1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <trace/events/skb.h> 110 #include <net/busy_poll.h> 111 #include "udp_impl.h" 112 #include <net/sock_reuseport.h> 113 #include <net/addrconf.h> 114 #include <net/udp_tunnel.h> 115 116 struct udp_table udp_table __read_mostly; 117 EXPORT_SYMBOL(udp_table); 118 119 long sysctl_udp_mem[3] __read_mostly; 120 EXPORT_SYMBOL(sysctl_udp_mem); 121 122 atomic_long_t udp_memory_allocated; 123 EXPORT_SYMBOL(udp_memory_allocated); 124 125 #define MAX_UDP_PORTS 65536 126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 127 128 static int udp_lib_lport_inuse(struct net *net, __u16 num, 129 const struct udp_hslot *hslot, 130 unsigned long *bitmap, 131 struct sock *sk, unsigned int log) 132 { 133 struct sock *sk2; 134 kuid_t uid = sock_i_uid(sk); 135 136 sk_for_each(sk2, &hslot->head) { 137 if (net_eq(sock_net(sk2), net) && 138 sk2 != sk && 139 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 140 (!sk2->sk_reuse || !sk->sk_reuse) && 141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 142 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 143 inet_rcv_saddr_equal(sk, sk2, true)) { 144 if (sk2->sk_reuseport && sk->sk_reuseport && 145 !rcu_access_pointer(sk->sk_reuseport_cb) && 146 uid_eq(uid, sock_i_uid(sk2))) { 147 if (!bitmap) 148 return 0; 149 } else { 150 if (!bitmap) 151 return 1; 152 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 153 bitmap); 154 } 155 } 156 } 157 return 0; 158 } 159 160 /* 161 * Note: we still hold spinlock of primary hash chain, so no other writer 162 * can insert/delete a socket with local_port == num 163 */ 164 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 165 struct udp_hslot *hslot2, 166 struct sock *sk) 167 { 168 struct sock *sk2; 169 kuid_t uid = sock_i_uid(sk); 170 int res = 0; 171 172 spin_lock(&hslot2->lock); 173 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 174 if (net_eq(sock_net(sk2), net) && 175 sk2 != sk && 176 (udp_sk(sk2)->udp_port_hash == num) && 177 (!sk2->sk_reuse || !sk->sk_reuse) && 178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 180 inet_rcv_saddr_equal(sk, sk2, true)) { 181 if (sk2->sk_reuseport && sk->sk_reuseport && 182 !rcu_access_pointer(sk->sk_reuseport_cb) && 183 uid_eq(uid, sock_i_uid(sk2))) { 184 res = 0; 185 } else { 186 res = 1; 187 } 188 break; 189 } 190 } 191 spin_unlock(&hslot2->lock); 192 return res; 193 } 194 195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 196 { 197 struct net *net = sock_net(sk); 198 kuid_t uid = sock_i_uid(sk); 199 struct sock *sk2; 200 201 sk_for_each(sk2, &hslot->head) { 202 if (net_eq(sock_net(sk2), net) && 203 sk2 != sk && 204 sk2->sk_family == sk->sk_family && 205 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 206 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 207 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 208 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 209 inet_rcv_saddr_equal(sk, sk2, false)) { 210 return reuseport_add_sock(sk, sk2, 211 inet_rcv_saddr_any(sk)); 212 } 213 } 214 215 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 216 } 217 218 /** 219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 220 * 221 * @sk: socket struct in question 222 * @snum: port number to look up 223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 224 * with NULL address 225 */ 226 int udp_lib_get_port(struct sock *sk, unsigned short snum, 227 unsigned int hash2_nulladdr) 228 { 229 struct udp_hslot *hslot, *hslot2; 230 struct udp_table *udptable = sk->sk_prot->h.udp_table; 231 int error = 1; 232 struct net *net = sock_net(sk); 233 234 if (!snum) { 235 int low, high, remaining; 236 unsigned int rand; 237 unsigned short first, last; 238 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 239 240 inet_get_local_port_range(net, &low, &high); 241 remaining = (high - low) + 1; 242 243 rand = prandom_u32(); 244 first = reciprocal_scale(rand, remaining) + low; 245 /* 246 * force rand to be an odd multiple of UDP_HTABLE_SIZE 247 */ 248 rand = (rand | 1) * (udptable->mask + 1); 249 last = first + udptable->mask + 1; 250 do { 251 hslot = udp_hashslot(udptable, net, first); 252 bitmap_zero(bitmap, PORTS_PER_CHAIN); 253 spin_lock_bh(&hslot->lock); 254 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 255 udptable->log); 256 257 snum = first; 258 /* 259 * Iterate on all possible values of snum for this hash. 260 * Using steps of an odd multiple of UDP_HTABLE_SIZE 261 * give us randomization and full range coverage. 