xref: /openbmc/linux/net/ipv4/udp.c (revision d2ba09c1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (!dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
548     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
549     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, &udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
578 	     sk->sk_bound_dev_if != sdif))
579 		return false;
580 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
581 		return false;
582 	return true;
583 }
584 
585 /*
586  * This routine is called by the ICMP module when it gets some
587  * sort of error condition.  If err < 0 then the socket should
588  * be closed and the error returned to the user.  If err > 0
589  * it's just the icmp type << 8 | icmp code.
590  * Header points to the ip header of the error packet. We move
591  * on past this. Then (as it used to claim before adjustment)
592  * header points to the first 8 bytes of the udp header.  We need
593  * to find the appropriate port.
594  */
595 
596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
597 {
598 	struct inet_sock *inet;
599 	const struct iphdr *iph = (const struct iphdr *)skb->data;
600 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
601 	const int type = icmp_hdr(skb)->type;
602 	const int code = icmp_hdr(skb)->code;
603 	struct sock *sk;
604 	int harderr;
605 	int err;
606 	struct net *net = dev_net(skb->dev);
607 
608 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
609 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
610 			       udptable, NULL);
611 	if (!sk) {
612 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
613 		return;	/* No socket for error */
614 	}
615 
616 	err = 0;
617 	harderr = 0;
618 	inet = inet_sk(sk);
619 
620 	switch (type) {
621 	default:
622 	case ICMP_TIME_EXCEEDED:
623 		err = EHOSTUNREACH;
624 		break;
625 	case ICMP_SOURCE_QUENCH:
626 		goto out;
627 	case ICMP_PARAMETERPROB:
628 		err = EPROTO;
629 		harderr = 1;
630 		break;
631 	case ICMP_DEST_UNREACH:
632 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
633 			ipv4_sk_update_pmtu(skb, sk, info);
634 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
635 				err = EMSGSIZE;
636 				harderr = 1;
637 				break;
638 			}
639 			goto out;
640 		}
641 		err = EHOSTUNREACH;
642 		if (code <= NR_ICMP_UNREACH) {
643 			harderr = icmp_err_convert[code].fatal;
644 			err = icmp_err_convert[code].errno;
645 		}
646 		break;
647 	case ICMP_REDIRECT:
648 		ipv4_sk_redirect(skb, sk);
649 		goto out;
650 	}
651 
652 	/*
653 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
654 	 *	4.1.3.3.
655 	 */
656 	if (!inet->recverr) {
657 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
658 			goto out;
659 	} else
660 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
661 
662 	sk->sk_err = err;
663 	sk->sk_error_report(sk);
664 out:
665 	return;
666 }
667 
668 void udp_err(struct sk_buff *skb, u32 info)
669 {
670 	__udp4_lib_err(skb, info, &udp_table);
671 }
672 
673 /*
674  * Throw away all pending data and cancel the corking. Socket is locked.
675  */
676 void udp_flush_pending_frames(struct sock *sk)
677 {
678 	struct udp_sock *up = udp_sk(sk);
679 
680 	if (up->pending) {
681 		up->len = 0;
682 		up->pending = 0;
683 		ip_flush_pending_frames(sk);
684 	}
685 }
686 EXPORT_SYMBOL(udp_flush_pending_frames);
687 
688 /**
689  * 	udp4_hwcsum  -  handle outgoing HW checksumming
690  * 	@skb: 	sk_buff containing the filled-in UDP header
691  * 	        (checksum field must be zeroed out)
692  *	@src:	source IP address
693  *	@dst:	destination IP address
694  */
695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
696 {
697 	struct udphdr *uh = udp_hdr(skb);
698 	int offset = skb_transport_offset(skb);
699 	int len = skb->len - offset;
700 	int hlen = len;
701 	__wsum csum = 0;
702 
703 	if (!skb_has_frag_list(skb)) {
704 		/*
705 		 * Only one fragment on the socket.
706 		 */
707 		skb->csum_start = skb_transport_header(skb) - skb->head;
708 		skb->csum_offset = offsetof(struct udphdr, check);
709 		uh->check = ~csum_tcpudp_magic(src, dst, len,
710 					       IPPROTO_UDP, 0);
711 	} else {
712 		struct sk_buff *frags;
713 
714 		/*
715 		 * HW-checksum won't work as there are two or more
716 		 * fragments on the socket so that all csums of sk_buffs
717 		 * should be together
718 		 */
719 		skb_walk_frags(skb, frags) {
720 			csum = csum_add(csum, frags->csum);
721 			hlen -= frags->len;
722 		}
723 
724 		csum = skb_checksum(skb, offset, hlen, csum);
725 		skb->ip_summed = CHECKSUM_NONE;
726 
727 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
728 		if (uh->check == 0)
729 			uh->check = CSUM_MANGLED_0;
730 	}
731 }
732 EXPORT_SYMBOL_GPL(udp4_hwcsum);
733 
734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
735  * for the simple case like when setting the checksum for a UDP tunnel.
736  */
737 void udp_set_csum(bool nocheck, struct sk_buff *skb,
738 		  __be32 saddr, __be32 daddr, int len)
739 {
740 	struct udphdr *uh = udp_hdr(skb);
741 
742 	if (nocheck) {
743 		uh->check = 0;
744 	} else if (skb_is_gso(skb)) {
745 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
746 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
747 		uh->check = 0;
748 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
749 		if (uh->check == 0)
750 			uh->check = CSUM_MANGLED_0;
751 	} else {
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum_start = skb_transport_header(skb) - skb->head;
754 		skb->csum_offset = offsetof(struct udphdr, check);
755 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
756 	}
757 }
758 EXPORT_SYMBOL(udp_set_csum);
759 
760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
761 			struct inet_cork *cork)
762 {
763 	struct sock *sk = skb->sk;
764 	struct inet_sock *inet = inet_sk(sk);
765 	struct udphdr *uh;
766 	int err = 0;
767 	int is_udplite = IS_UDPLITE(sk);
768 	int offset = skb_transport_offset(skb);
769 	int len = skb->len - offset;
770 	__wsum csum = 0;
771 
772 	/*
773 	 * Create a UDP header
774 	 */
775 	uh = udp_hdr(skb);
776 	uh->source = inet->inet_sport;
777 	uh->dest = fl4->fl4_dport;
778 	uh->len = htons(len);
779 	uh->check = 0;
780 
781 	if (cork->gso_size) {
782 		const int hlen = skb_network_header_len(skb) +
783 				 sizeof(struct udphdr);
784 
785 		if (hlen + cork->gso_size > cork->fragsize)
786 			return -EINVAL;
787 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
788 			return -EINVAL;
789 		if (sk->sk_no_check_tx)
790 			return -EINVAL;
791 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite)
792 			return -EIO;
793 
794 		skb_shinfo(skb)->gso_size = cork->gso_size;
795 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
796 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
797 							 cork->gso_size);
798 		goto csum_partial;
799 	}
800 
801 	if (is_udplite)  				 /*     UDP-Lite      */
802 		csum = udplite_csum(skb);
803 
804 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
805 
806 		skb->ip_summed = CHECKSUM_NONE;
807 		goto send;
808 
809 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
810 csum_partial:
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS(sock_net(sk),
829 				      UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS(sock_net(sk),
834 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4, &inet->cork.base);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
863 {
864 	switch (cmsg->cmsg_type) {
865 	case UDP_SEGMENT:
866 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
867 			return -EINVAL;
868 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
869 		return 0;
870 	default:
871 		return -EINVAL;
872 	}
873 }
874 
875 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
876 {
877 	struct cmsghdr *cmsg;
878 	bool need_ip = false;
879 	int err;
880 
881 	for_each_cmsghdr(cmsg, msg) {
882 		if (!CMSG_OK(msg, cmsg))
883 			return -EINVAL;
884 
885 		if (cmsg->cmsg_level != SOL_UDP) {
886 			need_ip = true;
887 			continue;
888 		}
889 
890 		err = __udp_cmsg_send(cmsg, gso_size);
891 		if (err)
892 			return err;
893 	}
894 
895 	return need_ip;
896 }
897 EXPORT_SYMBOL_GPL(udp_cmsg_send);
898 
899 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
900 {
901 	struct inet_sock *inet = inet_sk(sk);
902 	struct udp_sock *up = udp_sk(sk);
903 	struct flowi4 fl4_stack;
904 	struct flowi4 *fl4;
905 	int ulen = len;
906 	struct ipcm_cookie ipc;
907 	struct rtable *rt = NULL;
908 	int free = 0;
909 	int connected = 0;
910 	__be32 daddr, faddr, saddr;
911 	__be16 dport;
912 	u8  tos;
913 	int err, is_udplite = IS_UDPLITE(sk);
914 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
915 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
916 	struct sk_buff *skb;
917 	struct ip_options_data opt_copy;
918 
919 	if (len > 0xFFFF)
920 		return -EMSGSIZE;
921 
922 	/*
923 	 *	Check the flags.
