = skb->truesize; 1549 udp_set_dev_scratch(skb); 1550 1551 /* we drop only if the receive buf is full and the receive 1552 * queue contains some other skb 1553 */ 1554 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1555 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1556 goto uncharge_drop; 1557 1558 spin_lock(&list->lock); 1559 if (size >= sk->sk_forward_alloc) { 1560 amt = sk_mem_pages(size); 1561 delta = amt << SK_MEM_QUANTUM_SHIFT; 1562 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1563 err = -ENOBUFS; 1564 spin_unlock(&list->lock); 1565 goto uncharge_drop; 1566 } 1567 1568 sk->sk_forward_alloc += delta; 1569 } 1570 1571 sk->sk_forward_alloc -= size; 1572 1573 /* no need to setup a destructor, we will explicitly release the 1574 * forward allocated memory on dequeue 1575 */ 1576 sock_skb_set_dropcount(sk, skb); 1577 1578 __skb_queue_tail(list, skb); 1579 spin_unlock(&list->lock); 1580 1581 if (!sock_flag(sk, SOCK_DEAD)) 1582 sk->sk_data_ready(sk); 1583 1584 busylock_release(busy); 1585 return 0; 1586 1587 uncharge_drop: 1588 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1589 1590 drop: 1591 atomic_inc(&sk->sk_drops); 1592 busylock_release(busy); 1593 return err; 1594 } 1595 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1596 1597 void udp_destruct_sock(struct sock *sk) 1598 { 1599 /* reclaim completely the forward allocated memory */ 1600 struct udp_sock *up = udp_sk(sk); 1601 unsigned int total = 0; 1602 struct sk_buff *skb; 1603 1604 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1605 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1606 total += skb->truesize; 1607 kfree_skb(skb); 1608 } 1609 udp_rmem_release(sk, total, 0, true); 1610 1611 inet_sock_destruct(sk); 1612 } 1613 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1614 1615 int udp_init_sock(struct sock *sk) 1616 { 1617 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1618 sk->sk_destruct = udp_destruct_sock; 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(udp_init_sock); 1622 1623 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1624 { 1625 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1626 bool slow = lock_sock_fast(sk); 1627 1628 sk_peek_offset_bwd(sk, len); 1629 unlock_sock_fast(sk, slow); 1630 } 1631 1632 if (!skb_unref(skb)) 1633 return; 1634 1635 /* In the more common cases we cleared the head states previously, 1636 * see __udp_queue_rcv_skb(). 1637 */ 1638 if (unlikely(udp_skb_has_head_state(skb))) 1639 skb_release_head_state(skb); 1640 __consume_stateless_skb(skb); 1641 } 1642 EXPORT_SYMBOL_GPL(skb_consume_udp); 1643 1644 static struct sk_buff *__first_packet_length(struct sock *sk, 1645 struct sk_buff_head *rcvq, 1646 int *total) 1647 { 1648 struct sk_buff *skb; 1649 1650 while ((skb = skb_peek(rcvq)) != NULL) { 1651 if (udp_lib_checksum_complete(skb)) { 1652 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1653 IS_UDPLITE(sk)); 1654 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1655 IS_UDPLITE(sk)); 1656 atomic_inc(&sk->sk_drops); 1657 __skb_unlink(skb, rcvq); 1658 *total += skb->truesize; 1659 kfree_skb(skb); 1660 } else { 1661 udp_skb_csum_unnecessary_set(skb); 1662 break; 1663 } 1664 } 1665 return skb; 1666 } 1667 1668 /** 1669 * first_packet_length - return length of first packet in receive queue 1670 * @sk: socket 1671 * 1672 * Drops all bad checksum frames, until a valid one is found. 1673 * Returns the length of found skb, or -1 if none is found. 1674 */ 1675 static int first_packet_length(struct sock *sk) 1676 { 1677 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1678 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1679 struct sk_buff *skb; 1680 int total = 0; 1681 int res; 1682 1683 spin_lock_bh(&rcvq->lock); 1684 skb = __first_packet_length(sk, rcvq, &total); 1685 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1686 spin_lock(&sk_queue->lock); 1687 skb_queue_splice_tail_init(sk_queue, rcvq); 1688 spin_unlock(&sk_queue->lock); 1689 1690 skb = __first_packet_length(sk, rcvq, &total); 1691 } 1692 res = skb ? skb->len : -1; 1693 if (total) 1694 udp_rmem_release(sk, total, 1, false); 1695 spin_unlock_bh(&rcvq->lock); 1696 return res; 1697 } 1698 1699 /* 1700 * IOCTL requests applicable to the UDP protocol 1701 */ 1702 1703 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1704 { 1705 switch (cmd) { 1706 case SIOCOUTQ: 1707 { 1708 int amount = sk_wmem_alloc_get(sk); 1709 1710 return put_user(amount, (int __user *)arg); 1711 } 1712 1713 case SIOCINQ: 1714 { 1715 int amount = max_t(int, 0, first_packet_length(sk)); 1716 1717 return put_user(amount, (int __user *)arg); 1718 } 1719 1720 default: 1721 return -ENOIOCTLCMD; 1722 } 1723 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(udp_ioctl); 1727 1728 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1729 int *off, int *err) 1730 { 1731 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1732 struct sk_buff_head *queue; 1733 struct sk_buff *last; 1734 long timeo; 1735 int error; 1736 1737 queue = &udp_sk(sk)->reader_queue; 1738 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1739 do { 1740 struct sk_buff *skb; 1741 1742 error = sock_error(sk); 1743 if (error) 1744 break; 1745 1746 error = -EAGAIN; 1747 do { 1748 spin_lock_bh(&queue->lock); 1749 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1750 err, &last); 1751 if (skb) { 1752 if (!(flags & MSG_PEEK)) 1753 udp_skb_destructor(sk, skb); 1754 spin_unlock_bh(&queue->lock); 1755 return skb; 1756 } 1757 1758 if (skb_queue_empty_lockless(sk_queue)) { 1759 spin_unlock_bh(&queue->lock); 1760 goto busy_check; 1761 } 1762 1763 /* refill the reader queue and walk it again 1764 * keep both queues locked to avoid re-acquiring 1765 * the sk_receive_queue lock if fwd memory scheduling 1766 * is needed. 1767 */ 1768 spin_lock(&sk_queue->lock); 1769 skb_queue_splice_tail_init(sk_queue, queue); 1770 1771 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1772 err, &last); 1773 if (skb && !