1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, &udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 578 sk->sk_bound_dev_if != sdif)) 579 return false; 580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 581 return false; 582 return true; 583 } 584 585 /* 586 * This routine is called by the ICMP module when it gets some 587 * sort of error condition. If err < 0 then the socket should 588 * be closed and the error returned to the user. If err > 0 589 * it's just the icmp type << 8 | icmp code. 590 * Header points to the ip header of the error packet. We move 591 * on past this. Then (as it used to claim before adjustment) 592 * header points to the first 8 bytes of the udp header. We need 593 * to find the appropriate port. 594 */ 595 596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 597 { 598 struct inet_sock *inet; 599 const struct iphdr *iph = (const struct iphdr *)skb->data; 600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 601 const int type = icmp_hdr(skb)->type; 602 const int code = icmp_hdr(skb)->code; 603 struct sock *sk; 604 int harderr; 605 int err; 606 struct net *net = dev_net(skb->dev); 607 608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 609 iph->saddr, uh->source, skb->dev->ifindex, 0, 610 udptable, NULL); 611 if (!sk) { 612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 613 return; /* No socket for error */ 614 } 615 616 err = 0; 617 harderr = 0; 618 inet = inet_sk(sk); 619 620 switch (type) { 621 default: 622 case ICMP_TIME_EXCEEDED: 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_SOURCE_QUENCH: 626 goto out; 627 case ICMP_PARAMETERPROB: 628 err = EPROTO; 629 harderr = 1; 630 break; 631 case ICMP_DEST_UNREACH: 632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 633 ipv4_sk_update_pmtu(skb, sk, info); 634 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 635 err = EMSGSIZE; 636 harderr = 1; 637 break; 638 } 639 goto out; 640 } 641 err = EHOSTUNREACH; 642 if (code <= NR_ICMP_UNREACH) { 643 harderr = icmp_err_convert[code].fatal; 644 err = icmp_err_convert[code].errno; 645 } 646 break; 647 case ICMP_REDIRECT: 648 ipv4_sk_redirect(skb, sk); 649 goto out; 650 } 651 652 /* 653 * RFC1122: OK. Passes ICMP errors back to application, as per 654 * 4.1.3.3. 655 */ 656 if (!inet->recverr) { 657 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 658 goto out; 659 } else 660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 661 662 sk->sk_err = err; 663 sk->sk_error_report(sk); 664 out: 665 return; 666 } 667 668 void udp_err(struct sk_buff *skb, u32 info) 669 { 670 __udp4_lib_err(skb, info, &udp_table); 671 } 672 673 /* 674 * Throw away all pending data and cancel the corking. Socket is locked. 675 */ 676 void udp_flush_pending_frames(struct sock *sk) 677 { 678 struct udp_sock *up = udp_sk(sk); 679 680 if (up->pending) { 681 up->len = 0; 682 up->pending = 0; 683 ip_flush_pending_frames(sk); 684 } 685 } 686 EXPORT_SYMBOL(udp_flush_pending_frames); 687 688 /** 689 * udp4_hwcsum - handle outgoing HW checksumming 690 * @skb: sk_buff containing the filled-in UDP header 691 * (checksum field must be zeroed out) 692 * @src: source IP address 693 * @dst: destination IP address 694 */ 695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 696 { 697 struct udphdr *uh = udp_hdr(skb); 698 int offset = skb_transport_offset(skb); 699 int len = skb->len - offset; 700 int hlen = len; 701 __wsum csum = 0; 702 703 if (!skb_has_frag_list(skb)) { 704 /* 705 * Only one fragment on the socket. 706 */ 707 skb->csum_start = skb_transport_header(skb) - skb->head; 708 skb->csum_offset = offsetof(struct udphdr, check); 709 uh->check = ~csum_tcpudp_magic(src, dst, len, 710 IPPROTO_UDP, 0); 711 } else { 712 struct sk_buff *frags; 713 714 /* 715 * HW-checksum won't work as there are two or more 716 * fragments on the socket so that all csums of sk_buffs 717 * should be together 718 */ 719 skb_walk_frags(skb, frags) { 720 csum = csum_add(csum, frags->csum); 721 hlen -= frags->len; 722 } 723 724 csum = skb_checksum(skb, offset, hlen, csum); 725 skb->ip_summed = CHECKSUM_NONE; 726 727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 728 if (uh->check == 0) 729 uh->check = CSUM_MANGLED_0; 730 } 731 } 732 EXPORT_SYMBOL_GPL(udp4_hwcsum); 733 734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 735 * for the simple case like when setting the checksum for a UDP tunnel. 736 */ 737 void udp_set_csum(bool nocheck, struct sk_buff *skb, 738 __be32 saddr, __be32 daddr, int len) 739 { 740 struct udphdr *uh = udp_hdr(skb); 741 742 if (nocheck) { 743 uh->check = 0; 744 } else if (skb_is_gso(skb)) { 745 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 747 uh->check = 0; 748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 749 if (uh->check == 0) 750 uh->check = CSUM_MANGLED_0; 751 } else { 752 skb->ip_summed = CHECKSUM_PARTIAL; 753 skb->csum_start = skb_transport_header(skb) - skb->head; 754 skb->csum_offset = offsetof(struct udphdr, check); 755 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 756 } 757 } 758 EXPORT_SYMBOL(udp_set_csum); 759 760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 761 struct inet_cork *cork) 762 { 763 struct sock *sk = skb->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 struct udphdr *uh; 766 int err = 0; 767 int is_udplite = IS_UDPLITE(sk); 768 int offset = skb_transport_offset(skb); 769 int len = skb->len - offset; 770 __wsum csum = 0; 771 772 /* 773 * Create a UDP header 774 */ 775 uh = udp_hdr(skb); 776 uh->source = inet->inet_sport; 777 uh->dest = fl4->fl4_dport; 778 uh->len = htons(len); 779 uh->check = 0; 780 781 if (cork->gso_size) { 782 const int hlen = skb_network_header_len(skb) + 783 sizeof(struct udphdr); 784 785 if (hlen + cork->gso_size > cork->fragsize) 786 return -EINVAL; 787 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 788 return -EINVAL; 789 if (sk->sk_no_check_tx) 790 return -EINVAL; 791 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite) 792 return -EIO; 793 794 skb_shinfo(skb)->gso_size = cork->gso_size; 795 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 796 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 797 cork->gso_size); 798 goto csum_partial; 799 } 800 801 if (is_udplite) /* UDP-Lite */ 802 csum = udplite_csum(skb); 803 804 else if (sk->sk_no_check_tx) { /* UDP csum off */ 805 806 skb->ip_summed = CHECKSUM_NONE; 807 goto send; 808 809 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 810 csum_partial: 811 812 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 813 goto send; 814 815 } else 816 csum = udp_csum(skb); 817 818 /* add protocol-dependent pseudo-header */ 819 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 820 sk->sk_protocol, csum); 821 if (uh->check == 0) 822 uh->check = CSUM_MANGLED_0; 823 824 send: 825 err = ip_send_skb(sock_net(sk), skb); 826 if (err) { 827 if (err == -ENOBUFS && !inet->recverr) { 828 UDP_INC_STATS(sock_net(sk), 829 UDP_MIB_SNDBUFERRORS, is_udplite); 830 err = 0; 831 } 832 } else 833 UDP_INC_STATS(sock_net(sk), 834 UDP_MIB_OUTDATAGRAMS, is_udplite); 835 return err; 836 } 837 838 /* 839 * Push out all pending data as one UDP datagram. Socket is locked. 840 */ 841 int udp_push_pending_frames(struct sock *sk) 842 { 843 struct udp_sock *up = udp_sk(sk); 844 struct inet_sock *inet = inet_sk(sk); 845 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 846 struct sk_buff *skb; 847 int err = 0; 848 849 skb = ip_finish_skb(sk, fl4); 850 if (!skb) 851 goto out; 852 853 err = udp_send_skb(skb, fl4, &inet->cork.base); 854 855 out: 856 up->len = 0; 857 up->pending = 0; 858 return err; 859 } 860 EXPORT_SYMBOL(udp_push_pending_frames); 861 862 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 863 { 864 switch (cmsg->cmsg_type) { 865 case UDP_SEGMENT: 866 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 867 return -EINVAL; 868 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 869 return 0; 870 default: 871 return -EINVAL; 872 } 873 } 874 875 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 876 { 877 struct cmsghdr *cmsg; 878 bool need_ip = false; 879 int err; 880 881 for_each_cmsghdr(cmsg, msg) { 882 if (!CMSG_OK(msg, cmsg)) 883 return -EINVAL; 884 885 if (cmsg->cmsg_level != SOL_UDP) { 886 need_ip = true; 887 continue; 888 } 889 890 err = __udp_cmsg_send(cmsg, gso_size); 891 if (err) 892 return err; 893 } 894 895 return need_ip; 896 } 897 EXPORT_SYMBOL_GPL(udp_cmsg_send); 898 899 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 900 { 901 struct inet_sock *inet = inet_sk(sk); 902 struct udp_sock *up = udp_sk(sk); 903 struct flowi4 fl4_stack; 904 struct flowi4 *fl4; 905 int ulen = len; 906 struct ipcm_cookie ipc; 907 struct rtable *rt = NULL; 908 int free = 0; 909 int connected = 0; 910 __be32 daddr, faddr, saddr; 911 __be16 dport; 912 u8 tos; 913 int err, is_udplite = IS_UDPLITE(sk); 914 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 915 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 916 struct sk_buff *skb; 917 struct ip_options_data opt_copy; 918 919 if (len > 0xFFFF) 920 return -EMSGSIZE; 921 922 /* 923 * Check the flags. 