1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #if IS_ENABLED(CONFIG_IPV6) 118 #include <net/ipv6_stubs.h> 119 #endif 120 121 struct udp_table udp_table __read_mostly; 122 EXPORT_SYMBOL(udp_table); 123 124 long sysctl_udp_mem[3] __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_mem); 126 127 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 128 EXPORT_SYMBOL(udp_memory_allocated); 129 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 130 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 131 132 #define MAX_UDP_PORTS 65536 133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 134 135 static struct udp_table *udp_get_table_prot(struct sock *sk) 136 { 137 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 138 } 139 140 static int udp_lib_lport_inuse(struct net *net, __u16 num, 141 const struct udp_hslot *hslot, 142 unsigned long *bitmap, 143 struct sock *sk, unsigned int log) 144 { 145 struct sock *sk2; 146 kuid_t uid = sock_i_uid(sk); 147 148 sk_for_each(sk2, &hslot->head) { 149 if (net_eq(sock_net(sk2), net) && 150 sk2 != sk && 151 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 152 (!sk2->sk_reuse || !sk->sk_reuse) && 153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 155 inet_rcv_saddr_equal(sk, sk2, true)) { 156 if (sk2->sk_reuseport && sk->sk_reuseport && 157 !rcu_access_pointer(sk->sk_reuseport_cb) && 158 uid_eq(uid, sock_i_uid(sk2))) { 159 if (!bitmap) 160 return 0; 161 } else { 162 if (!bitmap) 163 return 1; 164 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 165 bitmap); 166 } 167 } 168 } 169 return 0; 170 } 171 172 /* 173 * Note: we still hold spinlock of primary hash chain, so no other writer 174 * can insert/delete a socket with local_port == num 175 */ 176 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 177 struct udp_hslot *hslot2, 178 struct sock *sk) 179 { 180 struct sock *sk2; 181 kuid_t uid = sock_i_uid(sk); 182 int res = 0; 183 184 spin_lock(&hslot2->lock); 185 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 186 if (net_eq(sock_net(sk2), net) && 187 sk2 != sk && 188 (udp_sk(sk2)->udp_port_hash == num) && 189 (!sk2->sk_reuse || !sk->sk_reuse) && 190 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 191 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 192 inet_rcv_saddr_equal(sk, sk2, true)) { 193 if (sk2->sk_reuseport && sk->sk_reuseport && 194 !rcu_access_pointer(sk->sk_reuseport_cb) && 195 uid_eq(uid, sock_i_uid(sk2))) { 196 res = 0; 197 } else { 198 res = 1; 199 } 200 break; 201 } 202 } 203 spin_unlock(&hslot2->lock); 204 return res; 205 } 206 207 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 208 { 209 struct net *net = sock_net(sk); 210 kuid_t uid = sock_i_uid(sk); 211 struct sock *sk2; 212 213 sk_for_each(sk2, &hslot->head) { 214 if (net_eq(sock_net(sk2), net) && 215 sk2 != sk && 216 sk2->sk_family == sk->sk_family && 217 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 218 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 219 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 220 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 221 inet_rcv_saddr_equal(sk, sk2, false)) { 222 return reuseport_add_sock(sk, sk2, 223 inet_rcv_saddr_any(sk)); 224 } 225 } 226 227 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 228 } 229 230 /** 231 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 232 * 233 * @sk: socket struct in question 234 * @snum: port number to look up 235 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 236 * with NULL address 237 */ 238 int udp_lib_get_port(struct sock *sk, unsigned short snum, 239 unsigned int hash2_nulladdr) 240 { 241 struct udp_table *udptable = udp_get_table_prot(sk); 242 struct udp_hslot *hslot, *hslot2; 243 struct net *net = sock_net(sk); 244 int error = -EADDRINUSE; 245 246 if (!snum) { 247 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 248 unsigned short first, last; 249 int low, high, remaining; 250 unsigned int rand; 251 252 inet_sk_get_local_port_range(sk, &low, &high); 253 remaining = (high - low) + 1; 254 255 rand = get_random_u32(); 256 first = reciprocal_scale(rand, remaining) + low; 257 /* 258 * force rand to be an odd multiple of UDP_HTABLE_SIZE 259 */ 260 rand = (rand | 1) * (udptable->mask + 1); 261 last = first + udptable->mask + 1; 262 do { 263 hslot = udp_hashslot(udptable, net, first); 264 bitmap_zero(bitmap, PORTS_PER_CHAIN); 265 spin_lock_bh(&hslot->lock); 266 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 267 udptable->log); 268 269 snum = first; 270 /* 271 * Iterate on all possible values of snum for this hash. 272 * Using steps of an odd multiple of UDP_HTABLE_SIZE 273 * give us randomization and full range coverage. 274 */ 275 do { 276 if (low <= snum && snum <= high && 277 !test_bit(snum >> udptable->log, bitmap) && 278 !inet_is_local_reserved_port(net, snum)) 279 goto found; 280 snum += rand; 281 } while (snum != first); 282 spin_unlock_bh(&hslot->lock); 283 cond_resched(); 284 } while (++first != last); 285 goto fail; 286 } else { 287 hslot = udp_hashslot(udptable, net, snum); 288 spin_lock_bh(&hslot->lock); 289 if (hslot->count > 10) { 290 int exist; 291 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 292 293 slot2 &= udptable->mask; 294 hash2_nulladdr &= udptable->mask; 295 296 hslot2 = udp_hashslot2(udptable, slot2); 297 if (hslot->count < hslot2->count) 298 goto scan_primary_hash; 299 300 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 301 if (!exist && (hash2_nulladdr != slot2)) { 302 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 303 exist = udp_lib_lport_inuse2(net, snum, hslot2, 304 sk); 305 } 306 if (exist) 307 goto fail_unlock; 308 else 309 goto found; 310 } 311 scan_primary_hash: 312 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 313 goto fail_unlock; 314 } 315 found: 316 inet_sk(sk)->inet_num = snum; 317 udp_sk(sk)->udp_port_hash = snum; 318 udp_sk(sk)->udp_portaddr_hash ^= snum; 319 if (sk_unhashed(sk)) { 320 if (sk->sk_reuseport && 321 udp_reuseport_add_sock(sk, hslot)) { 322 inet_sk(sk)->inet_num = 0; 323 udp_sk(sk)->udp_port_hash = 0; 324 udp_sk(sk)->udp_portaddr_hash ^= snum; 325 goto fail_unlock; 326 } 327 328 sk_add_node_rcu(sk, &hslot->head); 329 hslot->count++; 330 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 331 332 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 333 spin_lock(&hslot2->lock); 334 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 335 sk->sk_family == AF_INET6) 336 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 337 &hslot2->head); 338 else 339 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 340 &hslot2->head); 341 hslot2->count++; 342 spin_unlock(&hslot2->lock); 343 } 344 sock_set_flag(sk, SOCK_RCU_FREE); 345 error = 0; 346 fail_unlock: 347 spin_unlock_bh(&hslot->lock); 348 fail: 349 return error; 350 } 351 EXPORT_SYMBOL(udp_lib_get_port); 352 353 int udp_v4_get_port(struct sock *sk, unsigned short snum) 354 { 355 unsigned int hash2_nulladdr = 356 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 357 unsigned int hash2_partial = 358 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 359 360 /* precompute partial secondary hash */ 361 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 362 return udp_lib_get_port(sk, snum, hash2_nulladdr); 363 } 364 365 static int compute_score(struct sock *sk, struct net *net, 366 __be32 saddr, __be16 sport, 367 __be32 daddr, unsigned short hnum, 368 int dif, int sdif) 369 { 370 int score; 371 struct inet_sock *inet; 372 bool dev_match; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 if (sk->sk_rcv_saddr != daddr) 380 return -1; 381 382 score = (sk->sk_family == PF_INET) ? 2 : 1; 383 384 inet = inet_sk(sk); 385 if (inet->inet_daddr) { 386 if (inet->inet_daddr != saddr) 387 return -1; 388 score += 4; 389 } 390 391 if (inet->inet_dport) { 392 if (inet->inet_dport != sport) 393 return -1; 394 score += 4; 395 } 396 397 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 398 dif, sdif); 399 if (!dev_match) 400 return -1; 401 if (sk->sk_bound_dev_if) 402 score += 4; 403 404 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 405 score++; 406 return score; 407 } 408 409 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 410 const __u16 lport, const __be32 faddr, 411 const __be16 fport) 412 { 413 static u32 udp_ehash_secret __read_mostly; 414 415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 416 417 return __inet_ehashfn(laddr, lport, faddr, fport, 418 udp_ehash_secret + net_hash_mix(net)); 419 } 420 421 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 422 struct sk_buff *skb, 423 __be32 saddr, __be16 sport, 424 __be32 daddr, unsigned short hnum) 425 { 426 struct sock *reuse_sk = NULL; 427 u32 hash; 428 429 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 430 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 431 reuse_sk = reuseport_select_sock(sk, hash, skb, 432 sizeof(struct udphdr)); 433 } 434 return reuse_sk; 435 } 436 437 /* called with rcu_read_lock() */ 438 static struct sock *udp4_lib_lookup2(struct net *net, 439 __be32 saddr, __be16 sport, 440 __be32 daddr, unsigned int hnum, 441 int dif, int sdif, 442 struct udp_hslot *hslot2, 443 struct sk_buff *skb) 444 { 445 struct sock *sk, *result; 446 int score, badness; 447 448 result = NULL; 449 badness = 0; 450 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 451 score = compute_score(sk, net, saddr, sport, 452 daddr, hnum, dif, sdif); 453 if (score > badness) { 454 result = lookup_reuseport(net, sk, skb, 455 saddr, sport, daddr, hnum); 456 /* Fall back to scoring if group has connections */ 457 if (result && !reuseport_has_conns(sk)) 458 return result; 459 460 result = result ? : sk; 461 badness = score; 462 } 463 } 464 return result; 465 } 466 467 static struct sock *udp4_lookup_run_bpf(struct net *net, 468 struct udp_table *udptable, 469 struct sk_buff *skb, 470 __be32 saddr, __be16 sport, 471 __be32 daddr, u16 hnum, const int dif) 472 { 473 struct sock *sk, *reuse_sk; 474 bool no_reuseport; 475 476 if (udptable != net->ipv4.udp_table) 477 return NULL; /* only UDP is supported */ 478 479 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 480 daddr, hnum, dif, &sk); 481 if (no_reuseport || IS_ERR_OR_NULL(sk)) 482 return sk; 483 484 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 485 if (reuse_sk) 486 sk = reuse_sk; 487 return sk; 488 } 489 490 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 491 * harder than this. -DaveM 492 */ 493 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 494 __be16 sport, __be32 daddr, __be16 dport, int dif, 495 int sdif, struct udp_table *udptable, struct sk_buff *skb) 496 { 497 unsigned short hnum = ntohs(dport); 498 unsigned int hash2, slot2; 499 struct udp_hslot *hslot2; 500 struct sock *result, *sk; 501 502 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 503 slot2 = hash2 & udptable->mask; 504 hslot2 = &udptable->hash2[slot2]; 505 506 /* Lookup connected or non-wildcard socket */ 507 result = udp4_lib_lookup2(net, saddr, sport, 508 daddr, hnum, dif, sdif, 509 hslot2, skb); 510 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 511 goto done; 512 513 /* Lookup redirect from BPF */ 514 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 515 sk = udp4_lookup_run_bpf(net, udptable, skb, 516 saddr, sport, daddr, hnum, dif); 517 if (sk) { 518 result = sk; 519 goto done; 520 } 521 } 522 523 /* Got non-wildcard socket or error on first lookup */ 524 if (result) 525 goto done; 526 527 /* Lookup wildcard sockets */ 528 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 529 slot2 = hash2 & udptable->mask; 530 hslot2 = &udptable->hash2[slot2]; 531 532 result = udp4_lib_lookup2(net, saddr, sport, 533 htonl(INADDR_ANY), hnum, dif, sdif, 534 hslot2, skb); 535 done: 536 if (IS_ERR(result)) 537 return NULL; 538 return result; 539 } 540 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 541 542 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 543 __be16 sport, __be16 dport, 544 struct udp_table *udptable) 545 { 546 const struct iphdr *iph = ip_hdr(skb); 547 548 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 549 iph->daddr, dport, inet_iif(skb), 550 inet_sdif(skb), udptable, skb); 551 } 552 553 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 554 __be16 sport, __be16 dport) 555 { 556 const struct iphdr *iph = ip_hdr(skb); 557 struct net *net = dev_net(skb->dev); 558 559 return __udp4_lib_lookup(net, iph->saddr, sport, 560 iph->daddr, dport, inet_iif(skb), 561 inet_sdif(skb), net->ipv4.udp_table, NULL); 562 } 563 564 /* Must be called under rcu_read_lock(). 