(flags & MSG_PEEK)) 1774 udp_skb_dtor_locked(sk, skb); 1775 spin_unlock(&sk_queue->lock); 1776 spin_unlock_bh(&queue->lock); 1777 if (skb) 1778 return skb; 1779 1780 busy_check: 1781 if (!sk_can_busy_loop(sk)) 1782 break; 1783 1784 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1785 } while (!skb_queue_empty_lockless(sk_queue)); 1786 1787 /* sk_queue is empty, reader_queue may contain peeked packets */ 1788 } while (timeo && 1789 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1790 &error, &timeo, 1791 (struct sk_buff *)sk_queue)); 1792 1793 *err = error; 1794 return NULL; 1795 } 1796 EXPORT_SYMBOL(__skb_recv_udp); 1797 1798 int udp_read_sock(struct sock *sk, read_descriptor_t *desc, 1799 sk_read_actor_t recv_actor) 1800 { 1801 int copied = 0; 1802 1803 while (1) { 1804 struct sk_buff *skb; 1805 int err, used; 1806 1807 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1808 if (!skb) 1809 return err; 1810 1811 if (udp_lib_checksum_complete(skb)) { 1812 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1813 IS_UDPLITE(sk)); 1814 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1815 IS_UDPLITE(sk)); 1816 atomic_inc(&sk->sk_drops); 1817 kfree_skb(skb); 1818 continue; 1819 } 1820 1821 used = recv_actor(desc, skb, 0, skb->len); 1822 if (used <= 0) { 1823 if (!copied) 1824 copied = used; 1825 kfree_skb(skb); 1826 break; 1827 } else if (used <= skb->len) { 1828 copied += used; 1829 } 1830 1831 kfree_skb(skb); 1832 if (!desc->count) 1833 break; 1834 } 1835 1836 return copied; 1837 } 1838 EXPORT_SYMBOL(udp_read_sock); 1839 1840 /* 1841 * This should be easy, if there is something there we 1842 * return it, otherwise we block. 1843 */ 1844 1845 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1846 int *addr_len) 1847 { 1848 struct inet_sock *inet = inet_sk(sk); 1849 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1850 struct sk_buff *skb; 1851 unsigned int ulen, copied; 1852 int off, err, peeking = flags & MSG_PEEK; 1853 int is_udplite = IS_UDPLITE(sk); 1854 bool checksum_valid = false; 1855 1856 if (flags & MSG_ERRQUEUE) 1857 return ip_recv_error(sk, msg, len, addr_len); 1858 1859 try_again: 1860 off = sk_peek_offset(sk, flags); 1861 skb = __skb_recv_udp(sk, flags, &off, &err); 1862 if (!skb) 1863 return err; 1864 1865 ulen = udp_skb_len(skb); 1866 copied = len; 1867 if (copied > ulen - off) 1868 copied = ulen - off; 1869 else if (copied < ulen) 1870 msg->msg_flags |= MSG_TRUNC; 1871 1872 /* 1873 * If checksum is needed at all, try to do it while copying the 1874 * data. If the data is truncated, or if we only want a partial 1875 * coverage checksum (UDP-Lite), do it before the copy. 1876 */ 1877 1878 if (copied < ulen || peeking || 1879 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1880 checksum_valid = udp_skb_csum_unnecessary(skb) || 1881 !__udp_lib_checksum_complete(skb); 1882 if (!checksum_valid) 1883 goto csum_copy_err; 1884 } 1885 1886 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1887 if (udp_skb_is_linear(skb)) 1888 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1889 else 1890 err = skb_copy_datagram_msg(skb, off, msg, copied); 1891 } else { 1892 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1893 1894 if (err == -EINVAL) 1895 goto csum_copy_err; 1896 } 1897 1898 if (unlikely(err)) { 1899 if (!peeking) { 1900 atomic_inc(&sk->sk_drops); 1901 UDP_INC_STATS(sock_net(sk), 1902 UDP_MIB_INERRORS, is_udplite); 1903 } 1904 kfree_skb(skb); 1905 return err; 1906 } 1907 1908 if (!peeking) 1909 UDP_INC_STATS(sock_net(sk), 1910 UDP_MIB_INDATAGRAMS, is_udplite); 1911 1912 sock_recv_cmsgs(msg, sk, skb); 1913 1914 /* Copy the address. */ 1915 if (sin) { 1916 sin->sin_family = AF_INET; 1917 sin->sin_port = udp_hdr(skb)->source; 1918 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1919 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1920 *addr_len = sizeof(*sin); 1921 1922 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1923 (struct sockaddr *)sin); 1924 } 1925 1926 if (udp_sk(sk)->gro_enabled) 1927 udp_cmsg_recv(msg, sk, skb); 1928 1929 if (inet->cmsg_flags) 1930 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1931 1932 err = copied; 1933 if (flags & MSG_TRUNC) 1934 err = ulen; 1935 1936 skb_consume_udp(sk, skb, peeking ? -err : err); 1937 return err; 1938 1939 csum_copy_err: 1940 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1941 udp_skb_destructor)) { 1942 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1943 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1944 } 1945 kfree_skb(skb); 1946 1947 /* starting over for a new packet, but check if we need to yield */ 1948 cond_resched(); 1949 msg->msg_flags &= ~MSG_TRUNC; 1950 goto try_again; 1951 } 1952 1953 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1954 { 1955 /* This check is replicated from __ip4_datagram_connect() and 1956 * intended to prevent BPF program called below from accessing bytes 1957 * that are out of the bound specified by user in addr_len. 1958 */ 1959 if (addr_len < sizeof(struct sockaddr_in)) 1960 return -EINVAL; 1961 1962 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1963 } 1964 EXPORT_SYMBOL(udp_pre_connect); 1965 1966 int __udp_disconnect(struct sock *sk, int flags) 1967 { 1968 struct inet_sock *inet = inet_sk(sk); 1969 /* 1970 * 1003.1g - break association. 1971 */ 1972 1973 sk->sk_state = TCP_CLOSE; 1974 inet->inet_daddr = 0; 1975 inet->inet_dport = 0; 1976 sock_rps_reset_rxhash(sk); 1977 sk->sk_bound_dev_if = 0; 1978 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1979 inet_reset_saddr(sk); 1980 if (sk->sk_prot->rehash && 1981 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1982 sk->sk_prot->rehash(sk); 1983 } 1984 1985 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1986 sk->sk_prot->unhash(sk); 1987 inet->inet_sport = 0; 1988 } 1989 sk_dst_reset(sk); 1990 return 0; 1991 } 1992 EXPORT_SYMBOL(__udp_disconnect); 1993 1994 int udp_disconnect(struct sock *sk, int flags) 1995 { 1996 lock_sock(sk); 1997 __udp_disconnect(sk, flags); 1998 release_sock(sk); 1999 return 0; 2000 } 2001 EXPORT_SYMBOL(udp_disconnect); 2002 2003 void udp_lib_unhash(struct sock *sk) 2004 { 2005 if (sk_hashed(sk)) { 2006 struct udp_table *udptable = sk->sk_prot->h.udp_table; 2007 struct udp_hslot *hslot, *hslot2; 2008 2009 hslot = udp_hashslot(udptable, sock_net(sk), 2010 udp_sk(sk)->udp_port_hash); 2011 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2012 2013 spin_lock_bh(&hslot->lock); 2014 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2015 reuseport_detach_sock(sk); 2016 if (sk_del_node_init_rcu(sk)) { 2017 hslot->count--; 2018 inet_sk(sk)->inet_num = 0; 