xref: /openbmc/linux/net/ipv4/udp.c (revision d5a05299)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #if IS_ENABLED(CONFIG_IPV6)
118 #include <net/ipv6_stubs.h>
119 #endif
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
130 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
134 
135 static struct udp_table *udp_get_table_prot(struct sock *sk)
136 {
137 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
138 }
139 
140 static int udp_lib_lport_inuse(struct net *net, __u16 num,
141 			       const struct udp_hslot *hslot,
142 			       unsigned long *bitmap,
143 			       struct sock *sk, unsigned int log)
144 {
145 	struct sock *sk2;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_for_each(sk2, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    inet_rcv_saddr_equal(sk, sk2, true)) {
156 			if (sk2->sk_reuseport && sk->sk_reuseport &&
157 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
158 			    uid_eq(uid, sock_i_uid(sk2))) {
159 				if (!bitmap)
160 					return 0;
161 			} else {
162 				if (!bitmap)
163 					return 1;
164 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
165 					  bitmap);
166 			}
167 		}
168 	}
169 	return 0;
170 }
171 
172 /*
173  * Note: we still hold spinlock of primary hash chain, so no other writer
174  * can insert/delete a socket with local_port == num
175  */
176 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
177 				struct udp_hslot *hslot2,
178 				struct sock *sk)
179 {
180 	struct sock *sk2;
181 	kuid_t uid = sock_i_uid(sk);
182 	int res = 0;
183 
184 	spin_lock(&hslot2->lock);
185 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
186 		if (net_eq(sock_net(sk2), net) &&
187 		    sk2 != sk &&
188 		    (udp_sk(sk2)->udp_port_hash == num) &&
189 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
190 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 		    inet_rcv_saddr_equal(sk, sk2, true)) {
193 			if (sk2->sk_reuseport && sk->sk_reuseport &&
194 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
195 			    uid_eq(uid, sock_i_uid(sk2))) {
196 				res = 0;
197 			} else {
198 				res = 1;
199 			}
200 			break;
201 		}
202 	}
203 	spin_unlock(&hslot2->lock);
204 	return res;
205 }
206 
207 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
208 {
209 	struct net *net = sock_net(sk);
210 	kuid_t uid = sock_i_uid(sk);
211 	struct sock *sk2;
212 
213 	sk_for_each(sk2, &hslot->head) {
214 		if (net_eq(sock_net(sk2), net) &&
215 		    sk2 != sk &&
216 		    sk2->sk_family == sk->sk_family &&
217 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
218 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
219 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
220 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
221 		    inet_rcv_saddr_equal(sk, sk2, false)) {
222 			return reuseport_add_sock(sk, sk2,
223 						  inet_rcv_saddr_any(sk));
224 		}
225 	}
226 
227 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
228 }
229 
230 /**
231  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
232  *
233  *  @sk:          socket struct in question
234  *  @snum:        port number to look up
235  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
236  *                   with NULL address
237  */
238 int udp_lib_get_port(struct sock *sk, unsigned short snum,
239 		     unsigned int hash2_nulladdr)
240 {
241 	struct udp_table *udptable = udp_get_table_prot(sk);
242 	struct udp_hslot *hslot, *hslot2;
243 	struct net *net = sock_net(sk);
244 	int error = -EADDRINUSE;
245 
246 	if (!snum) {
247 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
248 		unsigned short first, last;
249 		int low, high, remaining;
250 		unsigned int rand;
251 
252 		inet_sk_get_local_port_range(sk, &low, &high);
253 		remaining = (high - low) + 1;
254 
255 		rand = get_random_u32();
256 		first = reciprocal_scale(rand, remaining) + low;
257 		/*
258 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
259 		 */
260 		rand = (rand | 1) * (udptable->mask + 1);
261 		last = first + udptable->mask + 1;
262 		do {
263 			hslot = udp_hashslot(udptable, net, first);
264 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
265 			spin_lock_bh(&hslot->lock);
266 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
267 					    udptable->log);
268 
269 			snum = first;
270 			/*
271 			 * Iterate on all possible values of snum for this hash.
272 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
273 			 * give us randomization and full range coverage.
274 			 */
275 			do {
276 				if (low <= snum && snum <= high &&
277 				    !test_bit(snum >> udptable->log, bitmap) &&
278 				    !inet_is_local_reserved_port(net, snum))
279 					goto found;
280 				snum += rand;
281 			} while (snum != first);
282 			spin_unlock_bh(&hslot->lock);
283 			cond_resched();
284 		} while (++first != last);
285 		goto fail;
286 	} else {
287 		hslot = udp_hashslot(udptable, net, snum);
288 		spin_lock_bh(&hslot->lock);
289 		if (hslot->count > 10) {
290 			int exist;
291 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
292 
293 			slot2          &= udptable->mask;
294 			hash2_nulladdr &= udptable->mask;
295 
296 			hslot2 = udp_hashslot2(udptable, slot2);
297 			if (hslot->count < hslot2->count)
298 				goto scan_primary_hash;
299 
300 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
301 			if (!exist && (hash2_nulladdr != slot2)) {
302 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
303 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 							     sk);
305 			}
306 			if (exist)
307 				goto fail_unlock;
308 			else
309 				goto found;
310 		}
311 scan_primary_hash:
312 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
313 			goto fail_unlock;
314 	}
315 found:
316 	inet_sk(sk)->inet_num = snum;
317 	udp_sk(sk)->udp_port_hash = snum;
318 	udp_sk(sk)->udp_portaddr_hash ^= snum;
319 	if (sk_unhashed(sk)) {
320 		if (sk->sk_reuseport &&
321 		    udp_reuseport_add_sock(sk, hslot)) {
322 			inet_sk(sk)->inet_num = 0;
323 			udp_sk(sk)->udp_port_hash = 0;
324 			udp_sk(sk)->udp_portaddr_hash ^= snum;
325 			goto fail_unlock;
326 		}
327 
328 		sk_add_node_rcu(sk, &hslot->head);
329 		hslot->count++;
330 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
331 
332 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
333 		spin_lock(&hslot2->lock);
334 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
335 		    sk->sk_family == AF_INET6)
336 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
337 					   &hslot2->head);
338 		else
339 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		hslot2->count++;
342 		spin_unlock(&hslot2->lock);
343 	}
344 	sock_set_flag(sk, SOCK_RCU_FREE);
345 	error = 0;
346 fail_unlock:
347 	spin_unlock_bh(&hslot->lock);
348 fail:
349 	return error;
350 }
351 EXPORT_SYMBOL(udp_lib_get_port);
352 
353 int udp_v4_get_port(struct sock *sk, unsigned short snum)
354 {
355 	unsigned int hash2_nulladdr =
356 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
357 	unsigned int hash2_partial =
358 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
359 
360 	/* precompute partial secondary hash */
361 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
362 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
363 }
364 
365 static int compute_score(struct sock *sk, struct net *net,
366 			 __be32 saddr, __be16 sport,
367 			 __be32 daddr, unsigned short hnum,
368 			 int dif, int sdif)
369 {
370 	int score;
371 	struct inet_sock *inet;
372 	bool dev_match;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	if (sk->sk_rcv_saddr != daddr)
380 		return -1;
381 
382 	score = (sk->sk_family == PF_INET) ? 2 : 1;
383 
384 	inet = inet_sk(sk);
385 	if (inet->inet_daddr) {
386 		if (inet->inet_daddr != saddr)
387 			return -1;
388 		score += 4;
389 	}
390 
391 	if (inet->inet_dport) {
392 		if (inet->inet_dport != sport)
393 			return -1;
394 		score += 4;
395 	}
396 
397 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
398 					dif, sdif);
399 	if (!dev_match)
400 		return -1;
401 	if (sk->sk_bound_dev_if)
402 		score += 4;
403 
404 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
405 		score++;
406 	return score;
407 }
408 
409 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
410 		       const __u16 lport, const __be32 faddr,
411 		       const __be16 fport)
412 {
413 	static u32 udp_ehash_secret __read_mostly;
414 
415 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416 
417 	return __inet_ehashfn(laddr, lport, faddr, fport,
418 			      udp_ehash_secret + net_hash_mix(net));
419 }
420 
421 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
422 				     struct sk_buff *skb,
423 				     __be32 saddr, __be16 sport,
424 				     __be32 daddr, unsigned short hnum)
425 {
426 	struct sock *reuse_sk = NULL;
427 	u32 hash;
428 
429 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
430 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
431 		reuse_sk = reuseport_select_sock(sk, hash, skb,
432 						 sizeof(struct udphdr));
433 	}
434 	return reuse_sk;
435 }
436 
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 				     __be32 saddr, __be16 sport,
440 				     __be32 daddr, unsigned int hnum,
441 				     int dif, int sdif,
442 				     struct udp_hslot *hslot2,
443 				     struct sk_buff *skb)
444 {
445 	struct sock *sk, *result;
446 	int score, badness;
447 
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 		score = compute_score(sk, net, saddr, sport,
452 				      daddr, hnum, dif, sdif);
453 		if (score > badness) {
454 			result = lookup_reuseport(net, sk, skb,
455 						  saddr, sport, daddr, hnum);
456 			/* Fall back to scoring if group has connections */
457 			if (result && !reuseport_has_conns(sk))
458 				return result;
459 
460 			result = result ? : sk;
461 			badness = score;
462 		}
463 	}
464 	return result;
465 }
466 
467 static struct sock *udp4_lookup_run_bpf(struct net *net,
468 					struct udp_table *udptable,
469 					struct sk_buff *skb,
470 					__be32 saddr, __be16 sport,
471 					__be32 daddr, u16 hnum, const int dif)
472 {
473 	struct sock *sk, *reuse_sk;
474 	bool no_reuseport;
475 
476 	if (udptable != net->ipv4.udp_table)
477 		return NULL; /* only UDP is supported */
478 
479 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
480 					    daddr, hnum, dif, &sk);
481 	if (no_reuseport || IS_ERR_OR_NULL(sk))
482 		return sk;
483 
484 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
485 	if (reuse_sk)
486 		sk = reuse_sk;
487 	return sk;
488 }
489 
490 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
491  * harder than this. -DaveM
492  */
493 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
494 		__be16 sport, __be32 daddr, __be16 dport, int dif,
495 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
496 {
497 	unsigned short hnum = ntohs(dport);
498 	unsigned int hash2, slot2;
499 	struct udp_hslot *hslot2;
500 	struct sock *result, *sk;
501 
502 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
503 	slot2 = hash2 & udptable->mask;
504 	hslot2 = &udptable->hash2[slot2];
505 
506 	/* Lookup connected or non-wildcard socket */
507 	result = udp4_lib_lookup2(net, saddr, sport,
508 				  daddr, hnum, dif, sdif,
509 				  hslot2, skb);
510 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
511 		goto done;
512 
513 	/* Lookup redirect from BPF */
514 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
515 		sk = udp4_lookup_run_bpf(net, udptable, skb,
516 					 saddr, sport, daddr, hnum, dif);
517 		if (sk) {
518 			result = sk;
519 			goto done;
520 		}
521 	}
522 
523 	/* Got non-wildcard socket or error on first lookup */
524 	if (result)
525 		goto done;
526 
527 	/* Lookup wildcard sockets */
528 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
529 	slot2 = hash2 & udptable->mask;
530 	hslot2 = &udptable->hash2[slot2];
531 
532 	result = udp4_lib_lookup2(net, saddr, sport,
533 				  htonl(INADDR_ANY), hnum, dif, sdif,
534 				  hslot2, skb);
535 done:
536 	if (IS_ERR(result))
537 		return NULL;
538 	return result;
539 }
540 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
541 
542 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
543 						 __be16 sport, __be16 dport,
544 						 struct udp_table *udptable)
545 {
546 	const struct iphdr *iph = ip_hdr(skb);
547 
548 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
549 				 iph->daddr, dport, inet_iif(skb),
550 				 inet_sdif(skb), udptable, skb);
551 }
552 
553 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
554 				 __be16 sport, __be16 dport)
555 {
556 	const struct iphdr *iph = ip_hdr(skb);
557 	struct net *net = dev_net(skb->dev);
558 
559 	return __udp4_lib_lookup(net, iph->saddr, sport,
560 				 iph->daddr, dport, inet_iif(skb),
561 				 inet_sdif(skb), net->ipv4.udp_table, NULL);
562 }
563 
564 /* Must be called under rcu_read_lock().
565  * Does increment socket refcount.
566  */
567 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
568 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
569 			     __be32 daddr, __be16 dport, int dif)
570 {
571 	struct sock *sk;
572 
573 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
574 			       dif, 0, net->ipv4.udp_table, NULL);
575 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
576 		sk = NULL;
577 	return sk;
578 }
579 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
580 #endif
581 
582 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
583 				       __be16 loc_port, __be32 loc_addr,
584 				       __be16 rmt_port, __be32 rmt_addr,
585 				       int dif, int sdif, unsigned short hnum)
586 {
587 	const struct inet_sock *inet = inet_sk(sk);
588 
589 	if (!net_eq(sock_net(sk), net) ||
590 	    udp_sk(sk)->udp_port_hash != hnum ||
591 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
592 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
593 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
594 	    ipv6_only_sock(sk) ||
595 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
596 		return false;
597 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
598 		return false;
599 	return true;
600 }
601 
602 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
603 void udp_encap_enable(void)
604 {
605 	static_branch_inc(&udp_encap_needed_key);
606 }
607 EXPORT_SYMBOL(udp_encap_enable);
608 
609 void udp_encap_disable(void)
610 {
611 	static_branch_dec(&udp_encap_needed_key);
612 }
613 EXPORT_SYMBOL(udp_encap_disable);
614 
615 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
616  * through error handlers in encapsulations looking for a match.