565 * Does increment socket refcount. 566 */ 567 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 568 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 569 __be32 daddr, __be16 dport, int dif) 570 { 571 struct sock *sk; 572 573 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 574 dif, 0, net->ipv4.udp_table, NULL); 575 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 576 sk = NULL; 577 return sk; 578 } 579 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 580 #endif 581 582 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 583 __be16 loc_port, __be32 loc_addr, 584 __be16 rmt_port, __be32 rmt_addr, 585 int dif, int sdif, unsigned short hnum) 586 { 587 const struct inet_sock *inet = inet_sk(sk); 588 589 if (!net_eq(sock_net(sk), net) || 590 udp_sk(sk)->udp_port_hash != hnum || 591 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 592 (inet->inet_dport != rmt_port && inet->inet_dport) || 593 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 594 ipv6_only_sock(sk) || 595 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 596 return false; 597 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 598 return false; 599 return true; 600 } 601 602 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 603 void udp_encap_enable(void) 604 { 605 static_branch_inc(&udp_encap_needed_key); 606 } 607 EXPORT_SYMBOL(udp_encap_enable); 608 609 void udp_encap_disable(void) 610 { 611 static_branch_dec(&udp_encap_needed_key); 612 } 613 EXPORT_SYMBOL(udp_encap_disable); 614 615 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 616 * through error handlers in encapsulations looking for a match. 617 */ 618 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 619 { 620 int i; 621 622 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 623 int (*handler)(struct sk_buff *skb, u32 info); 624 const struct ip_tunnel_encap_ops *encap; 625 626 encap = rcu_dereference(iptun_encaps[i]); 627 if (!encap) 628 continue; 629 handler = encap->err_handler; 630 if (handler && !handler(skb, info)) 631 return 0; 632 } 633 634 return -ENOENT; 635 } 636 637 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 638 * reversing source and destination port: this will match tunnels that force the 639 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 640 * lwtunnels might actually break this assumption by being configured with 641 * different destination ports on endpoints, in this case we won't be able to 642 * trace ICMP messages back to them. 643 * 644 * If this doesn't match any socket, probe tunnels with arbitrary destination 645 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 646 * we've sent packets to won't necessarily match the local destination port. 647 * 648 * Then ask the tunnel implementation to match the error against a valid 649 * association. 650 * 651 * Return an error if we can't find a match, the socket if we need further 652 * processing, zero otherwise. 653 */ 654 static struct sock *__udp4_lib_err_encap(struct net *net, 655 const struct iphdr *iph, 656 struct udphdr *uh, 657 struct udp_table *udptable, 658 struct sock *sk, 659 struct sk_buff *skb, u32 info) 660 { 661 int (*lookup)(struct sock *sk, struct sk_buff *skb); 662 int network_offset, transport_offset; 663 struct udp_sock *up; 664 665 network_offset = skb_network_offset(skb); 666 transport_offset = skb_transport_offset(skb); 667 668 /* Network header needs to point to the outer IPv4 header inside ICMP */ 669 skb_reset_network_header(skb); 670 671 /* Transport header needs to point to the UDP header */ 672 skb_set_transport_header(skb, iph->ihl << 2); 673 674 if (sk) { 675 up = udp_sk(sk); 676 677 lookup = READ_ONCE(up->encap_err_lookup); 678 if (lookup && lookup(sk, skb)) 679 sk = NULL; 680 681 goto out; 682 } 683 684 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 685 iph->saddr, uh->dest, skb->dev->ifindex, 0, 686 udptable, NULL); 687 if (sk) { 688 up = udp_sk(sk); 689 690 lookup = READ_ONCE(up->encap_err_lookup); 691 if (!lookup || lookup(sk, skb)) 692 sk = NULL; 693 } 694 695 out: 696 if (!sk) 697 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 698 699 skb_set_transport_header(skb, transport_offset); 700 skb_set_network_header(skb, network_offset); 701 702 return sk; 703 } 704 705 /* 706 * This routine is called by the ICMP module when it gets some 707 * sort of error condition. If err < 0 then the socket should 708 * be closed and the error returned to the user. If err > 0 709 * it's just the icmp type << 8 | icmp code. 710 * Header points to the ip header of the error packet. We move 711 * on past this. Then (as it used to claim before adjustment) 712 * header points to the first 8 bytes of the udp header. We need 713 * to find the appropriate port. 714 */ 715 716 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 717 { 718 struct inet_sock *inet; 719 const struct iphdr *iph = (const struct iphdr *)skb->data; 720 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 721 const int type = icmp_hdr(skb)->type; 722 const int code = icmp_hdr(skb)->code; 723 bool tunnel = false; 724 struct sock *sk; 725 int harderr; 726 int err; 727 struct net *net = dev_net(skb->dev); 728 729 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 730 iph->saddr, uh->source, skb->dev->ifindex, 731 inet_sdif(skb), udptable, NULL); 732 733 if (!sk || udp_sk(sk)->encap_type) { 734 /* No socket for error: try tunnels before discarding */ 735 if (static_branch_unlikely(&udp_encap_needed_key)) { 736 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 737 info); 738 if (!sk) 739 return 0; 740 } else 741 sk = ERR_PTR(-ENOENT); 742 743 if (IS_ERR(sk)) { 744 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 745 return PTR_ERR(sk); 746 } 747 748 tunnel = true; 749 } 750 751 err = 0; 752 harderr = 0; 753 inet = inet_sk(sk); 754 755 switch (type) { 756 default: 757 case ICMP_TIME_EXCEEDED: 758 err = EHOSTUNREACH; 759 break; 760 case ICMP_SOURCE_QUENCH: 761 goto out; 762 case ICMP_PARAMETERPROB: 763 err = EPROTO; 764 harderr = 1; 765 break; 766 case ICMP_DEST_UNREACH: 767 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 768 ipv4_sk_update_pmtu(skb, sk, info); 769 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 770 err = EMSGSIZE; 771 harderr = 1; 772 break; 773 } 774 goto out; 775 } 776 err = EHOSTUNREACH; 777 if (code <= NR_ICMP_UNREACH) { 778 harderr = icmp_err_convert[code].fatal; 779 err = icmp_err_convert[code].errno; 780 } 781 break; 782 case ICMP_REDIRECT: 783 ipv4_sk_redirect(skb, sk); 784 goto out; 785 } 786 787 /* 788 * RFC1122: OK. Passes ICMP errors back to application, as per 789 * 4.1.3.3. 790 */ 791 if (tunnel) { 792 /* ...not for tunnels though: we don't have a sending socket */ 793 if (udp_sk(sk)->encap_err_rcv) 794 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 795 (u8 *)(uh+1)); 796 goto out; 797 } 798 if (!inet->recverr) { 799 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 800 goto out; 801 } else 802 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 803 804 sk->sk_err = err; 805 sk_error_report(sk); 806 out: 807 return 0; 808 } 809 810 int udp_err(struct sk_buff *skb, u32 info) 811 { 812 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 813 } 814 815 /* 816 * Throw away all pending data and cancel the corking. Socket is locked. 817 */ 818 void udp_flush_pending_frames(struct sock *sk) 819 { 820 struct udp_sock *up = udp_sk(sk); 821 822 if (up->pending) { 823 up->len = 0; 824 up->pending = 0; 825 ip_flush_pending_frames(sk); 826 } 827 } 828 EXPORT_SYMBOL(udp_flush_pending_frames); 829 830 /** 831 * udp4_hwcsum - handle outgoing HW checksumming 832 * @skb: sk_buff containing the filled-in UDP header 833 * (checksum field must be zeroed out) 834 * @src: source IP address 835 * @dst: destination IP address 836 */ 837 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 838 { 839 struct udphdr *uh = udp_hdr(skb); 840 int offset = skb_transport_offset(skb); 841 int len = skb->len - offset; 842 int hlen = len; 843 __wsum csum = 0; 844 845 if (!skb_has_frag_list(skb)) { 846 /* 847 * Only one fragment on the socket. 848 */ 849 skb->csum_start = skb_transport_header(skb) - skb->head; 850 skb->csum_offset = offsetof(struct udphdr, check); 851 uh->check = ~csum_tcpudp_magic(src, dst, len, 852 IPPROTO_UDP, 0); 853 } else { 854 struct sk_buff *frags; 855 856 /* 857 * HW-checksum won't work as there are two or more 858 * fragments on the socket so that all csums of sk_buffs 859 * should be together 860 */ 861 skb_walk_frags(skb, frags) { 862 csum = csum_add(csum, frags->csum); 863 hlen -= frags->len; 864 } 865 866 csum = skb_checksum(skb, offset, hlen, csum); 867 skb->ip_summed = CHECKSUM_NONE; 868 869 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 870 if (uh->check == 0) 871 uh->check = CSUM_MANGLED_0; 872 } 873 } 874 EXPORT_SYMBOL_GPL(udp4_hwcsum); 875 876 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 877 * for the simple case like when setting the checksum for a UDP tunnel. 878 */ 879 void udp_set_csum(bool nocheck, struct sk_buff *skb, 880 __be32 saddr, __be32 daddr, int len) 881 { 882 struct udphdr *uh = udp_hdr(skb); 883 884 if (nocheck) { 885 uh->check = 0; 886 } else if (skb_is_gso(skb)) { 887 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 888 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 889 uh->check = 0; 890 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 891 if (uh->check == 0) 892 uh->check = CSUM_MANGLED_0; 893 } else { 894 skb->ip_summed = CHECKSUM_PARTIAL; 895 skb->csum_start = skb_transport_header(skb) - skb->head; 896 skb->csum_offset = offsetof(struct udphdr, check); 897 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 898 } 899 } 900 EXPORT_SYMBOL(udp_set_csum); 901 902 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 903 struct inet_cork *cork) 904 { 905 struct sock *sk = skb->sk; 906 struct inet_sock *inet = inet_sk(sk); 907 struct udphdr *uh; 908 int err; 909 int is_udplite = IS_UDPLITE(sk); 910 int offset = skb_transport_offset(skb); 911 int len = skb->len - offset; 912 int datalen = len - sizeof(*uh); 913 __wsum csum = 0; 914 915 /* 916 * Create a UDP header 917 */ 918 uh = udp_hdr(skb); 919 uh->source = inet->inet_sport; 920 uh->dest = fl4->fl4_dport; 921 uh->len = htons(len); 922 uh->check = 0; 923 924 if (cork->gso_size) { 925 const int hlen = skb_network_header_len(skb) + 926 sizeof(struct udphdr); 927 928 if (hlen + cork->gso_size > cork->fragsize) { 929 kfree_skb(skb); 930 return -EINVAL; 931 } 932 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 933 kfree_skb(skb); 934 return -EINVAL; 935 } 936 if (sk->sk_no_check_tx) { 937 kfree_skb(skb); 938 return -EINVAL; 939 } 940 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 941 dst_xfrm(skb_dst(skb))) { 942 kfree_skb(skb); 943 return -EIO; 944 } 945 946 if (datalen > cork->gso_size) { 947 skb_shinfo(skb)->gso_size = cork->gso_size; 948 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 949 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 950 cork->gso_size); 951 } 952 goto csum_partial; 953 } 954 955 if (is_udplite) /* UDP-Lite */ 956 csum = udplite_csum(skb); 957 958 else if (sk->sk_no_check_tx) { /* UDP csum off */ 959 960 skb->ip_summed = CHECKSUM_NONE; 961 goto send; 962 963 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 964 csum_partial: 965 966 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 967 goto send; 968 969 } else 970 csum = udp_csum(skb); 971 972 /* add protocol-dependent pseudo-header */ 973 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 974 sk->sk_protocol, csum); 975 if (uh->check == 0) 976 uh->check = CSUM_MANGLED_0; 977 978 send: 979 err = ip_send_skb(sock_net(sk), skb); 980 if (err) { 981 if (err == -ENOBUFS && !inet->recverr) { 982 UDP_INC_STATS(sock_net(sk), 983 UDP_MIB_SNDBUFERRORS, is_udplite); 984 err = 0; 985 } 986 } else 987 UDP_INC_STATS(sock_net(sk), 988 UDP_MIB_OUTDATAGRAMS, is_udplite); 989 return err; 990 } 991 992 /* 993 * Push out all pending data as one UDP datagram. Socket is locked. 