262 */ 263 do { 264 if (low <= snum && snum <= high && 265 !test_bit(snum >> udptable->log, bitmap) && 266 !inet_is_local_reserved_port(net, snum)) 267 goto found; 268 snum += rand; 269 } while (snum != first); 270 spin_unlock_bh(&hslot->lock); 271 cond_resched(); 272 } while (++first != last); 273 goto fail; 274 } else { 275 hslot = udp_hashslot(udptable, net, snum); 276 spin_lock_bh(&hslot->lock); 277 if (hslot->count > 10) { 278 int exist; 279 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 280 281 slot2 &= udptable->mask; 282 hash2_nulladdr &= udptable->mask; 283 284 hslot2 = udp_hashslot2(udptable, slot2); 285 if (hslot->count < hslot2->count) 286 goto scan_primary_hash; 287 288 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 289 if (!exist && (hash2_nulladdr != slot2)) { 290 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 291 exist = udp_lib_lport_inuse2(net, snum, hslot2, 292 sk); 293 } 294 if (exist) 295 goto fail_unlock; 296 else 297 goto found; 298 } 299 scan_primary_hash: 300 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 301 goto fail_unlock; 302 } 303 found: 304 inet_sk(sk)->inet_num = snum; 305 udp_sk(sk)->udp_port_hash = snum; 306 udp_sk(sk)->udp_portaddr_hash ^= snum; 307 if (sk_unhashed(sk)) { 308 if (sk->sk_reuseport && 309 udp_reuseport_add_sock(sk, hslot)) { 310 inet_sk(sk)->inet_num = 0; 311 udp_sk(sk)->udp_port_hash = 0; 312 udp_sk(sk)->udp_portaddr_hash ^= snum; 313 goto fail_unlock; 314 } 315 316 sk_add_node_rcu(sk, &hslot->head); 317 hslot->count++; 318 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 319 320 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 321 spin_lock(&hslot2->lock); 322 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 323 sk->sk_family == AF_INET6) 324 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 325 &hslot2->head); 326 else 327 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 328 &hslot2->head); 329 hslot2->count++; 330 spin_unlock(&hslot2->lock); 331 } 332 sock_set_flag(sk, SOCK_RCU_FREE); 333 error = 0; 334 fail_unlock: 335 spin_unlock_bh(&hslot->lock); 336 fail: 337 return error; 338 } 339 EXPORT_SYMBOL(udp_lib_get_port); 340 341 int udp_v4_get_port(struct sock *sk, unsigned short snum) 342 { 343 unsigned int hash2_nulladdr = 344 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 345 unsigned int hash2_partial = 346 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 347 348 /* precompute partial secondary hash */ 349 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 350 return udp_lib_get_port(sk, snum, hash2_nulladdr); 351 } 352 353 static int compute_score(struct sock *sk, struct net *net, 354 __be32 saddr, __be16 sport, 355 __be32 daddr, unsigned short hnum, 356 int dif, int sdif) 357 { 358 int score; 359 struct inet_sock *inet; 360 bool dev_match; 361 362 if (!net_eq(sock_net(sk), net) || 363 udp_sk(sk)->udp_port_hash != hnum || 364 ipv6_only_sock(sk)) 365 return -1; 366 367 if (sk->sk_rcv_saddr != daddr) 368 return -1; 369 370 score = (sk->sk_family == PF_INET) ? 2 : 1; 371 372 inet = inet_sk(sk); 373 if (inet->inet_daddr) { 374 if (inet->inet_daddr != saddr) 375 return -1; 376 score += 4; 377 } 378 379 if (inet->inet_dport) { 380 if (inet->inet_dport != sport) 381 return -1; 382 score += 4; 383 } 384 385 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 386 dif, sdif); 387 if (!dev_match) 388 return -1; 389 score += 4; 390 391 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 392 score++; 393 return score; 394 } 395 396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 397 const __u16 lport, const __be32 faddr, 398 const __be16 fport) 399 { 400 static u32 udp_ehash_secret __read_mostly; 401 402 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 403 404 return __inet_ehashfn(laddr, lport, faddr, fport, 405 udp_ehash_secret + net_hash_mix(net)); 406 } 407 408 /* called with rcu_read_lock() */ 409 static struct sock *udp4_lib_lookup2(struct net *net, 410 __be32 saddr, __be16 sport, 411 __be32 daddr, unsigned int hnum, 412 int dif, int sdif, 413 struct udp_hslot *hslot2, 414 struct sk_buff *skb) 415 { 416 struct sock *sk, *result; 417 int score, badness; 418 u32 hash = 0; 419 420 result = NULL; 421 badness = 0; 422 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 423 score = compute_score(sk, net, saddr, sport, 424 daddr, hnum, dif, sdif); 425 if (score > badness) { 426 if (sk->sk_reuseport && 427 sk->sk_state != TCP_ESTABLISHED) { 428 hash = udp_ehashfn(net, daddr, hnum, 429 saddr, sport); 430 result = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 if (result && !reuseport_has_conns(sk, false)) 433 return result; 434 } 435 badness = score; 436 result = sk; 437 } 438 } 439 return result; 440 } 441 442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 443 * harder than this. -DaveM 444 */ 445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 446 __be16 sport, __be32 daddr, __be16 dport, int dif, 447 int sdif, struct udp_table *udptable, struct sk_buff *skb) 448 { 449 struct sock *result; 450 unsigned short hnum = ntohs(dport); 451 unsigned int hash2, slot2; 452 struct udp_hslot *hslot2; 453 454 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 455 slot2 = hash2 & udptable->mask; 456 hslot2 = &udptable->hash2[slot2]; 457 458 result = udp4_lib_lookup2(net, saddr, sport, 459 daddr, hnum, dif, sdif, 460 hslot2, skb); 461 if (!result) { 462 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 463 slot2 = hash2 & udptable->mask; 464 hslot2 = &udptable->hash2[slot2]; 465 466 result = udp4_lib_lookup2(net, saddr, sport, 467 htonl(INADDR_ANY), hnum, dif, sdif, 468 hslot2, skb); 469 } 470 if (IS_ERR(result)) 471 return NULL; 472 return result; 473 } 474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 475 476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 477 __be16 sport, __be16 dport, 478 struct udp_table *udptable) 479 { 480 const struct iphdr *iph = ip_hdr(skb); 481 482 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 483 iph->daddr, dport, inet_iif(skb), 484 inet_sdif(skb), udptable, skb); 485 } 486 487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 488 __be16 sport, __be16 dport) 489 { 490 const struct iphdr *iph = ip_hdr(skb); 491 492 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 493 iph->daddr, dport, inet_iif(skb), 494 inet_sdif(skb), &udp_table, NULL); 495 } 496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 497 498 /* Must be called under rcu_read_lock(). 499 * Does increment socket refcount. 500 */ 501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 503 __be32 daddr, __be16 dport, int dif) 504 { 505 struct sock *sk; 506 507 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 508 dif, 0, &udp_table, NULL); 509 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 510 sk = NULL; 511 return sk; 512 } 513 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 514 #endif 515 516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 517 __be16 loc_port, __be32 loc_addr, 518 __be16 rmt_port, __be32 rmt_addr, 519 int dif, int sdif, unsigned short hnum) 520 { 521 struct inet_sock *inet = inet_sk(sk); 522 523 if (!net_eq(sock_net(sk), net) || 524 udp_sk(sk)->udp_port_hash != hnum || 525 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 526 (inet->inet_dport != rmt_port && inet->inet_dport) || 527 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 528 ipv6_only_sock(sk) || 529 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 530 return false; 531 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 532 return false; 533 return true; 534 } 535 536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 537 void udp_encap_enable(void) 538 { 539 static_branch_inc(&udp_encap_needed_key); 540 } 541 EXPORT_SYMBOL(udp_encap_enable); 542 543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 544 * through error handlers in encapsulations looking for a match. 545 */ 546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 547 { 548 int i; 549 550 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 551 int (*handler)(struct sk_buff *skb, u32 info); 552 const struct ip_tunnel_encap_ops *encap; 553 554 encap = rcu_dereference(iptun_encaps[i]); 555 if (!encap) 556 continue; 557 handler = encap->err_handler; 558 if (handler && !handler(skb, info)) 559 return 0; 560 } 561 562 return -ENOENT; 563 } 564 565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 566 * reversing source and destination port: this will match tunnels that force the 567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 568 * lwtunnels might actually break this assumption by being configured with 569 * different destination ports on endpoints, in this case we won't be able to 570 * trace ICMP messages back to them. 571 * 572 * If this doesn't match any socket, probe tunnels with arbitrary destination 573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 574 * we've sent packets to won't necessarily match the local destination port. 575 * 576 * Then ask the tunnel implementation to match the error against a valid 577 * association. 