924 */ 925 926 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 927 return -EOPNOTSUPP; 928 929 ipc.opt = NULL; 930 ipc.tx_flags = 0; 931 ipc.ttl = 0; 932 ipc.tos = -1; 933 934 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 935 936 fl4 = &inet->cork.fl.u.ip4; 937 if (up->pending) { 938 /* 939 * There are pending frames. 940 * The socket lock must be held while it's corked. 941 */ 942 lock_sock(sk); 943 if (likely(up->pending)) { 944 if (unlikely(up->pending != AF_INET)) { 945 release_sock(sk); 946 return -EINVAL; 947 } 948 goto do_append_data; 949 } 950 release_sock(sk); 951 } 952 ulen += sizeof(struct udphdr); 953 954 /* 955 * Get and verify the address. 956 */ 957 if (msg->msg_name) { 958 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 959 if (msg->msg_namelen < sizeof(*usin)) 960 return -EINVAL; 961 if (usin->sin_family != AF_INET) { 962 if (usin->sin_family != AF_UNSPEC) 963 return -EAFNOSUPPORT; 964 } 965 966 daddr = usin->sin_addr.s_addr; 967 dport = usin->sin_port; 968 if (dport == 0) 969 return -EINVAL; 970 } else { 971 if (sk->sk_state != TCP_ESTABLISHED) 972 return -EDESTADDRREQ; 973 daddr = inet->inet_daddr; 974 dport = inet->inet_dport; 975 /* Open fast path for connected socket. 976 Route will not be used, if at least one option is set. 977 */ 978 connected = 1; 979 } 980 981 ipc.sockc.tsflags = sk->sk_tsflags; 982 ipc.addr = inet->inet_saddr; 983 ipc.oif = sk->sk_bound_dev_if; 984 ipc.gso_size = up->gso_size; 985 986 if (msg->msg_controllen) { 987 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 988 if (err > 0) 989 err = ip_cmsg_send(sk, msg, &ipc, 990 sk->sk_family == AF_INET6); 991 if (unlikely(err < 0)) { 992 kfree(ipc.opt); 993 return err; 994 } 995 if (ipc.opt) 996 free = 1; 997 connected = 0; 998 } 999 if (!ipc.opt) { 1000 struct ip_options_rcu *inet_opt; 1001 1002 rcu_read_lock(); 1003 inet_opt = rcu_dereference(inet->inet_opt); 1004 if (inet_opt) { 1005 memcpy(&opt_copy, inet_opt, 1006 sizeof(*inet_opt) + inet_opt->opt.optlen); 1007 ipc.opt = &opt_copy.opt; 1008 } 1009 rcu_read_unlock(); 1010 } 1011 1012 saddr = ipc.addr; 1013 ipc.addr = faddr = daddr; 1014 1015 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1016 1017 if (ipc.opt && ipc.opt->opt.srr) { 1018 if (!daddr) { 1019 err = -EINVAL; 1020 goto out_free; 1021 } 1022 faddr = ipc.opt->opt.faddr; 1023 connected = 0; 1024 } 1025 tos = get_rttos(&ipc, inet); 1026 if (sock_flag(sk, SOCK_LOCALROUTE) || 1027 (msg->msg_flags & MSG_DONTROUTE) || 1028 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1029 tos |= RTO_ONLINK; 1030 connected = 0; 1031 } 1032 1033 if (ipv4_is_multicast(daddr)) { 1034 if (!ipc.oif) 1035 ipc.oif = inet->mc_index; 1036 if (!saddr) 1037 saddr = inet->mc_addr; 1038 connected = 0; 1039 } else if (!ipc.oif) { 1040 ipc.oif = inet->uc_index; 1041 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1042 /* oif is set, packet is to local broadcast and 1043 * and uc_index is set. oif is most likely set 1044 * by sk_bound_dev_if. If uc_index != oif check if the 1045 * oif is an L3 master and uc_index is an L3 slave. 1046 * If so, we want to allow the send using the uc_index. 1047 */ 1048 if (ipc.oif != inet->uc_index && 1049 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1050 inet->uc_index)) { 1051 ipc.oif = inet->uc_index; 1052 } 1053 } 1054 1055 if (connected) 1056 rt = (struct rtable *)sk_dst_check(sk, 0); 1057 1058 if (!rt) { 1059 struct net *net = sock_net(sk); 1060 __u8 flow_flags = inet_sk_flowi_flags(sk); 1061 1062 fl4 = &fl4_stack; 1063 1064 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1065 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1066 flow_flags, 1067 faddr, saddr, dport, inet->inet_sport, 1068 sk->sk_uid); 1069 1070 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1071 rt = ip_route_output_flow(net, fl4, sk); 1072 if (IS_ERR(rt)) { 1073 err = PTR_ERR(rt); 1074 rt = NULL; 1075 if (err == -ENETUNREACH) 1076 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1077 goto out; 1078 } 1079 1080 err = -EACCES; 1081 if ((rt->rt_flags & RTCF_BROADCAST) && 1082 !sock_flag(sk, SOCK_BROADCAST)) 1083 goto out; 1084 if (connected) 1085 sk_dst_set(sk, dst_clone(&rt->dst)); 1086 } 1087 1088 if (msg->msg_flags&MSG_CONFIRM) 1089 goto do_confirm; 1090 back_from_confirm: 1091 1092 saddr = fl4->saddr; 1093 if (!ipc.addr) 1094 daddr = ipc.addr = fl4->daddr; 1095 1096 /* Lockless fast path for the non-corking case. */ 1097 if (!corkreq) { 1098 struct inet_cork cork; 1099 1100 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1101 sizeof(struct udphdr), &ipc, &rt, 1102 &cork, msg->msg_flags); 1103 err = PTR_ERR(skb); 1104 if (!IS_ERR_OR_NULL(skb)) 1105 err = udp_send_skb(skb, fl4, &cork); 1106 goto out; 1107 } 1108 1109 lock_sock(sk); 1110 if (unlikely(up->pending)) { 1111 /* The socket is already corked while preparing it. */ 1112 /* ... which is an evident application bug. --ANK */ 1113 release_sock(sk); 1114 1115 net_dbg_ratelimited("socket already corked\n"); 1116 err = -EINVAL; 1117 goto out; 1118 } 1119 /* 1120 * Now cork the socket to pend data. 1121 */ 1122 fl4 = &inet->cork.fl.u.ip4; 1123 fl4->daddr = daddr; 1124 fl4->saddr = saddr; 1125 fl4->fl4_dport = dport; 1126 fl4->fl4_sport = inet->inet_sport; 1127 up->pending = AF_INET; 1128 1129 do_append_data: 1130 up->len += ulen; 1131 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1132 sizeof(struct udphdr), &ipc, &rt, 1133 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1134 if (err) 1135 udp_flush_pending_frames(sk); 1136 else if (!corkreq) 1137 err = udp_push_pending_frames(sk); 1138 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1139 up->pending = 0; 1140 release_sock(sk); 1141 1142 out: 1143 ip_rt_put(rt); 1144 out_free: 1145 if (free) 1146 kfree(ipc.opt); 1147 if (!err) 1148 return len; 1149 /* 1150 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1151 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1152 * we don't have a good statistic (IpOutDiscards but it can be too many 1153 * things). We could add another new stat but at least for now that 1154 * seems like overkill. 1155 */ 1156 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1157 UDP_INC_STATS(sock_net(sk), 1158 UDP_MIB_SNDBUFERRORS, is_udplite); 1159 } 1160 return err; 1161 1162 do_confirm: 1163 if (msg->msg_flags & MSG_PROBE) 1164 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1165 if (!(msg->msg_flags&MSG_PROBE) || len) 1166 goto back_from_confirm; 1167 err = 0; 1168 goto out; 1169 } 1170 EXPORT_SYMBOL(udp_sendmsg); 1171 1172 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1173 size_t size, int flags) 1174 { 1175 struct inet_sock *inet = inet_sk(sk); 1176 struct udp_sock *up = udp_sk(sk); 1177 int ret; 1178 1179 if (flags & MSG_SENDPAGE_NOTLAST) 1180 flags |= MSG_MORE; 1181 1182 if (!up->pending) { 1183 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1184 1185 /* Call udp_sendmsg to specify destination address which 1186 * sendpage interface can't pass. 1187 * This will succeed only when the socket is connected. 1188 */ 1189 ret = udp_sendmsg(sk, &msg, 0); 1190 if (ret < 0) 1191 return ret; 1192 } 1193 1194 lock_sock(sk); 1195 1196 if (unlikely(!up->pending)) { 1197 release_sock(sk); 1198 1199 net_dbg_ratelimited("cork failed\n"); 1200 return -EINVAL; 1201 } 1202 1203 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1204 page, offset, size, flags); 1205 if (ret == -EOPNOTSUPP) { 1206 release_sock(sk); 1207 return sock_no_sendpage(sk->sk_socket, page, offset, 1208 size, flags); 1209 } 1210 if (ret < 0) { 1211 udp_flush_pending_frames(sk); 1212 goto out; 1213 } 1214 1215 up->len += size; 1216 if (!