994 */ 995 int udp_push_pending_frames(struct sock *sk) 996 { 997 struct udp_sock *up = udp_sk(sk); 998 struct inet_sock *inet = inet_sk(sk); 999 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1000 struct sk_buff *skb; 1001 int err = 0; 1002 1003 skb = ip_finish_skb(sk, fl4); 1004 if (!skb) 1005 goto out; 1006 1007 err = udp_send_skb(skb, fl4, &inet->cork.base); 1008 1009 out: 1010 up->len = 0; 1011 up->pending = 0; 1012 return err; 1013 } 1014 EXPORT_SYMBOL(udp_push_pending_frames); 1015 1016 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1017 { 1018 switch (cmsg->cmsg_type) { 1019 case UDP_SEGMENT: 1020 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1021 return -EINVAL; 1022 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1023 return 0; 1024 default: 1025 return -EINVAL; 1026 } 1027 } 1028 1029 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1030 { 1031 struct cmsghdr *cmsg; 1032 bool need_ip = false; 1033 int err; 1034 1035 for_each_cmsghdr(cmsg, msg) { 1036 if (!CMSG_OK(msg, cmsg)) 1037 return -EINVAL; 1038 1039 if (cmsg->cmsg_level != SOL_UDP) { 1040 need_ip = true; 1041 continue; 1042 } 1043 1044 err = __udp_cmsg_send(cmsg, gso_size); 1045 if (err) 1046 return err; 1047 } 1048 1049 return need_ip; 1050 } 1051 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1052 1053 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1054 { 1055 struct inet_sock *inet = inet_sk(sk); 1056 struct udp_sock *up = udp_sk(sk); 1057 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1058 struct flowi4 fl4_stack; 1059 struct flowi4 *fl4; 1060 int ulen = len; 1061 struct ipcm_cookie ipc; 1062 struct rtable *rt = NULL; 1063 int free = 0; 1064 int connected = 0; 1065 __be32 daddr, faddr, saddr; 1066 u8 tos, scope; 1067 __be16 dport; 1068 int err, is_udplite = IS_UDPLITE(sk); 1069 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1070 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1071 struct sk_buff *skb; 1072 struct ip_options_data opt_copy; 1073 1074 if (len > 0xFFFF) 1075 return -EMSGSIZE; 1076 1077 /* 1078 * Check the flags. 1079 */ 1080 1081 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1082 return -EOPNOTSUPP; 1083 1084 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1085 1086 fl4 = &inet->cork.fl.u.ip4; 1087 if (up->pending) { 1088 /* 1089 * There are pending frames. 1090 * The socket lock must be held while it's corked. 1091 */ 1092 lock_sock(sk); 1093 if (likely(up->pending)) { 1094 if (unlikely(up->pending != AF_INET)) { 1095 release_sock(sk); 1096 return -EINVAL; 1097 } 1098 goto do_append_data; 1099 } 1100 release_sock(sk); 1101 } 1102 ulen += sizeof(struct udphdr); 1103 1104 /* 1105 * Get and verify the address. 1106 */ 1107 if (usin) { 1108 if (msg->msg_namelen < sizeof(*usin)) 1109 return -EINVAL; 1110 if (usin->sin_family != AF_INET) { 1111 if (usin->sin_family != AF_UNSPEC) 1112 return -EAFNOSUPPORT; 1113 } 1114 1115 daddr = usin->sin_addr.s_addr; 1116 dport = usin->sin_port; 1117 if (dport == 0) 1118 return -EINVAL; 1119 } else { 1120 if (sk->sk_state != TCP_ESTABLISHED) 1121 return -EDESTADDRREQ; 1122 daddr = inet->inet_daddr; 1123 dport = inet->inet_dport; 1124 /* Open fast path for connected socket. 1125 Route will not be used, if at least one option is set. 1126 */ 1127 connected = 1; 1128 } 1129 1130 ipcm_init_sk(&ipc, inet); 1131 ipc.gso_size = READ_ONCE(up->gso_size); 1132 1133 if (msg->msg_controllen) { 1134 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1135 if (err > 0) 1136 err = ip_cmsg_send(sk, msg, &ipc, 1137 sk->sk_family == AF_INET6); 1138 if (unlikely(err < 0)) { 1139 kfree(ipc.opt); 1140 return err; 1141 } 1142 if (ipc.opt) 1143 free = 1; 1144 connected = 0; 1145 } 1146 if (!ipc.opt) { 1147 struct ip_options_rcu *inet_opt; 1148 1149 rcu_read_lock(); 1150 inet_opt = rcu_dereference(inet->inet_opt); 1151 if (inet_opt) { 1152 memcpy(&opt_copy, inet_opt, 1153 sizeof(*inet_opt) + inet_opt->opt.optlen); 1154 ipc.opt = &opt_copy.opt; 1155 } 1156 rcu_read_unlock(); 1157 } 1158 1159 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1160 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1161 (struct sockaddr *)usin, &ipc.addr); 1162 if (err) 1163 goto out_free; 1164 if (usin) { 1165 if (usin->sin_port == 0) { 1166 /* BPF program set invalid port. Reject it. */ 1167 err = -EINVAL; 1168 goto out_free; 1169 } 1170 daddr = usin->sin_addr.s_addr; 1171 dport = usin->sin_port; 1172 } 1173 } 1174 1175 saddr = ipc.addr; 1176 ipc.addr = faddr = daddr; 1177 1178 if (ipc.opt && ipc.opt->opt.srr) { 1179 if (!daddr) { 1180 err = -EINVAL; 1181 goto out_free; 1182 } 1183 faddr = ipc.opt->opt.faddr; 1184 connected = 0; 1185 } 1186 tos = get_rttos(&ipc, inet); 1187 scope = ip_sendmsg_scope(inet, &ipc, msg); 1188 if (scope == RT_SCOPE_LINK) 1189 connected = 0; 1190 1191 if (ipv4_is_multicast(daddr)) { 1192 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1193 ipc.oif = inet->mc_index; 1194 if (!saddr) 1195 saddr = inet->mc_addr; 1196 connected = 0; 1197 } else if (!ipc.oif) { 1198 ipc.oif = inet->uc_index; 1199 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1200 /* oif is set, packet is to local broadcast and 1201 * uc_index is set. oif is most likely set 1202 * by sk_bound_dev_if. If uc_index != oif check if the 1203 * oif is an L3 master and uc_index is an L3 slave. 1204 * If so, we want to allow the send using the uc_index. 1205 */ 1206 if (ipc.oif != inet->uc_index && 1207 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1208 inet->uc_index)) { 1209 ipc.oif = inet->uc_index; 1210 } 1211 } 1212 1213 if (connected) 1214 rt = (struct rtable *)sk_dst_check(sk, 0); 1215 1216 if (!rt) { 1217 struct net *net = sock_net(sk); 1218 __u8 flow_flags = inet_sk_flowi_flags(sk); 1219 1220 fl4 = &fl4_stack; 1221 1222 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1223 sk->sk_protocol, flow_flags, faddr, saddr, 1224 dport, inet->inet_sport, sk->sk_uid); 1225 1226 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1227 rt = ip_route_output_flow(net, fl4, sk); 1228 if (IS_ERR(rt)) { 1229 err = PTR_ERR(rt); 1230 rt = NULL; 1231 if (err == -ENETUNREACH) 1232 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1233 goto out; 1234 } 1235 1236 err = -EACCES; 1237 if ((rt->rt_flags & RTCF_BROADCAST) && 1238 !sock_flag(sk, SOCK_BROADCAST)) 1239 goto out; 1240 if (connected) 1241 sk_dst_set(sk, dst_clone(&rt->dst)); 1242 } 1243 1244 if (msg->msg_flags&MSG_CONFIRM) 1245 goto do_confirm; 1246 back_from_confirm: 1247 1248 saddr = fl4->saddr; 1249 if (!ipc.addr) 1250 daddr = ipc.addr = fl4->daddr; 1251 1252 /* Lockless fast path for the non-corking case. */ 1253 if (!corkreq) { 1254 struct inet_cork cork; 1255 1256 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1257 sizeof(struct udphdr), &ipc, &rt, 1258 &cork, msg->msg_flags); 1259 err = PTR_ERR(skb); 1260 if (!IS_ERR_OR_NULL(skb)) 1261 err = udp_send_skb(skb, fl4, &cork); 1262 goto out; 1263 } 1264 1265 lock_sock(sk); 1266 if (unlikely(up->pending)) { 1267 /* The socket is already corked while preparing it. */ 1268 /* ... which is an evident application bug. --ANK */ 1269 release_sock(sk); 1270 1271 net_dbg_ratelimited("socket already corked\n"); 1272 err = -EINVAL; 1273 goto out; 1274 } 1275 /* 1276 * Now cork the socket to pend data. 1277 */ 1278 fl4 = &inet->cork.fl.u.ip4; 1279 fl4->daddr = daddr; 1280 fl4->saddr = saddr; 1281 fl4->fl4_dport = dport; 1282 fl4->fl4_sport = inet->inet_sport; 1283 up->pending = AF_INET; 1284 1285 do_append_data: 1286 up->len += ulen; 1287 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1288 sizeof(struct udphdr), &ipc, &rt, 1289 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1290 if (err) 1291 udp_flush_pending_frames(sk); 1292 else if (!corkreq) 1293 err = udp_push_pending_frames(sk); 1294 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1295 up->pending = 0; 1296 release_sock(sk); 1297 1298 out: 1299 ip_rt_put(rt); 1300 out_free: 1301 if (free) 1302 kfree(ipc.opt); 1303 if (!err) 1304 return len; 1305 /* 1306 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1307 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1308 * we don't have a good statistic (IpOutDiscards but it can be too many 1309 * things). We could add another new stat but at least for now that 1310 * seems like overkill. 1311 */ 1312 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1313 UDP_INC_STATS(sock_net(sk), 1314 UDP_MIB_SNDBUFERRORS, is_udplite); 1315 } 1316 return err; 1317 1318 do_confirm: 1319 if (msg->msg_flags & MSG_PROBE) 1320 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1321 if (!(msg->msg_flags&MSG_PROBE) || len) 1322 goto back_from_confirm; 1323 err = 0; 1324 goto out; 1325 } 1326 EXPORT_SYMBOL(udp_sendmsg); 1327 1328 void udp_splice_eof(struct socket *sock) 1329 { 1330 struct sock *sk = sock->sk; 1331 struct udp_sock *up = udp_sk(sk); 1332 1333 if (!up->pending || READ_ONCE(up->corkflag)) 1334 return; 1335 1336 lock_sock(sk); 1337 if (up->pending && !READ_ONCE(up->corkflag)) 1338 udp_push_pending_frames(sk); 1339 release_sock(sk); 1340 } 1341 EXPORT_SYMBOL_GPL(udp_splice_eof); 1342 1343 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1344 size_t size, int flags) 1345 { 1346 struct bio_vec bvec; 1347 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES }; 1348 1349 if (flags & MSG_SENDPAGE_NOTLAST) 1350 msg.msg_flags |= MSG_MORE; 1351 1352 bvec_set_page(&bvec, page, size, offset); 1353 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 1354 return udp_sendmsg(sk, &msg, size); 1355 } 1356 1357 #define UDP_SKB_IS_STATELESS 0x80000000 1358 1359 /* all head states (dst, sk, nf conntrack) except skb extensions are 1360 * cleared by udp_rcv(). 1361 * 1362 * We need to preserve secpath, if present, to eventually process 1363 * IP_CMSG_PASSSEC at recvmsg() time. 1364 * 1365 * Other extensions can be cleared. 1366 */ 1367 static bool udp_try_make_stateless(struct sk_buff *skb) 1368 { 1369 if (!skb_has_extensions(skb)) 1370 return true; 1371 1372 if (!secpath_exists(skb)) { 1373 skb_ext_reset(skb); 1374 return true; 1375 } 1376 1377 return false; 1378 } 1379 1380 static void udp_set_dev_scratch(struct sk_buff *skb) 1381 { 1382 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1383 1384 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1385 scratch->_tsize_state = skb->truesize; 1386 #if BITS_PER_LONG == 64 1387 scratch->len = skb->len; 1388 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1389 scratch->is_linear = !skb_is_nonlinear(skb); 1390 #endif 1391 if (udp_try_make_stateless(skb)) 1392 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1393 } 1394 1395 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1396 { 1397 /* We come here after udp_lib_checksum_complete() returned 0. 1398 * This means that __skb_checksum_complete() might have 1399 * set skb->csum_valid to 1. 1400 * On 64bit platforms, we can set csum_unnecessary 1401 * to true, but only if the skb is not shared. 1402 */ 1403 #if BITS_PER_LONG == 64 1404 if (!skb_shared(skb)) 1405 udp_skb_scratch(skb)->csum_unnecessary = true; 1406 #endif 1407 } 1408 1409 static int udp_skb_truesize(struct sk_buff *skb) 1410 { 1411 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1412 } 1413 1414 static bool udp_skb_has_head_state(struct sk_buff *skb) 1415 { 1416 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1417 } 1418 1419 /* fully reclaim rmem/fwd memory allocated for skb */ 1420 static void udp_rmem_release(struct sock *sk, int size, int partial, 1421 bool rx_queue_lock_held) 1422 { 1423 struct udp_sock *up = udp_sk(sk); 1424 struct sk_buff_head *sk_queue; 1425 int amt; 1426 1427 if (likely(partial)) { 1428 up->forward_deficit += size; 1429 size = up->forward_deficit; 1430 if (size < READ_ONCE(up->forward_threshold) && 1431 !skb_queue_empty(&up->reader_queue)) 1432 return; 1433 } else { 1434 size += up->forward_deficit; 1435 } 1436 up->forward_deficit = 0; 1437 1438 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1439 * if the called don't held it already 1440 */ 1441 sk_queue = &sk->sk_receive_queue; 1442 if (!rx_queue_lock_held) 1443 spin_lock(&sk_queue->lock); 1444 1445 1446 sk->sk_forward_alloc += size; 1447 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1448 sk->sk_forward_alloc -= amt; 1449 1450 if (amt) 1451 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1452 1453 atomic_sub(size, &sk->sk_rmem_alloc); 1454 1455 /* this can save us from acquiring the rx queue lock on next receive */ 1456 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1457 1458 if (!rx_queue_lock_held) 1459 spin_unlock(&sk_queue->lock); 1460 } 1461 1462 /* Note: called with reader_queue.lock held. 1463 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1464 * This avoids a cache line miss while receive_queue lock is held. 1465 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1466 */ 1467 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1468 { 1469 prefetch(&skb->data); 1470 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1471 } 1472 EXPORT_SYMBOL(udp_skb_destructor); 1473 1474 /* as above, but the caller held the rx queue lock, too */ 1475 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1476 { 1477 prefetch(&skb->data); 1478 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1479 } 1480 1481 /* Idea of busylocks is to let producers grab an extra spinlock 1482 * to relieve pressure on the receive_queue spinlock shared by consumer. 