924 	 */
925 
926 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
927 		return -EOPNOTSUPP;
928 
929 	ipc.opt = NULL;
930 	ipc.tx_flags = 0;
931 	ipc.ttl = 0;
932 	ipc.tos = -1;
933 
934 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
935 
936 	fl4 = &inet->cork.fl.u.ip4;
937 	if (up->pending) {
938 		/*
939 		 * There are pending frames.
940 		 * The socket lock must be held while it's corked.
941 		 */
942 		lock_sock(sk);
943 		if (likely(up->pending)) {
944 			if (unlikely(up->pending != AF_INET)) {
945 				release_sock(sk);
946 				return -EINVAL;
947 			}
948 			goto do_append_data;
949 		}
950 		release_sock(sk);
951 	}
952 	ulen += sizeof(struct udphdr);
953 
954 	/*
955 	 *	Get and verify the address.
956 	 */
957 	if (msg->msg_name) {
958 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
959 		if (msg->msg_namelen < sizeof(*usin))
960 			return -EINVAL;
961 		if (usin->sin_family != AF_INET) {
962 			if (usin->sin_family != AF_UNSPEC)
963 				return -EAFNOSUPPORT;
964 		}
965 
966 		daddr = usin->sin_addr.s_addr;
967 		dport = usin->sin_port;
968 		if (dport == 0)
969 			return -EINVAL;
970 	} else {
971 		if (sk->sk_state != TCP_ESTABLISHED)
972 			return -EDESTADDRREQ;
973 		daddr = inet->inet_daddr;
974 		dport = inet->inet_dport;
975 		/* Open fast path for connected socket.
976 		   Route will not be used, if at least one option is set.
977 		 */
978 		connected = 1;
979 	}
980 
981 	ipc.sockc.tsflags = sk->sk_tsflags;
982 	ipc.addr = inet->inet_saddr;
983 	ipc.oif = sk->sk_bound_dev_if;
984 	ipc.gso_size = up->gso_size;
985 
986 	if (msg->msg_controllen) {
987 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
988 		if (err > 0)
989 			err = ip_cmsg_send(sk, msg, &ipc,
990 					   sk->sk_family == AF_INET6);
991 		if (unlikely(err < 0)) {
992 			kfree(ipc.opt);
993 			return err;
994 		}
995 		if (ipc.opt)
996 			free = 1;
997 		connected = 0;
998 	}
999 	if (!ipc.opt) {
1000 		struct ip_options_rcu *inet_opt;
1001 
1002 		rcu_read_lock();
1003 		inet_opt = rcu_dereference(inet->inet_opt);
1004 		if (inet_opt) {
1005 			memcpy(&opt_copy, inet_opt,
1006 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1007 			ipc.opt = &opt_copy.opt;
1008 		}
1009 		rcu_read_unlock();
1010 	}
1011 
1012 	saddr = ipc.addr;
1013 	ipc.addr = faddr = daddr;
1014 
1015 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1016 
1017 	if (ipc.opt && ipc.opt->opt.srr) {
1018 		if (!daddr) {
1019 			err = -EINVAL;
1020 			goto out_free;
1021 		}
1022 		faddr = ipc.opt->opt.faddr;
1023 		connected = 0;
1024 	}
1025 	tos = get_rttos(&ipc, inet);
1026 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1027 	    (msg->msg_flags & MSG_DONTROUTE) ||
1028 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1029 		tos |= RTO_ONLINK;
1030 		connected = 0;
1031 	}
1032 
1033 	if (ipv4_is_multicast(daddr)) {
1034 		if (!ipc.oif)
1035 			ipc.oif = inet->mc_index;
1036 		if (!saddr)
1037 			saddr = inet->mc_addr;
1038 		connected = 0;
1039 	} else if (!ipc.oif) {
1040 		ipc.oif = inet->uc_index;
1041 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1042 		/* oif is set, packet is to local broadcast and
1043 		 * and uc_index is set. oif is most likely set
1044 		 * by sk_bound_dev_if. If uc_index != oif check if the
1045 		 * oif is an L3 master and uc_index is an L3 slave.
1046 		 * If so, we want to allow the send using the uc_index.
1047 		 */
1048 		if (ipc.oif != inet->uc_index &&
1049 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1050 							      inet->uc_index)) {
1051 			ipc.oif = inet->uc_index;
1052 		}
1053 	}
1054 
1055 	if (connected)
1056 		rt = (struct rtable *)sk_dst_check(sk, 0);
1057 
1058 	if (!rt) {
1059 		struct net *net = sock_net(sk);
1060 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1061 
1062 		fl4 = &fl4_stack;
1063 
1064 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1065 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1066 				   flow_flags,
1067 				   faddr, saddr, dport, inet->inet_sport,
1068 				   sk->sk_uid);
1069 
1070 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1071 		rt = ip_route_output_flow(net, fl4, sk);
1072 		if (IS_ERR(rt)) {
1073 			err = PTR_ERR(rt);
1074 			rt = NULL;
1075 			if (err == -ENETUNREACH)
1076 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1077 			goto out;
1078 		}
1079 
1080 		err = -EACCES;
1081 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1082 		    !sock_flag(sk, SOCK_BROADCAST))
1083 			goto out;
1084 		if (connected)
1085 			sk_dst_set(sk, dst_clone(&rt->dst));
1086 	}
1087 
1088 	if (msg->msg_flags&MSG_CONFIRM)
1089 		goto do_confirm;
1090 back_from_confirm:
1091 
1092 	saddr = fl4->saddr;
1093 	if (!ipc.addr)
1094 		daddr = ipc.addr = fl4->daddr;
1095 
1096 	/* Lockless fast path for the non-corking case. */
1097 	if (!corkreq) {
1098 		struct inet_cork cork;
1099 
1100 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1101 				  sizeof(struct udphdr), &ipc, &rt,
1102 				  &cork, msg->msg_flags);
1103 		err = PTR_ERR(skb);
1104 		if (!IS_ERR_OR_NULL(skb))
1105 			err = udp_send_skb(skb, fl4, &cork);
1106 		goto out;
1107 	}
1108 
1109 	lock_sock(sk);
1110 	if (unlikely(up->pending)) {
1111 		/* The socket is already corked while preparing it. */
1112 		/* ... which is an evident application bug. --ANK */
1113 		release_sock(sk);
1114 
1115 		net_dbg_ratelimited("socket already corked\n");
1116 		err = -EINVAL;
1117 		goto out;
1118 	}
1119 	/*
1120 	 *	Now cork the socket to pend data.
1121 	 */
1122 	fl4 = &inet->cork.fl.u.ip4;
1123 	fl4->daddr = daddr;
1124 	fl4->saddr = saddr;
1125 	fl4->fl4_dport = dport;
1126 	fl4->fl4_sport = inet->inet_sport;
1127 	up->pending = AF_INET;
1128 
1129 do_append_data:
1130 	up->len += ulen;
1131 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1132 			     sizeof(struct udphdr), &ipc, &rt,
1133 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1134 	if (err)
1135 		udp_flush_pending_frames(sk);
1136 	else if (!corkreq)
1137 		err = udp_push_pending_frames(sk);
1138 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1139 		up->pending = 0;
1140 	release_sock(sk);
1141 
1142 out:
1143 	ip_rt_put(rt);
1144 out_free:
1145 	if (free)
1146 		kfree(ipc.opt);
1147 	if (!err)
1148 		return len;
1149 	/*
1150 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1151 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1152 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1153 	 * things).  We could add another new stat but at least for now that
1154 	 * seems like overkill.
1155 	 */
1156 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1157 		UDP_INC_STATS(sock_net(sk),
1158 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1159 	}
1160 	return err;
1161 
1162 do_confirm:
1163 	if (msg->msg_flags & MSG_PROBE)
1164 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1165 	if (!(msg->msg_flags&MSG_PROBE) || len)
1166 		goto back_from_confirm;
1167 	err = 0;
1168 	goto out;
1169 }
1170 EXPORT_SYMBOL(udp_sendmsg);
1171 
1172 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1173 		 size_t size, int flags)
1174 {
1175 	struct inet_sock *inet = inet_sk(sk);
1176 	struct udp_sock *up = udp_sk(sk);
1177 	int ret;
1178 
1179 	if (flags & MSG_SENDPAGE_NOTLAST)
1180 		flags |= MSG_MORE;
1181 
1182 	if (!up->pending) {
1183 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1184 
1185 		/* Call udp_sendmsg to specify destination address which
1186 		 * sendpage interface can't pass.
1187 		 * This will succeed only when the socket is connected.