(up->corkflag || (flags&MSG_MORE))) 1217 ret = udp_push_pending_frames(sk); 1218 if (!ret) 1219 ret = size; 1220 out: 1221 release_sock(sk); 1222 return ret; 1223 } 1224 1225 #define UDP_SKB_IS_STATELESS 0x80000000 1226 1227 static void udp_set_dev_scratch(struct sk_buff *skb) 1228 { 1229 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1230 1231 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1232 scratch->_tsize_state = skb->truesize; 1233 #if BITS_PER_LONG == 64 1234 scratch->len = skb->len; 1235 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1236 scratch->is_linear = !skb_is_nonlinear(skb); 1237 #endif 1238 /* all head states execept sp (dst, sk, nf) are always cleared by 1239 * udp_rcv() and we need to preserve secpath, if present, to eventually 1240 * process IP_CMSG_PASSSEC at recvmsg() time 1241 */ 1242 if (likely(!skb_sec_path(skb))) 1243 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1244 } 1245 1246 static int udp_skb_truesize(struct sk_buff *skb) 1247 { 1248 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1249 } 1250 1251 static bool udp_skb_has_head_state(struct sk_buff *skb) 1252 { 1253 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1254 } 1255 1256 /* fully reclaim rmem/fwd memory allocated for skb */ 1257 static void udp_rmem_release(struct sock *sk, int size, int partial, 1258 bool rx_queue_lock_held) 1259 { 1260 struct udp_sock *up = udp_sk(sk); 1261 struct sk_buff_head *sk_queue; 1262 int amt; 1263 1264 if (likely(partial)) { 1265 up->forward_deficit += size; 1266 size = up->forward_deficit; 1267 if (size < (sk->sk_rcvbuf >> 2)) 1268 return; 1269 } else { 1270 size += up->forward_deficit; 1271 } 1272 up->forward_deficit = 0; 1273 1274 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1275 * if the called don't held it already 1276 */ 1277 sk_queue = &sk->sk_receive_queue; 1278 if (!rx_queue_lock_held) 1279 spin_lock(&sk_queue->lock); 1280 1281 1282 sk->sk_forward_alloc += size; 1283 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1284 sk->sk_forward_alloc -= amt; 1285 1286 if (amt) 1287 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1288 1289 atomic_sub(size, &sk->sk_rmem_alloc); 1290 1291 /* this can save us from acquiring the rx queue lock on next receive */ 1292 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1293 1294 if (!rx_queue_lock_held) 1295 spin_unlock(&sk_queue->lock); 1296 } 1297 1298 /* Note: called with reader_queue.lock held. 1299 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1300 * This avoids a cache line miss while receive_queue lock is held. 1301 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1302 */ 1303 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1304 { 1305 prefetch(&skb->data); 1306 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1307 } 1308 EXPORT_SYMBOL(udp_skb_destructor); 1309 1310 /* as above, but the caller held the rx queue lock, too */ 1311 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1312 { 1313 prefetch(&skb->data); 1314 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1315 } 1316 1317 /* Idea of busylocks is to let producers grab an extra spinlock 1318 * to relieve pressure on the receive_queue spinlock shared by consumer. 1319 * Under flood, this means that only one producer can be in line 1320 * trying to acquire the receive_queue spinlock. 1321 * These busylock can be allocated on a per cpu manner, instead of a 1322 * per socket one (that would consume a cache line per socket) 1323 */ 1324 static int udp_busylocks_log __read_mostly; 1325 static spinlock_t *udp_busylocks __read_mostly; 1326 1327 static spinlock_t *busylock_acquire(void *ptr) 1328 { 1329 spinlock_t *busy; 1330 1331 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1332 spin_lock(busy); 1333 return busy; 1334 } 1335 1336 static void busylock_release(spinlock_t *busy) 1337 { 1338 if (busy) 1339 spin_unlock(busy); 1340 } 1341 1342 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1343 { 1344 struct sk_buff_head *list = &sk->sk_receive_queue; 1345 int rmem, delta, amt, err = -ENOMEM; 1346 spinlock_t *busy = NULL; 1347 int size; 1348 1349 /* try to avoid the costly atomic add/sub pair when the receive 1350 * queue is full; always allow at least a packet 1351 */ 1352 rmem = atomic_read(&sk->sk_rmem_alloc); 1353 if (rmem > sk->sk_rcvbuf) 1354 goto drop; 1355 1356 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1357 * having linear skbs : 1358 * - Reduce memory overhead and thus increase receive queue capacity 1359 * - Less cache line misses at copyout() time 1360 * - Less work at consume_skb() (less alien page frag freeing) 1361 */ 1362 if (rmem > (sk->sk_rcvbuf >> 1)) { 1363 skb_condense(skb); 1364 1365 busy = busylock_acquire(sk); 1366 } 1367 size = skb->truesize; 1368 udp_set_dev_scratch(skb); 1369 1370 /* we drop only if the receive buf is full and the receive 1371 * queue contains some other skb 1372 */ 1373 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1374 if (rmem > (size + sk->sk_rcvbuf)) 1375 goto uncharge_drop; 1376 1377 spin_lock(&list->lock); 1378 if (size >= sk->sk_forward_alloc) { 1379 amt = sk_mem_pages(size); 1380 delta = amt << SK_MEM_QUANTUM_SHIFT; 1381 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1382 err = -ENOBUFS; 1383 spin_unlock(&list->lock); 1384 goto uncharge_drop; 1385 } 1386 1387 sk->sk_forward_alloc += delta; 1388 } 1389 1390 sk->sk_forward_alloc -= size; 1391 1392 /* no need to setup a destructor, we will explicitly release the 1393 * forward allocated memory on dequeue 1394 */ 1395 sock_skb_set_dropcount(sk, skb); 1396 1397 __skb_queue_tail(list, skb); 1398 spin_unlock(&list->lock); 1399 1400 if (!sock_flag(sk, SOCK_DEAD)) 1401 sk->sk_data_ready(sk); 1402 1403 busylock_release(busy); 1404 return 0; 1405 1406 uncharge_drop: 1407 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1408 1409 drop: 1410 atomic_inc(&sk->sk_drops); 1411 busylock_release(busy); 1412 return err; 1413 } 1414 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1415 1416 void udp_destruct_sock(struct sock *sk) 1417 { 1418 /* reclaim completely the forward allocated memory */ 1419 struct udp_sock *up = udp_sk(sk); 1420 unsigned int total = 0; 1421 struct sk_buff *skb; 1422 1423 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1424 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1425 total += skb->truesize; 1426 kfree_skb(skb); 1427 } 1428 udp_rmem_release(sk, total, 0, true); 1429 1430 inet_sock_destruct(sk); 1431 } 1432 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1433 1434 int udp_init_sock(struct sock *sk) 1435 { 1436 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1437 sk->sk_destruct = udp_destruct_sock; 1438 return 0; 1439 } 1440 EXPORT_SYMBOL_GPL(udp_init_sock); 1441 1442 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1443 { 1444 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1445 bool slow = lock_sock_fast(sk); 1446 1447 sk_peek_offset_bwd(sk, len); 1448 unlock_sock_fast(sk, slow); 1449 } 1450 1451 if (!skb_unref(skb)) 1452 return; 1453 1454 /* In the more common cases we cleared the head states previously, 1455 * see __udp_queue_rcv_skb(). 1456 */ 1457 if (unlikely(udp_skb_has_head_state(skb))) 1458 skb_release_head_state(skb); 1459 __consume_stateless_skb(skb); 1460 } 1461 EXPORT_SYMBOL_GPL(skb_consume_udp); 1462 1463 static struct sk_buff *__first_packet_length(struct sock *sk, 1464 struct sk_buff_head *rcvq, 1465 int *total) 1466 { 1467 struct sk_buff *skb; 1468 1469 while ((skb = skb_peek(rcvq)) != NULL) { 1470 if (udp_lib_checksum_complete(skb)) { 1471 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1472 IS_UDPLITE(sk)); 1473 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1474 IS_UDPLITE(sk)); 1475 atomic_inc(&sk->sk_drops); 1476 __skb_unlink(skb, rcvq); 1477 *total += skb->truesize; 1478 kfree_skb(skb); 1479 } else { 1480 /* the csum related bits could be changed, refresh 1481 * the scratch area 1482 */ 1483 udp_set_dev_scratch(skb); 1484 break; 1485 } 1486 } 1487 return skb; 1488 } 1489 1490 /** 1491 * first_packet_length - return length of first packet in receive queue 1492 * @sk: socket 1493 * 1494 * Drops all bad checksum frames, until a valid one is found. 