617  */
618 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
619 {
620 	int i;
621 
622 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
623 		int (*handler)(struct sk_buff *skb, u32 info);
624 		const struct ip_tunnel_encap_ops *encap;
625 
626 		encap = rcu_dereference(iptun_encaps[i]);
627 		if (!encap)
628 			continue;
629 		handler = encap->err_handler;
630 		if (handler && !handler(skb, info))
631 			return 0;
632 	}
633 
634 	return -ENOENT;
635 }
636 
637 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
638  * reversing source and destination port: this will match tunnels that force the
639  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
640  * lwtunnels might actually break this assumption by being configured with
641  * different destination ports on endpoints, in this case we won't be able to
642  * trace ICMP messages back to them.
643  *
644  * If this doesn't match any socket, probe tunnels with arbitrary destination
645  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
646  * we've sent packets to won't necessarily match the local destination port.
647  *
648  * Then ask the tunnel implementation to match the error against a valid
649  * association.
650  *
651  * Return an error if we can't find a match, the socket if we need further
652  * processing, zero otherwise.
653  */
654 static struct sock *__udp4_lib_err_encap(struct net *net,
655 					 const struct iphdr *iph,
656 					 struct udphdr *uh,
657 					 struct udp_table *udptable,
658 					 struct sock *sk,
659 					 struct sk_buff *skb, u32 info)
660 {
661 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
662 	int network_offset, transport_offset;
663 	struct udp_sock *up;
664 
665 	network_offset = skb_network_offset(skb);
666 	transport_offset = skb_transport_offset(skb);
667 
668 	/* Network header needs to point to the outer IPv4 header inside ICMP */
669 	skb_reset_network_header(skb);
670 
671 	/* Transport header needs to point to the UDP header */
672 	skb_set_transport_header(skb, iph->ihl << 2);
673 
674 	if (sk) {
675 		up = udp_sk(sk);
676 
677 		lookup = READ_ONCE(up->encap_err_lookup);
678 		if (lookup && lookup(sk, skb))
679 			sk = NULL;
680 
681 		goto out;
682 	}
683 
684 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
685 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
686 			       udptable, NULL);
687 	if (sk) {
688 		up = udp_sk(sk);
689 
690 		lookup = READ_ONCE(up->encap_err_lookup);
691 		if (!lookup || lookup(sk, skb))
692 			sk = NULL;
693 	}
694 
695 out:
696 	if (!sk)
697 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
698 
699 	skb_set_transport_header(skb, transport_offset);
700 	skb_set_network_header(skb, network_offset);
701 
702 	return sk;
703 }
704 
705 /*
706  * This routine is called by the ICMP module when it gets some
707  * sort of error condition.  If err < 0 then the socket should
708  * be closed and the error returned to the user.  If err > 0
709  * it's just the icmp type << 8 | icmp code.
710  * Header points to the ip header of the error packet. We move
711  * on past this. Then (as it used to claim before adjustment)
712  * header points to the first 8 bytes of the udp header.  We need
713  * to find the appropriate port.
714  */
715 
716 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
717 {
718 	struct inet_sock *inet;
719 	const struct iphdr *iph = (const struct iphdr *)skb->data;
720 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
721 	const int type = icmp_hdr(skb)->type;
722 	const int code = icmp_hdr(skb)->code;
723 	bool tunnel = false;
724 	struct sock *sk;
725 	int harderr;
726 	int err;
727 	struct net *net = dev_net(skb->dev);
728 
729 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
730 			       iph->saddr, uh->source, skb->dev->ifindex,
731 			       inet_sdif(skb), udptable, NULL);
732 
733 	if (!sk || udp_sk(sk)->encap_type) {
734 		/* No socket for error: try tunnels before discarding */
735 		if (static_branch_unlikely(&udp_encap_needed_key)) {
736 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
737 						  info);
738 			if (!sk)
739 				return 0;
740 		} else
741 			sk = ERR_PTR(-ENOENT);
742 
743 		if (IS_ERR(sk)) {
744 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
745 			return PTR_ERR(sk);
746 		}
747 
748 		tunnel = true;
749 	}
750 
751 	err = 0;
752 	harderr = 0;
753 	inet = inet_sk(sk);
754 
755 	switch (type) {
756 	default:
757 	case ICMP_TIME_EXCEEDED:
758 		err = EHOSTUNREACH;
759 		break;
760 	case ICMP_SOURCE_QUENCH:
761 		goto out;
762 	case ICMP_PARAMETERPROB:
763 		err = EPROTO;
764 		harderr = 1;
765 		break;
766 	case ICMP_DEST_UNREACH:
767 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
768 			ipv4_sk_update_pmtu(skb, sk, info);
769 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
770 				err = EMSGSIZE;
771 				harderr = 1;
772 				break;
773 			}
774 			goto out;
775 		}
776 		err = EHOSTUNREACH;
777 		if (code <= NR_ICMP_UNREACH) {
778 			harderr = icmp_err_convert[code].fatal;
779 			err = icmp_err_convert[code].errno;
780 		}
781 		break;
782 	case ICMP_REDIRECT:
783 		ipv4_sk_redirect(skb, sk);
784 		goto out;
785 	}
786 
787 	/*
788 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
789 	 *	4.1.3.3.
790 	 */
791 	if (tunnel) {
792 		/* ...not for tunnels though: we don't have a sending socket */
793 		if (udp_sk(sk)->encap_err_rcv)
794 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
795 						  (u8 *)(uh+1));
796 		goto out;
797 	}
798 	if (!inet->recverr) {
799 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
800 			goto out;
801 	} else
802 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
803 
804 	sk->sk_err = err;
805 	sk_error_report(sk);
806 out:
807 	return 0;
808 }
809 
810 int udp_err(struct sk_buff *skb, u32 info)
811 {
812 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
813 }
814 
815 /*
816  * Throw away all pending data and cancel the corking. Socket is locked.
817  */
818 void udp_flush_pending_frames(struct sock *sk)
819 {
820 	struct udp_sock *up = udp_sk(sk);
821 
822 	if (up->pending) {
823 		up->len = 0;
824 		up->pending = 0;
825 		ip_flush_pending_frames(sk);
826 	}
827 }
828 EXPORT_SYMBOL(udp_flush_pending_frames);
829 
830 /**
831  * 	udp4_hwcsum  -  handle outgoing HW checksumming
832  * 	@skb: 	sk_buff containing the filled-in UDP header
833  * 	        (checksum field must be zeroed out)
834  *	@src:	source IP address
835  *	@dst:	destination IP address
836  */
837 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
838 {
839 	struct udphdr *uh = udp_hdr(skb);
840 	int offset = skb_transport_offset(skb);
841 	int len = skb->len - offset;
842 	int hlen = len;
843 	__wsum csum = 0;
844 
845 	if (!skb_has_frag_list(skb)) {
846 		/*
847 		 * Only one fragment on the socket.
848 		 */
849 		skb->csum_start = skb_transport_header(skb) - skb->head;
850 		skb->csum_offset = offsetof(struct udphdr, check);
851 		uh->check = ~csum_tcpudp_magic(src, dst, len,
852 					       IPPROTO_UDP, 0);
853 	} else {
854 		struct sk_buff *frags;
855 
856 		/*
857 		 * HW-checksum won't work as there are two or more
858 		 * fragments on the socket so that all csums of sk_buffs
859 		 * should be together
860 		 */
861 		skb_walk_frags(skb, frags) {
862 			csum = csum_add(csum, frags->csum);
863 			hlen -= frags->len;
864 		}
865 
866 		csum = skb_checksum(skb, offset, hlen, csum);
867 		skb->ip_summed = CHECKSUM_NONE;
868 
869 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
870 		if (uh->check == 0)
871 			uh->check = CSUM_MANGLED_0;
872 	}
873 }
874 EXPORT_SYMBOL_GPL(udp4_hwcsum);
875 
876 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
877  * for the simple case like when setting the checksum for a UDP tunnel.
878  */
879 void udp_set_csum(bool nocheck, struct sk_buff *skb,
880 		  __be32 saddr, __be32 daddr, int len)
881 {
882 	struct udphdr *uh = udp_hdr(skb);
883 
884 	if (nocheck) {
885 		uh->check = 0;
886 	} else if (skb_is_gso(skb)) {
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
889 		uh->check = 0;
890 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
891 		if (uh->check == 0)
892 			uh->check = CSUM_MANGLED_0;
893 	} else {
894 		skb->ip_summed = CHECKSUM_PARTIAL;
895 		skb->csum_start = skb_transport_header(skb) - skb->head;
896 		skb->csum_offset = offsetof(struct udphdr, check);
897 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
898 	}
899 }
900 EXPORT_SYMBOL(udp_set_csum);
901 
902 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
903 			struct inet_cork *cork)
904 {
905 	struct sock *sk = skb->sk;
906 	struct inet_sock *inet = inet_sk(sk);
907 	struct udphdr *uh;
908 	int err;
909 	int is_udplite = IS_UDPLITE(sk);
910 	int offset = skb_transport_offset(skb);
911 	int len = skb->len - offset;
912 	int datalen = len - sizeof(*uh);
913 	__wsum csum = 0;
914 
915 	/*
916 	 * Create a UDP header
917 	 */
918 	uh = udp_hdr(skb);
919 	uh->source = inet->inet_sport;
920 	uh->dest = fl4->fl4_dport;
921 	uh->len = htons(len);
922 	uh->check = 0;
923 
924 	if (cork->gso_size) {
925 		const int hlen = skb_network_header_len(skb) +
926 				 sizeof(struct udphdr);
927 
928 		if (hlen + cork->gso_size > cork->fragsize) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (sk->sk_no_check_tx) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
941 		    dst_xfrm(skb_dst(skb))) {
942 			kfree_skb(skb);
943 			return -EIO;
944 		}
945 
946 		if (datalen > cork->gso_size) {
947 			skb_shinfo(skb)->gso_size = cork->gso_size;
948 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
949 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
950 								 cork->gso_size);
951 		}
952 		goto csum_partial;
953 	}
954 
955 	if (is_udplite)  				 /*     UDP-Lite      */
956 		csum = udplite_csum(skb);
957 
958 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
959 
960 		skb->ip_summed = CHECKSUM_NONE;
961 		goto send;
962 
963 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
964 csum_partial:
965 
966 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
967 		goto send;
968 
969 	} else
970 		csum = udp_csum(skb);
971 
972 	/* add protocol-dependent pseudo-header */
973 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
974 				      sk->sk_protocol, csum);
975 	if (uh->check == 0)
976 		uh->check = CSUM_MANGLED_0;
977 
978 send:
979 	err = ip_send_skb(sock_net(sk), skb);
980 	if (err) {
981 		if (err == -ENOBUFS && !inet->recverr) {
982 			UDP_INC_STATS(sock_net(sk),
983 				      UDP_MIB_SNDBUFERRORS, is_udplite);
984 			err = 0;
985 		}
986 	} else
987 		UDP_INC_STATS(sock_net(sk),
988 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
989 	return err;
990 }
991 
992 /*
993  * Push out all pending data as one UDP datagram. Socket is locked.
994  */
995 int udp_push_pending_frames(struct sock *sk)
996 {
997 	struct udp_sock  *up = udp_sk(sk);
998 	struct inet_sock *inet = inet_sk(sk);
999 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1000 	struct sk_buff *skb;
1001 	int err = 0;
1002 
1003 	skb = ip_finish_skb(sk, fl4);
1004 	if (!skb)
1005 		goto out;
1006 
1007 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1008 
1009 out:
1010 	up->len = 0;
1011 	up->pending = 0;
1012 	return err;
1013 }
1014 EXPORT_SYMBOL(udp_push_pending_frames);
1015 
1016 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1017 {
1018 	switch (cmsg->cmsg_type) {
1019 	case UDP_SEGMENT:
1020 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1021 			return -EINVAL;
1022 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1023 		return 0;
1024 	default:
1025 		return -EINVAL;
1026 	}
1027 }
1028 
1029 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1030 {
1031 	struct cmsghdr *cmsg;
1032 	bool need_ip = false;
1033 	int err;
1034 
1035 	for_each_cmsghdr(cmsg, msg) {
1036 		if (!CMSG_OK(msg, cmsg))
1037 			return -EINVAL;
1038 
1039 		if (cmsg->cmsg_level != SOL_UDP) {
1040 			need_ip = true;
1041 			continue;
1042 		}
1043 
1044 		err = __udp_cmsg_send(cmsg, gso_size);
1045 		if (err)
1046 			return err;
1047 	}
1048 
1049 	return need_ip;
1050 }
1051 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1052 
1053 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1054 {
1055 	struct inet_sock *inet = inet_sk(sk);
1056 	struct udp_sock *up = udp_sk(sk);
1057 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1058 	struct flowi4 fl4_stack;
1059 	struct flowi4 *fl4;
1060 	int ulen = len;
1061 	struct ipcm_cookie ipc;
1062 	struct rtable *rt = NULL;
1063 	int free = 0;
1064 	int connected = 0;
1065 	__be32 daddr, faddr, saddr;
1066 	u8 tos, scope;
1067 	__be16 dport;
1068 	int err, is_udplite = IS_UDPLITE(sk);
1069 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1070 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1071 	struct sk_buff *skb;
1072 	struct ip_options_data opt_copy;
1073 
1074 	if (len > 0xFFFF)
1075 		return -EMSGSIZE;
1076 
1077 	/*
1078 	 *	Check the flags.