1188 		 */
1189 		ret = udp_sendmsg(sk, &msg, 0);
1190 		if (ret < 0)
1191 			return ret;
1192 	}
1193 
1194 	lock_sock(sk);
1195 
1196 	if (unlikely(!up->pending)) {
1197 		release_sock(sk);
1198 
1199 		net_dbg_ratelimited("cork failed\n");
1200 		return -EINVAL;
1201 	}
1202 
1203 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1204 			     page, offset, size, flags);
1205 	if (ret == -EOPNOTSUPP) {
1206 		release_sock(sk);
1207 		return sock_no_sendpage(sk->sk_socket, page, offset,
1208 					size, flags);
1209 	}
1210 	if (ret < 0) {
1211 		udp_flush_pending_frames(sk);
1212 		goto out;
1213 	}
1214 
1215 	up->len += size;
1216 	if (!(up->corkflag || (flags&MSG_MORE)))
1217 		ret = udp_push_pending_frames(sk);
1218 	if (!ret)
1219 		ret = size;
1220 out:
1221 	release_sock(sk);
1222 	return ret;
1223 }
1224 
1225 #define UDP_SKB_IS_STATELESS 0x80000000
1226 
1227 static void udp_set_dev_scratch(struct sk_buff *skb)
1228 {
1229 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1230 
1231 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1232 	scratch->_tsize_state = skb->truesize;
1233 #if BITS_PER_LONG == 64
1234 	scratch->len = skb->len;
1235 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1236 	scratch->is_linear = !skb_is_nonlinear(skb);
1237 #endif
1238 	/* all head states execept sp (dst, sk, nf) are always cleared by
1239 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1240 	 * process IP_CMSG_PASSSEC at recvmsg() time
1241 	 */
1242 	if (likely(!skb_sec_path(skb)))
1243 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1244 }
1245 
1246 static int udp_skb_truesize(struct sk_buff *skb)
1247 {
1248 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1249 }
1250 
1251 static bool udp_skb_has_head_state(struct sk_buff *skb)
1252 {
1253 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1254 }
1255 
1256 /* fully reclaim rmem/fwd memory allocated for skb */
1257 static void udp_rmem_release(struct sock *sk, int size, int partial,
1258 			     bool rx_queue_lock_held)
1259 {
1260 	struct udp_sock *up = udp_sk(sk);
1261 	struct sk_buff_head *sk_queue;
1262 	int amt;
1263 
1264 	if (likely(partial)) {
1265 		up->forward_deficit += size;
1266 		size = up->forward_deficit;
1267 		if (size < (sk->sk_rcvbuf >> 2))
1268 			return;
1269 	} else {
1270 		size += up->forward_deficit;
1271 	}
1272 	up->forward_deficit = 0;
1273 
1274 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1275 	 * if the called don't held it already
1276 	 */
1277 	sk_queue = &sk->sk_receive_queue;
1278 	if (!rx_queue_lock_held)
1279 		spin_lock(&sk_queue->lock);
1280 
1281 
1282 	sk->sk_forward_alloc += size;
1283 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1284 	sk->sk_forward_alloc -= amt;
1285 
1286 	if (amt)
1287 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1288 
1289 	atomic_sub(size, &sk->sk_rmem_alloc);
1290 
1291 	/* this can save us from acquiring the rx queue lock on next receive */
1292 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1293 
1294 	if (!rx_queue_lock_held)
1295 		spin_unlock(&sk_queue->lock);
1296 }
1297 
1298 /* Note: called with reader_queue.lock held.
1299  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1300  * This avoids a cache line miss while receive_queue lock is held.
1301  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1302  */
1303 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1304 {
1305 	prefetch(&skb->data);
1306 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1307 }
1308 EXPORT_SYMBOL(udp_skb_destructor);
1309 
1310 /* as above, but the caller held the rx queue lock, too */
1311 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1312 {
1313 	prefetch(&skb->data);
1314 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1315 }
1316 
1317 /* Idea of busylocks is to let producers grab an extra spinlock
1318  * to relieve pressure on the receive_queue spinlock shared by consumer.
1319  * Under flood, this means that only one producer can be in line
1320  * trying to acquire the receive_queue spinlock.
1321  * These busylock can be allocated on a per cpu manner, instead of a
1322  * per socket one (that would consume a cache line per socket)
1323  */
1324 static int udp_busylocks_log __read_mostly;
1325 static spinlock_t *udp_busylocks __read_mostly;
1326 
1327 static spinlock_t *busylock_acquire(void *ptr)
1328 {
1329 	spinlock_t *busy;
1330 
1331 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1332 	spin_lock(busy);
1333 	return busy;
1334 }
1335 
1336 static void busylock_release(spinlock_t *busy)
1337 {
1338 	if (busy)
1339 		spin_unlock(busy);
1340 }
1341 
1342 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1343 {
1344 	struct sk_buff_head *list = &sk->sk_receive_queue;
1345 	int rmem, delta, amt, err = -ENOMEM;
1346 	spinlock_t *busy = NULL;
1347 	int size;
1348 
1349 	/* try to avoid the costly atomic add/sub pair when the receive
1350 	 * queue is full; always allow at least a packet
1351 	 */
1352 	rmem = atomic_read(&sk->sk_rmem_alloc);
1353 	if (rmem > sk->sk_rcvbuf)
1354 		goto drop;
1355 
1356 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1357 	 * having linear skbs :
1358 	 * - Reduce memory overhead and thus increase receive queue capacity
1359 	 * - Less cache line misses at copyout() time
1360 	 * - Less work at consume_skb() (less alien page frag freeing)
1361 	 */
1362 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1363 		skb_condense(skb);
1364 
1365 		busy = busylock_acquire(sk);
1366 	}
1367 	size = skb->truesize;
1368 	udp_set_dev_scratch(skb);
1369 
1370 	/* we drop only if the receive buf is full and the receive
1371 	 * queue contains some other skb
1372 	 */
1373 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1374 	if (rmem > (size + sk->sk_rcvbuf))
1375 		goto uncharge_drop;
1376 
1377 	spin_lock(&list->lock);
1378 	if (size >= sk->sk_forward_alloc) {
1379 		amt = sk_mem_pages(size);
1380 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1381 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1382 			err = -ENOBUFS;
1383 			spin_unlock(&list->lock);
1384 			goto uncharge_drop;
1385 		}
1386 
1387 		sk->sk_forward_alloc += delta;
1388 	}
1389 
1390 	sk->sk_forward_alloc -= size;
1391 
1392 	/* no need to setup a destructor, we will explicitly release the
1393 	 * forward allocated memory on dequeue
1394 	 */
1395 	sock_skb_set_dropcount(sk, skb);
1396 
1397 	__skb_queue_tail(list, skb);
1398 	spin_unlock(&list->lock);
1399 
1400 	if (!sock_flag(sk, SOCK_DEAD))
1401 		sk->sk_data_ready(sk);
1402 
1403 	busylock_release(busy);
1404 	return 0;
1405 
1406 uncharge_drop:
1407 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1408 
1409 drop:
1410 	atomic_inc(&sk->sk_drops);
1411 	busylock_release(busy);
1412 	return err;
1413 }
1414 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1415 
1416 void udp_destruct_sock(struct sock *sk)
1417 {
1418 	/* reclaim completely the forward allocated memory */
1419 	struct udp_sock *up = udp_sk(sk);
1420 	unsigned int total = 0;
1421 	struct sk_buff *skb;
1422 
1423 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1424 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1425 		total += skb->truesize;
1426 		kfree_skb(skb);
1427 	}
1428 	udp_rmem_release(sk, total, 0, true);
1429 
1430 	inet_sock_destruct(sk);
1431 }
1432 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1433 
1434 int udp_init_sock(struct sock *sk)
1435 {
1436 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1437 	sk->sk_destruct = udp_destruct_sock;
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(udp_init_sock);
1441 
1442 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1443 {
1444 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1445 		bool slow = lock_sock_fast(sk);
1446 
1447 		sk_peek_offset_bwd(sk, len);
1448 		unlock_sock_fast(sk, slow);
1449 	}
1450 
1451 	if (!skb_unref(skb))
1452 		return;
1453 
1454 	/* In the more common cases we cleared the head states previously,
1455 	 * see __udp_queue_rcv_skb().
1456 	 */
1457 	if (unlikely(udp_skb_has_head_state(skb)))
1458 		skb_release_head_state(skb);
1459 	__consume_stateless_skb(skb);
1460 }
1461 EXPORT_SYMBOL_GPL(skb_consume_udp);
1462 
1463 static struct sk_buff *__first_packet_length(struct sock *sk,
1464 					     struct sk_buff_head *rcvq,
1465 					     int *total)
1466 {
1467 	struct sk_buff *skb;
1468 
1469 	while ((skb = skb_peek(rcvq)) != NULL) {
1470 		if (udp_lib_checksum_complete(skb)) {
1471 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1472 					IS_UDPLITE(sk));
1473 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1474 					IS_UDPLITE(sk));
1475 			atomic_inc(&sk->sk_drops);
1476 			__skb_unlink(skb, rcvq);
1477 			*total += skb->truesize;
1478 			kfree_skb(skb);
1479 		} else {
1480 			/* the csum related bits could be changed, refresh
1481 			 * the scratch area
1482 			 */
1483 			udp_set_dev_scratch(skb);
1484 			break;
1485 		}
1486 	}
1487 	return skb;
1488 }
1489 
1490 /**
1491  *	first_packet_length	- return length of first packet in receive queue
1492  *	@sk: socket
1493  *
1494  *	Drops all bad checksum frames, until a valid one is found.
1495  *	Returns the length of found skb, or -1 if none is found.