1495 * Returns the length of found skb, or -1 if none is found. 1496 */ 1497 static int first_packet_length(struct sock *sk) 1498 { 1499 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1500 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1501 struct sk_buff *skb; 1502 int total = 0; 1503 int res; 1504 1505 spin_lock_bh(&rcvq->lock); 1506 skb = __first_packet_length(sk, rcvq, &total); 1507 if (!skb && !skb_queue_empty(sk_queue)) { 1508 spin_lock(&sk_queue->lock); 1509 skb_queue_splice_tail_init(sk_queue, rcvq); 1510 spin_unlock(&sk_queue->lock); 1511 1512 skb = __first_packet_length(sk, rcvq, &total); 1513 } 1514 res = skb ? skb->len : -1; 1515 if (total) 1516 udp_rmem_release(sk, total, 1, false); 1517 spin_unlock_bh(&rcvq->lock); 1518 return res; 1519 } 1520 1521 /* 1522 * IOCTL requests applicable to the UDP protocol 1523 */ 1524 1525 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1526 { 1527 switch (cmd) { 1528 case SIOCOUTQ: 1529 { 1530 int amount = sk_wmem_alloc_get(sk); 1531 1532 return put_user(amount, (int __user *)arg); 1533 } 1534 1535 case SIOCINQ: 1536 { 1537 int amount = max_t(int, 0, first_packet_length(sk)); 1538 1539 return put_user(amount, (int __user *)arg); 1540 } 1541 1542 default: 1543 return -ENOIOCTLCMD; 1544 } 1545 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(udp_ioctl); 1549 1550 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1551 int noblock, int *peeked, int *off, int *err) 1552 { 1553 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1554 struct sk_buff_head *queue; 1555 struct sk_buff *last; 1556 long timeo; 1557 int error; 1558 1559 queue = &udp_sk(sk)->reader_queue; 1560 flags |= noblock ? MSG_DONTWAIT : 0; 1561 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1562 do { 1563 struct sk_buff *skb; 1564 1565 error = sock_error(sk); 1566 if (error) 1567 break; 1568 1569 error = -EAGAIN; 1570 *peeked = 0; 1571 do { 1572 spin_lock_bh(&queue->lock); 1573 skb = __skb_try_recv_from_queue(sk, queue, flags, 1574 udp_skb_destructor, 1575 peeked, off, err, 1576 &last); 1577 if (skb) { 1578 spin_unlock_bh(&queue->lock); 1579 return skb; 1580 } 1581 1582 if (skb_queue_empty(sk_queue)) { 1583 spin_unlock_bh(&queue->lock); 1584 goto busy_check; 1585 } 1586 1587 /* refill the reader queue and walk it again 1588 * keep both queues locked to avoid re-acquiring 1589 * the sk_receive_queue lock if fwd memory scheduling 1590 * is needed. 1591 */ 1592 spin_lock(&sk_queue->lock); 1593 skb_queue_splice_tail_init(sk_queue, queue); 1594 1595 skb = __skb_try_recv_from_queue(sk, queue, flags, 1596 udp_skb_dtor_locked, 1597 peeked, off, err, 1598 &last); 1599 spin_unlock(&sk_queue->lock); 1600 spin_unlock_bh(&queue->lock); 1601 if (skb) 1602 return skb; 1603 1604 busy_check: 1605 if (!sk_can_busy_loop(sk)) 1606 break; 1607 1608 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1609 } while (!skb_queue_empty(sk_queue)); 1610 1611 /* sk_queue is empty, reader_queue may contain peeked packets */ 1612 } while (timeo && 1613 !__skb_wait_for_more_packets(sk, &error, &timeo, 1614 (struct sk_buff *)sk_queue)); 1615 1616 *err = error; 1617 return NULL; 1618 } 1619 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1620 1621 /* 1622 * This should be easy, if there is something there we 1623 * return it, otherwise we block. 1624 */ 1625 1626 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1627 int flags, int *addr_len) 1628 { 1629 struct inet_sock *inet = inet_sk(sk); 1630 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1631 struct sk_buff *skb; 1632 unsigned int ulen, copied; 1633 int peeked, peeking, off; 1634 int err; 1635 int is_udplite = IS_UDPLITE(sk); 1636 bool checksum_valid = false; 1637 1638 if (flags & MSG_ERRQUEUE) 1639 return ip_recv_error(sk, msg, len, addr_len); 1640 1641 try_again: 1642 peeking = flags & MSG_PEEK; 1643 off = sk_peek_offset(sk, flags); 1644 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1645 if (!skb) 1646 return err; 1647 1648 ulen = udp_skb_len(skb); 1649 copied = len; 1650 if (copied > ulen - off) 1651 copied = ulen - off; 1652 else if (copied < ulen) 1653 msg->msg_flags |= MSG_TRUNC; 1654 1655 /* 1656 * If checksum is needed at all, try to do it while copying the 1657 * data. If the data is truncated, or if we only want a partial 1658 * coverage checksum (UDP-Lite), do it before the copy. 1659 */ 1660 1661 if (copied < ulen || peeking || 1662 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1663 checksum_valid = udp_skb_csum_unnecessary(skb) || 1664 !__udp_lib_checksum_complete(skb); 1665 if (!checksum_valid) 1666 goto csum_copy_err; 1667 } 1668 1669 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1670 if (udp_skb_is_linear(skb)) 1671 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1672 else 1673 err = skb_copy_datagram_msg(skb, off, msg, copied); 1674 } else { 1675 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1676 1677 if (err == -EINVAL) 1678 goto csum_copy_err; 1679 } 1680 1681 if (unlikely(err)) { 1682 if (!peeked) { 1683 atomic_inc(&sk->sk_drops); 1684 UDP_INC_STATS(sock_net(sk), 1685 UDP_MIB_INERRORS, is_udplite); 1686 } 1687 kfree_skb(skb); 1688 return err; 1689 } 1690 1691 if (!peeked) 1692 UDP_INC_STATS(sock_net(sk), 1693 UDP_MIB_INDATAGRAMS, is_udplite); 1694 1695 sock_recv_ts_and_drops(msg, sk, skb); 1696 1697 /* Copy the address. */ 1698 if (sin) { 1699 sin->sin_family = AF_INET; 1700 sin->sin_port = udp_hdr(skb)->source; 1701 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1702 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1703 *addr_len = sizeof(*sin); 1704 } 1705 if (inet->cmsg_flags) 1706 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1707 1708 err = copied; 1709 if (flags & MSG_TRUNC) 1710 err = ulen; 1711 1712 skb_consume_udp(sk, skb, peeking ? -err : err); 1713 return err; 1714 1715 csum_copy_err: 1716 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1717 udp_skb_destructor)) { 1718 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1719 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1720 } 1721 kfree_skb(skb); 1722 1723 /* starting over for a new packet, but check if we need to yield */ 1724 cond_resched(); 1725 msg->msg_flags &= ~MSG_TRUNC; 1726 goto try_again; 1727 } 1728 1729 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1730 { 1731 /* This check is replicated from __ip4_datagram_connect() and 1732 * intended to prevent BPF program called below from accessing bytes 1733 * that are out of the bound specified by user in addr_len. 1734 */ 1735 if (addr_len < sizeof(struct sockaddr_in)) 1736 return -EINVAL; 1737 1738 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1739 } 1740 EXPORT_SYMBOL(udp_pre_connect); 1741 1742 int __udp_disconnect(struct sock *sk, int flags) 1743 { 1744 struct inet_sock *inet = inet_sk(sk); 1745 /* 1746 * 1003.1g - break association. 