1483 * Under flood, this means that only one producer can be in line 1484 * trying to acquire the receive_queue spinlock. 1485 * These busylock can be allocated on a per cpu manner, instead of a 1486 * per socket one (that would consume a cache line per socket) 1487 */ 1488 static int udp_busylocks_log __read_mostly; 1489 static spinlock_t *udp_busylocks __read_mostly; 1490 1491 static spinlock_t *busylock_acquire(void *ptr) 1492 { 1493 spinlock_t *busy; 1494 1495 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1496 spin_lock(busy); 1497 return busy; 1498 } 1499 1500 static void busylock_release(spinlock_t *busy) 1501 { 1502 if (busy) 1503 spin_unlock(busy); 1504 } 1505 1506 static int udp_rmem_schedule(struct sock *sk, int size) 1507 { 1508 int delta; 1509 1510 delta = size - sk->sk_forward_alloc; 1511 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1512 return -ENOBUFS; 1513 1514 return 0; 1515 } 1516 1517 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1518 { 1519 struct sk_buff_head *list = &sk->sk_receive_queue; 1520 int rmem, err = -ENOMEM; 1521 spinlock_t *busy = NULL; 1522 int size; 1523 1524 /* try to avoid the costly atomic add/sub pair when the receive 1525 * queue is full; always allow at least a packet 1526 */ 1527 rmem = atomic_read(&sk->sk_rmem_alloc); 1528 if (rmem > sk->sk_rcvbuf) 1529 goto drop; 1530 1531 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1532 * having linear skbs : 1533 * - Reduce memory overhead and thus increase receive queue capacity 1534 * - Less cache line misses at copyout() time 1535 * - Less work at consume_skb() (less alien page frag freeing) 1536 */ 1537 if (rmem > (sk->sk_rcvbuf >> 1)) { 1538 skb_condense(skb); 1539 1540 busy = busylock_acquire(sk); 1541 } 1542 size = skb->truesize; 1543 udp_set_dev_scratch(skb); 1544 1545 /* we drop only if the receive buf is full and the receive 1546 * queue contains some other skb 1547 */ 1548 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1549 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1550 goto uncharge_drop; 1551 1552 spin_lock(&list->lock); 1553 err = udp_rmem_schedule(sk, size); 1554 if (err) { 1555 spin_unlock(&list->lock); 1556 goto uncharge_drop; 1557 } 1558 1559 sk->sk_forward_alloc -= size; 1560 1561 /* no need to setup a destructor, we will explicitly release the 1562 * forward allocated memory on dequeue 1563 */ 1564 sock_skb_set_dropcount(sk, skb); 1565 1566 __skb_queue_tail(list, skb); 1567 spin_unlock(&list->lock); 1568 1569 if (!sock_flag(sk, SOCK_DEAD)) 1570 sk->sk_data_ready(sk); 1571 1572 busylock_release(busy); 1573 return 0; 1574 1575 uncharge_drop: 1576 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1577 1578 drop: 1579 atomic_inc(&sk->sk_drops); 1580 busylock_release(busy); 1581 return err; 1582 } 1583 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1584 1585 void udp_destruct_common(struct sock *sk) 1586 { 1587 /* reclaim completely the forward allocated memory */ 1588 struct udp_sock *up = udp_sk(sk); 1589 unsigned int total = 0; 1590 struct sk_buff *skb; 1591 1592 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1593 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1594 total += skb->truesize; 1595 kfree_skb(skb); 1596 } 1597 udp_rmem_release(sk, total, 0, true); 1598 } 1599 EXPORT_SYMBOL_GPL(udp_destruct_common); 1600 1601 static void udp_destruct_sock(struct sock *sk) 1602 { 1603 udp_destruct_common(sk); 1604 inet_sock_destruct(sk); 1605 } 1606 1607 int udp_init_sock(struct sock *sk) 1608 { 1609 udp_lib_init_sock(sk); 1610 sk->sk_destruct = udp_destruct_sock; 1611 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1612 return 0; 1613 } 1614 1615 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1616 { 1617 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1618 bool slow = lock_sock_fast(sk); 1619 1620 sk_peek_offset_bwd(sk, len); 1621 unlock_sock_fast(sk, slow); 1622 } 1623 1624 if (!skb_unref(skb)) 1625 return; 1626 1627 /* In the more common cases we cleared the head states previously, 1628 * see __udp_queue_rcv_skb(). 1629 */ 1630 if (unlikely(udp_skb_has_head_state(skb))) 1631 skb_release_head_state(skb); 1632 __consume_stateless_skb(skb); 1633 } 1634 EXPORT_SYMBOL_GPL(skb_consume_udp); 1635 1636 static struct sk_buff *__first_packet_length(struct sock *sk, 1637 struct sk_buff_head *rcvq, 1638 int *total) 1639 { 1640 struct sk_buff *skb; 1641 1642 while ((skb = skb_peek(rcvq)) != NULL) { 1643 if (udp_lib_checksum_complete(skb)) { 1644 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1645 IS_UDPLITE(sk)); 1646 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1647 IS_UDPLITE(sk)); 1648 atomic_inc(&sk->sk_drops); 1649 __skb_unlink(skb, rcvq); 1650 *total += skb->truesize; 1651 kfree_skb(skb); 1652 } else { 1653 udp_skb_csum_unnecessary_set(skb); 1654 break; 1655 } 1656 } 1657 return skb; 1658 } 1659 1660 /** 1661 * first_packet_length - return length of first packet in receive queue 1662 * @sk: socket 1663 * 1664 * Drops all bad checksum frames, until a valid one is found. 1665 * Returns the length of found skb, or -1 if none is found. 1666 */ 1667 static int first_packet_length(struct sock *sk) 1668 { 1669 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1670 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1671 struct sk_buff *skb; 1672 int total = 0; 1673 int res; 1674 1675 spin_lock_bh(&rcvq->lock); 1676 skb = __first_packet_length(sk, rcvq, &total); 1677 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1678 spin_lock(&sk_queue->lock); 1679 skb_queue_splice_tail_init(sk_queue, rcvq); 1680 spin_unlock(&sk_queue->lock); 1681 1682 skb = __first_packet_length(sk, rcvq, &total); 1683 } 1684 res = skb ? skb->len : -1; 1685 if (total) 1686 udp_rmem_release(sk, total, 1, false); 1687 spin_unlock_bh(&rcvq->lock); 1688 return res; 1689 } 1690 1691 /* 1692 * IOCTL requests applicable to the UDP protocol 1693 */ 1694 1695 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1696 { 1697 switch (cmd) { 1698 case SIOCOUTQ: 1699 { 1700 *karg = sk_wmem_alloc_get(sk); 1701 return 0; 1702 } 1703 1704 case SIOCINQ: 1705 { 1706 *karg = max_t(int, 0, first_packet_length(sk)); 1707 return 0; 1708 } 1709 1710 default: 1711 return -ENOIOCTLCMD; 1712 } 1713 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(udp_ioctl); 1717 1718 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1719 int *off, int *err) 1720 { 1721 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1722 struct sk_buff_head *queue; 1723 struct sk_buff *last; 1724 long timeo; 1725 int error; 1726 1727 queue = &udp_sk(sk)->reader_queue; 1728 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1729 do { 1730 struct sk_buff *skb; 1731 1732 error = sock_error(sk); 1733 if (error) 1734 break; 1735 1736 error = -EAGAIN; 1737 do { 1738 spin_lock_bh(&queue->lock); 1739 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1740 err, &last); 1741 if (skb) { 1742 if (!(flags & MSG_PEEK)) 1743 udp_skb_destructor(sk, skb); 1744 spin_unlock_bh(&queue->lock); 1745 return skb; 1746 } 1747 1748 if (skb_queue_empty_lockless(sk_queue)) { 1749 spin_unlock_bh(&queue->lock); 1750 goto busy_check; 1751 } 1752 1753 /* refill the reader queue and walk it again 1754 * keep both queues locked to avoid re-acquiring 1755 * the sk_receive_queue lock if fwd memory scheduling 1756 * is needed. 1757 */ 1758 spin_lock(&sk_queue->lock); 1759 skb_queue_splice_tail_init(sk_queue, queue); 1760 1761 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1762 err, &last); 1763 if (skb && !(flags & MSG_PEEK)) 1764 udp_skb_dtor_locked(sk, skb); 1765 spin_unlock(&sk_queue->lock); 1766 spin_unlock_bh(&queue->lock); 1767 if (skb) 1768 return skb; 1769 1770 busy_check: 1771 if (!sk_can_busy_loop(sk)) 1772 break; 1773 1774 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1775 } while (!skb_queue_empty_lockless(sk_queue)); 1776 1777 /* sk_queue is empty, reader_queue may contain peeked packets */ 1778 } while (timeo && 1779 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1780 &error, &timeo, 1781 (struct sk_buff *)sk_queue)); 1782 1783 *err = error; 1784 return NULL; 1785 } 1786 EXPORT_SYMBOL(__skb_recv_udp); 1787 1788 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1789 { 1790 struct sk_buff *skb; 1791 int err; 1792 1793 try_again: 1794 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1795 if (!skb) 1796 return err; 1797 1798 if (udp_lib_checksum_complete(skb)) { 1799 int is_udplite = IS_UDPLITE(sk); 1800 struct net *net = sock_net(sk); 1801 1802 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1803 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1804 atomic_inc(&sk->sk_drops); 1805 kfree_skb(skb); 1806 goto try_again; 1807 } 1808 1809 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1810 return recv_actor(sk, skb); 1811 } 1812 EXPORT_SYMBOL(udp_read_skb); 1813 1814 /* 1815 * This should be easy, if there is something there we 1816 * return it, otherwise we block. 1817 */ 1818 1819 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1820 int *addr_len) 1821 { 1822 struct inet_sock *inet = inet_sk(sk); 1823 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1824 struct sk_buff *skb; 1825 unsigned int ulen, copied; 1826 int off, err, peeking = flags & MSG_PEEK; 1827 int is_udplite = IS_UDPLITE(sk); 1828 bool checksum_valid = false; 1829 1830 if (flags & MSG_ERRQUEUE) 1831 return ip_recv_error(sk, msg, len, addr_len); 1832 1833 try_again: 1834 off = sk_peek_offset(sk, flags); 1835 skb = __skb_recv_udp(sk, flags, &off, &err); 1836 if (!skb) 1837 return err; 1838 1839 ulen = udp_skb_len(skb); 1840 copied = len; 1841 if (copied > ulen - off) 1842 copied = ulen - off; 1843 else if (copied < ulen) 1844 msg->msg_flags |= MSG_TRUNC; 1845 1846 /* 1847 * If checksum is needed at all, try to do it while copying the 1848 * data. If the data is truncated, or if we only want a partial 1849 * coverage checksum (UDP-Lite), do it before the copy. 1850 */ 1851 1852 if (copied < ulen || peeking || 1853 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1854 checksum_valid = udp_skb_csum_unnecessary(skb) || 1855 !