2019 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2020 2021 spin_lock(&hslot2->lock); 2022 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2023 hslot2->count--; 2024 spin_unlock(&hslot2->lock); 2025 } 2026 spin_unlock_bh(&hslot->lock); 2027 } 2028 } 2029 EXPORT_SYMBOL(udp_lib_unhash); 2030 2031 /* 2032 * inet_rcv_saddr was changed, we must rehash secondary hash 2033 */ 2034 void udp_lib_rehash(struct sock *sk, u16 newhash) 2035 { 2036 if (sk_hashed(sk)) { 2037 struct udp_table *udptable = sk->sk_prot->h.udp_table; 2038 struct udp_hslot *hslot, *hslot2, *nhslot2; 2039 2040 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2041 nhslot2 = udp_hashslot2(udptable, newhash); 2042 udp_sk(sk)->udp_portaddr_hash = newhash; 2043 2044 if (hslot2 != nhslot2 || 2045 rcu_access_pointer(sk->sk_reuseport_cb)) { 2046 hslot = udp_hashslot(udptable, sock_net(sk), 2047 udp_sk(sk)->udp_port_hash); 2048 /* we must lock primary chain too */ 2049 spin_lock_bh(&hslot->lock); 2050 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2051 reuseport_detach_sock(sk); 2052 2053 if (hslot2 != nhslot2) { 2054 spin_lock(&hslot2->lock); 2055 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2056 hslot2->count--; 2057 spin_unlock(&hslot2->lock); 2058 2059 spin_lock(&nhslot2->lock); 2060 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2061 &nhslot2->head); 2062 nhslot2->count++; 2063 spin_unlock(&nhslot2->lock); 2064 } 2065 2066 spin_unlock_bh(&hslot->lock); 2067 } 2068 } 2069 } 2070 EXPORT_SYMBOL(udp_lib_rehash); 2071 2072 void udp_v4_rehash(struct sock *sk) 2073 { 2074 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2075 inet_sk(sk)->inet_rcv_saddr, 2076 inet_sk(sk)->inet_num); 2077 udp_lib_rehash(sk, new_hash); 2078 } 2079 2080 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2081 { 2082 int rc; 2083 2084 if (inet_sk(sk)->inet_daddr) { 2085 sock_rps_save_rxhash(sk, skb); 2086 sk_mark_napi_id(sk, skb); 2087 sk_incoming_cpu_update(sk); 2088 } else { 2089 sk_mark_napi_id_once(sk, skb); 2090 } 2091 2092 rc = __udp_enqueue_schedule_skb(sk, skb); 2093 if (rc < 0) { 2094 int is_udplite = IS_UDPLITE(sk); 2095 int drop_reason; 2096 2097 /* Note that an ENOMEM error is charged twice */ 2098 if (rc == -ENOMEM) { 2099 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2100 is_udplite); 2101 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2102 } else { 2103 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2104 is_udplite); 2105 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2106 } 2107 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2108 kfree_skb_reason(skb, drop_reason); 2109 trace_udp_fail_queue_rcv_skb(rc, sk); 2110 return -1; 2111 } 2112 2113 return 0; 2114 } 2115 2116 /* returns: 2117 * -1: error 2118 * 0: success 2119 * >0: "udp encap" protocol resubmission 2120 * 2121 * Note that in the success and error cases, the skb is assumed to 2122 * have either been requeued or freed. 2123 */ 2124 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2125 { 2126 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2127 struct udp_sock *up = udp_sk(sk); 2128 int is_udplite = IS_UDPLITE(sk); 2129 2130 /* 2131 * Charge it to the socket, dropping if the queue is full. 2132 */ 2133 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2134 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2135 goto drop; 2136 } 2137 nf_reset_ct(skb); 2138 2139 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2140 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2141 2142 /* 2143 * This is an encapsulation socket so pass the skb to 2144 * the socket's udp_encap_rcv() hook. Otherwise, just 2145 * fall through and pass this up the UDP socket. 2146 * up->encap_rcv() returns the following value: 2147 * =0 if skb was successfully passed to the encap 2148 * handler or was discarded by it. 2149 * >0 if skb should be passed on to UDP. 2150 * <0 if skb should be resubmitted as proto -N 2151 */ 2152 2153 /* if we're overly short, let UDP handle it */ 2154 encap_rcv = READ_ONCE(up->encap_rcv); 2155 if (encap_rcv) { 2156 int ret; 2157 2158 /* Verify checksum before giving to encap */ 2159 if (udp_lib_checksum_complete(skb)) 2160 goto csum_error; 2161 2162 ret = encap_rcv(sk, skb); 2163 if (ret <= 0) { 2164 __UDP_INC_STATS(sock_net(sk), 2165 UDP_MIB_INDATAGRAMS, 2166 is_udplite); 2167 return -ret; 2168 } 2169 } 2170 2171 /* FALLTHROUGH -- it's a UDP Packet */ 2172 } 2173 2174 /* 2175 * UDP-Lite specific tests, ignored on UDP sockets 2176 */ 2177 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2178 2179 /* 2180 * MIB statistics other than incrementing the error count are 2181 * disabled for the following two types of errors: these depend 2182 * on the application settings, not on the functioning of the 2183 * protocol stack as such. 2184 * 2185 * RFC 3828 here recommends (sec 3.3): "There should also be a 2186 * way ... to ... at least let the receiving application block 2187 * delivery of packets with coverage values less than a value 2188 * provided by the application." 2189 */ 2190 if (up->pcrlen == 0) { /* full coverage was set */ 2191 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2192 UDP_SKB_CB(skb)->cscov, skb->len); 2193 goto drop; 2194 } 2195 /* The next case involves violating the min. coverage requested 2196 * by the receiver. This is subtle: if receiver wants x and x is 2197 * greater than the buffersize/MTU then receiver will complain 2198 * that it wants x while sender emits packets of smaller size y. 2199 * Therefore the above ...()->partial_cov statement is essential. 