1079 	 */
1080 
1081 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1082 		return -EOPNOTSUPP;
1083 
1084 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1085 
1086 	fl4 = &inet->cork.fl.u.ip4;
1087 	if (up->pending) {
1088 		/*
1089 		 * There are pending frames.
1090 		 * The socket lock must be held while it's corked.
1091 		 */
1092 		lock_sock(sk);
1093 		if (likely(up->pending)) {
1094 			if (unlikely(up->pending != AF_INET)) {
1095 				release_sock(sk);
1096 				return -EINVAL;
1097 			}
1098 			goto do_append_data;
1099 		}
1100 		release_sock(sk);
1101 	}
1102 	ulen += sizeof(struct udphdr);
1103 
1104 	/*
1105 	 *	Get and verify the address.
1106 	 */
1107 	if (usin) {
1108 		if (msg->msg_namelen < sizeof(*usin))
1109 			return -EINVAL;
1110 		if (usin->sin_family != AF_INET) {
1111 			if (usin->sin_family != AF_UNSPEC)
1112 				return -EAFNOSUPPORT;
1113 		}
1114 
1115 		daddr = usin->sin_addr.s_addr;
1116 		dport = usin->sin_port;
1117 		if (dport == 0)
1118 			return -EINVAL;
1119 	} else {
1120 		if (sk->sk_state != TCP_ESTABLISHED)
1121 			return -EDESTADDRREQ;
1122 		daddr = inet->inet_daddr;
1123 		dport = inet->inet_dport;
1124 		/* Open fast path for connected socket.
1125 		   Route will not be used, if at least one option is set.
1126 		 */
1127 		connected = 1;
1128 	}
1129 
1130 	ipcm_init_sk(&ipc, inet);
1131 	ipc.gso_size = READ_ONCE(up->gso_size);
1132 
1133 	if (msg->msg_controllen) {
1134 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1135 		if (err > 0)
1136 			err = ip_cmsg_send(sk, msg, &ipc,
1137 					   sk->sk_family == AF_INET6);
1138 		if (unlikely(err < 0)) {
1139 			kfree(ipc.opt);
1140 			return err;
1141 		}
1142 		if (ipc.opt)
1143 			free = 1;
1144 		connected = 0;
1145 	}
1146 	if (!ipc.opt) {
1147 		struct ip_options_rcu *inet_opt;
1148 
1149 		rcu_read_lock();
1150 		inet_opt = rcu_dereference(inet->inet_opt);
1151 		if (inet_opt) {
1152 			memcpy(&opt_copy, inet_opt,
1153 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1154 			ipc.opt = &opt_copy.opt;
1155 		}
1156 		rcu_read_unlock();
1157 	}
1158 
1159 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1160 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1161 					    (struct sockaddr *)usin, &ipc.addr);
1162 		if (err)
1163 			goto out_free;
1164 		if (usin) {
1165 			if (usin->sin_port == 0) {
1166 				/* BPF program set invalid port. Reject it. */
1167 				err = -EINVAL;
1168 				goto out_free;
1169 			}
1170 			daddr = usin->sin_addr.s_addr;
1171 			dport = usin->sin_port;
1172 		}
1173 	}
1174 
1175 	saddr = ipc.addr;
1176 	ipc.addr = faddr = daddr;
1177 
1178 	if (ipc.opt && ipc.opt->opt.srr) {
1179 		if (!daddr) {
1180 			err = -EINVAL;
1181 			goto out_free;
1182 		}
1183 		faddr = ipc.opt->opt.faddr;
1184 		connected = 0;
1185 	}
1186 	tos = get_rttos(&ipc, inet);
1187 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1188 	if (scope == RT_SCOPE_LINK)
1189 		connected = 0;
1190 
1191 	if (ipv4_is_multicast(daddr)) {
1192 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1193 			ipc.oif = inet->mc_index;
1194 		if (!saddr)
1195 			saddr = inet->mc_addr;
1196 		connected = 0;
1197 	} else if (!ipc.oif) {
1198 		ipc.oif = inet->uc_index;
1199 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1200 		/* oif is set, packet is to local broadcast and
1201 		 * uc_index is set. oif is most likely set
1202 		 * by sk_bound_dev_if. If uc_index != oif check if the
1203 		 * oif is an L3 master and uc_index is an L3 slave.
1204 		 * If so, we want to allow the send using the uc_index.
1205 		 */
1206 		if (ipc.oif != inet->uc_index &&
1207 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1208 							      inet->uc_index)) {
1209 			ipc.oif = inet->uc_index;
1210 		}
1211 	}
1212 
1213 	if (connected)
1214 		rt = (struct rtable *)sk_dst_check(sk, 0);
1215 
1216 	if (!rt) {
1217 		struct net *net = sock_net(sk);
1218 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1219 
1220 		fl4 = &fl4_stack;
1221 
1222 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1223 				   sk->sk_protocol, flow_flags, faddr, saddr,
1224 				   dport, inet->inet_sport, sk->sk_uid);
1225 
1226 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1227 		rt = ip_route_output_flow(net, fl4, sk);
1228 		if (IS_ERR(rt)) {
1229 			err = PTR_ERR(rt);
1230 			rt = NULL;
1231 			if (err == -ENETUNREACH)
1232 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1233 			goto out;
1234 		}
1235 
1236 		err = -EACCES;
1237 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1238 		    !sock_flag(sk, SOCK_BROADCAST))
1239 			goto out;
1240 		if (connected)
1241 			sk_dst_set(sk, dst_clone(&rt->dst));
1242 	}
1243 
1244 	if (msg->msg_flags&MSG_CONFIRM)
1245 		goto do_confirm;
1246 back_from_confirm:
1247 
1248 	saddr = fl4->saddr;
1249 	if (!ipc.addr)
1250 		daddr = ipc.addr = fl4->daddr;
1251 
1252 	/* Lockless fast path for the non-corking case. */
1253 	if (!corkreq) {
1254 		struct inet_cork cork;
1255 
1256 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1257 				  sizeof(struct udphdr), &ipc, &rt,
1258 				  &cork, msg->msg_flags);
1259 		err = PTR_ERR(skb);
1260 		if (!IS_ERR_OR_NULL(skb))
1261 			err = udp_send_skb(skb, fl4, &cork);
1262 		goto out;
1263 	}
1264 
1265 	lock_sock(sk);
1266 	if (unlikely(up->pending)) {
1267 		/* The socket is already corked while preparing it. */
1268 		/* ... which is an evident application bug. --ANK */
1269 		release_sock(sk);
1270 
1271 		net_dbg_ratelimited("socket already corked\n");
1272 		err = -EINVAL;
1273 		goto out;
1274 	}
1275 	/*
1276 	 *	Now cork the socket to pend data.
1277 	 */
1278 	fl4 = &inet->cork.fl.u.ip4;
1279 	fl4->daddr = daddr;
1280 	fl4->saddr = saddr;
1281 	fl4->fl4_dport = dport;
1282 	fl4->fl4_sport = inet->inet_sport;
1283 	up->pending = AF_INET;
1284 
1285 do_append_data:
1286 	up->len += ulen;
1287 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1288 			     sizeof(struct udphdr), &ipc, &rt,
1289 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1290 	if (err)
1291 		udp_flush_pending_frames(sk);
1292 	else if (!corkreq)
1293 		err = udp_push_pending_frames(sk);
1294 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1295 		up->pending = 0;
1296 	release_sock(sk);
1297 
1298 out:
1299 	ip_rt_put(rt);
1300 out_free:
1301 	if (free)
1302 		kfree(ipc.opt);
1303 	if (!err)
1304 		return len;
1305 	/*
1306 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1307 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1308 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1309 	 * things).  We could add another new stat but at least for now that
1310 	 * seems like overkill.
1311 	 */
1312 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1313 		UDP_INC_STATS(sock_net(sk),
1314 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1315 	}
1316 	return err;
1317 
1318 do_confirm:
1319 	if (msg->msg_flags & MSG_PROBE)
1320 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1321 	if (!(msg->msg_flags&MSG_PROBE) || len)
1322 		goto back_from_confirm;
1323 	err = 0;
1324 	goto out;
1325 }
1326 EXPORT_SYMBOL(udp_sendmsg);
1327 
1328 void udp_splice_eof(struct socket *sock)
1329 {
1330 	struct sock *sk = sock->sk;
1331 	struct udp_sock *up = udp_sk(sk);
1332 
1333 	if (!up->pending || READ_ONCE(up->corkflag))
1334 		return;
1335 
1336 	lock_sock(sk);
1337 	if (up->pending && !READ_ONCE(up->corkflag))
1338 		udp_push_pending_frames(sk);
1339 	release_sock(sk);
1340 }
1341 EXPORT_SYMBOL_GPL(udp_splice_eof);
1342 
1343 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1344 		 size_t size, int flags)
1345 {
1346 	struct bio_vec bvec;
1347 	struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES };
1348 
1349 	if (flags & MSG_SENDPAGE_NOTLAST)
1350 		msg.msg_flags |= MSG_MORE;
1351 
1352 	bvec_set_page(&bvec, page, size, offset);
1353 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1354 	return udp_sendmsg(sk, &msg, size);
1355 }
1356 
1357 #define UDP_SKB_IS_STATELESS 0x80000000
1358 
1359 /* all head states (dst, sk, nf conntrack) except skb extensions are
1360  * cleared by udp_rcv().
1361  *
1362  * We need to preserve secpath, if present, to eventually process
1363  * IP_CMSG_PASSSEC at recvmsg() time.
1364  *
1365  * Other extensions can be cleared.
1366  */
1367 static bool udp_try_make_stateless(struct sk_buff *skb)
1368 {
1369 	if (!skb_has_extensions(skb))
1370 		return true;
1371 
1372 	if (!secpath_exists(skb)) {
1373 		skb_ext_reset(skb);
1374 		return true;
1375 	}
1376 
1377 	return false;
1378 }
1379 
1380 static void udp_set_dev_scratch(struct sk_buff *skb)
1381 {
1382 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1383 
1384 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1385 	scratch->_tsize_state = skb->truesize;
1386 #if BITS_PER_LONG == 64
1387 	scratch->len = skb->len;
1388 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1389 	scratch->is_linear = !skb_is_nonlinear(skb);
1390 #endif
1391 	if (udp_try_make_stateless(skb))
1392 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1393 }
1394 
1395 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1396 {
1397 	/* We come here after udp_lib_checksum_complete() returned 0.
1398 	 * This means that __skb_checksum_complete() might have
1399 	 * set skb->csum_valid to 1.
1400 	 * On 64bit platforms, we can set csum_unnecessary
1401 	 * to true, but only if the skb is not shared.
1402 	 */
1403 #if BITS_PER_LONG == 64
1404 	if (!skb_shared(skb))
1405 		udp_skb_scratch(skb)->csum_unnecessary = true;
1406 #endif
1407 }
1408 
1409 static int udp_skb_truesize(struct sk_buff *skb)
1410 {
1411 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1412 }
1413 
1414 static bool udp_skb_has_head_state(struct sk_buff *skb)
1415 {
1416 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1417 }
1418 
1419 /* fully reclaim rmem/fwd memory allocated for skb */
1420 static void udp_rmem_release(struct sock *sk, int size, int partial,
1421 			     bool rx_queue_lock_held)
1422 {
1423 	struct udp_sock *up = udp_sk(sk);
1424 	struct sk_buff_head *sk_queue;
1425 	int amt;
1426 
1427 	if (likely(partial)) {
1428 		up->forward_deficit += size;
1429 		size = up->forward_deficit;
1430 		if (size < READ_ONCE(up->forward_threshold) &&
1431 		    !skb_queue_empty(&up->reader_queue))
1432 			return;
1433 	} else {
1434 		size += up->forward_deficit;
1435 	}
1436 	up->forward_deficit = 0;
1437 
1438 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1439 	 * if the called don't held it already
1440 	 */
1441 	sk_queue = &sk->sk_receive_queue;
1442 	if (!rx_queue_lock_held)
1443 		spin_lock(&sk_queue->lock);
1444 
1445 
1446 	sk->sk_forward_alloc += size;
1447 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1448 	sk->sk_forward_alloc -= amt;
1449 
1450 	if (amt)
1451 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1452 
1453 	atomic_sub(size, &sk->sk_rmem_alloc);
1454 
1455 	/* this can save us from acquiring the rx queue lock on next receive */
1456 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1457 
1458 	if (!rx_queue_lock_held)
1459 		spin_unlock(&sk_queue->lock);
1460 }
1461 
1462 /* Note: called with reader_queue.lock held.
1463  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1464  * This avoids a cache line miss while receive_queue lock is held.
1465  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1466  */
1467 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1468 {
1469 	prefetch(&skb->data);
1470 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1471 }
1472 EXPORT_SYMBOL(udp_skb_destructor);
1473 
1474 /* as above, but the caller held the rx queue lock, too */
1475 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1476 {
1477 	prefetch(&skb->data);
1478 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1479 }
1480 
1481 /* Idea of busylocks is to let producers grab an extra spinlock
1482  * to relieve pressure on the receive_queue spinlock shared by consumer.
1483  * Under flood, this means that only one producer can be in line
1484  * trying to acquire the receive_queue spinlock.