__udp_lib_checksum_complete(skb); 1856 if (!checksum_valid) 1857 goto csum_copy_err; 1858 } 1859 1860 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1861 if (udp_skb_is_linear(skb)) 1862 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1863 else 1864 err = skb_copy_datagram_msg(skb, off, msg, copied); 1865 } else { 1866 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1867 1868 if (err == -EINVAL) 1869 goto csum_copy_err; 1870 } 1871 1872 if (unlikely(err)) { 1873 if (!peeking) { 1874 atomic_inc(&sk->sk_drops); 1875 UDP_INC_STATS(sock_net(sk), 1876 UDP_MIB_INERRORS, is_udplite); 1877 } 1878 kfree_skb(skb); 1879 return err; 1880 } 1881 1882 if (!peeking) 1883 UDP_INC_STATS(sock_net(sk), 1884 UDP_MIB_INDATAGRAMS, is_udplite); 1885 1886 sock_recv_cmsgs(msg, sk, skb); 1887 1888 /* Copy the address. */ 1889 if (sin) { 1890 sin->sin_family = AF_INET; 1891 sin->sin_port = udp_hdr(skb)->source; 1892 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1893 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1894 *addr_len = sizeof(*sin); 1895 1896 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1897 (struct sockaddr *)sin); 1898 } 1899 1900 if (udp_sk(sk)->gro_enabled) 1901 udp_cmsg_recv(msg, sk, skb); 1902 1903 if (inet->cmsg_flags) 1904 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1905 1906 err = copied; 1907 if (flags & MSG_TRUNC) 1908 err = ulen; 1909 1910 skb_consume_udp(sk, skb, peeking ? -err : err); 1911 return err; 1912 1913 csum_copy_err: 1914 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1915 udp_skb_destructor)) { 1916 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1917 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1918 } 1919 kfree_skb(skb); 1920 1921 /* starting over for a new packet, but check if we need to yield */ 1922 cond_resched(); 1923 msg->msg_flags &= ~MSG_TRUNC; 1924 goto try_again; 1925 } 1926 1927 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1928 { 1929 /* This check is replicated from __ip4_datagram_connect() and 1930 * intended to prevent BPF program called below from accessing bytes 1931 * that are out of the bound specified by user in addr_len. 1932 */ 1933 if (addr_len < sizeof(struct sockaddr_in)) 1934 return -EINVAL; 1935 1936 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1937 } 1938 EXPORT_SYMBOL(udp_pre_connect); 1939 1940 int __udp_disconnect(struct sock *sk, int flags) 1941 { 1942 struct inet_sock *inet = inet_sk(sk); 1943 /* 1944 * 1003.1g - break association. 1945 */ 1946 1947 sk->sk_state = TCP_CLOSE; 1948 inet->inet_daddr = 0; 1949 inet->inet_dport = 0; 1950 sock_rps_reset_rxhash(sk); 1951 sk->sk_bound_dev_if = 0; 1952 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1953 inet_reset_saddr(sk); 1954 if (sk->sk_prot->rehash && 1955 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1956 sk->sk_prot->rehash(sk); 1957 } 1958 1959 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1960 sk->sk_prot->unhash(sk); 1961 inet->inet_sport = 0; 1962 } 1963 sk_dst_reset(sk); 1964 return 0; 1965 } 1966 EXPORT_SYMBOL(__udp_disconnect); 1967 1968 int udp_disconnect(struct sock *sk, int flags) 1969 { 1970 lock_sock(sk); 1971 __udp_disconnect(sk, flags); 1972 release_sock(sk); 1973 return 0; 1974 } 1975 EXPORT_SYMBOL(udp_disconnect); 1976 1977 void udp_lib_unhash(struct sock *sk) 1978 { 1979 if (sk_hashed(sk)) { 1980 struct udp_table *udptable = udp_get_table_prot(sk); 1981 struct udp_hslot *hslot, *hslot2; 1982 1983 hslot = udp_hashslot(udptable, sock_net(sk), 1984 udp_sk(sk)->udp_port_hash); 1985 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1986 1987 spin_lock_bh(&hslot->lock); 1988 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1989 reuseport_detach_sock(sk); 1990 if (sk_del_node_init_rcu(sk)) { 1991 hslot->count--; 1992 inet_sk(sk)->inet_num = 0; 1993 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1994 1995 spin_lock(&hslot2->lock); 1996 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1997 hslot2->count--; 1998 spin_unlock(&hslot2->lock); 1999 } 2000 spin_unlock_bh(&hslot->lock); 2001 } 2002 } 2003 EXPORT_SYMBOL(udp_lib_unhash); 2004 2005 /* 2006 * inet_rcv_saddr was changed, we must rehash secondary hash 2007 */ 2008 void udp_lib_rehash(struct sock *sk, u16 newhash) 2009 { 2010 if (sk_hashed(sk)) { 2011 struct udp_table *udptable = udp_get_table_prot(sk); 2012 struct udp_hslot *hslot, *hslot2, *nhslot2; 2013 2014 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2015 nhslot2 = udp_hashslot2(udptable, newhash); 2016 udp_sk(sk)->udp_portaddr_hash = newhash; 2017 2018 if (hslot2 != nhslot2 || 2019 rcu_access_pointer(sk->sk_reuseport_cb)) { 2020 hslot = udp_hashslot(udptable, sock_net(sk), 2021 udp_sk(sk)->udp_port_hash); 2022 /* we must lock primary chain too */ 2023 spin_lock_bh(&hslot->lock); 2024 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2025 reuseport_detach_sock(sk); 2026 2027 if (hslot2 != nhslot2) { 2028 spin_lock(&hslot2->lock); 2029 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2030 hslot2->count--; 2031 spin_unlock(&hslot2->lock); 2032 2033 spin_lock(&nhslot2->lock); 2034 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2035 &nhslot2->head); 2036 nhslot2->count++; 2037 spin_unlock(&nhslot2->lock); 2038 } 2039 2040 spin_unlock_bh(&hslot->lock); 2041 } 2042 } 2043 } 2044 EXPORT_SYMBOL(udp_lib_rehash); 2045 2046 void udp_v4_rehash(struct sock *sk) 2047 { 2048 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2049 inet_sk(sk)->inet_rcv_saddr, 2050 inet_sk(sk)->inet_num); 2051 udp_lib_rehash(sk, new_hash); 2052 } 2053 2054 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2055 { 2056 int rc; 2057 2058 if (inet_sk(sk)->inet_daddr) { 2059 sock_rps_save_rxhash(sk, skb); 2060 sk_mark_napi_id(sk, skb); 2061 sk_incoming_cpu_update(sk); 2062 } else { 2063 sk_mark_napi_id_once(sk, skb); 2064 } 2065 2066 rc = __udp_enqueue_schedule_skb(sk, skb); 2067 if (rc < 0) { 2068 int is_udplite = IS_UDPLITE(sk); 2069 int drop_reason; 2070 2071 /* Note that an ENOMEM error is charged twice */ 2072 if (rc == -ENOMEM) { 2073 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2074 is_udplite); 2075 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2076 } else { 2077 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2078 is_udplite); 2079 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2080 } 2081 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2082 kfree_skb_reason(skb, drop_reason); 2083 trace_udp_fail_queue_rcv_skb(rc, sk); 2084 return -1; 2085 } 2086 2087 return 0; 2088 } 2089 2090 /* returns: 2091 * -1: error 2092 * 0: success 2093 * >0: "udp encap" protocol resubmission 2094 * 2095 * Note that in the success and error cases, the skb is assumed to 2096 * have either been requeued or freed. 2097 */ 2098 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2099 { 2100 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2101 struct udp_sock *up = udp_sk(sk); 2102 int is_udplite = IS_UDPLITE(sk); 2103 2104 /* 2105 * Charge it to the socket, dropping if the queue is full. 2106 */ 2107 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2108 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2109 goto drop; 2110 } 2111 nf_reset_ct(skb); 2112 2113 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2114 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2115 2116 /* 2117 * This is an encapsulation socket so pass the skb to 2118 * the socket's udp_encap_rcv() hook. Otherwise, just 2119 * fall through and pass this up the UDP socket. 2120 * up->encap_rcv() returns the following value: 2121 * =0 if skb was successfully passed to the encap 2122 * handler or was discarded by it. 2123 * >0 if skb should be passed on to UDP. 2124 * <0 if skb should be resubmitted as proto -N 2125 */ 2126 2127 /* if we're overly short, let UDP handle it */ 2128 encap_rcv = READ_ONCE(up->encap_rcv); 2129 if (encap_rcv) { 2130 int ret; 2131 2132 /* Verify checksum before giving to encap */ 2133 if (udp_lib_checksum_complete(skb)) 2134 goto csum_error; 2135 2136 ret = encap_rcv(sk, skb); 2137 if (ret <= 0) { 2138 __UDP_INC_STATS(sock_net(sk), 2139 UDP_MIB_INDATAGRAMS, 2140 is_udplite); 2141 return -ret; 2142 } 2143 } 2144 2145 /* FALLTHROUGH -- it's a UDP Packet */ 2146 } 2147 2148 /* 2149 * UDP-Lite specific tests, ignored on UDP sockets 2150 */ 2151 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2152 2153 /* 2154 * MIB statistics other than incrementing the error count are 2155 * disabled for the following two types of errors: these depend 2156 * on the application settings, not on the functioning of the 2157 * protocol stack as such. 2158 * 2159 * RFC 3828 here recommends (sec 3.3): "There should also be a 2160 * way ... to ... at least let the receiving application block 2161 * delivery of packets with coverage values less than a value 2162 * provided by the application." 2163 */ 2164 if (up->pcrlen == 0) { /* full coverage was set */ 2165 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2166 UDP_SKB_CB(skb)->cscov, skb->len); 2167 goto drop; 2168 } 2169 /* The next case involves violating the min. coverage requested 2170 * by the receiver. This is subtle: if receiver wants x and x is 2171 * greater than the buffersize/MTU then receiver will complain 2172 * that it wants x while sender emits packets of smaller size y. 2173 * Therefore the above ...()->partial_cov statement is essential. 2174 */ 2175 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2176 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2177 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2178 goto drop; 2179 } 2180 } 2181 2182 prefetch(&sk->sk_rmem_alloc); 2183 if (rcu_access_pointer(sk->sk_filter) && 2184 udp_lib_checksum_complete(skb)) 2185 goto csum_error; 2186 2187 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2188 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2189 goto drop; 2190 } 2191 2192 udp_csum_pull_header(skb); 2193 2194 ipv4_pktinfo_prepare(sk, skb); 2195 return __udp_queue_rcv_skb(sk, skb); 2196 2197 csum_error: 2198 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2199 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2200 drop: 2201 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2202 atomic_inc(&sk->sk_drops); 2203 kfree_skb_reason(skb, drop_reason); 2204 return -1; 2205 } 2206 2207 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2208 { 2209 struct sk_buff *next, *segs; 2210 int ret; 2211 2212 if (likely(!udp_unexpected_gso(sk, skb))) 2213 return udp_queue_rcv_one_skb(sk, skb); 2214 2215 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2216 __skb_push(skb, -skb_mac_offset(skb)); 2217 segs = udp_rcv_segment(sk, skb, true); 2218 skb_list_walk_safe(segs, skb, next) { 2219 __skb_pull(skb, skb_transport_offset(skb)); 2220 2221 udp_post_segment_fix_csum(skb); 2222 ret = udp_queue_rcv_one_skb(sk, skb); 2223 if (ret > 0) 2224 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2225 } 2226 return 0; 2227 } 2228 2229 /* For TCP sockets, sk_rx_dst is protected by socket lock 2230 * For UDP, we use xchg() to guard against concurrent changes. 2231 */ 2232 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2233 { 2234 struct dst_entry *old; 2235 2236 if (dst_hold_safe(dst)) { 2237 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2238 dst_release(old); 2239 return old != dst; 2240 } 2241 return false; 2242 } 2243 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2244 2245 /* 2246 * Multicasts and broadcasts go to each listener. 2247 * 2248 * Note: called only from the BH handler context. 