2200 */ 2201 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2202 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2203 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2204 goto drop; 2205 } 2206 } 2207 2208 prefetch(&sk->sk_rmem_alloc); 2209 if (rcu_access_pointer(sk->sk_filter) && 2210 udp_lib_checksum_complete(skb)) 2211 goto csum_error; 2212 2213 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2214 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2215 goto drop; 2216 } 2217 2218 udp_csum_pull_header(skb); 2219 2220 ipv4_pktinfo_prepare(sk, skb); 2221 return __udp_queue_rcv_skb(sk, skb); 2222 2223 csum_error: 2224 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2225 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2226 drop: 2227 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2228 atomic_inc(&sk->sk_drops); 2229 kfree_skb_reason(skb, drop_reason); 2230 return -1; 2231 } 2232 2233 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2234 { 2235 struct sk_buff *next, *segs; 2236 int ret; 2237 2238 if (likely(!udp_unexpected_gso(sk, skb))) 2239 return udp_queue_rcv_one_skb(sk, skb); 2240 2241 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2242 __skb_push(skb, -skb_mac_offset(skb)); 2243 segs = udp_rcv_segment(sk, skb, true); 2244 skb_list_walk_safe(segs, skb, next) { 2245 __skb_pull(skb, skb_transport_offset(skb)); 2246 2247 udp_post_segment_fix_csum(skb); 2248 ret = udp_queue_rcv_one_skb(sk, skb); 2249 if (ret > 0) 2250 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2251 } 2252 return 0; 2253 } 2254 2255 /* For TCP sockets, sk_rx_dst is protected by socket lock 2256 * For UDP, we use xchg() to guard against concurrent changes. 2257 */ 2258 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2259 { 2260 struct dst_entry *old; 2261 2262 if (dst_hold_safe(dst)) { 2263 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2264 dst_release(old); 2265 return old != dst; 2266 } 2267 return false; 2268 } 2269 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2270 2271 /* 2272 * Multicasts and broadcasts go to each listener. 2273 * 2274 * Note: called only from the BH handler context. 2275 */ 2276 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2277 struct udphdr *uh, 2278 __be32 saddr, __be32 daddr, 2279 struct udp_table *udptable, 2280 int proto) 2281 { 2282 struct sock *sk, *first = NULL; 2283 unsigned short hnum = ntohs(uh->dest); 2284 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2285 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2286 unsigned int offset = offsetof(typeof(*sk), sk_node); 2287 int dif = skb->dev->ifindex; 2288 int sdif = inet_sdif(skb); 2289 struct hlist_node *node; 2290 struct sk_buff *nskb; 2291 2292 if (use_hash2) { 2293 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2294 udptable->mask; 2295 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2296 start_lookup: 2297 hslot = &udptable->hash2[hash2]; 2298 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2299 } 2300 2301 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2302 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2303 uh->source, saddr, dif, sdif, hnum)) 2304 continue; 2305 2306 if (!first) { 2307 first = sk; 2308 continue; 2309 } 2310 nskb = skb_clone(skb, GFP_ATOMIC); 2311 2312 if (unlikely(!nskb)) { 2313 atomic_inc(&sk->sk_drops); 2314 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2315 IS_UDPLITE(sk)); 2316 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2317 IS_UDPLITE(sk)); 2318 continue; 2319 } 2320 if (udp_queue_rcv_skb(sk, nskb) > 0) 2321 consume_skb(nskb); 2322 } 2323 2324 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2325 if (use_hash2 && hash2 != hash2_any) { 2326 hash2 = hash2_any; 2327 goto start_lookup; 2328 } 2329 2330 if (first) { 2331 if (udp_queue_rcv_skb(first, skb) > 0) 2332 consume_skb(skb); 2333 } else { 2334 kfree_skb(skb); 2335 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2336 proto == IPPROTO_UDPLITE); 2337 } 2338 return 0; 2339 } 2340 2341 /* Initialize UDP checksum. If exited with zero value (success), 2342 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2343 * Otherwise, csum completion requires checksumming packet body, 2344 * including udp header and folding it to skb->csum. 2345 */ 2346 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2347 int proto) 2348 { 2349 int err; 2350 2351 UDP_SKB_CB(skb)->partial_cov = 0; 2352 UDP_SKB_CB(skb)->cscov = skb->len; 2353 2354 if (proto == IPPROTO_UDPLITE) { 2355 err = udplite_checksum_init(skb, uh); 2356 if (err) 2357 return err; 2358 2359 if (UDP_SKB_CB(skb)->partial_cov) { 2360 skb->csum = inet_compute_pseudo(skb, proto); 2361 return 0; 2362 } 2363 } 2364 2365 /* Note, we are only interested in != 0 or == 0, thus the 2366 * force to int. 2367 */ 2368 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2369 inet_compute_pseudo); 2370 if (err) 2371 return err; 2372 2373 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2374 /* If SW calculated the value, we know it's bad */ 2375 if (skb->csum_complete_sw) 2376 return 1; 2377 2378 /* HW says the value is bad. Let's validate that. 2379 * skb->csum is no longer the full packet checksum, 2380 * so don't treat it as such. 2381 */ 2382 skb_checksum_complete_unset(skb); 2383 } 2384 2385 return 0; 2386 } 2387 2388 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2389 * return code conversion for ip layer consumption 2390 */ 2391 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2392 struct udphdr *uh) 2393 { 2394 int ret; 2395 2396 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2397 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2398 2399 ret = udp_queue_rcv_skb(sk, skb); 2400 2401 /* a return value > 0 means to resubmit the input, but 2402 * it wants the return to be -protocol, or 0 2403 */ 2404 if (ret > 0) 2405 return -ret; 2406 return 0; 2407 } 2408 2409 /* 2410 * All we need to do is get the socket, and then do a checksum. 2411 */ 2412 2413 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2414 int proto) 2415 { 2416 struct sock *sk; 2417 struct udphdr *uh; 2418 unsigned short ulen; 2419 struct rtable *rt = skb_rtable(skb); 2420 __be32 saddr, daddr; 2421 struct net *net = dev_net(skb->dev); 2422 bool refcounted; 2423 int drop_reason; 2424 2425 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2426 2427 /* 2428 * Validate the packet. 