1747 */ 1748 1749 sk->sk_state = TCP_CLOSE; 1750 inet->inet_daddr = 0; 1751 inet->inet_dport = 0; 1752 sock_rps_reset_rxhash(sk); 1753 sk->sk_bound_dev_if = 0; 1754 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1755 inet_reset_saddr(sk); 1756 1757 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1758 sk->sk_prot->unhash(sk); 1759 inet->inet_sport = 0; 1760 } 1761 sk_dst_reset(sk); 1762 return 0; 1763 } 1764 EXPORT_SYMBOL(__udp_disconnect); 1765 1766 int udp_disconnect(struct sock *sk, int flags) 1767 { 1768 lock_sock(sk); 1769 __udp_disconnect(sk, flags); 1770 release_sock(sk); 1771 return 0; 1772 } 1773 EXPORT_SYMBOL(udp_disconnect); 1774 1775 void udp_lib_unhash(struct sock *sk) 1776 { 1777 if (sk_hashed(sk)) { 1778 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1779 struct udp_hslot *hslot, *hslot2; 1780 1781 hslot = udp_hashslot(udptable, sock_net(sk), 1782 udp_sk(sk)->udp_port_hash); 1783 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1784 1785 spin_lock_bh(&hslot->lock); 1786 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1787 reuseport_detach_sock(sk); 1788 if (sk_del_node_init_rcu(sk)) { 1789 hslot->count--; 1790 inet_sk(sk)->inet_num = 0; 1791 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1792 1793 spin_lock(&hslot2->lock); 1794 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1795 hslot2->count--; 1796 spin_unlock(&hslot2->lock); 1797 } 1798 spin_unlock_bh(&hslot->lock); 1799 } 1800 } 1801 EXPORT_SYMBOL(udp_lib_unhash); 1802 1803 /* 1804 * inet_rcv_saddr was changed, we must rehash secondary hash 1805 */ 1806 void udp_lib_rehash(struct sock *sk, u16 newhash) 1807 { 1808 if (sk_hashed(sk)) { 1809 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1810 struct udp_hslot *hslot, *hslot2, *nhslot2; 1811 1812 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1813 nhslot2 = udp_hashslot2(udptable, newhash); 1814 udp_sk(sk)->udp_portaddr_hash = newhash; 1815 1816 if (hslot2 != nhslot2 || 1817 rcu_access_pointer(sk->sk_reuseport_cb)) { 1818 hslot = udp_hashslot(udptable, sock_net(sk), 1819 udp_sk(sk)->udp_port_hash); 1820 /* we must lock primary chain too */ 1821 spin_lock_bh(&hslot->lock); 1822 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1823 reuseport_detach_sock(sk); 1824 1825 if (hslot2 != nhslot2) { 1826 spin_lock(&hslot2->lock); 1827 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1828 hslot2->count--; 1829 spin_unlock(&hslot2->lock); 1830 1831 spin_lock(&nhslot2->lock); 1832 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1833 &nhslot2->head); 1834 nhslot2->count++; 1835 spin_unlock(&nhslot2->lock); 1836 } 1837 1838 spin_unlock_bh(&hslot->lock); 1839 } 1840 } 1841 } 1842 EXPORT_SYMBOL(udp_lib_rehash); 1843 1844 static void udp_v4_rehash(struct sock *sk) 1845 { 1846 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1847 inet_sk(sk)->inet_rcv_saddr, 1848 inet_sk(sk)->inet_num); 1849 udp_lib_rehash(sk, new_hash); 1850 } 1851 1852 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1853 { 1854 int rc; 1855 1856 if (inet_sk(sk)->inet_daddr) { 1857 sock_rps_save_rxhash(sk, skb); 1858 sk_mark_napi_id(sk, skb); 1859 sk_incoming_cpu_update(sk); 1860 } else { 1861 sk_mark_napi_id_once(sk, skb); 1862 } 1863 1864 rc = __udp_enqueue_schedule_skb(sk, skb); 1865 if (rc < 0) { 1866 int is_udplite = IS_UDPLITE(sk); 1867 1868 /* Note that an ENOMEM error is charged twice */ 1869 if (rc == -ENOMEM) 1870 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1871 is_udplite); 1872 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1873 kfree_skb(skb); 1874 trace_udp_fail_queue_rcv_skb(rc, sk); 1875 return -1; 1876 } 1877 1878 return 0; 1879 } 1880 1881 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1882 void udp_encap_enable(void) 1883 { 1884 static_branch_enable(&udp_encap_needed_key); 1885 } 1886 EXPORT_SYMBOL(udp_encap_enable); 1887 1888 /* returns: 1889 * -1: error 1890 * 0: success 1891 * >0: "udp encap" protocol resubmission 1892 * 1893 * Note that in the success and error cases, the skb is assumed to 1894 * have either been requeued or freed. 1895 */ 1896 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1897 { 1898 struct udp_sock *up = udp_sk(sk); 1899 int is_udplite = IS_UDPLITE(sk); 1900 1901 /* 1902 * Charge it to the socket, dropping if the queue is full. 1903 */ 1904 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1905 goto drop; 1906 nf_reset(skb); 1907 1908 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1909 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1910 1911 /* 1912 * This is an encapsulation socket so pass the skb to 1913 * the socket's udp_encap_rcv() hook. Otherwise, just 1914 * fall through and pass this up the UDP socket. 1915 * up->encap_rcv() returns the following value: 1916 * =0 if skb was successfully passed to the encap 1917 * handler or was discarded by it. 1918 * >0 if skb should be passed on to UDP. 1919 * <0 if skb should be resubmitted as proto -N 1920 */ 1921 1922 /* if we're overly short, let UDP handle it */ 1923 encap_rcv = READ_ONCE(up->encap_rcv); 1924 if (encap_rcv) { 1925 int ret; 1926 1927 /* Verify checksum before giving to encap */ 1928 if (udp_lib_checksum_complete(skb)) 1929 goto csum_error; 1930 1931 ret = encap_rcv(sk, skb); 1932 if (ret <= 0) { 1933 __UDP_INC_STATS(sock_net(sk), 1934 UDP_MIB_INDATAGRAMS, 1935 is_udplite); 1936 return -ret; 1937 } 1938 } 1939 1940 /* FALLTHROUGH -- it's a UDP Packet */ 1941 } 1942 1943 /* 1944 * UDP-Lite specific tests, ignored on UDP sockets 1945 */ 1946 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1947 1948 /* 1949 * MIB statistics other than incrementing the error count are 1950 * disabled for the following two types of errors: these depend 1951 * on the application settings, not on the functioning of the 1952 * protocol stack as such. 1953 * 1954 * RFC 3828 here recommends (sec 3.3): "There should also be a 1955 * way ... to ... at least let the receiving application block 1956 * delivery of packets with coverage values less than a value 1957 * provided by the application." 1958 */ 1959 if (up->pcrlen == 0) { /* full coverage was set */ 1960 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1961 UDP_SKB_CB(skb)->cscov, skb->len); 1962 goto drop; 1963 } 1964 /* The next case involves violating the min. coverage requested 1965 * by the receiver. This is subtle: if receiver wants x and x is 1966 * greater than the buffersize/MTU then receiver will complain 1967 * that it wants x while sender emits packets of smaller size y. 1968 * Therefore the above ...()->partial_cov statement is essential. 1969 */ 1970 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1971 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1972 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1973 goto drop; 1974 } 1975 } 1976 1977 prefetch(&sk->sk_rmem_alloc); 1978 if (rcu_access_pointer(sk->sk_filter) && 1979 udp_lib_checksum_complete(skb)) 1980 goto csum_error; 1981 1982 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1983 goto drop; 1984 1985 udp_csum_pull_header(skb); 1986 1987 ipv4_pktinfo_prepare(sk, skb); 1988 return __udp_queue_rcv_skb(sk, skb); 1989 1990 csum_error: 1991 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1992 drop: 1993 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1994 atomic_inc(&sk->sk_drops); 1995 kfree_skb(skb); 1996 return -1; 1997 } 1998 1999 /* For TCP sockets, sk_rx_dst is protected by socket lock 2000 * For UDP, we use xchg() to guard against concurrent changes. 2001 */ 2002 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2003 { 2004 struct dst_entry *old; 2005 2006 if (dst_hold_safe(dst)) { 2007 old = xchg(&sk->sk_rx_dst, dst); 2008 dst_release(old); 2009 return old != dst; 2010 } 2011 return false; 2012 } 2013 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2014 2015 /* 2016 * Multicasts and broadcasts go to each listener. 2017 * 2018 * Note: called only from the BH handler context. 2019 */ 2020 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2021 struct udphdr *uh, 2022 __be32 saddr, __be32 daddr, 2023 struct udp_table *udptable, 2024 int proto) 2025 { 2026 struct sock *sk, *first = NULL; 2027 unsigned short hnum = ntohs(uh->dest); 2028 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2029 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2030 unsigned int offset = offsetof(typeof(*sk), sk_node); 2031 int dif = skb->dev->ifindex; 2032 int sdif = inet_sdif(skb); 2033 struct hlist_node *node; 2034 struct sk_buff *nskb; 2035 2036 if (use_hash2) { 2037 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2038 udptable->mask; 2039 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2040 start_lookup: 2041 hslot = &udptable->hash2[hash2]; 2042 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2043 } 2044 2045 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2046 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2047 uh->source, saddr, dif, sdif, hnum)) 2048 continue; 2049 2050 if (!first) { 2051 first = sk; 2052 continue; 2053 } 2054 nskb = skb_clone(skb, GFP_ATOMIC); 2055 2056 if (unlikely(!nskb)) { 2057 atomic_inc(&sk->sk_drops); 2058 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2059 IS_UDPLITE(sk)); 2060 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2061 IS_UDPLITE(sk)); 2062 continue; 2063 } 