1496  */
1497 static int first_packet_length(struct sock *sk)
1498 {
1499 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1500 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1501 	struct sk_buff *skb;
1502 	int total = 0;
1503 	int res;
1504 
1505 	spin_lock_bh(&rcvq->lock);
1506 	skb = __first_packet_length(sk, rcvq, &total);
1507 	if (!skb && !skb_queue_empty(sk_queue)) {
1508 		spin_lock(&sk_queue->lock);
1509 		skb_queue_splice_tail_init(sk_queue, rcvq);
1510 		spin_unlock(&sk_queue->lock);
1511 
1512 		skb = __first_packet_length(sk, rcvq, &total);
1513 	}
1514 	res = skb ? skb->len : -1;
1515 	if (total)
1516 		udp_rmem_release(sk, total, 1, false);
1517 	spin_unlock_bh(&rcvq->lock);
1518 	return res;
1519 }
1520 
1521 /*
1522  *	IOCTL requests applicable to the UDP protocol
1523  */
1524 
1525 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1526 {
1527 	switch (cmd) {
1528 	case SIOCOUTQ:
1529 	{
1530 		int amount = sk_wmem_alloc_get(sk);
1531 
1532 		return put_user(amount, (int __user *)arg);
1533 	}
1534 
1535 	case SIOCINQ:
1536 	{
1537 		int amount = max_t(int, 0, first_packet_length(sk));
1538 
1539 		return put_user(amount, (int __user *)arg);
1540 	}
1541 
1542 	default:
1543 		return -ENOIOCTLCMD;
1544 	}
1545 
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL(udp_ioctl);
1549 
1550 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1551 			       int noblock, int *peeked, int *off, int *err)
1552 {
1553 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1554 	struct sk_buff_head *queue;
1555 	struct sk_buff *last;
1556 	long timeo;
1557 	int error;
1558 
1559 	queue = &udp_sk(sk)->reader_queue;
1560 	flags |= noblock ? MSG_DONTWAIT : 0;
1561 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1562 	do {
1563 		struct sk_buff *skb;
1564 
1565 		error = sock_error(sk);
1566 		if (error)
1567 			break;
1568 
1569 		error = -EAGAIN;
1570 		*peeked = 0;
1571 		do {
1572 			spin_lock_bh(&queue->lock);
1573 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1574 							udp_skb_destructor,
1575 							peeked, off, err,
1576 							&last);
1577 			if (skb) {
1578 				spin_unlock_bh(&queue->lock);
1579 				return skb;
1580 			}
1581 
1582 			if (skb_queue_empty(sk_queue)) {
1583 				spin_unlock_bh(&queue->lock);
1584 				goto busy_check;
1585 			}
1586 
1587 			/* refill the reader queue and walk it again
1588 			 * keep both queues locked to avoid re-acquiring
1589 			 * the sk_receive_queue lock if fwd memory scheduling
1590 			 * is needed.
1591 			 */
1592 			spin_lock(&sk_queue->lock);
1593 			skb_queue_splice_tail_init(sk_queue, queue);
1594 
1595 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1596 							udp_skb_dtor_locked,
1597 							peeked, off, err,
1598 							&last);
1599 			spin_unlock(&sk_queue->lock);
1600 			spin_unlock_bh(&queue->lock);
1601 			if (skb)
1602 				return skb;
1603 
1604 busy_check:
1605 			if (!sk_can_busy_loop(sk))
1606 				break;
1607 
1608 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1609 		} while (!skb_queue_empty(sk_queue));
1610 
1611 		/* sk_queue is empty, reader_queue may contain peeked packets */
1612 	} while (timeo &&
1613 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1614 					      (struct sk_buff *)sk_queue));
1615 
1616 	*err = error;
1617 	return NULL;
1618 }
1619 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1620 
1621 /*
1622  * 	This should be easy, if there is something there we
1623  * 	return it, otherwise we block.
1624  */
1625 
1626 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1627 		int flags, int *addr_len)
1628 {
1629 	struct inet_sock *inet = inet_sk(sk);
1630 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1631 	struct sk_buff *skb;
1632 	unsigned int ulen, copied;
1633 	int peeked, peeking, off;
1634 	int err;
1635 	int is_udplite = IS_UDPLITE(sk);
1636 	bool checksum_valid = false;
1637 
1638 	if (flags & MSG_ERRQUEUE)
1639 		return ip_recv_error(sk, msg, len, addr_len);
1640 
1641 try_again:
1642 	peeking = flags & MSG_PEEK;
1643 	off = sk_peek_offset(sk, flags);
1644 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1645 	if (!skb)
1646 		return err;
1647 
1648 	ulen = udp_skb_len(skb);
1649 	copied = len;
1650 	if (copied > ulen - off)
1651 		copied = ulen - off;
1652 	else if (copied < ulen)
1653 		msg->msg_flags |= MSG_TRUNC;
1654 
1655 	/*
1656 	 * If checksum is needed at all, try to do it while copying the
1657 	 * data.  If the data is truncated, or if we only want a partial
1658 	 * coverage checksum (UDP-Lite), do it before the copy.
1659 	 */
1660 
1661 	if (copied < ulen || peeking ||
1662 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1663 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1664 				!__udp_lib_checksum_complete(skb);
1665 		if (!checksum_valid)
1666 			goto csum_copy_err;
1667 	}
1668 
1669 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1670 		if (udp_skb_is_linear(skb))
1671 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1672 		else
1673 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1674 	} else {
1675 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1676 
1677 		if (err == -EINVAL)
1678 			goto csum_copy_err;
1679 	}
1680 
1681 	if (unlikely(err)) {
1682 		if (!peeked) {
1683 			atomic_inc(&sk->sk_drops);
1684 			UDP_INC_STATS(sock_net(sk),
1685 				      UDP_MIB_INERRORS, is_udplite);
1686 		}
1687 		kfree_skb(skb);
1688 		return err;
1689 	}
1690 
1691 	if (!peeked)
1692 		UDP_INC_STATS(sock_net(sk),
1693 			      UDP_MIB_INDATAGRAMS, is_udplite);
1694 
1695 	sock_recv_ts_and_drops(msg, sk, skb);
1696 
1697 	/* Copy the address. */
1698 	if (sin) {
1699 		sin->sin_family = AF_INET;
1700 		sin->sin_port = udp_hdr(skb)->source;
1701 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1702 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1703 		*addr_len = sizeof(*sin);
1704 	}
1705 	if (inet->cmsg_flags)
1706 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1707 
1708 	err = copied;
1709 	if (flags & MSG_TRUNC)
1710 		err = ulen;
1711 
1712 	skb_consume_udp(sk, skb, peeking ? -err : err);
1713 	return err;
1714 
1715 csum_copy_err:
1716 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1717 				 udp_skb_destructor)) {
1718 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1719 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1720 	}
1721 	kfree_skb(skb);
1722 
1723 	/* starting over for a new packet, but check if we need to yield */
1724 	cond_resched();
1725 	msg->msg_flags &= ~MSG_TRUNC;
1726 	goto try_again;
1727 }
1728 
1729 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1730 {
1731 	/* This check is replicated from __ip4_datagram_connect() and
1732 	 * intended to prevent BPF program called below from accessing bytes
1733 	 * that are out of the bound specified by user in addr_len.
1734 	 */
1735 	if (addr_len < sizeof(struct sockaddr_in))
1736 		return -EINVAL;
1737 
1738 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1739 }
1740 EXPORT_SYMBOL(udp_pre_connect);
1741 
1742 int __udp_disconnect(struct sock *sk, int flags)
1743 {
1744 	struct inet_sock *inet = inet_sk(sk);
1745 	/*
1746 	 *	1003.1g - break association.