2429 */ 2430 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2431 goto drop; /* No space for header. */ 2432 2433 uh = udp_hdr(skb); 2434 ulen = ntohs(uh->len); 2435 saddr = ip_hdr(skb)->saddr; 2436 daddr = ip_hdr(skb)->daddr; 2437 2438 if (ulen > skb->len) 2439 goto short_packet; 2440 2441 if (proto == IPPROTO_UDP) { 2442 /* UDP validates ulen. */ 2443 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2444 goto short_packet; 2445 uh = udp_hdr(skb); 2446 } 2447 2448 if (udp4_csum_init(skb, uh, proto)) 2449 goto csum_error; 2450 2451 sk = skb_steal_sock(skb, &refcounted); 2452 if (sk) { 2453 struct dst_entry *dst = skb_dst(skb); 2454 int ret; 2455 2456 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2457 udp_sk_rx_dst_set(sk, dst); 2458 2459 ret = udp_unicast_rcv_skb(sk, skb, uh); 2460 if (refcounted) 2461 sock_put(sk); 2462 return ret; 2463 } 2464 2465 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2466 return __udp4_lib_mcast_deliver(net, skb, uh, 2467 saddr, daddr, udptable, proto); 2468 2469 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2470 if (sk) 2471 return udp_unicast_rcv_skb(sk, skb, uh); 2472 2473 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2474 goto drop; 2475 nf_reset_ct(skb); 2476 2477 /* No socket. Drop packet silently, if checksum is wrong */ 2478 if (udp_lib_checksum_complete(skb)) 2479 goto csum_error; 2480 2481 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2482 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2483 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2484 2485 /* 2486 * Hmm. We got an UDP packet to a port to which we 2487 * don't wanna listen. Ignore it. 2488 */ 2489 kfree_skb_reason(skb, drop_reason); 2490 return 0; 2491 2492 short_packet: 2493 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2494 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2495 proto == IPPROTO_UDPLITE ? "Lite" : "", 2496 &saddr, ntohs(uh->source), 2497 ulen, skb->len, 2498 &daddr, ntohs(uh->dest)); 2499 goto drop; 2500 2501 csum_error: 2502 /* 2503 * RFC1122: OK. Discards the bad packet silently (as far as 2504 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2505 */ 2506 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2507 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2508 proto == IPPROTO_UDPLITE ? "Lite" : "", 2509 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2510 ulen); 2511 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2512 drop: 2513 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2514 kfree_skb_reason(skb, drop_reason); 2515 return 0; 2516 } 2517 2518 /* We can only early demux multicast if there is a single matching socket. 2519 * If more than one socket found returns NULL 2520 */ 2521 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2522 __be16 loc_port, __be32 loc_addr, 2523 __be16 rmt_port, __be32 rmt_addr, 2524 int dif, int sdif) 2525 { 2526 struct sock *sk, *result; 2527 unsigned short hnum = ntohs(loc_port); 2528 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2529 struct udp_hslot *hslot = &udp_table.hash[slot]; 2530 2531 /* Do not bother scanning a too big list */ 2532 if (hslot->count > 10) 2533 return NULL; 2534 2535 result = NULL; 2536 sk_for_each_rcu(sk, &hslot->head) { 2537 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2538 rmt_port, rmt_addr, dif, sdif, hnum)) { 2539 if (result) 2540 return NULL; 2541 result = sk; 2542 } 2543 } 2544 2545 return result; 2546 } 2547 2548 /* For unicast we should only early demux connected sockets or we can 2549 * break forwarding setups. The chains here can be long so only check 2550 * if the first socket is an exact match and if not move on. 2551 */ 2552 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2553 __be16 loc_port, __be32 loc_addr, 2554 __be16 rmt_port, __be32 rmt_addr, 2555 int dif, int sdif) 2556 { 2557 unsigned short hnum = ntohs(loc_port); 2558 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2559 unsigned int slot2 = hash2 & udp_table.mask; 2560 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2561 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2562 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2563 struct sock *sk; 2564 2565 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2566 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2567 return sk; 2568 /* Only check first socket in chain */ 2569 break; 2570 } 2571 return NULL; 2572 } 2573 2574 int udp_v4_early_demux(struct sk_buff *skb) 2575 { 2576 struct net *net = dev_net(skb->dev); 2577 struct in_device *in_dev = NULL; 2578 const struct iphdr *iph; 2579 const struct udphdr *uh; 2580 struct sock *sk = NULL; 2581 struct dst_entry *dst; 2582 int dif = skb->dev->ifindex; 2583 int sdif = inet_sdif(skb); 2584 int ours; 2585 2586 /* validate the packet */ 2587 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2588 return 0; 2589 2590 iph = ip_hdr(skb); 2591 uh = udp_hdr(skb); 2592 2593 if (skb->pkt_type == PACKET_MULTICAST) { 2594 in_dev = __in_dev_get_rcu(skb->dev); 2595 2596 if (!in_dev) 2597 return 0; 2598 2599 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2600 iph->protocol); 2601 if (!ours) 2602 return 0; 2603 2604 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2605 uh->source, iph->saddr, 2606 dif, sdif); 2607 } else if (skb->pkt_type == PACKET_HOST) { 2608 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2609 uh->source, iph->saddr, dif, sdif); 2610 } 2611 2612 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2613 return 0; 2614 2615 skb->sk = sk; 2616 skb->destructor = sock_efree; 2617 dst = rcu_dereference(sk->sk_rx_dst); 2618 2619 if (dst) 2620 dst = dst_check(dst, 0); 2621 if (dst) { 2622 u32 itag = 0; 2623 2624 /* set noref for now. 2625 * any place which wants to hold dst has to call 2626 * dst_hold_safe() 2627 */ 2628 skb_dst_set_noref(skb, dst); 2629 2630 /* for unconnected multicast sockets we need to validate 2631 * the source on each packet 2632 */ 2633 if (!inet_sk(sk)->inet_daddr && in_dev) 2634 return ip_mc_validate_source(skb, iph->daddr, 2635 iph->saddr, 2636 iph->tos & IPTOS_RT_MASK, 2637 skb->dev, in_dev, &itag); 2638 } 2639 return 0; 2640 } 2641 2642 int udp_rcv(struct sk_buff *skb) 2643 { 2644 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2645 } 2646 2647 void udp_destroy_sock(struct sock *sk) 2648 { 2649 struct udp_sock *up = udp_sk(sk); 2650 bool slow = lock_sock_fast(sk); 2651 2652 /* protects from races with udp_abort() */ 2653 sock_set_flag(sk, SOCK_DEAD); 2654 udp_flush_pending_frames(sk); 2655 unlock_sock_fast(sk, slow); 2656 if (static_branch_unlikely(&udp_encap_needed_key)) { 2657 if (up->encap_type) { 2658 void (*encap_destroy)(struct sock *sk); 2659 encap_destroy = READ_ONCE(up->encap_destroy); 2660 if (encap_destroy) 2661 encap_destroy(sk); 2662 } 2663 if (up->encap_enabled) 2664 static_branch_dec(&udp_encap_needed_key); 2665 } 2666 } 2667 2668 /* 2669 * Socket option code for UDP 2670 */ 2671 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2672 sockptr_t optval, unsigned int optlen, 2673 int (*push_pending_frames)(struct sock *)) 2674 { 2675 struct udp_sock *up = udp_sk(sk); 2676 int val, valbool; 2677 int err = 0; 2678 int is_udplite = IS_UDPLITE(sk); 2679 2680 if (optlen < sizeof(int)) 2681 return -EINVAL; 2682 2683 if (copy_from_sockptr(&val, optval, sizeof(val))) 2684 return -EFAULT; 2685 2686 valbool = val ? 