2064 if (udp_queue_rcv_skb(sk, nskb) > 0) 2065 consume_skb(nskb); 2066 } 2067 2068 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2069 if (use_hash2 && hash2 != hash2_any) { 2070 hash2 = hash2_any; 2071 goto start_lookup; 2072 } 2073 2074 if (first) { 2075 if (udp_queue_rcv_skb(first, skb) > 0) 2076 consume_skb(skb); 2077 } else { 2078 kfree_skb(skb); 2079 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2080 proto == IPPROTO_UDPLITE); 2081 } 2082 return 0; 2083 } 2084 2085 /* Initialize UDP checksum. If exited with zero value (success), 2086 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2087 * Otherwise, csum completion requires chacksumming packet body, 2088 * including udp header and folding it to skb->csum. 2089 */ 2090 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2091 int proto) 2092 { 2093 int err; 2094 2095 UDP_SKB_CB(skb)->partial_cov = 0; 2096 UDP_SKB_CB(skb)->cscov = skb->len; 2097 2098 if (proto == IPPROTO_UDPLITE) { 2099 err = udplite_checksum_init(skb, uh); 2100 if (err) 2101 return err; 2102 2103 if (UDP_SKB_CB(skb)->partial_cov) { 2104 skb->csum = inet_compute_pseudo(skb, proto); 2105 return 0; 2106 } 2107 } 2108 2109 /* Note, we are only interested in != 0 or == 0, thus the 2110 * force to int. 2111 */ 2112 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2113 inet_compute_pseudo); 2114 } 2115 2116 /* 2117 * All we need to do is get the socket, and then do a checksum. 2118 */ 2119 2120 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2121 int proto) 2122 { 2123 struct sock *sk; 2124 struct udphdr *uh; 2125 unsigned short ulen; 2126 struct rtable *rt = skb_rtable(skb); 2127 __be32 saddr, daddr; 2128 struct net *net = dev_net(skb->dev); 2129 2130 /* 2131 * Validate the packet. 2132 */ 2133 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2134 goto drop; /* No space for header. */ 2135 2136 uh = udp_hdr(skb); 2137 ulen = ntohs(uh->len); 2138 saddr = ip_hdr(skb)->saddr; 2139 daddr = ip_hdr(skb)->daddr; 2140 2141 if (ulen > skb->len) 2142 goto short_packet; 2143 2144 if (proto == IPPROTO_UDP) { 2145 /* UDP validates ulen. */ 2146 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2147 goto short_packet; 2148 uh = udp_hdr(skb); 2149 } 2150 2151 if (udp4_csum_init(skb, uh, proto)) 2152 goto csum_error; 2153 2154 sk = skb_steal_sock(skb); 2155 if (sk) { 2156 struct dst_entry *dst = skb_dst(skb); 2157 int ret; 2158 2159 if (unlikely(sk->sk_rx_dst != dst)) 2160 udp_sk_rx_dst_set(sk, dst); 2161 2162 ret = udp_queue_rcv_skb(sk, skb); 2163 sock_put(sk); 2164 /* a return value > 0 means to resubmit the input, but 2165 * it wants the return to be -protocol, or 0 2166 */ 2167 if (ret > 0) 2168 return -ret; 2169 return 0; 2170 } 2171 2172 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2173 return __udp4_lib_mcast_deliver(net, skb, uh, 2174 saddr, daddr, udptable, proto); 2175 2176 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2177 if (sk) { 2178 int ret; 2179 2180 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2181 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2182 inet_compute_pseudo); 2183 2184 ret = udp_queue_rcv_skb(sk, skb); 2185 2186 /* a return value > 0 means to resubmit the input, but 2187 * it wants the return to be -protocol, or 0 2188 */ 2189 if (ret > 0) 2190 return -ret; 2191 return 0; 2192 } 2193 2194 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2195 goto drop; 2196 nf_reset(skb); 2197 2198 /* No socket. Drop packet silently, if checksum is wrong */ 2199 if (udp_lib_checksum_complete(skb)) 2200 goto csum_error; 2201 2202 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2203 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2204 2205 /* 2206 * Hmm. We got an UDP packet to a port to which we 2207 * don't wanna listen. Ignore it. 2208 */ 2209 kfree_skb(skb); 2210 return 0; 2211 2212 short_packet: 2213 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2214 proto == IPPROTO_UDPLITE ? "Lite" : "", 2215 &saddr, ntohs(uh->source), 2216 ulen, skb->len, 2217 &daddr, ntohs(uh->dest)); 2218 goto drop; 2219 2220 csum_error: 2221 /* 2222 * RFC1122: OK. Discards the bad packet silently (as far as 2223 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2224 */ 2225 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2226 proto == IPPROTO_UDPLITE ? "Lite" : "", 2227 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2228 ulen); 2229 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2230 drop: 2231 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2232 kfree_skb(skb); 2233 return 0; 2234 } 2235 2236 /* We can only early demux multicast if there is a single matching socket. 2237 * If more than one socket found returns NULL 2238 */ 2239 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2240 __be16 loc_port, __be32 loc_addr, 2241 __be16 rmt_port, __be32 rmt_addr, 2242 int dif, int sdif) 2243 { 2244 struct sock *sk, *result; 2245 unsigned short hnum = ntohs(loc_port); 2246 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2247 struct udp_hslot *hslot = &udp_table.hash[slot]; 2248 2249 /* Do not bother scanning a too big list */ 2250 if (hslot->count > 10) 2251 return NULL; 2252 2253 result = NULL; 2254 sk_for_each_rcu(sk, &hslot->head) { 2255 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2256 rmt_port, rmt_addr, dif, sdif, hnum)) { 2257 if (result) 2258 return NULL; 2259 result = sk; 2260 } 2261 } 2262 2263 return result; 2264 } 2265 2266 /* For unicast we should only early demux connected sockets or we can 2267 * break forwarding setups. The chains here can be long so only check 2268 * if the first socket is an exact match and if not move on. 2269 */ 2270 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2271 __be16 loc_port, __be32 loc_addr, 2272 __be16 rmt_port, __be32 rmt_addr, 2273 int dif, int sdif) 2274 { 2275 unsigned short hnum = ntohs(loc_port); 2276 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2277 unsigned int slot2 = hash2 & udp_table.mask; 2278 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2279 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2280 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2281 struct sock *sk; 2282 2283 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2284 if (INET_MATCH(sk, net, acookie, rmt_addr, 2285 loc_addr, ports, dif, sdif)) 2286 return sk; 2287 /* Only check first socket in chain */ 2288 break; 2289 } 2290 return NULL; 2291 } 2292 2293 int udp_v4_early_demux(struct sk_buff *skb) 2294 { 2295 struct net *net = dev_net(skb->dev); 2296 struct in_device *in_dev = NULL; 2297 const struct iphdr *iph; 2298 const struct udphdr *uh; 2299 struct sock *sk = NULL; 2300 struct dst_entry *dst; 2301 int dif = skb->dev->ifindex; 2302 int sdif = inet_sdif(skb); 2303 int ours; 2304 2305 /* validate the packet */ 2306 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2307 return 0; 2308 2309 iph = ip_hdr(skb); 2310 uh = udp_hdr(skb); 2311 2312 if (skb->pkt_type == PACKET_MULTICAST) { 2313 in_dev = __in_dev_get_rcu(skb->dev); 2314 2315 if (!in_dev) 2316 return 0; 2317 2318 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2319 iph->protocol); 2320 if (!ours) 2321 return 0; 2322 2323 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2324 uh->source, iph->saddr, 2325 dif, sdif); 2326 } else if (skb->pkt_type == PACKET_HOST) { 2327 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2328 uh->source, iph->saddr, dif, sdif); 2329 } 2330 2331 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2332 return 0; 2333 2334 skb->sk = sk; 2335 skb->destructor = sock_efree; 2336 dst = READ_ONCE(sk->sk_rx_dst); 2337 2338 if (dst) 2339 dst = dst_check(dst, 0); 2340 if (dst) { 2341 u32 itag = 0; 2342 2343 /* set noref for now. 2344 * any place which wants to hold dst has to call 2345 * dst_hold_safe() 2346 */ 2347 skb_dst_set_noref(skb, dst); 2348 2349 /* for unconnected multicast sockets we need to validate 2350 * the source on each packet 2351 */ 2352 if (!inet_sk(sk)->inet_daddr && in_dev) 2353 return ip_mc_validate_source(skb, iph->daddr, 2354 iph->saddr, iph->tos, 2355 skb->dev, in_dev, &itag); 2356 } 2357 return 0; 2358 } 2359 2360 int udp_rcv(struct sk_buff *skb) 2361 { 2362 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2363 } 2364 2365 void udp_destroy_sock(struct sock *sk) 2366 { 2367 struct udp_sock *up = udp_sk(sk); 2368 bool slow = lock_sock_fast(sk); 2369 udp_flush_pending_frames(sk); 2370 unlock_sock_fast(sk, slow); 2371 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2372 void (*encap_destroy)(struct sock *sk); 2373 encap_destroy = READ_ONCE(up->encap_destroy); 2374 if (encap_destroy) 2375 encap_destroy(sk); 2376 } 2377 } 2378 2379 /* 2380 * Socket option code for UDP 2381 */ 2382 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2383 char __user *optval, unsigned int optlen, 2384 int (*push_pending_frames)(struct sock *)) 2385 { 2386 struct udp_sock *up = udp_sk(sk); 2387 int val, valbool; 2388 int err = 0; 2389 int is_udplite = IS_UDPLITE(sk); 2390 2391 if (optlen < sizeof(int)) 2392 return -EINVAL; 2393 2394 if (get_user(val, (int __user *)optval)) 2395 return -EFAULT; 2396 2397 valbool = val ? 