1747 	 */
1748 
1749 	sk->sk_state = TCP_CLOSE;
1750 	inet->inet_daddr = 0;
1751 	inet->inet_dport = 0;
1752 	sock_rps_reset_rxhash(sk);
1753 	sk->sk_bound_dev_if = 0;
1754 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1755 		inet_reset_saddr(sk);
1756 
1757 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1758 		sk->sk_prot->unhash(sk);
1759 		inet->inet_sport = 0;
1760 	}
1761 	sk_dst_reset(sk);
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL(__udp_disconnect);
1765 
1766 int udp_disconnect(struct sock *sk, int flags)
1767 {
1768 	lock_sock(sk);
1769 	__udp_disconnect(sk, flags);
1770 	release_sock(sk);
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL(udp_disconnect);
1774 
1775 void udp_lib_unhash(struct sock *sk)
1776 {
1777 	if (sk_hashed(sk)) {
1778 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1779 		struct udp_hslot *hslot, *hslot2;
1780 
1781 		hslot  = udp_hashslot(udptable, sock_net(sk),
1782 				      udp_sk(sk)->udp_port_hash);
1783 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1784 
1785 		spin_lock_bh(&hslot->lock);
1786 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1787 			reuseport_detach_sock(sk);
1788 		if (sk_del_node_init_rcu(sk)) {
1789 			hslot->count--;
1790 			inet_sk(sk)->inet_num = 0;
1791 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1792 
1793 			spin_lock(&hslot2->lock);
1794 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1795 			hslot2->count--;
1796 			spin_unlock(&hslot2->lock);
1797 		}
1798 		spin_unlock_bh(&hslot->lock);
1799 	}
1800 }
1801 EXPORT_SYMBOL(udp_lib_unhash);
1802 
1803 /*
1804  * inet_rcv_saddr was changed, we must rehash secondary hash
1805  */
1806 void udp_lib_rehash(struct sock *sk, u16 newhash)
1807 {
1808 	if (sk_hashed(sk)) {
1809 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1810 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1811 
1812 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1813 		nhslot2 = udp_hashslot2(udptable, newhash);
1814 		udp_sk(sk)->udp_portaddr_hash = newhash;
1815 
1816 		if (hslot2 != nhslot2 ||
1817 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1818 			hslot = udp_hashslot(udptable, sock_net(sk),
1819 					     udp_sk(sk)->udp_port_hash);
1820 			/* we must lock primary chain too */
1821 			spin_lock_bh(&hslot->lock);
1822 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1823 				reuseport_detach_sock(sk);
1824 
1825 			if (hslot2 != nhslot2) {
1826 				spin_lock(&hslot2->lock);
1827 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1828 				hslot2->count--;
1829 				spin_unlock(&hslot2->lock);
1830 
1831 				spin_lock(&nhslot2->lock);
1832 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1833 							 &nhslot2->head);
1834 				nhslot2->count++;
1835 				spin_unlock(&nhslot2->lock);
1836 			}
1837 
1838 			spin_unlock_bh(&hslot->lock);
1839 		}
1840 	}
1841 }
1842 EXPORT_SYMBOL(udp_lib_rehash);
1843 
1844 static void udp_v4_rehash(struct sock *sk)
1845 {
1846 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1847 					  inet_sk(sk)->inet_rcv_saddr,
1848 					  inet_sk(sk)->inet_num);
1849 	udp_lib_rehash(sk, new_hash);
1850 }
1851 
1852 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1853 {
1854 	int rc;
1855 
1856 	if (inet_sk(sk)->inet_daddr) {
1857 		sock_rps_save_rxhash(sk, skb);
1858 		sk_mark_napi_id(sk, skb);
1859 		sk_incoming_cpu_update(sk);
1860 	} else {
1861 		sk_mark_napi_id_once(sk, skb);
1862 	}
1863 
1864 	rc = __udp_enqueue_schedule_skb(sk, skb);
1865 	if (rc < 0) {
1866 		int is_udplite = IS_UDPLITE(sk);
1867 
1868 		/* Note that an ENOMEM error is charged twice */
1869 		if (rc == -ENOMEM)
1870 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1871 					is_udplite);
1872 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1873 		kfree_skb(skb);
1874 		trace_udp_fail_queue_rcv_skb(rc, sk);
1875 		return -1;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1882 void udp_encap_enable(void)
1883 {
1884 	static_branch_enable(&udp_encap_needed_key);
1885 }
1886 EXPORT_SYMBOL(udp_encap_enable);
1887 
1888 /* returns:
1889  *  -1: error
1890  *   0: success
1891  *  >0: "udp encap" protocol resubmission
1892  *
1893  * Note that in the success and error cases, the skb is assumed to
1894  * have either been requeued or freed.
1895  */
1896 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1897 {
1898 	struct udp_sock *up = udp_sk(sk);
1899 	int is_udplite = IS_UDPLITE(sk);
1900 
1901 	/*
1902 	 *	Charge it to the socket, dropping if the queue is full.
1903 	 */
1904 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1905 		goto drop;
1906 	nf_reset(skb);
1907 
1908 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1909 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1910 
1911 		/*
1912 		 * This is an encapsulation socket so pass the skb to
1913 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1914 		 * fall through and pass this up the UDP socket.
1915 		 * up->encap_rcv() returns the following value:
1916 		 * =0 if skb was successfully passed to the encap
1917 		 *    handler or was discarded by it.
1918 		 * >0 if skb should be passed on to UDP.
1919 		 * <0 if skb should be resubmitted as proto -N
1920 		 */
1921 
1922 		/* if we're overly short, let UDP handle it */
1923 		encap_rcv = READ_ONCE(up->encap_rcv);
1924 		if (encap_rcv) {
1925 			int ret;
1926 
1927 			/* Verify checksum before giving to encap */
1928 			if (udp_lib_checksum_complete(skb))
1929 				goto csum_error;
1930 
1931 			ret = encap_rcv(sk, skb);
1932 			if (ret <= 0) {
1933 				__UDP_INC_STATS(sock_net(sk),
1934 						UDP_MIB_INDATAGRAMS,
1935 						is_udplite);
1936 				return -ret;
1937 			}
1938 		}
1939 
1940 		/* FALLTHROUGH -- it's a UDP Packet */
1941 	}
1942 
1943 	/*
1944 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1945 	 */
1946 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1947 
1948 		/*
1949 		 * MIB statistics other than incrementing the error count are
1950 		 * disabled for the following two types of errors: these depend
1951 		 * on the application settings, not on the functioning of the
1952 		 * protocol stack as such.
1953 		 *
1954 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1955 		 * way ... to ... at least let the receiving application block
1956 		 * delivery of packets with coverage values less than a value
1957 		 * provided by the application."
1958 		 */
1959 		if (up->pcrlen == 0) {          /* full coverage was set  */
1960 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1961 					    UDP_SKB_CB(skb)->cscov, skb->len);
1962 			goto drop;
1963 		}
1964 		/* The next case involves violating the min. coverage requested
1965 		 * by the receiver. This is subtle: if receiver wants x and x is
1966 		 * greater than the buffersize/MTU then receiver will complain
1967 		 * that it wants x while sender emits packets of smaller size y.
1968 		 * Therefore the above ...()->partial_cov statement is essential.
1969 		 */
1970 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1971 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1972 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1973 			goto drop;
1974 		}
1975 	}
1976 
1977 	prefetch(&sk->sk_rmem_alloc);
1978 	if (rcu_access_pointer(sk->sk_filter) &&
1979 	    udp_lib_checksum_complete(skb))
1980 			goto csum_error;
1981 
1982 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1983 		goto drop;
1984 
1985 	udp_csum_pull_header(skb);
1986 
1987 	ipv4_pktinfo_prepare(sk, skb);
1988 	return __udp_queue_rcv_skb(sk, skb);
1989 
1990 csum_error:
1991 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1992 drop:
1993 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1994 	atomic_inc(&sk->sk_drops);
1995 	kfree_skb(skb);
1996 	return -1;
1997 }
1998 
1999 /* For TCP sockets, sk_rx_dst is protected by socket lock
2000  * For UDP, we use xchg() to guard against concurrent changes.
2001  */
2002 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2003 {
2004 	struct dst_entry *old;
2005 
2006 	if (dst_hold_safe(dst)) {
2007 		old = xchg(&sk->sk_rx_dst, dst);
2008 		dst_release(old);
2009 		return old != dst;
2010 	}
2011 	return false;
2012 }
2013 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2014 
2015 /*
2016  *	Multicasts and broadcasts go to each listener.
2017  *
2018  *	Note: called only from the BH handler context.
2019  */
2020 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2021 				    struct udphdr  *uh,
2022 				    __be32 saddr, __be32 daddr,
2023 				    struct udp_table *udptable,
2024 				    int proto)
2025 {
2026 	struct sock *sk, *first = NULL;
2027 	unsigned short hnum = ntohs(uh->dest);
2028 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2029 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2030 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2031 	int dif = skb->dev->ifindex;
2032 	int sdif = inet_sdif(skb);
2033 	struct hlist_node *node;
2034 	struct sk_buff *nskb;
2035 
2036 	if (use_hash2) {
2037 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2038 			    udptable->mask;
2039 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2040 start_lookup:
2041 		hslot = &udptable->hash2[hash2];
2042 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2043 	}
2044 
2045 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2046 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2047 					 uh->source, saddr, dif, sdif, hnum))
2048 			continue;
2049 
2050 		if (!first) {
2051 			first = sk;
2052 			continue;
2053 		}
2054 		nskb = skb_clone(skb, GFP_ATOMIC);
2055 
2056 		if (unlikely(!nskb)) {
2057 			atomic_inc(&sk->sk_drops);
2058 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2059 					IS_UDPLITE(sk));
2060 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2061 					IS_UDPLITE(sk));
2062 			continue;
2063 		}
2064 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2065 			consume_skb(nskb);
2066 	}
2067 
2068 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2069 	if (use_hash2 && hash2 != hash2_any) {
2070 		hash2 = hash2_any;
2071 		goto start_lookup;
2072 	}
2073 
2074 	if (first) {
2075 		if (udp_queue_rcv_skb(first, skb) > 0)
2076 			consume_skb(skb);
2077 	} else {
2078 		kfree_skb(skb);
2079 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2080 				proto == IPPROTO_UDPLITE);
2081 	}
2082 	return 0;
2083 }
2084 
2085 /* Initialize UDP checksum. If exited with zero value (success),
2086  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2087  * Otherwise, csum completion requires chacksumming packet body,
2088  * including udp header and folding it to skb->csum.