1 : 0; 2687 2688 switch (optname) { 2689 case UDP_CORK: 2690 if (val != 0) { 2691 WRITE_ONCE(up->corkflag, 1); 2692 } else { 2693 WRITE_ONCE(up->corkflag, 0); 2694 lock_sock(sk); 2695 push_pending_frames(sk); 2696 release_sock(sk); 2697 } 2698 break; 2699 2700 case UDP_ENCAP: 2701 switch (val) { 2702 case 0: 2703 #ifdef CONFIG_XFRM 2704 case UDP_ENCAP_ESPINUDP: 2705 case UDP_ENCAP_ESPINUDP_NON_IKE: 2706 #if IS_ENABLED(CONFIG_IPV6) 2707 if (sk->sk_family == AF_INET6) 2708 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2709 else 2710 #endif 2711 up->encap_rcv = xfrm4_udp_encap_rcv; 2712 #endif 2713 fallthrough; 2714 case UDP_ENCAP_L2TPINUDP: 2715 up->encap_type = val; 2716 lock_sock(sk); 2717 udp_tunnel_encap_enable(sk->sk_socket); 2718 release_sock(sk); 2719 break; 2720 default: 2721 err = -ENOPROTOOPT; 2722 break; 2723 } 2724 break; 2725 2726 case UDP_NO_CHECK6_TX: 2727 up->no_check6_tx = valbool; 2728 break; 2729 2730 case UDP_NO_CHECK6_RX: 2731 up->no_check6_rx = valbool; 2732 break; 2733 2734 case UDP_SEGMENT: 2735 if (val < 0 || val > USHRT_MAX) 2736 return -EINVAL; 2737 WRITE_ONCE(up->gso_size, val); 2738 break; 2739 2740 case UDP_GRO: 2741 lock_sock(sk); 2742 2743 /* when enabling GRO, accept the related GSO packet type */ 2744 if (valbool) 2745 udp_tunnel_encap_enable(sk->sk_socket); 2746 up->gro_enabled = valbool; 2747 up->accept_udp_l4 = valbool; 2748 release_sock(sk); 2749 break; 2750 2751 /* 2752 * UDP-Lite's partial checksum coverage (RFC 3828). 2753 */ 2754 /* The sender sets actual checksum coverage length via this option. 2755 * The case coverage > packet length is handled by send module. */ 2756 case UDPLITE_SEND_CSCOV: 2757 if (!is_udplite) /* Disable the option on UDP sockets */ 2758 return -ENOPROTOOPT; 2759 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2760 val = 8; 2761 else if (val > USHRT_MAX) 2762 val = USHRT_MAX; 2763 up->pcslen = val; 2764 up->pcflag |= UDPLITE_SEND_CC; 2765 break; 2766 2767 /* The receiver specifies a minimum checksum coverage value. To make 2768 * sense, this should be set to at least 8 (as done below). If zero is 2769 * used, this again means full checksum coverage. */ 2770 case UDPLITE_RECV_CSCOV: 2771 if (!is_udplite) /* Disable the option on UDP sockets */ 2772 return -ENOPROTOOPT; 2773 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2774 val = 8; 2775 else if (val > USHRT_MAX) 2776 val = USHRT_MAX; 2777 up->pcrlen = val; 2778 up->pcflag |= UDPLITE_RECV_CC; 2779 break; 2780 2781 default: 2782 err = -ENOPROTOOPT; 2783 break; 2784 } 2785 2786 return err; 2787 } 2788 EXPORT_SYMBOL(udp_lib_setsockopt); 2789 2790 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2791 unsigned int optlen) 2792 { 2793 if (level == SOL_UDP || level == SOL_UDPLITE) 2794 return udp_lib_setsockopt(sk, level, optname, 2795 optval, optlen, 2796 udp_push_pending_frames); 2797 return ip_setsockopt(sk, level, optname, optval, optlen); 2798 } 2799 2800 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2801 char __user *optval, int __user *optlen) 2802 { 2803 struct udp_sock *up = udp_sk(sk); 2804 int val, len; 2805 2806 if (get_user(len, optlen)) 2807 return -EFAULT; 2808 2809 len = min_t(unsigned int, len, sizeof(int)); 2810 2811 if (len < 0) 2812 return -EINVAL; 2813 2814 switch (optname) { 2815 case UDP_CORK: 2816 val = READ_ONCE(up->corkflag); 2817 break; 2818 2819 case UDP_ENCAP: 2820 val = up->encap_type; 2821 break; 2822 2823 case UDP_NO_CHECK6_TX: 2824 val = up->no_check6_tx; 2825 break; 2826 2827 case UDP_NO_CHECK6_RX: 2828 val = up->no_check6_rx; 2829 break; 2830 2831 case UDP_SEGMENT: 2832 val = READ_ONCE(up->gso_size); 2833 break; 2834 2835 case UDP_GRO: 2836 val = up->gro_enabled; 2837 break; 2838 2839 /* The following two cannot be changed on UDP sockets, the return is 2840 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2841 case UDPLITE_SEND_CSCOV: 2842 val = up->pcslen; 2843 break; 2844 2845 case UDPLITE_RECV_CSCOV: 2846 val = up->pcrlen; 2847 break; 2848 2849 default: 2850 return -ENOPROTOOPT; 2851 } 2852 2853 if (put_user(len, optlen)) 2854 return -EFAULT; 2855 if (copy_to_user(optval, &val, len)) 2856 return -EFAULT; 2857 return 0; 2858 } 2859 EXPORT_SYMBOL(udp_lib_getsockopt); 2860 2861 int udp_getsockopt(struct sock *sk, int level, int optname, 2862 char __user *optval, int __user *optlen) 2863 { 2864 if (level == SOL_UDP || level == SOL_UDPLITE) 2865 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2866 return ip_getsockopt(sk, level, optname, optval, optlen); 2867 } 2868 2869 /** 2870 * udp_poll - wait for a UDP event. 2871 * @file: - file struct 2872 * @sock: - socket 2873 * @wait: - poll table 2874 * 2875 * This is same as datagram poll, except for the special case of 2876 * blocking sockets. If application is using a blocking fd 2877 * and a packet with checksum error is in the queue; 2878 * then it could get return from select indicating data available 2879 * but then block when reading it. Add special case code 2880 * to work around these arguably broken applications. 