1 : 0; 2398 2399 switch (optname) { 2400 case UDP_CORK: 2401 if (val != 0) { 2402 up->corkflag = 1; 2403 } else { 2404 up->corkflag = 0; 2405 lock_sock(sk); 2406 push_pending_frames(sk); 2407 release_sock(sk); 2408 } 2409 break; 2410 2411 case UDP_ENCAP: 2412 switch (val) { 2413 case 0: 2414 case UDP_ENCAP_ESPINUDP: 2415 case UDP_ENCAP_ESPINUDP_NON_IKE: 2416 up->encap_rcv = xfrm4_udp_encap_rcv; 2417 /* FALLTHROUGH */ 2418 case UDP_ENCAP_L2TPINUDP: 2419 up->encap_type = val; 2420 udp_encap_enable(); 2421 break; 2422 default: 2423 err = -ENOPROTOOPT; 2424 break; 2425 } 2426 break; 2427 2428 case UDP_NO_CHECK6_TX: 2429 up->no_check6_tx = valbool; 2430 break; 2431 2432 case UDP_NO_CHECK6_RX: 2433 up->no_check6_rx = valbool; 2434 break; 2435 2436 case UDP_SEGMENT: 2437 if (val < 0 || val > USHRT_MAX) 2438 return -EINVAL; 2439 up->gso_size = val; 2440 break; 2441 2442 /* 2443 * UDP-Lite's partial checksum coverage (RFC 3828). 2444 */ 2445 /* The sender sets actual checksum coverage length via this option. 2446 * The case coverage > packet length is handled by send module. */ 2447 case UDPLITE_SEND_CSCOV: 2448 if (!is_udplite) /* Disable the option on UDP sockets */ 2449 return -ENOPROTOOPT; 2450 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2451 val = 8; 2452 else if (val > USHRT_MAX) 2453 val = USHRT_MAX; 2454 up->pcslen = val; 2455 up->pcflag |= UDPLITE_SEND_CC; 2456 break; 2457 2458 /* The receiver specifies a minimum checksum coverage value. To make 2459 * sense, this should be set to at least 8 (as done below). If zero is 2460 * used, this again means full checksum coverage. */ 2461 case UDPLITE_RECV_CSCOV: 2462 if (!is_udplite) /* Disable the option on UDP sockets */ 2463 return -ENOPROTOOPT; 2464 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2465 val = 8; 2466 else if (val > USHRT_MAX) 2467 val = USHRT_MAX; 2468 up->pcrlen = val; 2469 up->pcflag |= UDPLITE_RECV_CC; 2470 break; 2471 2472 default: 2473 err = -ENOPROTOOPT; 2474 break; 2475 } 2476 2477 return err; 2478 } 2479 EXPORT_SYMBOL(udp_lib_setsockopt); 2480 2481 int udp_setsockopt(struct sock *sk, int level, int optname, 2482 char __user *optval, unsigned int optlen) 2483 { 2484 if (level == SOL_UDP || level == SOL_UDPLITE) 2485 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2486 udp_push_pending_frames); 2487 return ip_setsockopt(sk, level, optname, optval, optlen); 2488 } 2489 2490 #ifdef CONFIG_COMPAT 2491 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2492 char __user *optval, unsigned int optlen) 2493 { 2494 if (level == SOL_UDP || level == SOL_UDPLITE) 2495 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2496 udp_push_pending_frames); 2497 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2498 } 2499 #endif 2500 2501 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2502 char __user *optval, int __user *optlen) 2503 { 2504 struct udp_sock *up = udp_sk(sk); 2505 int val, len; 2506 2507 if (get_user(len, optlen)) 2508 return -EFAULT; 2509 2510 len = min_t(unsigned int, len, sizeof(int)); 2511 2512 if (len < 0) 2513 return -EINVAL; 2514 2515 switch (optname) { 2516 case UDP_CORK: 2517 val = up->corkflag; 2518 break; 2519 2520 case UDP_ENCAP: 2521 val = up->encap_type; 2522 break; 2523 2524 case UDP_NO_CHECK6_TX: 2525 val = up->no_check6_tx; 2526 break; 2527 2528 case UDP_NO_CHECK6_RX: 2529 val = up->no_check6_rx; 2530 break; 2531 2532 case UDP_SEGMENT: 2533 val = up->gso_size; 2534 break; 2535 2536 /* The following two cannot be changed on UDP sockets, the return is 2537 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2538 case UDPLITE_SEND_CSCOV: 2539 val = up->pcslen; 2540 break; 2541 2542 case UDPLITE_RECV_CSCOV: 2543 val = up->pcrlen; 2544 break; 2545 2546 default: 2547 return -ENOPROTOOPT; 2548 } 2549 2550 if (put_user(len, optlen)) 2551 return -EFAULT; 2552 if (copy_to_user(optval, &val, len)) 2553 return -EFAULT; 2554 return 0; 2555 } 2556 EXPORT_SYMBOL(udp_lib_getsockopt); 2557 2558 int udp_getsockopt(struct sock *sk, int level, int optname, 2559 char __user *optval, int __user *optlen) 2560 { 2561 if (level == SOL_UDP || level == SOL_UDPLITE) 2562 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2563 return ip_getsockopt(sk, level, optname, optval, optlen); 2564 } 2565 2566 #ifdef CONFIG_COMPAT 2567 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2568 char __user *optval, int __user *optlen) 2569 { 2570 if (level == SOL_UDP || level == SOL_UDPLITE) 2571 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2572 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2573 } 2574 #endif 2575 /** 2576 * udp_poll - wait for a UDP event. 2577 * @file - file struct 2578 * @sock - socket 2579 * @wait - poll table 2580 * 2581 * This is same as datagram poll, except for the special case of 2582 * blocking sockets. If application is using a blocking fd 2583 * and a packet with checksum error is in the queue; 2584 * then it could get return from select indicating data available 2585 * but then block when reading it. Add special case code 2586 * to work around these arguably broken applications. 2587 */ 2588 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2589 { 2590 __poll_t mask = datagram_poll(file, sock, wait); 2591 struct sock *sk = sock->sk; 2592 2593 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2594 mask |= EPOLLIN | EPOLLRDNORM; 2595 2596 /* Check for false positives due to checksum errors */ 2597 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2598 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2599 mask &= ~(EPOLLIN | EPOLLRDNORM); 2600 2601 return mask; 2602 2603 } 2604 EXPORT_SYMBOL(udp_poll); 2605 2606 int udp_abort(struct sock *sk, int err) 2607 { 2608 lock_sock(sk); 2609 2610 sk->sk_err = err; 2611 sk->sk_error_report(sk); 2612 __udp_disconnect(sk, 0); 2613 2614 release_sock(sk); 2615 2616 return 0; 2617 } 2618 EXPORT_SYMBOL_GPL(udp_abort); 2619 2620 struct proto udp_prot = { 2621 .name = "UDP", 2622 .owner = THIS_MODULE, 2623 .close = udp_lib_close, 2624 .pre_connect = udp_pre_connect, 2625 .connect = ip4_datagram_connect, 2626 .disconnect = udp_disconnect, 2627 .ioctl = udp_ioctl, 2628 .init = udp_init_sock, 2629 .destroy = udp_destroy_sock, 2630 .setsockopt = udp_setsockopt, 2631 .getsockopt = udp_getsockopt, 2632 .sendmsg = udp_sendmsg, 2633 .recvmsg = udp_recvmsg, 2634 .sendpage = udp_sendpage, 2635 .release_cb = ip4_datagram_release_cb, 2636 .hash = udp_lib_hash, 2637 .unhash = udp_lib_unhash, 2638 .rehash = udp_v4_rehash, 2639 .get_port = udp_v4_get_port, 2640 .memory_allocated = &udp_memory_allocated, 2641 .sysctl_mem = sysctl_udp_mem, 2642 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2643 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2644 .obj_size = sizeof(struct udp_sock), 2645 .h.udp_table = &udp_table, 2646 #ifdef CONFIG_COMPAT 2647 .compat_setsockopt = compat_udp_setsockopt, 2648 .compat_getsockopt = compat_udp_getsockopt, 2649 #endif 2650 .diag_destroy = udp_abort, 2651 }; 2652 EXPORT_SYMBOL(udp_prot); 2653 2654 /* ------------------------------------------------------------------------ */ 2655 #ifdef CONFIG_PROC_FS 2656 2657 static struct sock *udp_get_first(struct seq_file *seq, int start) 2658 { 2659 struct sock *sk; 2660 struct udp_iter_state *state = seq->private; 2661 struct net *net = seq_file_net(seq); 