2089  */
2090 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2091 				 int proto)
2092 {
2093 	int err;
2094 
2095 	UDP_SKB_CB(skb)->partial_cov = 0;
2096 	UDP_SKB_CB(skb)->cscov = skb->len;
2097 
2098 	if (proto == IPPROTO_UDPLITE) {
2099 		err = udplite_checksum_init(skb, uh);
2100 		if (err)
2101 			return err;
2102 
2103 		if (UDP_SKB_CB(skb)->partial_cov) {
2104 			skb->csum = inet_compute_pseudo(skb, proto);
2105 			return 0;
2106 		}
2107 	}
2108 
2109 	/* Note, we are only interested in != 0 or == 0, thus the
2110 	 * force to int.
2111 	 */
2112 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2113 							 inet_compute_pseudo);
2114 }
2115 
2116 /*
2117  *	All we need to do is get the socket, and then do a checksum.
2118  */
2119 
2120 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2121 		   int proto)
2122 {
2123 	struct sock *sk;
2124 	struct udphdr *uh;
2125 	unsigned short ulen;
2126 	struct rtable *rt = skb_rtable(skb);
2127 	__be32 saddr, daddr;
2128 	struct net *net = dev_net(skb->dev);
2129 
2130 	/*
2131 	 *  Validate the packet.
2132 	 */
2133 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2134 		goto drop;		/* No space for header. */
2135 
2136 	uh   = udp_hdr(skb);
2137 	ulen = ntohs(uh->len);
2138 	saddr = ip_hdr(skb)->saddr;
2139 	daddr = ip_hdr(skb)->daddr;
2140 
2141 	if (ulen > skb->len)
2142 		goto short_packet;
2143 
2144 	if (proto == IPPROTO_UDP) {
2145 		/* UDP validates ulen. */
2146 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2147 			goto short_packet;
2148 		uh = udp_hdr(skb);
2149 	}
2150 
2151 	if (udp4_csum_init(skb, uh, proto))
2152 		goto csum_error;
2153 
2154 	sk = skb_steal_sock(skb);
2155 	if (sk) {
2156 		struct dst_entry *dst = skb_dst(skb);
2157 		int ret;
2158 
2159 		if (unlikely(sk->sk_rx_dst != dst))
2160 			udp_sk_rx_dst_set(sk, dst);
2161 
2162 		ret = udp_queue_rcv_skb(sk, skb);
2163 		sock_put(sk);
2164 		/* a return value > 0 means to resubmit the input, but
2165 		 * it wants the return to be -protocol, or 0
2166 		 */
2167 		if (ret > 0)
2168 			return -ret;
2169 		return 0;
2170 	}
2171 
2172 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2173 		return __udp4_lib_mcast_deliver(net, skb, uh,
2174 						saddr, daddr, udptable, proto);
2175 
2176 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2177 	if (sk) {
2178 		int ret;
2179 
2180 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2181 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2182 						 inet_compute_pseudo);
2183 
2184 		ret = udp_queue_rcv_skb(sk, skb);
2185 
2186 		/* a return value > 0 means to resubmit the input, but
2187 		 * it wants the return to be -protocol, or 0
2188 		 */
2189 		if (ret > 0)
2190 			return -ret;
2191 		return 0;
2192 	}
2193 
2194 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2195 		goto drop;
2196 	nf_reset(skb);
2197 
2198 	/* No socket. Drop packet silently, if checksum is wrong */
2199 	if (udp_lib_checksum_complete(skb))
2200 		goto csum_error;
2201 
2202 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2203 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2204 
2205 	/*
2206 	 * Hmm.  We got an UDP packet to a port to which we
2207 	 * don't wanna listen.  Ignore it.
2208 	 */
2209 	kfree_skb(skb);
2210 	return 0;
2211 
2212 short_packet:
2213 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2214 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2215 			    &saddr, ntohs(uh->source),
2216 			    ulen, skb->len,
2217 			    &daddr, ntohs(uh->dest));
2218 	goto drop;
2219 
2220 csum_error:
2221 	/*
2222 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2223 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2224 	 */
2225 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2226 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2227 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2228 			    ulen);
2229 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2230 drop:
2231 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2232 	kfree_skb(skb);
2233 	return 0;
2234 }
2235 
2236 /* We can only early demux multicast if there is a single matching socket.
2237  * If more than one socket found returns NULL
2238  */
2239 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2240 						  __be16 loc_port, __be32 loc_addr,
2241 						  __be16 rmt_port, __be32 rmt_addr,
2242 						  int dif, int sdif)
2243 {
2244 	struct sock *sk, *result;
2245 	unsigned short hnum = ntohs(loc_port);
2246 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2247 	struct udp_hslot *hslot = &udp_table.hash[slot];
2248 
2249 	/* Do not bother scanning a too big list */
2250 	if (hslot->count > 10)
2251 		return NULL;
2252 
2253 	result = NULL;
2254 	sk_for_each_rcu(sk, &hslot->head) {
2255 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2256 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2257 			if (result)
2258 				return NULL;
2259 			result = sk;
2260 		}
2261 	}
2262 
2263 	return result;
2264 }
2265 
2266 /* For unicast we should only early demux connected sockets or we can
2267  * break forwarding setups.  The chains here can be long so only check
2268  * if the first socket is an exact match and if not move on.
2269  */
2270 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2271 					    __be16 loc_port, __be32 loc_addr,
2272 					    __be16 rmt_port, __be32 rmt_addr,
2273 					    int dif, int sdif)
2274 {
2275 	unsigned short hnum = ntohs(loc_port);
2276 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2277 	unsigned int slot2 = hash2 & udp_table.mask;
2278 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2279 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2280 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2281 	struct sock *sk;
2282 
2283 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2284 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2285 			       loc_addr, ports, dif, sdif))
2286 			return sk;
2287 		/* Only check first socket in chain */
2288 		break;
2289 	}
2290 	return NULL;
2291 }
2292 
2293 int udp_v4_early_demux(struct sk_buff *skb)
2294 {
2295 	struct net *net = dev_net(skb->dev);
2296 	struct in_device *in_dev = NULL;
2297 	const struct iphdr *iph;
2298 	const struct udphdr *uh;
2299 	struct sock *sk = NULL;
2300 	struct dst_entry *dst;
2301 	int dif = skb->dev->ifindex;
2302 	int sdif = inet_sdif(skb);
2303 	int ours;
2304 
2305 	/* validate the packet */
2306 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2307 		return 0;
2308 
2309 	iph = ip_hdr(skb);
2310 	uh = udp_hdr(skb);
2311 
2312 	if (skb->pkt_type == PACKET_MULTICAST) {
2313 		in_dev = __in_dev_get_rcu(skb->dev);
2314 
2315 		if (!in_dev)
2316 			return 0;
2317 
2318 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2319 				       iph->protocol);
2320 		if (!ours)
2321 			return 0;
2322 
2323 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2324 						   uh->source, iph->saddr,
2325 						   dif, sdif);
2326 	} else if (skb->pkt_type == PACKET_HOST) {
2327 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2328 					     uh->source, iph->saddr, dif, sdif);
2329 	}
2330 
2331 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2332 		return 0;
2333 
2334 	skb->sk = sk;
2335 	skb->destructor = sock_efree;
2336 	dst = READ_ONCE(sk->sk_rx_dst);
2337 
2338 	if (dst)
2339 		dst = dst_check(dst, 0);
2340 	if (dst) {
2341 		u32 itag = 0;
2342 
2343 		/* set noref for now.
2344 		 * any place which wants to hold dst has to call
2345 		 * dst_hold_safe()
2346 		 */
2347 		skb_dst_set_noref(skb, dst);
2348 
2349 		/* for unconnected multicast sockets we need to validate
2350 		 * the source on each packet
2351 		 */
2352 		if (!inet_sk(sk)->inet_daddr && in_dev)
2353 			return ip_mc_validate_source(skb, iph->daddr,
2354 						     iph->saddr, iph->tos,
2355 						     skb->dev, in_dev, &itag);
2356 	}
2357 	return 0;
2358 }
2359 
2360 int udp_rcv(struct sk_buff *skb)
2361 {
2362 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2363 }
2364 
2365 void udp_destroy_sock(struct sock *sk)
2366 {
2367 	struct udp_sock *up = udp_sk(sk);
2368 	bool slow = lock_sock_fast(sk);
2369 	udp_flush_pending_frames(sk);
2370 	unlock_sock_fast(sk, slow);
2371 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2372 		void (*encap_destroy)(struct sock *sk);
2373 		encap_destroy = READ_ONCE(up->encap_destroy);
2374 		if (encap_destroy)
2375 			encap_destroy(sk);
2376 	}
2377 }
2378 
2379 /*
2380  *	Socket option code for UDP
2381  */
2382 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2383 		       char __user *optval, unsigned int optlen,
2384 		       int (*push_pending_frames)(struct sock *))
2385 {
2386 	struct udp_sock *up = udp_sk(sk);
2387 	int val, valbool;
2388 	int err = 0;
2389 	int is_udplite = IS_UDPLITE(sk);
2390 
2391 	if (optlen < sizeof(int))
2392 		return -EINVAL;
2393 
2394 	if (get_user(val, (int __user *)optval))
2395 		return -EFAULT;
2396 
2397 	valbool = val ? 1 : 0;
2398 
2399 	switch (optname) {
2400 	case UDP_CORK:
2401 		if (val != 0) {
2402 			up->corkflag = 1;
2403 		} else {
2404 			up->corkflag = 0;
2405 			lock_sock(sk);
2406 			push_pending_frames(sk);
2407 			release_sock(sk);
2408 		}
2409 		break;
2410 
2411 	case UDP_ENCAP:
2412 		switch (val) {
2413 		case 0:
2414 		case UDP_ENCAP_ESPINUDP:
2415 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2416 			up->encap_rcv = xfrm4_udp_encap_rcv;
2417 			/* FALLTHROUGH */
2418 		case UDP_ENCAP_L2TPINUDP:
2419 			up->encap_type = val;
2420 			udp_encap_enable();
2421 			break;
2422 		default:
2423 			err = -ENOPROTOOPT;
2424 			break;
2425 		}
2426 		break;
2427 
2428 	case UDP_NO_CHECK6_TX:
2429 		up->no_check6_tx = valbool;
2430 		break;
2431 
2432 	case UDP_NO_CHECK6_RX:
2433 		up->no_check6_rx = valbool;
2434 		break;
2435 
2436 	case UDP_SEGMENT:
2437 		if (val < 0 || val > USHRT_MAX)
2438 			return -EINVAL;
2439 		up->gso_size = val;
2440 		break;
2441 
2442 	/*
2443 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2444 	 */
2445 	/* The sender sets actual checksum coverage length via this option.