1485  * These busylock can be allocated on a per cpu manner, instead of a
1486  * per socket one (that would consume a cache line per socket)
1487  */
1488 static int udp_busylocks_log __read_mostly;
1489 static spinlock_t *udp_busylocks __read_mostly;
1490 
1491 static spinlock_t *busylock_acquire(void *ptr)
1492 {
1493 	spinlock_t *busy;
1494 
1495 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1496 	spin_lock(busy);
1497 	return busy;
1498 }
1499 
1500 static void busylock_release(spinlock_t *busy)
1501 {
1502 	if (busy)
1503 		spin_unlock(busy);
1504 }
1505 
1506 static int udp_rmem_schedule(struct sock *sk, int size)
1507 {
1508 	int delta;
1509 
1510 	delta = size - sk->sk_forward_alloc;
1511 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1512 		return -ENOBUFS;
1513 
1514 	return 0;
1515 }
1516 
1517 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1518 {
1519 	struct sk_buff_head *list = &sk->sk_receive_queue;
1520 	int rmem, err = -ENOMEM;
1521 	spinlock_t *busy = NULL;
1522 	int size;
1523 
1524 	/* try to avoid the costly atomic add/sub pair when the receive
1525 	 * queue is full; always allow at least a packet
1526 	 */
1527 	rmem = atomic_read(&sk->sk_rmem_alloc);
1528 	if (rmem > sk->sk_rcvbuf)
1529 		goto drop;
1530 
1531 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1532 	 * having linear skbs :
1533 	 * - Reduce memory overhead and thus increase receive queue capacity
1534 	 * - Less cache line misses at copyout() time
1535 	 * - Less work at consume_skb() (less alien page frag freeing)
1536 	 */
1537 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1538 		skb_condense(skb);
1539 
1540 		busy = busylock_acquire(sk);
1541 	}
1542 	size = skb->truesize;
1543 	udp_set_dev_scratch(skb);
1544 
1545 	/* we drop only if the receive buf is full and the receive
1546 	 * queue contains some other skb
1547 	 */
1548 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1549 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1550 		goto uncharge_drop;
1551 
1552 	spin_lock(&list->lock);
1553 	err = udp_rmem_schedule(sk, size);
1554 	if (err) {
1555 		spin_unlock(&list->lock);
1556 		goto uncharge_drop;
1557 	}
1558 
1559 	sk->sk_forward_alloc -= size;
1560 
1561 	/* no need to setup a destructor, we will explicitly release the
1562 	 * forward allocated memory on dequeue
1563 	 */
1564 	sock_skb_set_dropcount(sk, skb);
1565 
1566 	__skb_queue_tail(list, skb);
1567 	spin_unlock(&list->lock);
1568 
1569 	if (!sock_flag(sk, SOCK_DEAD))
1570 		sk->sk_data_ready(sk);
1571 
1572 	busylock_release(busy);
1573 	return 0;
1574 
1575 uncharge_drop:
1576 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1577 
1578 drop:
1579 	atomic_inc(&sk->sk_drops);
1580 	busylock_release(busy);
1581 	return err;
1582 }
1583 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1584 
1585 void udp_destruct_common(struct sock *sk)
1586 {
1587 	/* reclaim completely the forward allocated memory */
1588 	struct udp_sock *up = udp_sk(sk);
1589 	unsigned int total = 0;
1590 	struct sk_buff *skb;
1591 
1592 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1593 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1594 		total += skb->truesize;
1595 		kfree_skb(skb);
1596 	}
1597 	udp_rmem_release(sk, total, 0, true);
1598 }
1599 EXPORT_SYMBOL_GPL(udp_destruct_common);
1600 
1601 static void udp_destruct_sock(struct sock *sk)
1602 {
1603 	udp_destruct_common(sk);
1604 	inet_sock_destruct(sk);
1605 }
1606 
1607 int udp_init_sock(struct sock *sk)
1608 {
1609 	udp_lib_init_sock(sk);
1610 	sk->sk_destruct = udp_destruct_sock;
1611 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1612 	return 0;
1613 }
1614 
1615 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1616 {
1617 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1618 		bool slow = lock_sock_fast(sk);
1619 
1620 		sk_peek_offset_bwd(sk, len);
1621 		unlock_sock_fast(sk, slow);
1622 	}
1623 
1624 	if (!skb_unref(skb))
1625 		return;
1626 
1627 	/* In the more common cases we cleared the head states previously,
1628 	 * see __udp_queue_rcv_skb().
1629 	 */
1630 	if (unlikely(udp_skb_has_head_state(skb)))
1631 		skb_release_head_state(skb);
1632 	__consume_stateless_skb(skb);
1633 }
1634 EXPORT_SYMBOL_GPL(skb_consume_udp);
1635 
1636 static struct sk_buff *__first_packet_length(struct sock *sk,
1637 					     struct sk_buff_head *rcvq,
1638 					     int *total)
1639 {
1640 	struct sk_buff *skb;
1641 
1642 	while ((skb = skb_peek(rcvq)) != NULL) {
1643 		if (udp_lib_checksum_complete(skb)) {
1644 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1645 					IS_UDPLITE(sk));
1646 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1647 					IS_UDPLITE(sk));
1648 			atomic_inc(&sk->sk_drops);
1649 			__skb_unlink(skb, rcvq);
1650 			*total += skb->truesize;
1651 			kfree_skb(skb);
1652 		} else {
1653 			udp_skb_csum_unnecessary_set(skb);
1654 			break;
1655 		}
1656 	}
1657 	return skb;
1658 }
1659 
1660 /**
1661  *	first_packet_length	- return length of first packet in receive queue
1662  *	@sk: socket
1663  *
1664  *	Drops all bad checksum frames, until a valid one is found.
1665  *	Returns the length of found skb, or -1 if none is found.
1666  */
1667 static int first_packet_length(struct sock *sk)
1668 {
1669 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1670 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1671 	struct sk_buff *skb;
1672 	int total = 0;
1673 	int res;
1674 
1675 	spin_lock_bh(&rcvq->lock);
1676 	skb = __first_packet_length(sk, rcvq, &total);
1677 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1678 		spin_lock(&sk_queue->lock);
1679 		skb_queue_splice_tail_init(sk_queue, rcvq);
1680 		spin_unlock(&sk_queue->lock);
1681 
1682 		skb = __first_packet_length(sk, rcvq, &total);
1683 	}
1684 	res = skb ? skb->len : -1;
1685 	if (total)
1686 		udp_rmem_release(sk, total, 1, false);
1687 	spin_unlock_bh(&rcvq->lock);
1688 	return res;
1689 }
1690 
1691 /*
1692  *	IOCTL requests applicable to the UDP protocol
1693  */
1694 
1695 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1696 {
1697 	switch (cmd) {
1698 	case SIOCOUTQ:
1699 	{
1700 		*karg = sk_wmem_alloc_get(sk);
1701 		return 0;
1702 	}
1703 
1704 	case SIOCINQ:
1705 	{
1706 		*karg = max_t(int, 0, first_packet_length(sk));
1707 		return 0;
1708 	}
1709 
1710 	default:
1711 		return -ENOIOCTLCMD;
1712 	}
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(udp_ioctl);
1717 
1718 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1719 			       int *off, int *err)
1720 {
1721 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1722 	struct sk_buff_head *queue;
1723 	struct sk_buff *last;
1724 	long timeo;
1725 	int error;
1726 
1727 	queue = &udp_sk(sk)->reader_queue;
1728 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1729 	do {
1730 		struct sk_buff *skb;
1731 
1732 		error = sock_error(sk);
1733 		if (error)
1734 			break;
1735 
1736 		error = -EAGAIN;
1737 		do {
1738 			spin_lock_bh(&queue->lock);
1739 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1740 							err, &last);
1741 			if (skb) {
1742 				if (!(flags & MSG_PEEK))
1743 					udp_skb_destructor(sk, skb);
1744 				spin_unlock_bh(&queue->lock);
1745 				return skb;
1746 			}
1747 
1748 			if (skb_queue_empty_lockless(sk_queue)) {
1749 				spin_unlock_bh(&queue->lock);
1750 				goto busy_check;
1751 			}
1752 
1753 			/* refill the reader queue and walk it again
1754 			 * keep both queues locked to avoid re-acquiring
1755 			 * the sk_receive_queue lock if fwd memory scheduling
1756 			 * is needed.
1757 			 */
1758 			spin_lock(&sk_queue->lock);
1759 			skb_queue_splice_tail_init(sk_queue, queue);
1760 
1761 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1762 							err, &last);
1763 			if (skb && !(flags & MSG_PEEK))
1764 				udp_skb_dtor_locked(sk, skb);
1765 			spin_unlock(&sk_queue->lock);
1766 			spin_unlock_bh(&queue->lock);
1767 			if (skb)
1768 				return skb;
1769 
1770 busy_check:
1771 			if (!sk_can_busy_loop(sk))
1772 				break;
1773 
1774 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1775 		} while (!skb_queue_empty_lockless(sk_queue));
1776 
1777 		/* sk_queue is empty, reader_queue may contain peeked packets */
1778 	} while (timeo &&
1779 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1780 					      &error, &timeo,
1781 					      (struct sk_buff *)sk_queue));
1782 
1783 	*err = error;
1784 	return NULL;
1785 }
1786 EXPORT_SYMBOL(__skb_recv_udp);
1787 
1788 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1789 {
1790 	struct sk_buff *skb;
1791 	int err;
1792 
1793 try_again:
1794 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1795 	if (!skb)
1796 		return err;
1797 
1798 	if (udp_lib_checksum_complete(skb)) {
1799 		int is_udplite = IS_UDPLITE(sk);
1800 		struct net *net = sock_net(sk);
1801 
1802 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1803 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1804 		atomic_inc(&sk->sk_drops);
1805 		kfree_skb(skb);
1806 		goto try_again;
1807 	}
1808 
1809 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1810 	return recv_actor(sk, skb);
1811 }
1812 EXPORT_SYMBOL(udp_read_skb);
1813 
1814 /*
1815  * 	This should be easy, if there is something there we
1816  * 	return it, otherwise we block.
1817  */
1818 
1819 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1820 		int *addr_len)
1821 {
1822 	struct inet_sock *inet = inet_sk(sk);
1823 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1824 	struct sk_buff *skb;
1825 	unsigned int ulen, copied;
1826 	int off, err, peeking = flags & MSG_PEEK;
1827 	int is_udplite = IS_UDPLITE(sk);
1828 	bool checksum_valid = false;
1829 
1830 	if (flags & MSG_ERRQUEUE)
1831 		return ip_recv_error(sk, msg, len, addr_len);
1832 
1833 try_again:
1834 	off = sk_peek_offset(sk, flags);
1835 	skb = __skb_recv_udp(sk, flags, &off, &err);
1836 	if (!skb)
1837 		return err;
1838 
1839 	ulen = udp_skb_len(skb);
1840 	copied = len;
1841 	if (copied > ulen - off)
1842 		copied = ulen - off;
1843 	else if (copied < ulen)
1844 		msg->msg_flags |= MSG_TRUNC;
1845 
1846 	/*
1847 	 * If checksum is needed at all, try to do it while copying the
1848 	 * data.  If the data is truncated, or if we only want a partial
1849 	 * coverage checksum (UDP-Lite), do it before the copy.
1850 	 */
1851 
1852 	if (copied < ulen || peeking ||
1853 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1854 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1855 				!__udp_lib_checksum_complete(skb);
1856 		if (!checksum_valid)
1857 			goto csum_copy_err;
1858 	}
1859 
1860 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1861 		if (udp_skb_is_linear(skb))
1862 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1863 		else
1864 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1865 	} else {
1866 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1867 
1868 		if (err == -EINVAL)
1869 			goto csum_copy_err;
1870 	}
1871 
1872 	if (unlikely(err)) {
1873 		if (!peeking) {
1874 			atomic_inc(&sk->sk_drops);
1875 			UDP_INC_STATS(sock_net(sk),
1876 				      UDP_MIB_INERRORS, is_udplite);
1877 		}
1878 		kfree_skb(skb);
1879 		return err;
1880 	}
1881 
1882 	if (!peeking)
1883 		UDP_INC_STATS(sock_net(sk),
1884 			      UDP_MIB_INDATAGRAMS, is_udplite);
1885 
1886 	sock_recv_cmsgs(msg, sk, skb);
1887 
1888 	/* Copy the address. */
1889 	if (sin) {
1890 		sin->sin_family = AF_INET;
1891 		sin->sin_port = udp_hdr(skb)->source;
1892 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1893 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1894 		*addr_len = sizeof(*sin);
1895 
1896 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1897 						      (struct sockaddr *)sin);
1898 	}
1899 
1900 	if (udp_sk(sk)->gro_enabled)
1901 		udp_cmsg_recv(msg, sk, skb);
1902 
1903 	if (inet->cmsg_flags)
1904 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1905 
1906 	err = copied;
1907 	if (flags & MSG_TRUNC)
1908 		err = ulen;
1909 
1910 	skb_consume_udp(sk, skb, peeking ? -err : err);
1911 	return err;
1912 
1913 csum_copy_err:
1914 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1915 				 udp_skb_destructor)) {
1916 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1917 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1918 	}
1919 	kfree_skb(skb);
1920 
1921 	/* starting over for a new packet, but check if we need to yield */
1922 	cond_resched();
1923 	msg->msg_flags &= ~MSG_TRUNC;
1924 	goto try_again;
1925 }
1926 
1927 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1928 {
1929 	/* This check is replicated from __ip4_datagram_connect() and
1930 	 * intended to prevent BPF program called below from accessing bytes
1931 	 * that are out of the bound specified by user in addr_len.