2249 */ 2250 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2251 struct udphdr *uh, 2252 __be32 saddr, __be32 daddr, 2253 struct udp_table *udptable, 2254 int proto) 2255 { 2256 struct sock *sk, *first = NULL; 2257 unsigned short hnum = ntohs(uh->dest); 2258 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2259 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2260 unsigned int offset = offsetof(typeof(*sk), sk_node); 2261 int dif = skb->dev->ifindex; 2262 int sdif = inet_sdif(skb); 2263 struct hlist_node *node; 2264 struct sk_buff *nskb; 2265 2266 if (use_hash2) { 2267 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2268 udptable->mask; 2269 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2270 start_lookup: 2271 hslot = &udptable->hash2[hash2]; 2272 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2273 } 2274 2275 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2276 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2277 uh->source, saddr, dif, sdif, hnum)) 2278 continue; 2279 2280 if (!first) { 2281 first = sk; 2282 continue; 2283 } 2284 nskb = skb_clone(skb, GFP_ATOMIC); 2285 2286 if (unlikely(!nskb)) { 2287 atomic_inc(&sk->sk_drops); 2288 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2289 IS_UDPLITE(sk)); 2290 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2291 IS_UDPLITE(sk)); 2292 continue; 2293 } 2294 if (udp_queue_rcv_skb(sk, nskb) > 0) 2295 consume_skb(nskb); 2296 } 2297 2298 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2299 if (use_hash2 && hash2 != hash2_any) { 2300 hash2 = hash2_any; 2301 goto start_lookup; 2302 } 2303 2304 if (first) { 2305 if (udp_queue_rcv_skb(first, skb) > 0) 2306 consume_skb(skb); 2307 } else { 2308 kfree_skb(skb); 2309 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2310 proto == IPPROTO_UDPLITE); 2311 } 2312 return 0; 2313 } 2314 2315 /* Initialize UDP checksum. If exited with zero value (success), 2316 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2317 * Otherwise, csum completion requires checksumming packet body, 2318 * including udp header and folding it to skb->csum. 2319 */ 2320 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2321 int proto) 2322 { 2323 int err; 2324 2325 UDP_SKB_CB(skb)->partial_cov = 0; 2326 UDP_SKB_CB(skb)->cscov = skb->len; 2327 2328 if (proto == IPPROTO_UDPLITE) { 2329 err = udplite_checksum_init(skb, uh); 2330 if (err) 2331 return err; 2332 2333 if (UDP_SKB_CB(skb)->partial_cov) { 2334 skb->csum = inet_compute_pseudo(skb, proto); 2335 return 0; 2336 } 2337 } 2338 2339 /* Note, we are only interested in != 0 or == 0, thus the 2340 * force to int. 2341 */ 2342 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2343 inet_compute_pseudo); 2344 if (err) 2345 return err; 2346 2347 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2348 /* If SW calculated the value, we know it's bad */ 2349 if (skb->csum_complete_sw) 2350 return 1; 2351 2352 /* HW says the value is bad. Let's validate that. 2353 * skb->csum is no longer the full packet checksum, 2354 * so don't treat it as such. 2355 */ 2356 skb_checksum_complete_unset(skb); 2357 } 2358 2359 return 0; 2360 } 2361 2362 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2363 * return code conversion for ip layer consumption 2364 */ 2365 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2366 struct udphdr *uh) 2367 { 2368 int ret; 2369 2370 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2371 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2372 2373 ret = udp_queue_rcv_skb(sk, skb); 2374 2375 /* a return value > 0 means to resubmit the input, but 2376 * it wants the return to be -protocol, or 0 2377 */ 2378 if (ret > 0) 2379 return -ret; 2380 return 0; 2381 } 2382 2383 /* 2384 * All we need to do is get the socket, and then do a checksum. 2385 */ 2386 2387 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2388 int proto) 2389 { 2390 struct sock *sk; 2391 struct udphdr *uh; 2392 unsigned short ulen; 2393 struct rtable *rt = skb_rtable(skb); 2394 __be32 saddr, daddr; 2395 struct net *net = dev_net(skb->dev); 2396 bool refcounted; 2397 int drop_reason; 2398 2399 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2400 2401 /* 2402 * Validate the packet. 2403 */ 2404 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2405 goto drop; /* No space for header. */ 2406 2407 uh = udp_hdr(skb); 2408 ulen = ntohs(uh->len); 2409 saddr = ip_hdr(skb)->saddr; 2410 daddr = ip_hdr(skb)->daddr; 2411 2412 if (ulen > skb->len) 2413 goto short_packet; 2414 2415 if (proto == IPPROTO_UDP) { 2416 /* UDP validates ulen. */ 2417 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2418 goto short_packet; 2419 uh = udp_hdr(skb); 2420 } 2421 2422 if (udp4_csum_init(skb, uh, proto)) 2423 goto csum_error; 2424 2425 sk = skb_steal_sock(skb, &refcounted); 2426 if (sk) { 2427 struct dst_entry *dst = skb_dst(skb); 2428 int ret; 2429 2430 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2431 udp_sk_rx_dst_set(sk, dst); 2432 2433 ret = udp_unicast_rcv_skb(sk, skb, uh); 2434 if (refcounted) 2435 sock_put(sk); 2436 return ret; 2437 } 2438 2439 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2440 return __udp4_lib_mcast_deliver(net, skb, uh, 2441 saddr, daddr, udptable, proto); 2442 2443 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2444 if (sk) 2445 return udp_unicast_rcv_skb(sk, skb, uh); 2446 2447 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2448 goto drop; 2449 nf_reset_ct(skb); 2450 2451 /* No socket. Drop packet silently, if checksum is wrong */ 2452 if (udp_lib_checksum_complete(skb)) 2453 goto csum_error; 2454 2455 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2456 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2457 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2458 2459 /* 2460 * Hmm. We got an UDP packet to a port to which we 2461 * don't wanna listen. Ignore it. 2462 */ 2463 kfree_skb_reason(skb, drop_reason); 2464 return 0; 2465 2466 short_packet: 2467 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2468 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2469 proto == IPPROTO_UDPLITE ? "Lite" : "", 2470 &saddr, ntohs(uh->source), 2471 ulen, skb->len, 2472 &daddr, ntohs(uh->dest)); 2473 goto drop; 2474 2475 csum_error: 2476 /* 2477 * RFC1122: OK. Discards the bad packet silently (as far as 2478 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2479 */ 2480 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2481 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2482 proto == IPPROTO_UDPLITE ? "Lite" : "", 2483 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2484 ulen); 2485 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2486 drop: 2487 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2488 kfree_skb_reason(skb, drop_reason); 2489 return 0; 2490 } 2491 2492 /* We can only early demux multicast if there is a single matching socket. 2493 * If more than one socket found returns NULL 2494 */ 2495 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2496 __be16 loc_port, __be32 loc_addr, 2497 __be16 rmt_port, __be32 rmt_addr, 2498 int dif, int sdif) 2499 { 2500 struct udp_table *udptable = net->ipv4.udp_table; 2501 unsigned short hnum = ntohs(loc_port); 2502 struct sock *sk, *result; 2503 struct udp_hslot *hslot; 2504 unsigned int slot; 2505 2506 slot = udp_hashfn(net, hnum, udptable->mask); 2507 hslot = &udptable->hash[slot]; 2508 2509 /* Do not bother scanning a too big list */ 2510 if (hslot->count > 10) 2511 return NULL; 2512 2513 result = NULL; 2514 sk_for_each_rcu(sk, &hslot->head) { 2515 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2516 rmt_port, rmt_addr, dif, sdif, hnum)) { 2517 if (result) 2518 return NULL; 2519 result = sk; 2520 } 2521 } 2522 2523 return result; 2524 } 2525 2526 /* For unicast we should only early demux connected sockets or we can 2527 * break forwarding setups. The chains here can be long so only check 2528 * if the first socket is an exact match and if not move on. 2529 */ 2530 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2531 __be16 loc_port, __be32 loc_addr, 2532 __be16 rmt_port, __be32 rmt_addr, 2533 int dif, int sdif) 2534 { 2535 struct udp_table *udptable = net->ipv4.udp_table; 2536 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2537 unsigned short hnum = ntohs(loc_port); 2538 unsigned int hash2, slot2; 2539 struct udp_hslot *hslot2; 2540 __portpair ports; 2541 struct sock *sk; 2542 2543 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2544 slot2 = hash2 & udptable->mask; 2545 hslot2 = &udptable->hash2[slot2]; 2546 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2547 2548 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2549 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2550 return sk; 2551 /* Only check first socket in chain */ 2552 break; 2553 } 2554 return NULL; 2555 } 2556 2557 int udp_v4_early_demux(struct sk_buff *skb) 2558 { 2559 struct net *net = dev_net(skb->dev); 2560 struct in_device *in_dev = NULL; 2561 const struct iphdr *iph; 2562 const struct udphdr *uh; 2563 struct sock *sk = NULL; 2564 struct dst_entry *dst; 2565 int dif = skb->dev->ifindex; 2566 int sdif = inet_sdif(skb); 2567 int ours; 2568 2569 /* validate the packet */ 2570 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2571 return 0; 2572 2573 iph = ip_hdr(skb); 2574 uh = udp_hdr(skb); 2575 2576 if (skb->pkt_type == PACKET_MULTICAST) { 2577 in_dev = __in_dev_get_rcu(skb->dev); 2578 2579 if (!in_dev) 2580 return 0; 2581 2582 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2583 iph->protocol); 2584 if (!ours) 2585 return 0; 2586 2587 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2588 uh->source, iph->saddr, 2589 dif, sdif); 2590 } else if (skb->pkt_type == PACKET_HOST) { 2591 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2592 uh->source, iph->saddr, dif, sdif); 2593 } 2594 2595 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2596 return 0; 2597 2598 skb->sk = sk; 2599 skb->destructor = sock_efree; 2600 dst = rcu_dereference(sk->sk_rx_dst); 2601 2602 if (dst) 2603 dst = dst_check(dst, 0); 2604 if (dst) { 2605 u32 itag = 0; 2606 2607 /* set noref for now. 2608 * any place which wants to hold dst has to call 2609 * dst_hold_safe() 2610 */ 2611 skb_dst_set_noref(skb, dst); 2612 2613 /* for unconnected multicast sockets we need to validate 2614 * the source on each packet 2615 */ 2616 if (!inet_sk(sk)->inet_daddr && in_dev) 2617 return ip_mc_validate_source(skb, iph->daddr, 2618 iph->saddr, 2619 iph->tos & IPTOS_RT_MASK, 2620 skb->dev, in_dev, &itag); 2621 } 2622 return 0; 2623 } 2624 2625 int udp_rcv(struct sk_buff *skb) 2626 { 2627 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2628 } 2629 2630 void udp_destroy_sock(struct sock *sk) 2631 { 2632 struct udp_sock *up = udp_sk(sk); 2633 bool slow = lock_sock_fast(sk); 2634 2635 /* protects from races with udp_abort() */ 2636 sock_set_flag(sk, SOCK_DEAD); 2637 udp_flush_pending_frames(sk); 2638 unlock_sock_fast(sk, slow); 2639 if (static_branch_unlikely(&udp_encap_needed_key)) { 2640 if (up->encap_type) { 2641 void (*encap_destroy)(struct sock *sk); 2642 encap_destroy = READ_ONCE(up->encap_destroy); 2643 if (encap_destroy) 2644 encap_destroy(sk); 2645 } 2646 if (up->encap_enabled) 2647 static_branch_dec(&udp_encap_needed_key); 2648 } 2649 } 2650 2651 /* 2652 * Socket option code for UDP 2653 */ 2654 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2655 sockptr_t optval, unsigned int optlen, 2656 int (*push_pending_frames)(struct sock *)) 2657 { 2658 struct udp_sock *up = udp_sk(sk); 2659 int val, valbool; 2660 int err = 0; 2661 int is_udplite = IS_UDPLITE(sk); 2662 2663 if (level == SOL_SOCKET) { 2664 err = sk_setsockopt(sk, level, optname, optval, optlen); 2665 2666 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2667 sockopt_lock_sock(sk); 2668 /* paired with READ_ONCE in udp_rmem_release() */ 2669 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2670 sockopt_release_sock(sk); 2671 } 2672 return err; 2673 } 2674 2675 if (optlen < sizeof(int)) 2676 return -EINVAL; 2677 2678 if (copy_from_sockptr(&val, optval, sizeof(val))) 2679 return -EFAULT; 2680 2681 valbool = val ? 1 : 0; 2682 2683 switch (optname) { 2684 case UDP_CORK: 2685 if (val != 0) { 2686 WRITE_ONCE(up->corkflag, 1); 2687 } else { 2688 WRITE_ONCE(up->corkflag, 0); 2689 lock_sock(sk); 2690 push_pending_frames(sk); 2691 release_sock(sk); 2692 } 2693 break; 2694 2695 case UDP_ENCAP: 2696 switch (val) { 2697 case 0: 2698 #ifdef CONFIG_XFRM 2699 case UDP_ENCAP_ESPINUDP: 2700 case UDP_ENCAP_ESPINUDP_NON_IKE: 2701 #if IS_ENABLED(CONFIG_IPV6) 2702 if (sk->sk_family == AF_INET6) 2703 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2704 else 2705 #endif 2706 up->encap_rcv = xfrm4_udp_encap_rcv; 2707 #endif 2708 fallthrough; 2709 case UDP_ENCAP_L2TPINUDP: 2710 up->encap_type = val; 2711 lock_sock(sk); 2712 udp_tunnel_encap_enable(sk->sk_socket); 2713 release_sock(sk); 2714 break; 2715 default: 2716 err = -ENOPROTOOPT; 2717 break; 2718 } 2719 break; 2720 2721 case UDP_NO_CHECK6_TX: 2722 up->no_check6_tx = valbool; 2723 break; 2724 2725 case UDP_NO_CHECK6_RX: 2726 up->no_check6_rx = valbool; 2727 break; 2728 2729 case UDP_SEGMENT: 2730 if (val < 0 || val > USHRT_MAX) 2731 return -EINVAL; 2732 WRITE_ONCE(up->gso_size, val); 2733 break; 2734 2735 case UDP_GRO: 2736 lock_sock(sk); 2737 2738 /* when enabling GRO, accept the related GSO packet type */ 2739 if (valbool) 2740 udp_tunnel_encap_enable(sk->sk_socket); 2741 up->gro_enabled = valbool; 2742 up->accept_udp_l4 = valbool; 2743 release_sock(sk); 2744 break; 2745 2746 /* 2747 * UDP-Lite's partial checksum coverage (RFC 3828). 2748 */ 2749 /* The sender sets actual checksum coverage length via this option. 