2446 	 * The case coverage > packet length is handled by send module. */
2447 	case UDPLITE_SEND_CSCOV:
2448 		if (!is_udplite)         /* Disable the option on UDP sockets */
2449 			return -ENOPROTOOPT;
2450 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2451 			val = 8;
2452 		else if (val > USHRT_MAX)
2453 			val = USHRT_MAX;
2454 		up->pcslen = val;
2455 		up->pcflag |= UDPLITE_SEND_CC;
2456 		break;
2457 
2458 	/* The receiver specifies a minimum checksum coverage value. To make
2459 	 * sense, this should be set to at least 8 (as done below). If zero is
2460 	 * used, this again means full checksum coverage.                     */
2461 	case UDPLITE_RECV_CSCOV:
2462 		if (!is_udplite)         /* Disable the option on UDP sockets */
2463 			return -ENOPROTOOPT;
2464 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2465 			val = 8;
2466 		else if (val > USHRT_MAX)
2467 			val = USHRT_MAX;
2468 		up->pcrlen = val;
2469 		up->pcflag |= UDPLITE_RECV_CC;
2470 		break;
2471 
2472 	default:
2473 		err = -ENOPROTOOPT;
2474 		break;
2475 	}
2476 
2477 	return err;
2478 }
2479 EXPORT_SYMBOL(udp_lib_setsockopt);
2480 
2481 int udp_setsockopt(struct sock *sk, int level, int optname,
2482 		   char __user *optval, unsigned int optlen)
2483 {
2484 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2485 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2486 					  udp_push_pending_frames);
2487 	return ip_setsockopt(sk, level, optname, optval, optlen);
2488 }
2489 
2490 #ifdef CONFIG_COMPAT
2491 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2492 			  char __user *optval, unsigned int optlen)
2493 {
2494 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2495 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2496 					  udp_push_pending_frames);
2497 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2498 }
2499 #endif
2500 
2501 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2502 		       char __user *optval, int __user *optlen)
2503 {
2504 	struct udp_sock *up = udp_sk(sk);
2505 	int val, len;
2506 
2507 	if (get_user(len, optlen))
2508 		return -EFAULT;
2509 
2510 	len = min_t(unsigned int, len, sizeof(int));
2511 
2512 	if (len < 0)
2513 		return -EINVAL;
2514 
2515 	switch (optname) {
2516 	case UDP_CORK:
2517 		val = up->corkflag;
2518 		break;
2519 
2520 	case UDP_ENCAP:
2521 		val = up->encap_type;
2522 		break;
2523 
2524 	case UDP_NO_CHECK6_TX:
2525 		val = up->no_check6_tx;
2526 		break;
2527 
2528 	case UDP_NO_CHECK6_RX:
2529 		val = up->no_check6_rx;
2530 		break;
2531 
2532 	case UDP_SEGMENT:
2533 		val = up->gso_size;
2534 		break;
2535 
2536 	/* The following two cannot be changed on UDP sockets, the return is
2537 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2538 	case UDPLITE_SEND_CSCOV:
2539 		val = up->pcslen;
2540 		break;
2541 
2542 	case UDPLITE_RECV_CSCOV:
2543 		val = up->pcrlen;
2544 		break;
2545 
2546 	default:
2547 		return -ENOPROTOOPT;
2548 	}
2549 
2550 	if (put_user(len, optlen))
2551 		return -EFAULT;
2552 	if (copy_to_user(optval, &val, len))
2553 		return -EFAULT;
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(udp_lib_getsockopt);
2557 
2558 int udp_getsockopt(struct sock *sk, int level, int optname,
2559 		   char __user *optval, int __user *optlen)
2560 {
2561 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2562 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2563 	return ip_getsockopt(sk, level, optname, optval, optlen);
2564 }
2565 
2566 #ifdef CONFIG_COMPAT
2567 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2568 				 char __user *optval, int __user *optlen)
2569 {
2570 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2571 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2572 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2573 }
2574 #endif
2575 /**
2576  * 	udp_poll - wait for a UDP event.
2577  *	@file - file struct
2578  *	@sock - socket
2579  *	@wait - poll table
2580  *
2581  *	This is same as datagram poll, except for the special case of
2582  *	blocking sockets. If application is using a blocking fd
2583  *	and a packet with checksum error is in the queue;
2584  *	then it could get return from select indicating data available
2585  *	but then block when reading it. Add special case code
2586  *	to work around these arguably broken applications.
2587  */
2588 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2589 {
2590 	__poll_t mask = datagram_poll(file, sock, wait);
2591 	struct sock *sk = sock->sk;
2592 
2593 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2594 		mask |= EPOLLIN | EPOLLRDNORM;
2595 
2596 	/* Check for false positives due to checksum errors */
2597 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2598 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2599 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2600 
2601 	return mask;
2602 
2603 }
2604 EXPORT_SYMBOL(udp_poll);
2605 
2606 int udp_abort(struct sock *sk, int err)
2607 {
2608 	lock_sock(sk);
2609 
2610 	sk->sk_err = err;
2611 	sk->sk_error_report(sk);
2612 	__udp_disconnect(sk, 0);
2613 
2614 	release_sock(sk);
2615 
2616 	return 0;
2617 }
2618 EXPORT_SYMBOL_GPL(udp_abort);
2619 
2620 struct proto udp_prot = {
2621 	.name			= "UDP",
2622 	.owner			= THIS_MODULE,
2623 	.close			= udp_lib_close,
2624 	.pre_connect		= udp_pre_connect,
2625 	.connect		= ip4_datagram_connect,
2626 	.disconnect		= udp_disconnect,
2627 	.ioctl			= udp_ioctl,
2628 	.init			= udp_init_sock,
2629 	.destroy		= udp_destroy_sock,
2630 	.setsockopt		= udp_setsockopt,
2631 	.getsockopt		= udp_getsockopt,
2632 	.sendmsg		= udp_sendmsg,
2633 	.recvmsg		= udp_recvmsg,
2634 	.sendpage		= udp_sendpage,
2635 	.release_cb		= ip4_datagram_release_cb,
2636 	.hash			= udp_lib_hash,
2637 	.unhash			= udp_lib_unhash,
2638 	.rehash			= udp_v4_rehash,
2639 	.get_port		= udp_v4_get_port,
2640 	.memory_allocated	= &udp_memory_allocated,
2641 	.sysctl_mem		= sysctl_udp_mem,
2642 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2643 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2644 	.obj_size		= sizeof(struct udp_sock),
2645 	.h.udp_table		= &udp_table,
2646 #ifdef CONFIG_COMPAT
2647 	.compat_setsockopt	= compat_udp_setsockopt,
2648 	.compat_getsockopt	= compat_udp_getsockopt,
2649 #endif
2650 	.diag_destroy		= udp_abort,
2651 };
2652 EXPORT_SYMBOL(udp_prot);
2653 
2654 /* ------------------------------------------------------------------------ */
2655 #ifdef CONFIG_PROC_FS
2656 
2657 static struct sock *udp_get_first(struct seq_file *seq, int start)
2658 {
2659 	struct sock *sk;
2660 	struct udp_iter_state *state = seq->private;
2661 	struct net *net = seq_file_net(seq);
2662 
2663 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2664 	     ++state->bucket) {
2665 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2666 
2667 		if (hlist_empty(&hslot->head))
2668 			continue;
2669 
2670 		spin_lock_bh(&hslot->lock);
2671 		sk_for_each(sk, &hslot->head) {
2672 			if (!net_eq(sock_net(sk), net))
2673 				continue;
2674 			if (sk->sk_family == state->family)
2675 				goto found;
2676 		}
2677 		spin_unlock_bh(&hslot->lock);
2678 	}
2679 	sk = NULL;
2680 found:
2681 	return sk;
2682 }
2683 
2684 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2685 {
2686 	struct udp_iter_state *state = seq->private;
2687 	struct net *net = seq_file_net(seq);
2688 
2689 	do {
2690 		sk = sk_next(sk);
2691 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2692 
2693 	if (!sk) {
2694 		if (state->bucket <= state->udp_table->mask)
2695 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2696 		return udp_get_first(seq, state->bucket + 1);