1932 	 */
1933 	if (addr_len < sizeof(struct sockaddr_in))
1934 		return -EINVAL;
1935 
1936 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1937 }
1938 EXPORT_SYMBOL(udp_pre_connect);
1939 
1940 int __udp_disconnect(struct sock *sk, int flags)
1941 {
1942 	struct inet_sock *inet = inet_sk(sk);
1943 	/*
1944 	 *	1003.1g - break association.
1945 	 */
1946 
1947 	sk->sk_state = TCP_CLOSE;
1948 	inet->inet_daddr = 0;
1949 	inet->inet_dport = 0;
1950 	sock_rps_reset_rxhash(sk);
1951 	sk->sk_bound_dev_if = 0;
1952 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1953 		inet_reset_saddr(sk);
1954 		if (sk->sk_prot->rehash &&
1955 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1956 			sk->sk_prot->rehash(sk);
1957 	}
1958 
1959 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1960 		sk->sk_prot->unhash(sk);
1961 		inet->inet_sport = 0;
1962 	}
1963 	sk_dst_reset(sk);
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL(__udp_disconnect);
1967 
1968 int udp_disconnect(struct sock *sk, int flags)
1969 {
1970 	lock_sock(sk);
1971 	__udp_disconnect(sk, flags);
1972 	release_sock(sk);
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL(udp_disconnect);
1976 
1977 void udp_lib_unhash(struct sock *sk)
1978 {
1979 	if (sk_hashed(sk)) {
1980 		struct udp_table *udptable = udp_get_table_prot(sk);
1981 		struct udp_hslot *hslot, *hslot2;
1982 
1983 		hslot  = udp_hashslot(udptable, sock_net(sk),
1984 				      udp_sk(sk)->udp_port_hash);
1985 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1986 
1987 		spin_lock_bh(&hslot->lock);
1988 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1989 			reuseport_detach_sock(sk);
1990 		if (sk_del_node_init_rcu(sk)) {
1991 			hslot->count--;
1992 			inet_sk(sk)->inet_num = 0;
1993 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1994 
1995 			spin_lock(&hslot2->lock);
1996 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1997 			hslot2->count--;
1998 			spin_unlock(&hslot2->lock);
1999 		}
2000 		spin_unlock_bh(&hslot->lock);
2001 	}
2002 }
2003 EXPORT_SYMBOL(udp_lib_unhash);
2004 
2005 /*
2006  * inet_rcv_saddr was changed, we must rehash secondary hash
2007  */
2008 void udp_lib_rehash(struct sock *sk, u16 newhash)
2009 {
2010 	if (sk_hashed(sk)) {
2011 		struct udp_table *udptable = udp_get_table_prot(sk);
2012 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2013 
2014 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2015 		nhslot2 = udp_hashslot2(udptable, newhash);
2016 		udp_sk(sk)->udp_portaddr_hash = newhash;
2017 
2018 		if (hslot2 != nhslot2 ||
2019 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2020 			hslot = udp_hashslot(udptable, sock_net(sk),
2021 					     udp_sk(sk)->udp_port_hash);
2022 			/* we must lock primary chain too */
2023 			spin_lock_bh(&hslot->lock);
2024 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2025 				reuseport_detach_sock(sk);
2026 
2027 			if (hslot2 != nhslot2) {
2028 				spin_lock(&hslot2->lock);
2029 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2030 				hslot2->count--;
2031 				spin_unlock(&hslot2->lock);
2032 
2033 				spin_lock(&nhslot2->lock);
2034 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2035 							 &nhslot2->head);
2036 				nhslot2->count++;
2037 				spin_unlock(&nhslot2->lock);
2038 			}
2039 
2040 			spin_unlock_bh(&hslot->lock);
2041 		}
2042 	}
2043 }
2044 EXPORT_SYMBOL(udp_lib_rehash);
2045 
2046 void udp_v4_rehash(struct sock *sk)
2047 {
2048 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2049 					  inet_sk(sk)->inet_rcv_saddr,
2050 					  inet_sk(sk)->inet_num);
2051 	udp_lib_rehash(sk, new_hash);
2052 }
2053 
2054 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2055 {
2056 	int rc;
2057 
2058 	if (inet_sk(sk)->inet_daddr) {
2059 		sock_rps_save_rxhash(sk, skb);
2060 		sk_mark_napi_id(sk, skb);
2061 		sk_incoming_cpu_update(sk);
2062 	} else {
2063 		sk_mark_napi_id_once(sk, skb);
2064 	}
2065 
2066 	rc = __udp_enqueue_schedule_skb(sk, skb);
2067 	if (rc < 0) {
2068 		int is_udplite = IS_UDPLITE(sk);
2069 		int drop_reason;
2070 
2071 		/* Note that an ENOMEM error is charged twice */
2072 		if (rc == -ENOMEM) {
2073 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2074 					is_udplite);
2075 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2076 		} else {
2077 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2078 				      is_udplite);
2079 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2080 		}
2081 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2082 		kfree_skb_reason(skb, drop_reason);
2083 		trace_udp_fail_queue_rcv_skb(rc, sk);
2084 		return -1;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 /* returns:
2091  *  -1: error
2092  *   0: success
2093  *  >0: "udp encap" protocol resubmission
2094  *
2095  * Note that in the success and error cases, the skb is assumed to
2096  * have either been requeued or freed.
2097  */
2098 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2099 {
2100 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2101 	struct udp_sock *up = udp_sk(sk);
2102 	int is_udplite = IS_UDPLITE(sk);
2103 
2104 	/*
2105 	 *	Charge it to the socket, dropping if the queue is full.
2106 	 */
2107 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2108 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2109 		goto drop;
2110 	}
2111 	nf_reset_ct(skb);
2112 
2113 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2114 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2115 
2116 		/*
2117 		 * This is an encapsulation socket so pass the skb to
2118 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2119 		 * fall through and pass this up the UDP socket.
2120 		 * up->encap_rcv() returns the following value:
2121 		 * =0 if skb was successfully passed to the encap
2122 		 *    handler or was discarded by it.
2123 		 * >0 if skb should be passed on to UDP.
2124 		 * <0 if skb should be resubmitted as proto -N
2125 		 */
2126 
2127 		/* if we're overly short, let UDP handle it */
2128 		encap_rcv = READ_ONCE(up->encap_rcv);
2129 		if (encap_rcv) {
2130 			int ret;
2131 
2132 			/* Verify checksum before giving to encap */
2133 			if (udp_lib_checksum_complete(skb))
2134 				goto csum_error;
2135 
2136 			ret = encap_rcv(sk, skb);
2137 			if (ret <= 0) {
2138 				__UDP_INC_STATS(sock_net(sk),
2139 						UDP_MIB_INDATAGRAMS,
2140 						is_udplite);
2141 				return -ret;
2142 			}
2143 		}
2144 
2145 		/* FALLTHROUGH -- it's a UDP Packet */
2146 	}
2147 
2148 	/*
2149 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2150 	 */
2151 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2152 
2153 		/*
2154 		 * MIB statistics other than incrementing the error count are
2155 		 * disabled for the following two types of errors: these depend
2156 		 * on the application settings, not on the functioning of the
2157 		 * protocol stack as such.
2158 		 *
2159 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2160 		 * way ... to ... at least let the receiving application block
2161 		 * delivery of packets with coverage values less than a value
2162 		 * provided by the application."
2163 		 */
2164 		if (up->pcrlen == 0) {          /* full coverage was set  */
2165 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2166 					    UDP_SKB_CB(skb)->cscov, skb->len);
2167 			goto drop;
2168 		}
2169 		/* The next case involves violating the min. coverage requested
2170 		 * by the receiver. This is subtle: if receiver wants x and x is
2171 		 * greater than the buffersize/MTU then receiver will complain
2172 		 * that it wants x while sender emits packets of smaller size y.
2173 		 * Therefore the above ...()->partial_cov statement is essential.
2174 		 */
2175 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2176 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2177 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2178 			goto drop;
2179 		}
2180 	}
2181 
2182 	prefetch(&sk->sk_rmem_alloc);
2183 	if (rcu_access_pointer(sk->sk_filter) &&
2184 	    udp_lib_checksum_complete(skb))
2185 			goto csum_error;
2186 
2187 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2188 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2189 		goto drop;
2190 	}
2191 
2192 	udp_csum_pull_header(skb);
2193 
2194 	ipv4_pktinfo_prepare(sk, skb);
2195 	return __udp_queue_rcv_skb(sk, skb);
2196 
2197 csum_error:
2198 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2199 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2200 drop:
2201 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2202 	atomic_inc(&sk->sk_drops);
2203 	kfree_skb_reason(skb, drop_reason);
2204 	return -1;
2205 }
2206 
2207 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2208 {
2209 	struct sk_buff *next, *segs;
2210 	int ret;
2211 
2212 	if (likely(!udp_unexpected_gso(sk, skb)))
2213 		return udp_queue_rcv_one_skb(sk, skb);
2214 
2215 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2216 	__skb_push(skb, -skb_mac_offset(skb));
2217 	segs = udp_rcv_segment(sk, skb, true);
2218 	skb_list_walk_safe(segs, skb, next) {
2219 		__skb_pull(skb, skb_transport_offset(skb));
2220 
2221 		udp_post_segment_fix_csum(skb);
2222 		ret = udp_queue_rcv_one_skb(sk, skb);
2223 		if (ret > 0)
2224 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2225 	}
2226 	return 0;
2227 }
2228 
2229 /* For TCP sockets, sk_rx_dst is protected by socket lock
2230  * For UDP, we use xchg() to guard against concurrent changes.
2231  */
2232 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2233 {
2234 	struct dst_entry *old;
2235 
2236 	if (dst_hold_safe(dst)) {
2237 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2238 		dst_release(old);
2239 		return old != dst;
2240 	}
2241 	return false;
2242 }
2243 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2244 
2245 /*
2246  *	Multicasts and broadcasts go to each listener.
2247  *
2248  *	Note: called only from the BH handler context.
2249  */
2250 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2251 				    struct udphdr  *uh,
2252 				    __be32 saddr, __be32 daddr,
2253 				    struct udp_table *udptable,
2254 				    int proto)
2255 {
2256 	struct sock *sk, *first = NULL;
2257 	unsigned short hnum = ntohs(uh->dest);
2258 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2259 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2260 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2261 	int dif = skb->dev->ifindex;
2262 	int sdif = inet_sdif(skb);
2263 	struct hlist_node *node;
2264 	struct sk_buff *nskb;
2265 
2266 	if (use_hash2) {
2267 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2268 			    udptable->mask;
2269 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2270 start_lookup:
2271 		hslot = &udptable->hash2[hash2];
2272 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2273 	}
2274 
2275 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2276 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2277 					 uh->source, saddr, dif, sdif, hnum))
2278 			continue;
2279 
2280 		if (!first) {
2281 			first = sk;
2282 			continue;
2283 		}
2284 		nskb = skb_clone(skb, GFP_ATOMIC);
2285 
2286 		if (unlikely(!nskb)) {
2287 			atomic_inc(&sk->sk_drops);
2288 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2289 					IS_UDPLITE(sk));
2290 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2291 					IS_UDPLITE(sk));
2292 			continue;
2293 		}
2294 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2295 			consume_skb(nskb);
2296 	}
2297 
2298 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2299 	if (use_hash2 && hash2 != hash2_any) {
2300 		hash2 = hash2_any;
2301 		goto start_lookup;
2302 	}
2303 
2304 	if (first) {
2305 		if (udp_queue_rcv_skb(first, skb) > 0)
2306 			consume_skb(skb);
2307 	} else {
2308 		kfree_skb(skb);
2309 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2310 				proto == IPPROTO_UDPLITE);
2311 	}
2312 	return 0;
2313 }
2314 
2315 /* Initialize UDP checksum. If exited with zero value (success),
2316  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2317  * Otherwise, csum completion requires checksumming packet body,
2318  * including udp header and folding it to skb->csum.
2319  */
2320 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2321 				 int proto)
2322 {
2323 	int err;
2324 
2325 	UDP_SKB_CB(skb)->partial_cov = 0;
2326 	UDP_SKB_CB(skb)->cscov = skb->len;
2327 
2328 	if (proto == IPPROTO_UDPLITE) {
2329 		err = udplite_checksum_init(skb, uh);
2330 		if (err)
2331 			return err;
2332 
2333 		if (UDP_SKB_CB(skb)->partial_cov) {
2334 			skb->csum = inet_compute_pseudo(skb, proto);
2335 			return 0;
2336 		}
2337 	}
2338 
2339 	/* Note, we are only interested in != 0 or == 0, thus the
2340 	 * force to int.
2341 	 */
2342 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2343 							inet_compute_pseudo);
2344 	if (err)
2345 		return err;
2346 
2347 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2348 		/* If SW calculated the value, we know it's bad */
2349 		if (skb->csum_complete_sw)
2350 			return 1;
2351 
2352 		/* HW says the value is bad. Let's validate that.
2353 		 * skb->csum is no longer the full packet checksum,
2354 		 * so don't treat it as such.