2881 */ 2882 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2883 { 2884 __poll_t mask = datagram_poll(file, sock, wait); 2885 struct sock *sk = sock->sk; 2886 2887 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2888 mask |= EPOLLIN | EPOLLRDNORM; 2889 2890 /* Check for false positives due to checksum errors */ 2891 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2892 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2893 mask &= ~(EPOLLIN | EPOLLRDNORM); 2894 2895 /* psock ingress_msg queue should not contain any bad checksum frames */ 2896 if (sk_is_readable(sk)) 2897 mask |= EPOLLIN | EPOLLRDNORM; 2898 return mask; 2899 2900 } 2901 EXPORT_SYMBOL(udp_poll); 2902 2903 int udp_abort(struct sock *sk, int err) 2904 { 2905 lock_sock(sk); 2906 2907 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2908 * with close() 2909 */ 2910 if (sock_flag(sk, SOCK_DEAD)) 2911 goto out; 2912 2913 sk->sk_err = err; 2914 sk_error_report(sk); 2915 __udp_disconnect(sk, 0); 2916 2917 out: 2918 release_sock(sk); 2919 2920 return 0; 2921 } 2922 EXPORT_SYMBOL_GPL(udp_abort); 2923 2924 struct proto udp_prot = { 2925 .name = "UDP", 2926 .owner = THIS_MODULE, 2927 .close = udp_lib_close, 2928 .pre_connect = udp_pre_connect, 2929 .connect = ip4_datagram_connect, 2930 .disconnect = udp_disconnect, 2931 .ioctl = udp_ioctl, 2932 .init = udp_init_sock, 2933 .destroy = udp_destroy_sock, 2934 .setsockopt = udp_setsockopt, 2935 .getsockopt = udp_getsockopt, 2936 .sendmsg = udp_sendmsg, 2937 .recvmsg = udp_recvmsg, 2938 .sendpage = udp_sendpage, 2939 .release_cb = ip4_datagram_release_cb, 2940 .hash = udp_lib_hash, 2941 .unhash = udp_lib_unhash, 2942 .rehash = udp_v4_rehash, 2943 .get_port = udp_v4_get_port, 2944 .put_port = udp_lib_unhash, 2945 #ifdef CONFIG_BPF_SYSCALL 2946 .psock_update_sk_prot = udp_bpf_update_proto, 2947 #endif 2948 .memory_allocated = &udp_memory_allocated, 2949 .sysctl_mem = sysctl_udp_mem, 2950 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2951 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2952 .obj_size = sizeof(struct udp_sock), 2953 .h.udp_table = &udp_table, 2954 .diag_destroy = udp_abort, 2955 }; 2956 EXPORT_SYMBOL(udp_prot); 2957 2958 /* ------------------------------------------------------------------------ */ 2959 #ifdef CONFIG_PROC_FS 2960 2961 static struct sock *udp_get_first(struct seq_file *seq, int start) 2962 { 2963 struct sock *sk; 2964 struct udp_seq_afinfo *afinfo; 2965 struct udp_iter_state *state = seq->private; 2966 struct net *net = seq_file_net(seq); 2967 2968 if (state->bpf_seq_afinfo) 2969 afinfo = state->bpf_seq_afinfo; 2970 else 2971 afinfo = pde_data(file_inode(seq->file)); 2972 2973 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2974 ++state->bucket) { 2975 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2976 2977 if (hlist_empty(&hslot->head)) 2978 continue; 2979 2980 spin_lock_bh(&hslot->lock); 2981 sk_for_each(sk, &hslot->head) { 2982 if (!net_eq(sock_net(sk), net)) 2983 continue; 2984 if (afinfo->family == AF_UNSPEC || 2985 sk->sk_family == afinfo->family) 2986 goto found; 2987 } 2988 spin_unlock_bh(&hslot->lock); 2989 } 2990 sk = NULL; 2991 found: 2992 return sk; 2993 } 2994 2995 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2996 { 2997 struct udp_seq_afinfo *afinfo; 2998 struct udp_iter_state *state = seq->private; 2999 struct net *net = seq_file_net(seq); 3000 3001 if (state->bpf_seq_afinfo) 3002 afinfo = state->bpf_seq_afinfo; 3003 else 3004 afinfo = pde_data(file_inode(seq->file)); 3005 3006 do { 3007 sk = sk_next(sk); 3008 } while (sk && (!net_eq(sock_net(sk), net) || 3009 (afinfo->family != AF_UNSPEC && 3010 sk->sk_family != afinfo->family))); 3011 3012 if (!sk) { 3013 if (state->bucket <= afinfo->udp_table->mask) 3014 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3015 return udp_get_first(seq, state->bucket + 1); 3016 } 3017 return sk; 3018 } 3019 3020 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3021 { 3022 struct sock *sk = udp_get_first(seq, 0); 3023 3024 if (sk) 3025 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3026 --pos; 3027 return pos ? NULL : sk; 3028 } 3029 3030 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3031 { 3032 struct udp_iter_state *state = seq->private; 3033 state->bucket = MAX_UDP_PORTS; 3034 3035 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3036 } 3037 EXPORT_SYMBOL(udp_seq_start); 3038 3039 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3040 { 3041 struct sock *sk; 3042 3043 if (v == SEQ_START_TOKEN) 3044 sk = udp_get_idx(seq, 0); 3045 else 3046 sk = udp_get_next(seq, v); 3047 3048 ++*pos; 3049 return sk; 3050 } 3051 EXPORT_SYMBOL(udp_seq_next); 3052 3053 void udp_seq_stop(struct seq_file *seq, void *v) 3054 { 3055 struct udp_seq_afinfo *afinfo; 3056 struct udp_iter_state *state = seq->private; 3057 3058 if (state->bpf_seq_afinfo) 3059 afinfo = state->bpf_seq_afinfo; 3060 else 3061 afinfo = pde_data(file_inode(seq->file)); 3062 3063 if (state->bucket <= afinfo->udp_table->mask) 3064 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3065 } 3066 EXPORT_SYMBOL(udp_seq_stop); 3067 3068 /* ------------------------------------------------------------------------ */ 3069 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3070 int bucket) 3071 { 3072 struct inet_sock *inet = inet_sk(sp); 3073 __be32 dest = inet->inet_daddr; 3074 __be32 src = inet->inet_rcv_saddr; 3075 __u16 destp = ntohs(inet->inet_dport); 3076 __u16 srcp = ntohs(inet->inet_sport); 3077 3078 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3079 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3080 bucket, src, srcp, dest, destp, sp->sk_state, 3081 sk_wmem_alloc_get(sp), 3082 udp_rqueue_get(sp), 3083 0, 0L, 0, 3084 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3085 0, sock_i_ino(sp), 3086 refcount_read(&sp->sk_refcnt), sp, 3087 atomic_read(&sp->sk_drops)); 3088 } 3089 3090 int udp4_seq_show(struct seq_file *seq, void *v) 3091 { 3092 seq_setwidth(seq, 127); 3093 if (v == SEQ_START_TOKEN) 3094 seq_puts(seq, " sl local_address rem_address st tx_queue " 3095 "rx_queue tr tm->when retrnsmt uid timeout " 3096 "inode ref pointer drops"); 3097 else { 3098 struct udp_iter_state *state = seq->private; 3099 3100 udp4_format_sock(v, seq, state->bucket); 3101 } 3102 seq_pad(seq, '\n'); 3103 return 0; 3104 } 3105 3106 #ifdef CONFIG_BPF_SYSCALL 3107 struct bpf_iter__udp { 3108 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3109 __bpf_md_ptr(struct udp_sock *, udp_sk); 3110 uid_t uid __aligned(8); 3111 int bucket __aligned(8); 3112 }; 3113 3114 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3115 struct udp_sock *udp_sk, uid_t uid, int bucket) 3116 { 3117 struct bpf_iter__udp ctx; 3118 3119 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3120 ctx.meta = meta; 3121 ctx.udp_sk = udp_sk; 3122 ctx.uid = uid; 3123 ctx.bucket = bucket; 3124 return bpf_iter_run_prog(prog, &ctx); 3125 } 3126 3127 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3128 { 3129 struct udp_iter_state *state = seq->private; 3130 struct bpf_iter_meta meta; 3131 struct bpf_prog *prog; 3132 struct sock *sk = v; 3133 uid_t