2697 	}
2698 	return sk;
2699 }
2700 
2701 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2702 {
2703 	struct sock *sk = udp_get_first(seq, 0);
2704 
2705 	if (sk)
2706 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2707 			--pos;
2708 	return pos ? NULL : sk;
2709 }
2710 
2711 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2712 {
2713 	struct udp_iter_state *state = seq->private;
2714 	state->bucket = MAX_UDP_PORTS;
2715 
2716 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2717 }
2718 
2719 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2720 {
2721 	struct sock *sk;
2722 
2723 	if (v == SEQ_START_TOKEN)
2724 		sk = udp_get_idx(seq, 0);
2725 	else
2726 		sk = udp_get_next(seq, v);
2727 
2728 	++*pos;
2729 	return sk;
2730 }
2731 
2732 static void udp_seq_stop(struct seq_file *seq, void *v)
2733 {
2734 	struct udp_iter_state *state = seq->private;
2735 
2736 	if (state->bucket <= state->udp_table->mask)
2737 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2738 }
2739 
2740 int udp_seq_open(struct inode *inode, struct file *file)
2741 {
2742 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2743 	struct udp_iter_state *s;
2744 	int err;
2745 
2746 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2747 			   sizeof(struct udp_iter_state));
2748 	if (err < 0)
2749 		return err;
2750 
2751 	s = ((struct seq_file *)file->private_data)->private;
2752 	s->family		= afinfo->family;
2753 	s->udp_table		= afinfo->udp_table;
2754 	return err;
2755 }
2756 EXPORT_SYMBOL(udp_seq_open);
2757 
2758 /* ------------------------------------------------------------------------ */
2759 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2760 {
2761 	struct proc_dir_entry *p;
2762 	int rc = 0;
2763 
2764 	afinfo->seq_ops.start		= udp_seq_start;
2765 	afinfo->seq_ops.next		= udp_seq_next;
2766 	afinfo->seq_ops.stop		= udp_seq_stop;
2767 
2768 	p = proc_create_data(afinfo->name, 0444, net->proc_net,
2769 			     afinfo->seq_fops, afinfo);
2770 	if (!p)
2771 		rc = -ENOMEM;
2772 	return rc;
2773 }
2774 EXPORT_SYMBOL(udp_proc_register);
2775 
2776 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2777 {
2778 	remove_proc_entry(afinfo->name, net->proc_net);
2779 }
2780 EXPORT_SYMBOL(udp_proc_unregister);
2781 
2782 /* ------------------------------------------------------------------------ */
2783 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2784 		int bucket)
2785 {
2786 	struct inet_sock *inet = inet_sk(sp);
2787 	__be32 dest = inet->inet_daddr;
2788 	__be32 src  = inet->inet_rcv_saddr;
2789 	__u16 destp	  = ntohs(inet->inet_dport);
2790 	__u16 srcp	  = ntohs(inet->inet_sport);
2791 
2792 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2793 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2794 		bucket, src, srcp, dest, destp, sp->sk_state,
2795 		sk_wmem_alloc_get(sp),
2796 		sk_rmem_alloc_get(sp),
2797 		0, 0L, 0,
2798 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2799 		0, sock_i_ino(sp),
2800 		refcount_read(&sp->sk_refcnt), sp,
2801 		atomic_read(&sp->sk_drops));
2802 }
2803 
2804 int udp4_seq_show(struct seq_file *seq, void *v)
2805 {
2806 	seq_setwidth(seq, 127);
2807 	if (v == SEQ_START_TOKEN)
2808 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2809 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2810 			   "inode ref pointer drops");
2811 	else {
2812 		struct udp_iter_state *state = seq->private;
2813 
2814 		udp4_format_sock(v, seq, state->bucket);
2815 	}
2816 	seq_pad(seq, '\n');
2817 	return 0;
2818 }
2819 
2820 static const struct file_operations udp_afinfo_seq_fops = {
2821 	.open     = udp_seq_open,
2822 	.read     = seq_read,
2823 	.llseek   = seq_lseek,
2824 	.release  = seq_release_net
2825 };
2826 
2827 /* ------------------------------------------------------------------------ */
2828 static struct udp_seq_afinfo udp4_seq_afinfo = {
2829 	.name		= "udp",
2830 	.family		= AF_INET,
2831 	.udp_table	= &udp_table,
2832 	.seq_fops	= &udp_afinfo_seq_fops,
2833 	.seq_ops	= {
2834 		.show		= udp4_seq_show,
2835 	},
2836 };
2837 
2838 static int __net_init udp4_proc_init_net(struct net *net)
2839 {
2840 	return udp_proc_register(net, &udp4_seq_afinfo);
2841 }
2842 
2843 static void __net_exit udp4_proc_exit_net(struct net *net)
2844 {
2845 	udp_proc_unregister(net, &udp4_seq_afinfo);
2846 }
2847 
2848 static struct pernet_operations udp4_net_ops = {
2849 	.init = udp4_proc_init_net,
2850 	.exit = udp4_proc_exit_net,
2851 };
2852 
2853 int __init udp4_proc_init(void)
2854 {
2855 	return register_pernet_subsys(&udp4_net_ops);
2856 }
2857 
2858 void udp4_proc_exit(void)
2859 {
2860 	unregister_pernet_subsys(&udp4_net_ops);
2861 }
2862 #endif /* CONFIG_PROC_FS */
2863 
2864 static __initdata unsigned long uhash_entries;
2865 static int __init set_uhash_entries(char *str)
2866 {
2867 	ssize_t ret;
2868 
2869 	if (!str)
2870 		return 0;
2871 
2872 	ret = kstrtoul(str, 0, &uhash_entries);
2873 	if (ret)
2874 		return 0;
2875 
2876 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2877 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2878 	return 1;
2879 }
2880 __setup("uhash_entries=", set_uhash_entries);
2881 
2882 void __init udp_table_init(struct udp_table *table, const char *name)
2883 {
2884 	unsigned int i;
2885 
2886 	table->hash = alloc_large_system_hash(name,
2887 					      2 * sizeof(struct udp_hslot),
2888 					      uhash_entries,
2889 					      21, /* one slot per 2 MB */
2890 					      0,
2891 					      &table->log,
2892 					      &table->mask,
2893 					      UDP_HTABLE_SIZE_MIN,
2894 					      64 * 1024);
2895 
2896 	table->hash2 = table->hash + (table->mask + 1);
2897 	for (i = 0; i <= table->mask; i++) {
2898 		INIT_HLIST_HEAD(&table->hash[i].head);
2899 		table->hash[i].count = 0;
2900 		spin_lock_init(&table->hash[i].lock);
2901 	}
2902 	for (i = 0; i <= table->mask; i++) {
2903 		INIT_HLIST_HEAD(&table->hash2[i].head);
2904 		table->hash2[i].count = 0;
2905 		spin_lock_init(&table->hash2[i].lock);
2906 	}
2907 }
2908 
2909 u32 udp_flow_hashrnd(void)
2910 {
2911 	static u32 hashrnd __read_mostly;
2912 
2913 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2914 
2915 	return hashrnd;
2916 }
2917 EXPORT_SYMBOL(udp_flow_hashrnd);
2918 
2919 static void __udp_sysctl_init(struct net *net)
2920 {
2921 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2922 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2923 
2924 #ifdef CONFIG_NET_L3_MASTER_DEV
2925 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2926 #endif
2927 }
2928 
2929 static int __net_init udp_sysctl_init(struct net *net)
2930 {
2931 	__udp_sysctl_init(net);
2932 	return 0;
2933 }
2934 
2935 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2936 	.init	= udp_sysctl_init,
2937 };
2938 
2939 void __init udp_init(void)
2940 {
2941 	unsigned long limit;
2942 	unsigned int i;
2943 
2944 	udp_table_init(&udp_table, "UDP");
2945 	limit = nr_free_buffer_pages() / 8;
2946 	limit = max(limit, 128UL);
2947 	sysctl_udp_mem[0] = limit / 4 * 3;
2948 	sysctl_udp_mem[1] = limit;
2949 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2950 
2951 	__udp_sysctl_init(&init_net);
2952 
2953 	/* 16 spinlocks per cpu */
2954 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2955 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2956 				GFP_KERNEL);
2957 	if (!udp_busylocks)
2958 		panic("UDP: failed to alloc udp_busylocks\n");
2959 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2960 		spin_lock_init(udp_busylocks + i);
2961 
2962 	if (register_pernet_subsys(&udp_sysctl_ops))
2963 		panic("UDP: failed to init sysctl parameters.\n");
2964 }
2965