2355 		 */
2356 		skb_checksum_complete_unset(skb);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2363  * return code conversion for ip layer consumption
2364  */
2365 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2366 			       struct udphdr *uh)
2367 {
2368 	int ret;
2369 
2370 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2371 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2372 
2373 	ret = udp_queue_rcv_skb(sk, skb);
2374 
2375 	/* a return value > 0 means to resubmit the input, but
2376 	 * it wants the return to be -protocol, or 0
2377 	 */
2378 	if (ret > 0)
2379 		return -ret;
2380 	return 0;
2381 }
2382 
2383 /*
2384  *	All we need to do is get the socket, and then do a checksum.
2385  */
2386 
2387 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2388 		   int proto)
2389 {
2390 	struct sock *sk;
2391 	struct udphdr *uh;
2392 	unsigned short ulen;
2393 	struct rtable *rt = skb_rtable(skb);
2394 	__be32 saddr, daddr;
2395 	struct net *net = dev_net(skb->dev);
2396 	bool refcounted;
2397 	int drop_reason;
2398 
2399 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2400 
2401 	/*
2402 	 *  Validate the packet.
2403 	 */
2404 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2405 		goto drop;		/* No space for header. */
2406 
2407 	uh   = udp_hdr(skb);
2408 	ulen = ntohs(uh->len);
2409 	saddr = ip_hdr(skb)->saddr;
2410 	daddr = ip_hdr(skb)->daddr;
2411 
2412 	if (ulen > skb->len)
2413 		goto short_packet;
2414 
2415 	if (proto == IPPROTO_UDP) {
2416 		/* UDP validates ulen. */
2417 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2418 			goto short_packet;
2419 		uh = udp_hdr(skb);
2420 	}
2421 
2422 	if (udp4_csum_init(skb, uh, proto))
2423 		goto csum_error;
2424 
2425 	sk = skb_steal_sock(skb, &refcounted);
2426 	if (sk) {
2427 		struct dst_entry *dst = skb_dst(skb);
2428 		int ret;
2429 
2430 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2431 			udp_sk_rx_dst_set(sk, dst);
2432 
2433 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2434 		if (refcounted)
2435 			sock_put(sk);
2436 		return ret;
2437 	}
2438 
2439 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2440 		return __udp4_lib_mcast_deliver(net, skb, uh,
2441 						saddr, daddr, udptable, proto);
2442 
2443 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2444 	if (sk)
2445 		return udp_unicast_rcv_skb(sk, skb, uh);
2446 
2447 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2448 		goto drop;
2449 	nf_reset_ct(skb);
2450 
2451 	/* No socket. Drop packet silently, if checksum is wrong */
2452 	if (udp_lib_checksum_complete(skb))
2453 		goto csum_error;
2454 
2455 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2456 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2457 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2458 
2459 	/*
2460 	 * Hmm.  We got an UDP packet to a port to which we
2461 	 * don't wanna listen.  Ignore it.
2462 	 */
2463 	kfree_skb_reason(skb, drop_reason);
2464 	return 0;
2465 
2466 short_packet:
2467 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2468 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2469 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2470 			    &saddr, ntohs(uh->source),
2471 			    ulen, skb->len,
2472 			    &daddr, ntohs(uh->dest));
2473 	goto drop;
2474 
2475 csum_error:
2476 	/*
2477 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2478 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2479 	 */
2480 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2481 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2482 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2483 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2484 			    ulen);
2485 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2486 drop:
2487 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2488 	kfree_skb_reason(skb, drop_reason);
2489 	return 0;
2490 }
2491 
2492 /* We can only early demux multicast if there is a single matching socket.
2493  * If more than one socket found returns NULL
2494  */
2495 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2496 						  __be16 loc_port, __be32 loc_addr,
2497 						  __be16 rmt_port, __be32 rmt_addr,
2498 						  int dif, int sdif)
2499 {
2500 	struct udp_table *udptable = net->ipv4.udp_table;
2501 	unsigned short hnum = ntohs(loc_port);
2502 	struct sock *sk, *result;
2503 	struct udp_hslot *hslot;
2504 	unsigned int slot;
2505 
2506 	slot = udp_hashfn(net, hnum, udptable->mask);
2507 	hslot = &udptable->hash[slot];
2508 
2509 	/* Do not bother scanning a too big list */
2510 	if (hslot->count > 10)
2511 		return NULL;
2512 
2513 	result = NULL;
2514 	sk_for_each_rcu(sk, &hslot->head) {
2515 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2516 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2517 			if (result)
2518 				return NULL;
2519 			result = sk;
2520 		}
2521 	}
2522 
2523 	return result;
2524 }
2525 
2526 /* For unicast we should only early demux connected sockets or we can
2527  * break forwarding setups.  The chains here can be long so only check
2528  * if the first socket is an exact match and if not move on.
2529  */
2530 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2531 					    __be16 loc_port, __be32 loc_addr,
2532 					    __be16 rmt_port, __be32 rmt_addr,
2533 					    int dif, int sdif)
2534 {
2535 	struct udp_table *udptable = net->ipv4.udp_table;
2536 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2537 	unsigned short hnum = ntohs(loc_port);
2538 	unsigned int hash2, slot2;
2539 	struct udp_hslot *hslot2;
2540 	__portpair ports;
2541 	struct sock *sk;
2542 
2543 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2544 	slot2 = hash2 & udptable->mask;
2545 	hslot2 = &udptable->hash2[slot2];
2546 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2547 
2548 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2549 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2550 			return sk;
2551 		/* Only check first socket in chain */
2552 		break;
2553 	}
2554 	return NULL;
2555 }
2556 
2557 int udp_v4_early_demux(struct sk_buff *skb)
2558 {
2559 	struct net *net = dev_net(skb->dev);
2560 	struct in_device *in_dev = NULL;
2561 	const struct iphdr *iph;
2562 	const struct udphdr *uh;
2563 	struct sock *sk = NULL;
2564 	struct dst_entry *dst;
2565 	int dif = skb->dev->ifindex;
2566 	int sdif = inet_sdif(skb);
2567 	int ours;
2568 
2569 	/* validate the packet */
2570 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2571 		return 0;
2572 
2573 	iph = ip_hdr(skb);
2574 	uh = udp_hdr(skb);
2575 
2576 	if (skb->pkt_type == PACKET_MULTICAST) {
2577 		in_dev = __in_dev_get_rcu(skb->dev);
2578 
2579 		if (!in_dev)
2580 			return 0;
2581 
2582 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2583 				       iph->protocol);
2584 		if (!ours)
2585 			return 0;
2586 
2587 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2588 						   uh->source, iph->saddr,
2589 						   dif, sdif);
2590 	} else if (skb->pkt_type == PACKET_HOST) {
2591 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2592 					     uh->source, iph->saddr, dif, sdif);
2593 	}
2594 
2595 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2596 		return 0;
2597 
2598 	skb->sk = sk;
2599 	skb->destructor = sock_efree;
2600 	dst = rcu_dereference(sk->sk_rx_dst);
2601 
2602 	if (dst)
2603 		dst = dst_check(dst, 0);
2604 	if (dst) {
2605 		u32 itag = 0;
2606 
2607 		/* set noref for now.
2608 		 * any place which wants to hold dst has to call
2609 		 * dst_hold_safe()
2610 		 */
2611 		skb_dst_set_noref(skb, dst);
2612 
2613 		/* for unconnected multicast sockets we need to validate
2614 		 * the source on each packet
2615 		 */
2616 		if (!inet_sk(sk)->inet_daddr && in_dev)
2617 			return ip_mc_validate_source(skb, iph->daddr,
2618 						     iph->saddr,
2619 						     iph->tos & IPTOS_RT_MASK,
2620 						     skb->dev, in_dev, &itag);
2621 	}
2622 	return 0;
2623 }
2624 
2625 int udp_rcv(struct sk_buff *skb)
2626 {
2627 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2628 }
2629 
2630 void udp_destroy_sock(struct sock *sk)
2631 {
2632 	struct udp_sock *up = udp_sk(sk);
2633 	bool slow = lock_sock_fast(sk);
2634 
2635 	/* protects from races with udp_abort() */
2636 	sock_set_flag(sk, SOCK_DEAD);
2637 	udp_flush_pending_frames(sk);
2638 	unlock_sock_fast(sk, slow);
2639 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2640 		if (up->encap_type) {
2641 			void (*encap_destroy)(struct sock *sk);
2642 			encap_destroy = READ_ONCE(up->encap_destroy);
2643 			if (encap_destroy)
2644 				encap_destroy(sk);
2645 		}
2646 		if (up->encap_enabled)
2647 			static_branch_dec(&udp_encap_needed_key);
2648 	}
2649 }
2650 
2651 /*
2652  *	Socket option code for UDP
2653  */
2654 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2655 		       sockptr_t optval, unsigned int optlen,
2656 		       int (*push_pending_frames)(struct sock *))
2657 {
2658 	struct udp_sock *up = udp_sk(sk);
2659 	int val, valbool;
2660 	int err = 0;
2661 	int is_udplite = IS_UDPLITE(sk);
2662 
2663 	if (level == SOL_SOCKET) {
2664 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2665 
2666 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2667 			sockopt_lock_sock(sk);
2668 			/* paired with READ_ONCE in udp_rmem_release() */
2669 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2670 			sockopt_release_sock(sk);
2671 		}
2672 		return err;
2673 	}
2674 
2675 	if (optlen < sizeof(int))
2676 		return -EINVAL;
2677 
2678 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2679 		return -EFAULT;
2680 
2681 	valbool = val ? 1 : 0;
2682 
2683 	switch (optname) {
2684 	case UDP_CORK:
2685 		if (val != 0) {
2686 			WRITE_ONCE(up->corkflag, 1);
2687 		} else {
2688 			WRITE_ONCE(up->corkflag, 0);
2689 			lock_sock(sk);
2690 			push_pending_frames(sk);
2691 			release_sock(sk);
2692 		}
2693 		break;
2694 
2695 	case UDP_ENCAP:
2696 		switch (val) {
2697 		case 0:
2698 #ifdef CONFIG_XFRM
2699 		case UDP_ENCAP_ESPINUDP:
2700 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2701 #if IS_ENABLED(CONFIG_IPV6)
2702 			if (sk->sk_family == AF_INET6)
2703 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2704 			else
2705 #endif
2706 				up->encap_rcv = xfrm4_udp_encap_rcv;
2707 #endif
2708 			fallthrough;
2709 		case UDP_ENCAP_L2TPINUDP:
2710 			up->encap_type = val;
2711 			lock_sock(sk);
2712 			udp_tunnel_encap_enable(sk->sk_socket);
2713 			release_sock(sk);
2714 			break;
2715 		default:
2716 			err = -ENOPROTOOPT;
2717 			break;
2718 		}
2719 		break;
2720 
2721 	case UDP_NO_CHECK6_TX:
2722 		up->no_check6_tx = valbool;
2723 		break;
2724 
2725 	case UDP_NO_CHECK6_RX:
2726 		up->no_check6_rx = valbool;
2727 		break;
2728 
2729 	case UDP_SEGMENT:
2730 		if (val < 0 || val > USHRT_MAX)
2731 			return -EINVAL;
2732 		WRITE_ONCE(up->gso_size, val);
2733 		break;
2734 
2735 	case UDP_GRO:
2736 		lock_sock(sk);
2737 
2738 		/* when enabling GRO, accept the related GSO packet type */
2739 		if (valbool)
2740 			udp_tunnel_encap_enable(sk->sk_socket);
2741 		up->gro_enabled = valbool;
2742 		up->accept_udp_l4 = valbool;
2743 		release_sock(sk);
2744 		break;
2745 
2746 	/*
2747 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2748 	 */
2749 	/* The sender sets actual checksum coverage length via this option.
2750 	 * The case coverage > packet length is handled by send module. */
2751 	case UDPLITE_SEND_CSCOV:
2752 		if (!is_udplite)         /* Disable the option on UDP sockets */
2753 			return -ENOPROTOOPT;
2754 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2755 			val = 8;
2756 		else if (val > USHRT_MAX)
2757 			val = USHRT_MAX;
2758 		up->pcslen = val;
2759 		up->pcflag |= UDPLITE_SEND_CC;
2760 		break;
2761 
2762 	/* The receiver specifies a minimum checksum coverage value. To make
2763 	 * sense, this should be set to at least 8 (as done below). If zero is
2764 	 * used, this again means full checksum coverage.                     */
2765 	case UDPLITE_RECV_CSCOV:
2766 		if (!is_udplite)         /* Disable the option on UDP sockets */
2767 			return -ENOPROTOOPT;
2768 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2769 			val = 8;
2770 		else if (val > USHRT_MAX)
2771 			val = USHRT_MAX;
2772 		up->pcrlen = val;
2773 		up->pcflag |= UDPLITE_RECV_CC;
2774 		break;
2775 
2776 	default:
2777 		err = -ENOPROTOOPT;
2778 		break;
2779 	}
2780 
2781 	return err;
2782 }
2783 EXPORT_SYMBOL(udp_lib_setsockopt);
2784 
2785 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2786 		   unsigned int optlen)
2787 {
2788 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2789 		return udp_lib_setsockopt(sk, level, optname,
2790 					  optval, optlen,
2791 					  udp_push_pending_frames);
2792 	return ip_setsockopt(sk, level, optname, optval, optlen);
2793 }
2794 
2795 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2796 		       char __user *optval, int __user *optlen)
2797 {
2798 	struct udp_sock *up = udp_sk(sk);
2799 	int val, len;
2800 
2801 	if (get_user(len, optlen))
2802 		return -EFAULT;
2803 
2804 	len = min_t(unsigned int, len, sizeof(int));
2805 
2806 	if (len < 0)
2807 		return -EINVAL;
2808 
2809 	switch (optname) {
2810 	case UDP_CORK:
2811 		val = READ_ONCE(up->corkflag);
2812 		break;
2813 
2814 	case UDP_ENCAP:
2815 		val = up->encap_type;
2816 		break;
2817 
2818 	case UDP_NO_CHECK6_TX:
2819 		val = up->no_check6_tx;
2820 		break;
2821 
2822 	case UDP_NO_CHECK6_RX:
2823 		val = up->no_check6_rx;
2824 		break;
2825 
2826 	case UDP_SEGMENT:
2827 		val = READ_ONCE(up->gso_size);
2828 		break;
2829 
2830 	case UDP_GRO:
2831 		val = up->gro_enabled;
2832 		break;
2833 
2834 	/* The following two cannot be changed on UDP sockets, the return is
2835 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2836 	case UDPLITE_SEND_CSCOV:
2837 		val = up->pcslen;
2838 		break;
2839 
2840 	case UDPLITE_RECV_CSCOV:
2841 		val = up->pcrlen;
2842 		break;
2843 
2844 	default:
2845 		return -ENOPROTOOPT;
2846 	}
2847 
2848 	if (put_user(len, optlen))
2849 		return -EFAULT;
2850 	if (copy_to_user(optval, &val, len))
2851 		return -EFAULT;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(udp_lib_getsockopt);
2855 
2856 int udp_getsockopt(struct sock *sk, int level, int optname,
2857 		   char __user *optval, int __user *optlen)
2858 {
2859 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2860 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2861 	return ip_getsockopt(sk, level, optname, optval, optlen);
2862 }
2863 
2864 /**
2865  * 	udp_poll - wait for a UDP event.