2750 * The case coverage > packet length is handled by send module. */ 2751 case UDPLITE_SEND_CSCOV: 2752 if (!is_udplite) /* Disable the option on UDP sockets */ 2753 return -ENOPROTOOPT; 2754 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2755 val = 8; 2756 else if (val > USHRT_MAX) 2757 val = USHRT_MAX; 2758 up->pcslen = val; 2759 up->pcflag |= UDPLITE_SEND_CC; 2760 break; 2761 2762 /* The receiver specifies a minimum checksum coverage value. To make 2763 * sense, this should be set to at least 8 (as done below). If zero is 2764 * used, this again means full checksum coverage. */ 2765 case UDPLITE_RECV_CSCOV: 2766 if (!is_udplite) /* Disable the option on UDP sockets */ 2767 return -ENOPROTOOPT; 2768 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2769 val = 8; 2770 else if (val > USHRT_MAX) 2771 val = USHRT_MAX; 2772 up->pcrlen = val; 2773 up->pcflag |= UDPLITE_RECV_CC; 2774 break; 2775 2776 default: 2777 err = -ENOPROTOOPT; 2778 break; 2779 } 2780 2781 return err; 2782 } 2783 EXPORT_SYMBOL(udp_lib_setsockopt); 2784 2785 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2786 unsigned int optlen) 2787 { 2788 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2789 return udp_lib_setsockopt(sk, level, optname, 2790 optval, optlen, 2791 udp_push_pending_frames); 2792 return ip_setsockopt(sk, level, optname, optval, optlen); 2793 } 2794 2795 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2796 char __user *optval, int __user *optlen) 2797 { 2798 struct udp_sock *up = udp_sk(sk); 2799 int val, len; 2800 2801 if (get_user(len, optlen)) 2802 return -EFAULT; 2803 2804 len = min_t(unsigned int, len, sizeof(int)); 2805 2806 if (len < 0) 2807 return -EINVAL; 2808 2809 switch (optname) { 2810 case UDP_CORK: 2811 val = READ_ONCE(up->corkflag); 2812 break; 2813 2814 case UDP_ENCAP: 2815 val = up->encap_type; 2816 break; 2817 2818 case UDP_NO_CHECK6_TX: 2819 val = up->no_check6_tx; 2820 break; 2821 2822 case UDP_NO_CHECK6_RX: 2823 val = up->no_check6_rx; 2824 break; 2825 2826 case UDP_SEGMENT: 2827 val = READ_ONCE(up->gso_size); 2828 break; 2829 2830 case UDP_GRO: 2831 val = up->gro_enabled; 2832 break; 2833 2834 /* The following two cannot be changed on UDP sockets, the return is 2835 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2836 case UDPLITE_SEND_CSCOV: 2837 val = up->pcslen; 2838 break; 2839 2840 case UDPLITE_RECV_CSCOV: 2841 val = up->pcrlen; 2842 break; 2843 2844 default: 2845 return -ENOPROTOOPT; 2846 } 2847 2848 if (put_user(len, optlen)) 2849 return -EFAULT; 2850 if (copy_to_user(optval, &val, len)) 2851 return -EFAULT; 2852 return 0; 2853 } 2854 EXPORT_SYMBOL(udp_lib_getsockopt); 2855 2856 int udp_getsockopt(struct sock *sk, int level, int optname, 2857 char __user *optval, int __user *optlen) 2858 { 2859 if (level == SOL_UDP || level == SOL_UDPLITE) 2860 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2861 return ip_getsockopt(sk, level, optname, optval, optlen); 2862 } 2863 2864 /** 2865 * udp_poll - wait for a UDP event. 2866 * @file: - file struct 2867 * @sock: - socket 2868 * @wait: - poll table 2869 * 2870 * This is same as datagram poll, except for the special case of 2871 * blocking sockets. If application is using a blocking fd 2872 * and a packet with checksum error is in the queue; 2873 * then it could get return from select indicating data available 2874 * but then block when reading it. Add special case code 2875 * to work around these arguably broken applications. 2876 */ 2877 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2878 { 2879 __poll_t mask = datagram_poll(file, sock, wait); 2880 struct sock *sk = sock->sk; 2881 2882 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2883 mask |= EPOLLIN | EPOLLRDNORM; 2884 2885 /* Check for false positives due to checksum errors */ 2886 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2887 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2888 mask &= ~(EPOLLIN | EPOLLRDNORM); 2889 2890 /* psock ingress_msg queue should not contain any bad checksum frames */ 2891 if (sk_is_readable(sk)) 2892 mask |= EPOLLIN | EPOLLRDNORM; 2893 return mask; 2894 2895 } 2896 EXPORT_SYMBOL(udp_poll); 2897 2898 int udp_abort(struct sock *sk, int err) 2899 { 2900 if (!has_current_bpf_ctx()) 2901 lock_sock(sk); 2902 2903 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2904 * with close() 2905 */ 2906 if (sock_flag(sk, SOCK_DEAD)) 2907 goto out; 2908 2909 sk->sk_err = err; 2910 sk_error_report(sk); 2911 __udp_disconnect(sk, 0); 2912 2913 out: 2914 if (!has_current_bpf_ctx()) 2915 release_sock(sk); 2916 2917 return 0; 2918 } 2919 EXPORT_SYMBOL_GPL(udp_abort); 2920 2921 struct proto udp_prot = { 2922 .name = "UDP", 2923 .owner = THIS_MODULE, 2924 .close = udp_lib_close, 2925 .pre_connect = udp_pre_connect, 2926 .connect = ip4_datagram_connect, 2927 .disconnect = udp_disconnect, 2928 .ioctl = udp_ioctl, 2929 .init = udp_init_sock, 2930 .destroy = udp_destroy_sock, 2931 .setsockopt = udp_setsockopt, 2932 .getsockopt = udp_getsockopt, 2933 .sendmsg = udp_sendmsg, 2934 .recvmsg = udp_recvmsg, 2935 .splice_eof = udp_splice_eof, 2936 .sendpage = udp_sendpage, 2937 .release_cb = ip4_datagram_release_cb, 2938 .hash = udp_lib_hash, 2939 .unhash = udp_lib_unhash, 2940 .rehash = udp_v4_rehash, 2941 .get_port = udp_v4_get_port, 2942 .put_port = udp_lib_unhash, 2943 #ifdef CONFIG_BPF_SYSCALL 2944 .psock_update_sk_prot = udp_bpf_update_proto, 2945 #endif 2946 .memory_allocated = &udp_memory_allocated, 2947 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2948 2949 .sysctl_mem = sysctl_udp_mem, 2950 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2951 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2952 .obj_size = sizeof(struct udp_sock), 2953 .h.udp_table = NULL, 2954 .diag_destroy = udp_abort, 2955 }; 2956 EXPORT_SYMBOL(udp_prot); 2957 2958 /* ------------------------------------------------------------------------ */ 2959 #ifdef CONFIG_PROC_FS 2960 2961 static unsigned short seq_file_family(const struct seq_file *seq); 2962 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2963 { 2964 unsigned short family = seq_file_family(seq); 2965 2966 /* AF_UNSPEC is used as a match all */ 2967 return ((family == AF_UNSPEC || family == sk->sk_family) && 2968 net_eq(sock_net(sk), seq_file_net(seq))); 2969 } 2970 2971 #ifdef CONFIG_BPF_SYSCALL 2972 static const struct seq_operations bpf_iter_udp_seq_ops; 2973 #endif 2974 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2975 struct net *net) 2976 { 2977 const struct udp_seq_afinfo *afinfo; 2978 2979 #ifdef CONFIG_BPF_SYSCALL 2980 if (seq->op == &bpf_iter_udp_seq_ops) 2981 return net->ipv4.udp_table; 2982 #endif 2983 2984 afinfo = pde_data(file_inode(seq->file)); 2985 return afinfo->udp_table ? : net->ipv4.udp_table; 2986 } 2987 2988 static struct sock *udp_get_first(struct seq_file *seq, int start) 2989 { 2990 struct udp_iter_state *state = seq->private; 2991 struct net *net = seq_file_net(seq); 2992 struct udp_table *udptable; 2993 struct sock *sk; 2994 2995 udptable = udp_get_table_seq(seq, net); 2996 2997 for (state->bucket = start; state->bucket <= udptable->mask; 2998 ++state->bucket) { 2999 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3000 3001 if (hlist_empty(&hslot->head)) 3002 continue; 3003 3004 spin_lock_bh(&hslot->lock); 3005 sk_for_each(sk, &hslot->head) { 3006 if (seq_sk_match(seq, sk)) 3007 goto found; 3008 } 3009 spin_unlock_bh(&hslot->lock); 3010 } 3011 sk = NULL; 3012 found: 3013 return sk; 3014 } 3015 3016 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3017 { 3018 struct udp_iter_state *state = seq->private; 3019 struct net *net = seq_file_net(seq); 3020 struct udp_table *udptable; 3021 3022 do { 3023 sk = sk_next(sk); 3024 } while (sk && !seq_sk_match(seq, sk)); 3025 3026 if (!sk) { 3027 udptable = udp_get_table_seq(seq, net); 3028 3029 if (state->bucket <= udptable->mask) 3030 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3031 3032 return udp_get_first(seq, state->bucket + 1); 3033 } 3034 return sk; 3035 } 3036 3037 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3038 { 3039 struct sock *sk = udp_get_first(seq, 0); 3040 3041 if (sk) 3042 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3043 --pos; 3044 return pos ? NULL : sk; 3045 } 3046 3047 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3048 { 3049 struct udp_iter_state *state = seq->private; 3050 state->bucket = MAX_UDP_PORTS; 3051 3052 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3053 } 3054 EXPORT_SYMBOL(udp_seq_start); 3055 3056 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3057 { 3058 struct sock *sk; 3059 3060 if (v == SEQ_START_TOKEN) 3061 sk = udp_get_idx(seq, 0); 3062 else 3063 sk = udp_get_next(seq, v); 3064 3065 ++*pos; 3066 return sk; 3067 } 3068 EXPORT_SYMBOL(udp_seq_next); 3069 3070 void udp_seq_stop(struct seq_file *seq, void *v) 3071 { 3072 struct udp_iter_state *state = seq->private; 3073 struct udp_table *udptable; 3074 3075 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3076 3077 if (state->bucket <= udptable->mask) 3078 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3079 } 3080 EXPORT_SYMBOL(udp_seq_stop); 3081 3082 /* ------------------------------------------------------------------------ */ 3083 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3084 int bucket) 3085 { 3086 struct inet_sock *inet = inet_sk(sp); 3087 __be32 dest = inet->inet_daddr; 3088 __be32 src = inet->inet_rcv_saddr; 3089 __u16 destp = ntohs(inet->inet_dport); 3090 __u16 srcp = ntohs(inet->inet_sport); 3091 3092 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3093 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3094 bucket, src, srcp, dest, destp, sp->sk_state, 3095 sk_wmem_alloc_get(sp), 3096 udp_rqueue_get(sp), 3097 0, 0L, 0, 3098 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3099 0, sock_i_ino(sp), 3100 refcount_read(&sp->sk_refcnt), sp, 3101 atomic_read(&sp->sk_drops)); 3102 } 3103 3104 int udp4_seq_show(struct seq_file *seq, void *v) 3105 { 3106 seq_setwidth(seq, 127); 3107 if (v == SEQ_START_TOKEN) 3108 seq_puts(seq, " sl local_address rem_address st tx_queue " 3109 "rx_queue tr tm->when retrnsmt uid timeout " 3110 "inode ref pointer drops"); 3111 else { 3112 struct udp_iter_state *state = seq->private; 3113 3114 udp4_format_sock(v, seq, state->bucket); 3115 } 3116 seq_pad(seq, '\n'); 3117 return 0; 3118 } 3119 3120 #ifdef CONFIG_BPF_SYSCALL 3121 struct bpf_iter__udp { 3122 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3123 __bpf_md_ptr(struct udp_sock *, udp_sk); 3124 uid_t uid __aligned(8); 3125 int bucket __aligned(8); 3126 }; 3127 3128 struct bpf_udp_iter_state { 3129 struct udp_iter_state state; 3130 unsigned int cur_sk; 3131 unsigned int end_sk; 3132 unsigned int max_sk; 3133 int offset; 3134 struct sock **batch; 3135 bool st_bucket_done; 3136 }; 3137 3138 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3139 unsigned int new_batch_sz); 3140 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3141 { 3142 struct bpf_udp_iter_state *iter = seq->private; 3143 struct udp_iter_state *state = &iter->state; 3144 struct net *net = seq_file_net(seq); 3145 struct udp_table *udptable; 3146 unsigned int batch_sks = 0; 3147 bool resized = false; 3148 struct sock *sk; 3149 3150 /* The current batch is done, so advance the bucket. */ 3151 if (iter->st_bucket_done) { 3152 state->bucket++; 3153 iter->offset = 0; 3154 } 3155 3156 udptable = udp_get_table_seq(seq, net); 3157 3158 again: 3159 /* New batch for the next bucket. 3160 * Iterate over the hash table to find a bucket with sockets matching 3161 * the iterator attributes, and return the first matching socket from 3162 * the bucket. The remaining matched sockets from the bucket are batched 3163 * before releasing the bucket lock. This allows BPF programs that are 3164 * called in seq_show to acquire the bucket lock if needed. 3165 */ 3166 iter->cur_sk = 0; 3167 iter->end_sk = 0; 3168 iter->st_bucket_done = false; 3169 batch_sks = 0; 3170 3171 for (; state->bucket <= udptable->mask; state->bucket++) { 3172 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3173 3174 if (hlist_empty(&hslot2->head)) { 3175 iter->offset = 0; 3176 continue; 3177 } 3178 3179 spin_lock_bh(&hslot2->lock); 3180 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3181 if (seq_sk_match(seq, sk)) { 3182 /* Resume from the last iterated socket at the 3183 * offset in the bucket before iterator was stopped. 