uid; 3134 3135 if (v == SEQ_START_TOKEN) 3136 return 0; 3137 3138 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3139 meta.seq = seq; 3140 prog = bpf_iter_get_info(&meta, false); 3141 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3142 } 3143 3144 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3145 { 3146 struct bpf_iter_meta meta; 3147 struct bpf_prog *prog; 3148 3149 if (!v) { 3150 meta.seq = seq; 3151 prog = bpf_iter_get_info(&meta, true); 3152 if (prog) 3153 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3154 } 3155 3156 udp_seq_stop(seq, v); 3157 } 3158 3159 static const struct seq_operations bpf_iter_udp_seq_ops = { 3160 .start = udp_seq_start, 3161 .next = udp_seq_next, 3162 .stop = bpf_iter_udp_seq_stop, 3163 .show = bpf_iter_udp_seq_show, 3164 }; 3165 #endif 3166 3167 const struct seq_operations udp_seq_ops = { 3168 .start = udp_seq_start, 3169 .next = udp_seq_next, 3170 .stop = udp_seq_stop, 3171 .show = udp4_seq_show, 3172 }; 3173 EXPORT_SYMBOL(udp_seq_ops); 3174 3175 static struct udp_seq_afinfo udp4_seq_afinfo = { 3176 .family = AF_INET, 3177 .udp_table = &udp_table, 3178 }; 3179 3180 static int __net_init udp4_proc_init_net(struct net *net) 3181 { 3182 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3183 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3184 return -ENOMEM; 3185 return 0; 3186 } 3187 3188 static void __net_exit udp4_proc_exit_net(struct net *net) 3189 { 3190 remove_proc_entry("udp", net->proc_net); 3191 } 3192 3193 static struct pernet_operations udp4_net_ops = { 3194 .init = udp4_proc_init_net, 3195 .exit = udp4_proc_exit_net, 3196 }; 3197 3198 int __init udp4_proc_init(void) 3199 { 3200 return register_pernet_subsys(&udp4_net_ops); 3201 } 3202 3203 void udp4_proc_exit(void) 3204 { 3205 unregister_pernet_subsys(&udp4_net_ops); 3206 } 3207 #endif /* CONFIG_PROC_FS */ 3208 3209 static __initdata unsigned long uhash_entries; 3210 static int __init set_uhash_entries(char *str) 3211 { 3212 ssize_t ret; 3213 3214 if (!str) 3215 return 0; 3216 3217 ret = kstrtoul(str, 0, &uhash_entries); 3218 if (ret) 3219 return 0; 3220 3221 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3222 uhash_entries = UDP_HTABLE_SIZE_MIN; 3223 return 1; 3224 } 3225 __setup("uhash_entries=", set_uhash_entries); 3226 3227 void __init udp_table_init(struct udp_table *table, const char *name) 3228 { 3229 unsigned int i; 3230 3231 table->hash = alloc_large_system_hash(name, 3232 2 * sizeof(struct udp_hslot), 3233 uhash_entries, 3234 21, /* one slot per 2 MB */ 3235 0, 3236 &table->log, 3237 &table->mask, 3238 UDP_HTABLE_SIZE_MIN, 3239 64 * 1024); 3240 3241 table->hash2 = table->hash + (table->mask + 1); 3242 for (i = 0; i <= table->mask; i++) { 3243 INIT_HLIST_HEAD(&table->hash[i].head); 3244 table->hash[i].count = 0; 3245 spin_lock_init(&table->hash[i].lock); 3246 } 3247 for (i = 0; i <= table->mask; i++) { 3248 INIT_HLIST_HEAD(&table->hash2[i].head); 3249 table->hash2[i].count = 0; 3250 spin_lock_init(&table->hash2[i].lock); 3251 } 3252 } 3253 3254 u32 udp_flow_hashrnd(void) 3255 { 3256 static u32 hashrnd __read_mostly; 3257 3258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3259 3260 return hashrnd; 3261 } 3262 EXPORT_SYMBOL(udp_flow_hashrnd); 3263 3264 static void __udp_sysctl_init(struct net *net) 3265 { 3266 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3267 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3268 3269 #ifdef CONFIG_NET_L3_MASTER_DEV 3270 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3271 #endif 3272 } 3273 3274 static int __net_init udp_sysctl_init(struct net *net) 3275 { 3276 __udp_sysctl_init(net); 3277 return 0; 3278 } 3279 3280 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3281 .init = udp_sysctl_init, 3282 }; 3283 3284 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3285 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3286 struct udp_sock *udp_sk, uid_t uid, int bucket) 3287 3288 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3289 { 3290 struct udp_iter_state *st = priv_data; 3291 struct udp_seq_afinfo *afinfo; 3292 int ret; 3293 3294 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); 3295 if (!afinfo) 3296 return -ENOMEM; 3297 3298 afinfo->family = AF_UNSPEC; 3299 afinfo->udp_table = &udp_table; 3300 st->bpf_seq_afinfo = afinfo; 3301 ret = bpf_iter_init_seq_net(priv_data, aux); 3302 if (ret) 3303 kfree(afinfo); 3304 return ret; 3305 } 3306 3307 static void bpf_iter_fini_udp(void *priv_data) 3308 { 3309 struct udp_iter_state *st = priv_data; 3310 3311 kfree(st->bpf_seq_afinfo); 3312 bpf_iter_fini_seq_net(priv_data); 3313 } 3314 3315 static const struct bpf_iter_seq_info udp_seq_info = { 3316 .seq_ops = &bpf_iter_udp_seq_ops, 3317 .init_seq_private = bpf_iter_init_udp, 3318 .fini_seq_private = bpf_iter_fini_udp, 3319 .seq_priv_size = sizeof(struct udp_iter_state), 3320 }; 3321 3322 static struct bpf_iter_reg udp_reg_info = { 3323 .target = "udp", 3324 .ctx_arg_info_size = 1, 3325 .ctx_arg_info = { 3326 { offsetof(struct bpf_iter__udp, udp_sk), 3327 PTR_TO_BTF_ID_OR_NULL }, 3328 }, 3329 .seq_info = &udp_seq_info, 3330 }; 3331 3332 static void __init bpf_iter_register(void) 3333 { 3334 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3335 if (bpf_iter_reg_target(&udp_reg_info)) 3336 pr_warn("Warning: could not register bpf iterator udp\n"); 3337 } 3338 #endif 3339 3340 void __init udp_init(void) 3341 { 3342 unsigned long limit; 3343 unsigned int i; 3344 3345 udp_table_init(&udp_table, "UDP"); 3346 limit = nr_free_buffer_pages() / 8; 3347 limit = max(limit, 128UL); 3348 sysctl_udp_mem[0] = limit / 4 * 3; 3349 sysctl_udp_mem[1] = limit; 3350 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3351 3352 __udp_sysctl_init(&init_net); 3353 3354 /* 16 spinlocks per cpu */ 3355 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3356 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3357 GFP_KERNEL); 3358 if (!udp_busylocks) 3359 panic("UDP: failed to alloc udp_busylocks\n"); 3360 for (i = 0; i < (1U << udp_busylocks_log); i++) 3361 spin_lock_init(udp_busylocks + i); 3362 3363 if (register_pernet_subsys(&udp_sysctl_ops)) 3364 panic("UDP: failed to init sysctl parameters.\n"); 3365 3366 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3367 bpf_iter_register(); 3368 #endif 3369 } 3370