2866  *	@file: - file struct
2867  *	@sock: - socket
2868  *	@wait: - poll table
2869  *
2870  *	This is same as datagram poll, except for the special case of
2871  *	blocking sockets. If application is using a blocking fd
2872  *	and a packet with checksum error is in the queue;
2873  *	then it could get return from select indicating data available
2874  *	but then block when reading it. Add special case code
2875  *	to work around these arguably broken applications.
2876  */
2877 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2878 {
2879 	__poll_t mask = datagram_poll(file, sock, wait);
2880 	struct sock *sk = sock->sk;
2881 
2882 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2883 		mask |= EPOLLIN | EPOLLRDNORM;
2884 
2885 	/* Check for false positives due to checksum errors */
2886 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2887 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2888 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2889 
2890 	/* psock ingress_msg queue should not contain any bad checksum frames */
2891 	if (sk_is_readable(sk))
2892 		mask |= EPOLLIN | EPOLLRDNORM;
2893 	return mask;
2894 
2895 }
2896 EXPORT_SYMBOL(udp_poll);
2897 
2898 int udp_abort(struct sock *sk, int err)
2899 {
2900 	if (!has_current_bpf_ctx())
2901 		lock_sock(sk);
2902 
2903 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2904 	 * with close()
2905 	 */
2906 	if (sock_flag(sk, SOCK_DEAD))
2907 		goto out;
2908 
2909 	sk->sk_err = err;
2910 	sk_error_report(sk);
2911 	__udp_disconnect(sk, 0);
2912 
2913 out:
2914 	if (!has_current_bpf_ctx())
2915 		release_sock(sk);
2916 
2917 	return 0;
2918 }
2919 EXPORT_SYMBOL_GPL(udp_abort);
2920 
2921 struct proto udp_prot = {
2922 	.name			= "UDP",
2923 	.owner			= THIS_MODULE,
2924 	.close			= udp_lib_close,
2925 	.pre_connect		= udp_pre_connect,
2926 	.connect		= ip4_datagram_connect,
2927 	.disconnect		= udp_disconnect,
2928 	.ioctl			= udp_ioctl,
2929 	.init			= udp_init_sock,
2930 	.destroy		= udp_destroy_sock,
2931 	.setsockopt		= udp_setsockopt,
2932 	.getsockopt		= udp_getsockopt,
2933 	.sendmsg		= udp_sendmsg,
2934 	.recvmsg		= udp_recvmsg,
2935 	.splice_eof		= udp_splice_eof,
2936 	.sendpage		= udp_sendpage,
2937 	.release_cb		= ip4_datagram_release_cb,
2938 	.hash			= udp_lib_hash,
2939 	.unhash			= udp_lib_unhash,
2940 	.rehash			= udp_v4_rehash,
2941 	.get_port		= udp_v4_get_port,
2942 	.put_port		= udp_lib_unhash,
2943 #ifdef CONFIG_BPF_SYSCALL
2944 	.psock_update_sk_prot	= udp_bpf_update_proto,
2945 #endif
2946 	.memory_allocated	= &udp_memory_allocated,
2947 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2948 
2949 	.sysctl_mem		= sysctl_udp_mem,
2950 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2951 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2952 	.obj_size		= sizeof(struct udp_sock),
2953 	.h.udp_table		= NULL,
2954 	.diag_destroy		= udp_abort,
2955 };
2956 EXPORT_SYMBOL(udp_prot);
2957 
2958 /* ------------------------------------------------------------------------ */
2959 #ifdef CONFIG_PROC_FS
2960 
2961 static unsigned short seq_file_family(const struct seq_file *seq);
2962 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2963 {
2964 	unsigned short family = seq_file_family(seq);
2965 
2966 	/* AF_UNSPEC is used as a match all */
2967 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2968 		net_eq(sock_net(sk), seq_file_net(seq)));
2969 }
2970 
2971 #ifdef CONFIG_BPF_SYSCALL
2972 static const struct seq_operations bpf_iter_udp_seq_ops;
2973 #endif
2974 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2975 					   struct net *net)
2976 {
2977 	const struct udp_seq_afinfo *afinfo;
2978 
2979 #ifdef CONFIG_BPF_SYSCALL
2980 	if (seq->op == &bpf_iter_udp_seq_ops)
2981 		return net->ipv4.udp_table;
2982 #endif
2983 
2984 	afinfo = pde_data(file_inode(seq->file));
2985 	return afinfo->udp_table ? : net->ipv4.udp_table;
2986 }
2987 
2988 static struct sock *udp_get_first(struct seq_file *seq, int start)
2989 {
2990 	struct udp_iter_state *state = seq->private;
2991 	struct net *net = seq_file_net(seq);
2992 	struct udp_table *udptable;
2993 	struct sock *sk;
2994 
2995 	udptable = udp_get_table_seq(seq, net);
2996 
2997 	for (state->bucket = start; state->bucket <= udptable->mask;
2998 	     ++state->bucket) {
2999 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3000 
3001 		if (hlist_empty(&hslot->head))
3002 			continue;
3003 
3004 		spin_lock_bh(&hslot->lock);
3005 		sk_for_each(sk, &hslot->head) {
3006 			if (seq_sk_match(seq, sk))
3007 				goto found;
3008 		}
3009 		spin_unlock_bh(&hslot->lock);
3010 	}
3011 	sk = NULL;
3012 found:
3013 	return sk;
3014 }
3015 
3016 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3017 {
3018 	struct udp_iter_state *state = seq->private;
3019 	struct net *net = seq_file_net(seq);
3020 	struct udp_table *udptable;
3021 
3022 	do {
3023 		sk = sk_next(sk);
3024 	} while (sk && !seq_sk_match(seq, sk));
3025 
3026 	if (!sk) {
3027 		udptable = udp_get_table_seq(seq, net);
3028 
3029 		if (state->bucket <= udptable->mask)
3030 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3031 
3032 		return udp_get_first(seq, state->bucket + 1);
3033 	}
3034 	return sk;
3035 }
3036 
3037 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3038 {
3039 	struct sock *sk = udp_get_first(seq, 0);
3040 
3041 	if (sk)
3042 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3043 			--pos;
3044 	return pos ? NULL : sk;
3045 }
3046 
3047 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3048 {
3049 	struct udp_iter_state *state = seq->private;
3050 	state->bucket = MAX_UDP_PORTS;
3051 
3052 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3053 }
3054 EXPORT_SYMBOL(udp_seq_start);
3055 
3056 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3057 {
3058 	struct sock *sk;
3059 
3060 	if (v == SEQ_START_TOKEN)
3061 		sk = udp_get_idx(seq, 0);
3062 	else
3063 		sk = udp_get_next(seq, v);
3064 
3065 	++*pos;
3066 	return sk;
3067 }
3068 EXPORT_SYMBOL(udp_seq_next);
3069 
3070 void udp_seq_stop(struct seq_file *seq, void *v)
3071 {
3072 	struct udp_iter_state *state = seq->private;
3073 	struct udp_table *udptable;
3074 
3075 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3076 
3077 	if (state->bucket <= udptable->mask)
3078 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3079 }
3080 EXPORT_SYMBOL(udp_seq_stop);
3081 
3082 /* ------------------------------------------------------------------------ */
3083 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3084 		int bucket)
3085 {
3086 	struct inet_sock *inet = inet_sk(sp);
3087 	__be32 dest = inet->inet_daddr;
3088 	__be32 src  = inet->inet_rcv_saddr;
3089 	__u16 destp	  = ntohs(inet->inet_dport);
3090 	__u16 srcp	  = ntohs(inet->inet_sport);
3091 
3092 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3093 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3094 		bucket, src, srcp, dest, destp, sp->sk_state,
3095 		sk_wmem_alloc_get(sp),
3096 		udp_rqueue_get(sp),
3097 		0, 0L, 0,
3098 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3099 		0, sock_i_ino(sp),
3100 		refcount_read(&sp->sk_refcnt), sp,
3101 		atomic_read(&sp->sk_drops));
3102 }
3103 
3104 int udp4_seq_show(struct seq_file *seq, void *v)
3105 {
3106 	seq_setwidth(seq, 127);
3107 	if (v == SEQ_START_TOKEN)
3108 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3109 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3110 			   "inode ref pointer drops");
3111 	else {
3112 		struct udp_iter_state *state = seq->private;
3113 
3114 		udp4_format_sock(v, seq, state->bucket);
3115 	}
3116 	seq_pad(seq, '\n');
3117 	return 0;
3118 }
3119 
3120 #ifdef CONFIG_BPF_SYSCALL
3121 struct bpf_iter__udp {
3122 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3123 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3124 	uid_t uid __aligned(8);
3125 	int bucket __aligned(8);
3126 };
3127 
3128 struct bpf_udp_iter_state {
3129 	struct udp_iter_state state;
3130 	unsigned int cur_sk;
3131 	unsigned int end_sk;
3132 	unsigned int max_sk;
3133 	int offset;
3134 	struct sock **batch;
3135 	bool st_bucket_done;
3136 };
3137 
3138 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3139 				      unsigned int new_batch_sz);
3140 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3141 {
3142 	struct bpf_udp_iter_state *iter = seq->private;
3143 	struct udp_iter_state *state = &iter->state;
3144 	struct net *net = seq_file_net(seq);
3145 	struct udp_table *udptable;
3146 	unsigned int batch_sks = 0;
3147 	bool resized = false;
3148 	struct sock *sk;
3149 
3150 	/* The current batch is done, so advance the bucket. */
3151 	if (iter->st_bucket_done) {
3152 		state->bucket++;
3153 		iter->offset = 0;
3154 	}
3155 
3156 	udptable = udp_get_table_seq(seq, net);
3157 
3158 again:
3159 	/* New batch for the next bucket.
3160 	 * Iterate over the hash table to find a bucket with sockets matching
3161 	 * the iterator attributes, and return the first matching socket from
3162 	 * the bucket. The remaining matched sockets from the bucket are batched
3163 	 * before releasing the bucket lock. This allows BPF programs that are
3164 	 * called in seq_show to acquire the bucket lock if needed.
3165 	 */
3166 	iter->cur_sk = 0;
3167 	iter->end_sk = 0;
3168 	iter->st_bucket_done = false;
3169 	batch_sks = 0;
3170 
3171 	for (; state->bucket <= udptable->mask; state->bucket++) {
3172 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3173 
3174 		if (hlist_empty(&hslot2->head)) {
3175 			iter->offset = 0;
3176 			continue;
3177 		}
3178 
3179 		spin_lock_bh(&hslot2->lock);
3180 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3181 			if (seq_sk_match(seq, sk)) {
3182 				/* Resume from the last iterated socket at the
3183 				 * offset in the bucket before iterator was stopped.
3184 				 */
3185 				if (iter->offset) {
3186 					--iter->offset;
3187 					continue;
3188 				}
3189 				if (iter->end_sk < iter->max_sk) {
3190 					sock_hold(sk);
3191 					iter->batch[iter->end_sk++] = sk;
3192 				}
3193 				batch_sks++;
3194 			}
3195 		}
3196 		spin_unlock_bh(&hslot2->lock);
3197 
3198 		if (iter->end_sk)
3199 			break;
3200 
3201 		/* Reset the current bucket's offset before moving to the next bucket. */
3202 		iter->offset = 0;
3203 	}
3204 
3205 	/* All done: no batch made. */
3206 	if (!iter->end_sk)
3207 		return NULL;
3208 
3209 	if (iter->end_sk == batch_sks) {
3210 		/* Batching is done for the current bucket; return the first
3211 		 * socket to be iterated from the batch.
3212 		 */
3213 		iter->st_bucket_done = true;
3214 		goto done;
3215 	}
3216 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3217 		resized = true;
3218 		/* After allocating a larger batch, retry one more time to grab
3219 		 * the whole bucket.