2662 2663 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2664 ++state->bucket) { 2665 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2666 2667 if (hlist_empty(&hslot->head)) 2668 continue; 2669 2670 spin_lock_bh(&hslot->lock); 2671 sk_for_each(sk, &hslot->head) { 2672 if (!net_eq(sock_net(sk), net)) 2673 continue; 2674 if (sk->sk_family == state->family) 2675 goto found; 2676 } 2677 spin_unlock_bh(&hslot->lock); 2678 } 2679 sk = NULL; 2680 found: 2681 return sk; 2682 } 2683 2684 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2685 { 2686 struct udp_iter_state *state = seq->private; 2687 struct net *net = seq_file_net(seq); 2688 2689 do { 2690 sk = sk_next(sk); 2691 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2692 2693 if (!sk) { 2694 if (state->bucket <= state->udp_table->mask) 2695 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2696 return udp_get_first(seq, state->bucket + 1); 2697 } 2698 return sk; 2699 } 2700 2701 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2702 { 2703 struct sock *sk = udp_get_first(seq, 0); 2704 2705 if (sk) 2706 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2707 --pos; 2708 return pos ? NULL : sk; 2709 } 2710 2711 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2712 { 2713 struct udp_iter_state *state = seq->private; 2714 state->bucket = MAX_UDP_PORTS; 2715 2716 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2717 } 2718 2719 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2720 { 2721 struct sock *sk; 2722 2723 if (v == SEQ_START_TOKEN) 2724 sk = udp_get_idx(seq, 0); 2725 else 2726 sk = udp_get_next(seq, v); 2727 2728 ++*pos; 2729 return sk; 2730 } 2731 2732 static void udp_seq_stop(struct seq_file *seq, void *v) 2733 { 2734 struct udp_iter_state *state = seq->private; 2735 2736 if (state->bucket <= state->udp_table->mask) 2737 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2738 } 2739 2740 int udp_seq_open(struct inode *inode, struct file *file) 2741 { 2742 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2743 struct udp_iter_state *s; 2744 int err; 2745 2746 err = seq_open_net(inode, file, &afinfo->seq_ops, 2747 sizeof(struct udp_iter_state)); 2748 if (err < 0) 2749 return err; 2750 2751 s = ((struct seq_file *)file->private_data)->private; 2752 s->family = afinfo->family; 2753 s->udp_table = afinfo->udp_table; 2754 return err; 2755 } 2756 EXPORT_SYMBOL(udp_seq_open); 2757 2758 /* ------------------------------------------------------------------------ */ 2759 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2760 { 2761 struct proc_dir_entry *p; 2762 int rc = 0; 2763 2764 afinfo->seq_ops.start = udp_seq_start; 2765 afinfo->seq_ops.next = udp_seq_next; 2766 afinfo->seq_ops.stop = udp_seq_stop; 2767 2768 p = proc_create_data(afinfo->name, 0444, net->proc_net, 2769 afinfo->seq_fops, afinfo); 2770 if (!p) 2771 rc = -ENOMEM; 2772 return rc; 2773 } 2774 EXPORT_SYMBOL(udp_proc_register); 2775 2776 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2777 { 2778 remove_proc_entry(afinfo->name, net->proc_net); 2779 } 2780 EXPORT_SYMBOL(udp_proc_unregister); 2781 2782 /* ------------------------------------------------------------------------ */ 2783 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2784 int bucket) 2785 { 2786 struct inet_sock *inet = inet_sk(sp); 2787 __be32 dest = inet->inet_daddr; 2788 __be32 src = inet->inet_rcv_saddr; 2789 __u16 destp = ntohs(inet->inet_dport); 2790 __u16 srcp = ntohs(inet->inet_sport); 2791 2792 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2793 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2794 bucket, src, srcp, dest, destp, sp->sk_state, 2795 sk_wmem_alloc_get(sp), 2796 sk_rmem_alloc_get(sp), 2797 0, 0L, 0, 2798 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2799 0, sock_i_ino(sp), 2800 refcount_read(&sp->sk_refcnt), sp, 2801 atomic_read(&sp->sk_drops)); 2802 } 2803 2804 int udp4_seq_show(struct seq_file *seq, void *v) 2805 { 2806 seq_setwidth(seq, 127); 2807 if (v == SEQ_START_TOKEN) 2808 seq_puts(seq, " sl local_address rem_address st tx_queue " 2809 "rx_queue tr tm->when retrnsmt uid timeout " 2810 "inode ref pointer drops"); 2811 else { 2812 struct udp_iter_state *state = seq->private; 2813 2814 udp4_format_sock(v, seq, state->bucket); 2815 } 2816 seq_pad(seq, '\n'); 2817 return 0; 2818 } 2819 2820 static const struct file_operations udp_afinfo_seq_fops = { 2821 .open = udp_seq_open, 2822 .read = seq_read, 2823 .llseek = seq_lseek, 2824 .release = seq_release_net 2825 }; 2826 2827 /* ------------------------------------------------------------------------ */ 2828 static struct udp_seq_afinfo udp4_seq_afinfo = { 2829 .name = "udp", 2830 .family = AF_INET, 2831 .udp_table = &udp_table, 2832 .seq_fops = &udp_afinfo_seq_fops, 2833 .seq_ops = { 2834 .show = udp4_seq_show, 2835 }, 2836 }; 2837 2838 static int __net_init udp4_proc_init_net(struct net *net) 2839 { 2840 return udp_proc_register(net, &udp4_seq_afinfo); 2841 } 2842 2843 static void __net_exit udp4_proc_exit_net(struct net *net) 2844 { 2845 udp_proc_unregister(net, &udp4_seq_afinfo); 2846 } 2847 2848 static struct pernet_operations udp4_net_ops = { 2849 .init = udp4_proc_init_net, 2850 .exit = udp4_proc_exit_net, 2851 }; 2852 2853 int __init udp4_proc_init(void) 2854 { 2855 return register_pernet_subsys(&udp4_net_ops); 2856 } 2857 2858 void udp4_proc_exit(void) 2859 { 2860 unregister_pernet_subsys(&udp4_net_ops); 2861 } 2862 #endif /* CONFIG_PROC_FS */ 2863 2864 static __initdata unsigned long uhash_entries; 2865 static int __init set_uhash_entries(char *str) 2866 { 2867 ssize_t ret; 2868 2869 if (!str) 2870 return 0; 2871 2872 ret = kstrtoul(str, 0, &uhash_entries); 2873 if (ret) 2874 return 0; 2875 2876 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2877 uhash_entries = UDP_HTABLE_SIZE_MIN; 2878 return 1; 2879 } 2880 __setup("uhash_entries=", set_uhash_entries); 2881 2882 void __init udp_table_init(struct udp_table *table, const char *name) 2883 { 2884 unsigned int i; 2885 2886 table->hash = alloc_large_system_hash(name, 2887 2 * sizeof(struct udp_hslot), 2888 uhash_entries, 2889 21, /* one slot per 2 MB */ 2890 0, 2891 &table->log, 2892 &table->mask, 2893 UDP_HTABLE_SIZE_MIN, 2894 64 * 1024); 2895 2896 table->hash2 = table->hash + (table->mask + 1); 2897 for (i = 0; i <= table->mask; i++) { 2898 INIT_HLIST_HEAD(&table->hash[i].head); 2899 table->hash[i].count = 0; 2900 spin_lock_init(&table->hash[i].lock); 2901 } 2902 for (i = 0; i <= table->mask; i++) { 2903 INIT_HLIST_HEAD(&table->hash2[i].head); 2904 table->hash2[i].count = 0; 2905 spin_lock_init(&table->hash2[i].lock); 2906 } 2907 } 2908 2909 u32 udp_flow_hashrnd(void) 2910 { 2911 static u32 hashrnd __read_mostly; 2912 2913 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2914 2915 return hashrnd; 2916 } 2917 EXPORT_SYMBOL(udp_flow_hashrnd); 2918 2919 static void __udp_sysctl_init(struct net *net) 2920 { 2921 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2922 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2923 2924 #ifdef CONFIG_NET_L3_MASTER_DEV 2925 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2926 #endif 2927 } 2928 2929 static int __net_init udp_sysctl_init(struct net *net) 2930 { 2931 __udp_sysctl_init(net); 2932 return 0; 2933 } 2934 2935 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2936 .init = udp_sysctl_init, 2937 }; 2938 2939 void __init udp_init(void) 2940 { 2941 unsigned long limit; 2942 unsigned int i; 2943 2944 udp_table_init(&udp_table, "UDP"); 2945 limit = nr_free_buffer_pages() / 8; 2946 limit = max(limit, 128UL); 2947 sysctl_udp_mem[0] = limit / 4 * 3; 2948 sysctl_udp_mem[1] = limit; 2949 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2950 2951 __udp_sysctl_init(&init_net); 2952 2953 /* 16 spinlocks per cpu */ 2954 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2955 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2956 GFP_KERNEL); 2957 if (!udp_busylocks) 2958 panic("UDP: failed to alloc udp_busylocks\n"); 2959 for (i = 0; i < (1U << udp_busylocks_log); i++) 2960 spin_lock_init(udp_busylocks + i); 2961 2962 if (register_pernet_subsys(&udp_sysctl_ops)) 2963 panic("UDP: failed to init sysctl parameters.\n"); 2964 } 2965