3184 */ 3185 if (iter->offset) { 3186 --iter->offset; 3187 continue; 3188 } 3189 if (iter->end_sk < iter->max_sk) { 3190 sock_hold(sk); 3191 iter->batch[iter->end_sk++] = sk; 3192 } 3193 batch_sks++; 3194 } 3195 } 3196 spin_unlock_bh(&hslot2->lock); 3197 3198 if (iter->end_sk) 3199 break; 3200 3201 /* Reset the current bucket's offset before moving to the next bucket. */ 3202 iter->offset = 0; 3203 } 3204 3205 /* All done: no batch made. */ 3206 if (!iter->end_sk) 3207 return NULL; 3208 3209 if (iter->end_sk == batch_sks) { 3210 /* Batching is done for the current bucket; return the first 3211 * socket to be iterated from the batch. 3212 */ 3213 iter->st_bucket_done = true; 3214 goto done; 3215 } 3216 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3217 resized = true; 3218 /* After allocating a larger batch, retry one more time to grab 3219 * the whole bucket. 3220 */ 3221 state->bucket--; 3222 goto again; 3223 } 3224 done: 3225 return iter->batch[0]; 3226 } 3227 3228 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3229 { 3230 struct bpf_udp_iter_state *iter = seq->private; 3231 struct sock *sk; 3232 3233 /* Whenever seq_next() is called, the iter->cur_sk is 3234 * done with seq_show(), so unref the iter->cur_sk. 3235 */ 3236 if (iter->cur_sk < iter->end_sk) { 3237 sock_put(iter->batch[iter->cur_sk++]); 3238 ++iter->offset; 3239 } 3240 3241 /* After updating iter->cur_sk, check if there are more sockets 3242 * available in the current bucket batch. 3243 */ 3244 if (iter->cur_sk < iter->end_sk) 3245 sk = iter->batch[iter->cur_sk]; 3246 else 3247 /* Prepare a new batch. */ 3248 sk = bpf_iter_udp_batch(seq); 3249 3250 ++*pos; 3251 return sk; 3252 } 3253 3254 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3255 { 3256 /* bpf iter does not support lseek, so it always 3257 * continue from where it was stop()-ped. 3258 */ 3259 if (*pos) 3260 return bpf_iter_udp_batch(seq); 3261 3262 return SEQ_START_TOKEN; 3263 } 3264 3265 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3266 struct udp_sock *udp_sk, uid_t uid, int bucket) 3267 { 3268 struct bpf_iter__udp ctx; 3269 3270 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3271 ctx.meta = meta; 3272 ctx.udp_sk = udp_sk; 3273 ctx.uid = uid; 3274 ctx.bucket = bucket; 3275 return bpf_iter_run_prog(prog, &ctx); 3276 } 3277 3278 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3279 { 3280 struct udp_iter_state *state = seq->private; 3281 struct bpf_iter_meta meta; 3282 struct bpf_prog *prog; 3283 struct sock *sk = v; 3284 uid_t uid; 3285 int ret; 3286 3287 if (v == SEQ_START_TOKEN) 3288 return 0; 3289 3290 lock_sock(sk); 3291 3292 if (unlikely(sk_unhashed(sk))) { 3293 ret = SEQ_SKIP; 3294 goto unlock; 3295 } 3296 3297 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3298 meta.seq = seq; 3299 prog = bpf_iter_get_info(&meta, false); 3300 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3301 3302 unlock: 3303 release_sock(sk); 3304 return ret; 3305 } 3306 3307 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3308 { 3309 while (iter->cur_sk < iter->end_sk) 3310 sock_put(iter->batch[iter->cur_sk++]); 3311 } 3312 3313 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3314 { 3315 struct bpf_udp_iter_state *iter = seq->private; 3316 struct bpf_iter_meta meta; 3317 struct bpf_prog *prog; 3318 3319 if (!v) { 3320 meta.seq = seq; 3321 prog = bpf_iter_get_info(&meta, true); 3322 if (prog) 3323 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3324 } 3325 3326 if (iter->cur_sk < iter->end_sk) { 3327 bpf_iter_udp_put_batch(iter); 3328 iter->st_bucket_done = false; 3329 } 3330 } 3331 3332 static const struct seq_operations bpf_iter_udp_seq_ops = { 3333 .start = bpf_iter_udp_seq_start, 3334 .next = bpf_iter_udp_seq_next, 3335 .stop = bpf_iter_udp_seq_stop, 3336 .show = bpf_iter_udp_seq_show, 3337 }; 3338 #endif 3339 3340 static unsigned short seq_file_family(const struct seq_file *seq) 3341 { 3342 const struct udp_seq_afinfo *afinfo; 3343 3344 #ifdef CONFIG_BPF_SYSCALL 3345 /* BPF iterator: bpf programs to filter sockets. */ 3346 if (seq->op == &bpf_iter_udp_seq_ops) 3347 return AF_UNSPEC; 3348 #endif 3349 3350 /* Proc fs iterator */ 3351 afinfo = pde_data(file_inode(seq->file)); 3352 return afinfo->family; 3353 } 3354 3355 const struct seq_operations udp_seq_ops = { 3356 .start = udp_seq_start, 3357 .next = udp_seq_next, 3358 .stop = udp_seq_stop, 3359 .show = udp4_seq_show, 3360 }; 3361 EXPORT_SYMBOL(udp_seq_ops); 3362 3363 static struct udp_seq_afinfo udp4_seq_afinfo = { 3364 .family = AF_INET, 3365 .udp_table = NULL, 3366 }; 3367 3368 static int __net_init udp4_proc_init_net(struct net *net) 3369 { 3370 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3371 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3372 return -ENOMEM; 3373 return 0; 3374 } 3375 3376 static void __net_exit udp4_proc_exit_net(struct net *net) 3377 { 3378 remove_proc_entry("udp", net->proc_net); 3379 } 3380 3381 static struct pernet_operations udp4_net_ops = { 3382 .init = udp4_proc_init_net, 3383 .exit = udp4_proc_exit_net, 3384 }; 3385 3386 int __init udp4_proc_init(void) 3387 { 3388 return register_pernet_subsys(&udp4_net_ops); 3389 } 3390 3391 void udp4_proc_exit(void) 3392 { 3393 unregister_pernet_subsys(&udp4_net_ops); 3394 } 3395 #endif /* CONFIG_PROC_FS */ 3396 3397 static __initdata unsigned long uhash_entries; 3398 static int __init set_uhash_entries(char *str) 3399 { 3400 ssize_t ret; 3401 3402 if (!str) 3403 return 0; 3404 3405 ret = kstrtoul(str, 0, &uhash_entries); 3406 if (ret) 3407 return 0; 3408 3409 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3410 uhash_entries = UDP_HTABLE_SIZE_MIN; 3411 return 1; 3412 } 3413 __setup("uhash_entries=", set_uhash_entries); 3414 3415 void __init udp_table_init(struct udp_table *table, const char *name) 3416 { 3417 unsigned int i; 3418 3419 table->hash = alloc_large_system_hash(name, 3420 2 * sizeof(struct udp_hslot), 3421 uhash_entries, 3422 21, /* one slot per 2 MB */ 3423 0, 3424 &table->log, 3425 &table->mask, 3426 UDP_HTABLE_SIZE_MIN, 3427 UDP_HTABLE_SIZE_MAX); 3428 3429 table->hash2 = table->hash + (table->mask + 1); 3430 for (i = 0; i <= table->mask; i++) { 3431 INIT_HLIST_HEAD(&table->hash[i].head); 3432 table->hash[i].count = 0; 3433 spin_lock_init(&table->hash[i].lock); 3434 } 3435 for (i = 0; i <= table->mask; i++) { 3436 INIT_HLIST_HEAD(&table->hash2[i].head); 3437 table->hash2[i].count = 0; 3438 spin_lock_init(&table->hash2[i].lock); 3439 } 3440 } 3441 3442 u32 udp_flow_hashrnd(void) 3443 { 3444 static u32 hashrnd __read_mostly; 3445 3446 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3447 3448 return hashrnd; 3449 } 3450 EXPORT_SYMBOL(udp_flow_hashrnd); 3451 3452 static void __net_init udp_sysctl_init(struct net *net) 3453 { 3454 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3455 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3456 3457 #ifdef CONFIG_NET_L3_MASTER_DEV 3458 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3459 #endif 3460 } 3461 3462 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3463 { 3464 struct udp_table *udptable; 3465 int i; 3466 3467 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3468 if (!udptable) 3469 goto out; 3470 3471 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3472 GFP_KERNEL_ACCOUNT); 3473 if (!udptable->hash) 3474 goto free_table; 3475 3476 udptable->hash2 = udptable->hash + hash_entries; 3477 udptable->mask = hash_entries - 1; 3478 udptable->log = ilog2(hash_entries); 3479 3480 for (i = 0; i < hash_entries; i++) { 3481 INIT_HLIST_HEAD(&udptable->hash[i].head); 3482 udptable->hash[i].count = 0; 3483 spin_lock_init(&udptable->hash[i].lock); 3484 3485 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3486 udptable->hash2[i].count = 0; 3487 spin_lock_init(&udptable->hash2[i].lock); 3488 } 3489 3490 return udptable; 3491 3492 free_table: 3493 kfree(udptable); 3494 out: 3495 return NULL; 3496 } 3497 3498 static void __net_exit udp_pernet_table_free(struct net *net) 3499 { 3500 struct udp_table *udptable = net->ipv4.udp_table; 3501 3502 if (udptable == &udp_table) 3503 return; 3504 3505 kvfree(udptable->hash); 3506 kfree(udptable); 3507 } 3508 3509 static void __net_init udp_set_table(struct net *net) 3510 { 3511 struct udp_table *udptable; 3512 unsigned int hash_entries; 3513 struct net *old_net; 3514 3515 if (net_eq(net, &init_net)) 3516 goto fallback; 3517 3518 old_net = current->nsproxy->net_ns; 3519 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3520 if (!hash_entries) 3521 goto fallback; 3522 3523 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3524 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3525 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3526 else 3527 hash_entries = roundup_pow_of_two(hash_entries); 3528 3529 udptable = udp_pernet_table_alloc(hash_entries); 3530 if (udptable) { 3531 net->ipv4.udp_table = udptable; 3532 } else { 3533 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3534 "for a netns, fallback to the global one\n", 3535 hash_entries); 3536 fallback: 3537 net->ipv4.udp_table = &udp_table; 3538 } 3539 } 3540 3541 static int __net_init udp_pernet_init(struct net *net) 3542 { 3543 udp_sysctl_init(net); 3544 udp_set_table(net); 3545 3546 return 0; 3547 } 3548 3549 static void __net_exit udp_pernet_exit(struct net *net) 3550 { 3551 udp_pernet_table_free(net); 3552 } 3553 3554 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3555 .init = udp_pernet_init, 3556 .exit = udp_pernet_exit, 3557 }; 3558 3559 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3560 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3561 struct udp_sock *udp_sk, uid_t uid, int bucket) 3562 3563 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3564 unsigned int new_batch_sz) 3565 { 3566 struct sock **new_batch; 3567 3568 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3569 GFP_USER | __GFP_NOWARN); 3570 if (!new_batch) 3571 return -ENOMEM; 3572 3573 bpf_iter_udp_put_batch(iter); 3574 kvfree(iter->batch); 3575 iter->batch = new_batch; 3576 iter->max_sk = new_batch_sz; 3577 3578 return 0; 3579 } 3580 3581 #define INIT_BATCH_SZ 16 3582 3583 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3584 { 3585 struct bpf_udp_iter_state *iter = priv_data; 3586 int ret; 3587 3588 ret = bpf_iter_init_seq_net(priv_data, aux); 3589 if (ret) 3590 return ret; 3591 3592 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3593 if (ret) 3594 bpf_iter_fini_seq_net(priv_data); 3595 3596 return ret; 3597 } 3598 3599 static void bpf_iter_fini_udp(void *priv_data) 3600 { 3601 struct bpf_udp_iter_state *iter = priv_data; 3602 3603 bpf_iter_fini_seq_net(priv_data); 3604 kvfree(iter->batch); 3605 } 3606 3607 static const struct bpf_iter_seq_info udp_seq_info = { 3608 .seq_ops = &bpf_iter_udp_seq_ops, 3609 .init_seq_private = bpf_iter_init_udp, 3610 .fini_seq_private = bpf_iter_fini_udp, 3611 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3612 }; 3613 3614 static struct bpf_iter_reg udp_reg_info = { 3615 .target = "udp", 3616 .ctx_arg_info_size = 1, 3617 .ctx_arg_info = { 3618 { offsetof(struct bpf_iter__udp, udp_sk), 3619 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3620 }, 3621 .seq_info = &udp_seq_info, 3622 }; 3623 3624 static void __init bpf_iter_register(void) 3625 { 3626 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3627 if (bpf_iter_reg_target(&udp_reg_info)) 3628 pr_warn("Warning: could not register bpf iterator udp\n"); 3629 } 3630 #endif 3631 3632 void __init udp_init(void) 3633 { 3634 unsigned long limit; 3635 unsigned int i; 3636 3637 udp_table_init(&udp_table, "UDP"); 3638 limit = nr_free_buffer_pages() / 8; 3639 limit = max(limit, 128UL); 3640 sysctl_udp_mem[0] = limit / 4 * 3; 3641 sysctl_udp_mem[1] = limit; 3642 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3643 3644 /* 16 spinlocks per cpu */ 3645 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3646 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3647 GFP_KERNEL); 3648 if (!udp_busylocks) 3649 panic("UDP: failed to alloc udp_busylocks\n"); 3650 for (i = 0; i < (1U << udp_busylocks_log); i++) 3651 spin_lock_init(udp_busylocks + i); 3652 3653 if (register_pernet_subsys(&udp_sysctl_ops)) 3654 panic("UDP: failed to init sysctl parameters.\n"); 3655 3656 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3657 bpf_iter_register(); 3658 #endif 3659 } 3660