3220 		 */
3221 		state->bucket--;
3222 		goto again;
3223 	}
3224 done:
3225 	return iter->batch[0];
3226 }
3227 
3228 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3229 {
3230 	struct bpf_udp_iter_state *iter = seq->private;
3231 	struct sock *sk;
3232 
3233 	/* Whenever seq_next() is called, the iter->cur_sk is
3234 	 * done with seq_show(), so unref the iter->cur_sk.
3235 	 */
3236 	if (iter->cur_sk < iter->end_sk) {
3237 		sock_put(iter->batch[iter->cur_sk++]);
3238 		++iter->offset;
3239 	}
3240 
3241 	/* After updating iter->cur_sk, check if there are more sockets
3242 	 * available in the current bucket batch.
3243 	 */
3244 	if (iter->cur_sk < iter->end_sk)
3245 		sk = iter->batch[iter->cur_sk];
3246 	else
3247 		/* Prepare a new batch. */
3248 		sk = bpf_iter_udp_batch(seq);
3249 
3250 	++*pos;
3251 	return sk;
3252 }
3253 
3254 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3255 {
3256 	/* bpf iter does not support lseek, so it always
3257 	 * continue from where it was stop()-ped.
3258 	 */
3259 	if (*pos)
3260 		return bpf_iter_udp_batch(seq);
3261 
3262 	return SEQ_START_TOKEN;
3263 }
3264 
3265 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3266 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3267 {
3268 	struct bpf_iter__udp ctx;
3269 
3270 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3271 	ctx.meta = meta;
3272 	ctx.udp_sk = udp_sk;
3273 	ctx.uid = uid;
3274 	ctx.bucket = bucket;
3275 	return bpf_iter_run_prog(prog, &ctx);
3276 }
3277 
3278 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3279 {
3280 	struct udp_iter_state *state = seq->private;
3281 	struct bpf_iter_meta meta;
3282 	struct bpf_prog *prog;
3283 	struct sock *sk = v;
3284 	uid_t uid;
3285 	int ret;
3286 
3287 	if (v == SEQ_START_TOKEN)
3288 		return 0;
3289 
3290 	lock_sock(sk);
3291 
3292 	if (unlikely(sk_unhashed(sk))) {
3293 		ret = SEQ_SKIP;
3294 		goto unlock;
3295 	}
3296 
3297 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3298 	meta.seq = seq;
3299 	prog = bpf_iter_get_info(&meta, false);
3300 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3301 
3302 unlock:
3303 	release_sock(sk);
3304 	return ret;
3305 }
3306 
3307 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3308 {
3309 	while (iter->cur_sk < iter->end_sk)
3310 		sock_put(iter->batch[iter->cur_sk++]);
3311 }
3312 
3313 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3314 {
3315 	struct bpf_udp_iter_state *iter = seq->private;
3316 	struct bpf_iter_meta meta;
3317 	struct bpf_prog *prog;
3318 
3319 	if (!v) {
3320 		meta.seq = seq;
3321 		prog = bpf_iter_get_info(&meta, true);
3322 		if (prog)
3323 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3324 	}
3325 
3326 	if (iter->cur_sk < iter->end_sk) {
3327 		bpf_iter_udp_put_batch(iter);
3328 		iter->st_bucket_done = false;
3329 	}
3330 }
3331 
3332 static const struct seq_operations bpf_iter_udp_seq_ops = {
3333 	.start		= bpf_iter_udp_seq_start,
3334 	.next		= bpf_iter_udp_seq_next,
3335 	.stop		= bpf_iter_udp_seq_stop,
3336 	.show		= bpf_iter_udp_seq_show,
3337 };
3338 #endif
3339 
3340 static unsigned short seq_file_family(const struct seq_file *seq)
3341 {
3342 	const struct udp_seq_afinfo *afinfo;
3343 
3344 #ifdef CONFIG_BPF_SYSCALL
3345 	/* BPF iterator: bpf programs to filter sockets. */
3346 	if (seq->op == &bpf_iter_udp_seq_ops)
3347 		return AF_UNSPEC;
3348 #endif
3349 
3350 	/* Proc fs iterator */
3351 	afinfo = pde_data(file_inode(seq->file));
3352 	return afinfo->family;
3353 }
3354 
3355 const struct seq_operations udp_seq_ops = {
3356 	.start		= udp_seq_start,
3357 	.next		= udp_seq_next,
3358 	.stop		= udp_seq_stop,
3359 	.show		= udp4_seq_show,
3360 };
3361 EXPORT_SYMBOL(udp_seq_ops);
3362 
3363 static struct udp_seq_afinfo udp4_seq_afinfo = {
3364 	.family		= AF_INET,
3365 	.udp_table	= NULL,
3366 };
3367 
3368 static int __net_init udp4_proc_init_net(struct net *net)
3369 {
3370 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3371 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3372 		return -ENOMEM;
3373 	return 0;
3374 }
3375 
3376 static void __net_exit udp4_proc_exit_net(struct net *net)
3377 {
3378 	remove_proc_entry("udp", net->proc_net);
3379 }
3380 
3381 static struct pernet_operations udp4_net_ops = {
3382 	.init = udp4_proc_init_net,
3383 	.exit = udp4_proc_exit_net,
3384 };
3385 
3386 int __init udp4_proc_init(void)
3387 {
3388 	return register_pernet_subsys(&udp4_net_ops);
3389 }
3390 
3391 void udp4_proc_exit(void)
3392 {
3393 	unregister_pernet_subsys(&udp4_net_ops);
3394 }
3395 #endif /* CONFIG_PROC_FS */
3396 
3397 static __initdata unsigned long uhash_entries;
3398 static int __init set_uhash_entries(char *str)
3399 {
3400 	ssize_t ret;
3401 
3402 	if (!str)
3403 		return 0;
3404 
3405 	ret = kstrtoul(str, 0, &uhash_entries);
3406 	if (ret)
3407 		return 0;
3408 
3409 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3410 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3411 	return 1;
3412 }
3413 __setup("uhash_entries=", set_uhash_entries);
3414 
3415 void __init udp_table_init(struct udp_table *table, const char *name)
3416 {
3417 	unsigned int i;
3418 
3419 	table->hash = alloc_large_system_hash(name,
3420 					      2 * sizeof(struct udp_hslot),
3421 					      uhash_entries,
3422 					      21, /* one slot per 2 MB */
3423 					      0,
3424 					      &table->log,
3425 					      &table->mask,
3426 					      UDP_HTABLE_SIZE_MIN,
3427 					      UDP_HTABLE_SIZE_MAX);
3428 
3429 	table->hash2 = table->hash + (table->mask + 1);
3430 	for (i = 0; i <= table->mask; i++) {
3431 		INIT_HLIST_HEAD(&table->hash[i].head);
3432 		table->hash[i].count = 0;
3433 		spin_lock_init(&table->hash[i].lock);
3434 	}
3435 	for (i = 0; i <= table->mask; i++) {
3436 		INIT_HLIST_HEAD(&table->hash2[i].head);
3437 		table->hash2[i].count = 0;
3438 		spin_lock_init(&table->hash2[i].lock);
3439 	}
3440 }
3441 
3442 u32 udp_flow_hashrnd(void)
3443 {
3444 	static u32 hashrnd __read_mostly;
3445 
3446 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3447 
3448 	return hashrnd;
3449 }
3450 EXPORT_SYMBOL(udp_flow_hashrnd);
3451 
3452 static void __net_init udp_sysctl_init(struct net *net)
3453 {
3454 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3455 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3456 
3457 #ifdef CONFIG_NET_L3_MASTER_DEV
3458 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3459 #endif
3460 }
3461 
3462 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3463 {
3464 	struct udp_table *udptable;
3465 	int i;
3466 
3467 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3468 	if (!udptable)
3469 		goto out;
3470 
3471 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3472 				      GFP_KERNEL_ACCOUNT);
3473 	if (!udptable->hash)
3474 		goto free_table;
3475 
3476 	udptable->hash2 = udptable->hash + hash_entries;
3477 	udptable->mask = hash_entries - 1;
3478 	udptable->log = ilog2(hash_entries);
3479 
3480 	for (i = 0; i < hash_entries; i++) {
3481 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3482 		udptable->hash[i].count = 0;
3483 		spin_lock_init(&udptable->hash[i].lock);
3484 
3485 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3486 		udptable->hash2[i].count = 0;
3487 		spin_lock_init(&udptable->hash2[i].lock);
3488 	}
3489 
3490 	return udptable;
3491 
3492 free_table:
3493 	kfree(udptable);
3494 out:
3495 	return NULL;
3496 }
3497 
3498 static void __net_exit udp_pernet_table_free(struct net *net)
3499 {
3500 	struct udp_table *udptable = net->ipv4.udp_table;
3501 
3502 	if (udptable == &udp_table)
3503 		return;
3504 
3505 	kvfree(udptable->hash);
3506 	kfree(udptable);
3507 }
3508 
3509 static void __net_init udp_set_table(struct net *net)
3510 {
3511 	struct udp_table *udptable;
3512 	unsigned int hash_entries;
3513 	struct net *old_net;
3514 
3515 	if (net_eq(net, &init_net))
3516 		goto fallback;
3517 
3518 	old_net = current->nsproxy->net_ns;
3519 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3520 	if (!hash_entries)
3521 		goto fallback;
3522 
3523 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3524 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3525 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3526 	else
3527 		hash_entries = roundup_pow_of_two(hash_entries);
3528 
3529 	udptable = udp_pernet_table_alloc(hash_entries);
3530 	if (udptable) {
3531 		net->ipv4.udp_table = udptable;
3532 	} else {
3533 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3534 			"for a netns, fallback to the global one\n",
3535 			hash_entries);
3536 fallback:
3537 		net->ipv4.udp_table = &udp_table;
3538 	}
3539 }
3540 
3541 static int __net_init udp_pernet_init(struct net *net)
3542 {
3543 	udp_sysctl_init(net);
3544 	udp_set_table(net);
3545 
3546 	return 0;
3547 }
3548 
3549 static void __net_exit udp_pernet_exit(struct net *net)
3550 {
3551 	udp_pernet_table_free(net);
3552 }
3553 
3554 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3555 	.init	= udp_pernet_init,
3556 	.exit	= udp_pernet_exit,
3557 };
3558 
3559 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3560 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3561 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3562 
3563 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3564 				      unsigned int new_batch_sz)
3565 {
3566 	struct sock **new_batch;
3567 
3568 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3569 				   GFP_USER | __GFP_NOWARN);
3570 	if (!new_batch)
3571 		return -ENOMEM;
3572 
3573 	bpf_iter_udp_put_batch(iter);
3574 	kvfree(iter->batch);
3575 	iter->batch = new_batch;
3576 	iter->max_sk = new_batch_sz;
3577 
3578 	return 0;
3579 }
3580 
3581 #define INIT_BATCH_SZ 16
3582 
3583 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3584 {
3585 	struct bpf_udp_iter_state *iter = priv_data;
3586 	int ret;
3587 
3588 	ret = bpf_iter_init_seq_net(priv_data, aux);
3589 	if (ret)
3590 		return ret;
3591 
3592 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3593 	if (ret)
3594 		bpf_iter_fini_seq_net(priv_data);
3595 
3596 	return ret;
3597 }
3598 
3599 static void bpf_iter_fini_udp(void *priv_data)
3600 {
3601 	struct bpf_udp_iter_state *iter = priv_data;
3602 
3603 	bpf_iter_fini_seq_net(priv_data);
3604 	kvfree(iter->batch);
3605 }
3606 
3607 static const struct bpf_iter_seq_info udp_seq_info = {
3608 	.seq_ops		= &bpf_iter_udp_seq_ops,
3609 	.init_seq_private	= bpf_iter_init_udp,
3610 	.fini_seq_private	= bpf_iter_fini_udp,
3611 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3612 };
3613 
3614 static struct bpf_iter_reg udp_reg_info = {
3615 	.target			= "udp",
3616 	.ctx_arg_info_size	= 1,
3617 	.ctx_arg_info		= {
3618 		{ offsetof(struct bpf_iter__udp, udp_sk),
3619 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3620 	},
3621 	.seq_info		= &udp_seq_info,
3622 };
3623 
3624 static void __init bpf_iter_register(void)
3625 {
3626 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3627 	if (bpf_iter_reg_target(&udp_reg_info))
3628 		pr_warn("Warning: could not register bpf iterator udp\n");
3629 }
3630 #endif
3631 
3632 void __init udp_init(void)
3633 {
3634 	unsigned long limit;
3635 	unsigned int i;
3636 
3637 	udp_table_init(&udp_table, "UDP");
3638 	limit = nr_free_buffer_pages() / 8;
3639 	limit = max(limit, 128UL);
3640 	sysctl_udp_mem[0] = limit / 4 * 3;
3641 	sysctl_udp_mem[1] = limit;
3642 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3643 
3644 	/* 16 spinlocks per cpu */
3645 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3646 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3647 				GFP_KERNEL);
3648 	if (!udp_busylocks)
3649 		panic("UDP: failed to alloc udp_busylocks\n");
3650 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3651 		spin_lock_init(udp_busylocks + i);
3652 
3653 	if (register_pernet_subsys(&udp_sysctl_ops))
3654 		panic("UDP: failed to init sysctl parameters.\n");
3655 
3656 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3657 	bpf_iter_register();
3658 #endif
3659 }
3660