578 * 579 * Return an error if we can't find a match, the socket if we need further 580 * processing, zero otherwise. 581 */ 582 static struct sock *__udp4_lib_err_encap(struct net *net, 583 const struct iphdr *iph, 584 struct udphdr *uh, 585 struct udp_table *udptable, 586 struct sk_buff *skb, u32 info) 587 { 588 int network_offset, transport_offset; 589 struct sock *sk; 590 591 network_offset = skb_network_offset(skb); 592 transport_offset = skb_transport_offset(skb); 593 594 /* Network header needs to point to the outer IPv4 header inside ICMP */ 595 skb_reset_network_header(skb); 596 597 /* Transport header needs to point to the UDP header */ 598 skb_set_transport_header(skb, iph->ihl << 2); 599 600 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 601 iph->saddr, uh->dest, skb->dev->ifindex, 0, 602 udptable, NULL); 603 if (sk) { 604 int (*lookup)(struct sock *sk, struct sk_buff *skb); 605 struct udp_sock *up = udp_sk(sk); 606 607 lookup = READ_ONCE(up->encap_err_lookup); 608 if (!lookup || lookup(sk, skb)) 609 sk = NULL; 610 } 611 612 if (!sk) 613 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 614 615 skb_set_transport_header(skb, transport_offset); 616 skb_set_network_header(skb, network_offset); 617 618 return sk; 619 } 620 621 /* 622 * This routine is called by the ICMP module when it gets some 623 * sort of error condition. If err < 0 then the socket should 624 * be closed and the error returned to the user. If err > 0 625 * it's just the icmp type << 8 | icmp code. 626 * Header points to the ip header of the error packet. We move 627 * on past this. Then (as it used to claim before adjustment) 628 * header points to the first 8 bytes of the udp header. We need 629 * to find the appropriate port. 630 */ 631 632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 633 { 634 struct inet_sock *inet; 635 const struct iphdr *iph = (const struct iphdr *)skb->data; 636 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 637 const int type = icmp_hdr(skb)->type; 638 const int code = icmp_hdr(skb)->code; 639 bool tunnel = false; 640 struct sock *sk; 641 int harderr; 642 int err; 643 struct net *net = dev_net(skb->dev); 644 645 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 646 iph->saddr, uh->source, skb->dev->ifindex, 647 inet_sdif(skb), udptable, NULL); 648 if (!sk) { 649 /* No socket for error: try tunnels before discarding */ 650 sk = ERR_PTR(-ENOENT); 651 if (static_branch_unlikely(&udp_encap_needed_key)) { 652 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 653 info); 654 if (!sk) 655 return 0; 656 } 657 658 if (IS_ERR(sk)) { 659 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 660 return PTR_ERR(sk); 661 } 662 663 tunnel = true; 664 } 665 666 err = 0; 667 harderr = 0; 668 inet = inet_sk(sk); 669 670 switch (type) { 671 default: 672 case ICMP_TIME_EXCEEDED: 673 err = EHOSTUNREACH; 674 break; 675 case ICMP_SOURCE_QUENCH: 676 goto out; 677 case ICMP_PARAMETERPROB: 678 err = EPROTO; 679 harderr = 1; 680 break; 681 case ICMP_DEST_UNREACH: 682 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 683 ipv4_sk_update_pmtu(skb, sk, info); 684 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 685 err = EMSGSIZE; 686 harderr = 1; 687 break; 688 } 689 goto out; 690 } 691 err = EHOSTUNREACH; 692 if (code <= NR_ICMP_UNREACH) { 693 harderr = icmp_err_convert[code].fatal; 694 err = icmp_err_convert[code].errno; 695 } 696 break; 697 case ICMP_REDIRECT: 698 ipv4_sk_redirect(skb, sk); 699 goto out; 700 } 701 702 /* 703 * RFC1122: OK. Passes ICMP errors back to application, as per 704 * 4.1.3.3. 705 */ 706 if (tunnel) { 707 /* ...not for tunnels though: we don't have a sending socket */ 708 goto out; 709 } 710 if (!inet->recverr) { 711 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 712 goto out; 713 } else 714 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 715 716 sk->sk_err = err; 717 sk->sk_error_report(sk); 718 out: 719 return 0; 720 } 721 722 int udp_err(struct sk_buff *skb, u32 info) 723 { 724 return __udp4_lib_err(skb, info, &udp_table); 725 } 726 727 /* 728 * Throw away all pending data and cancel the corking. Socket is locked. 729 */ 730 void udp_flush_pending_frames(struct sock *sk) 731 { 732 struct udp_sock *up = udp_sk(sk); 733 734 if (up->pending) { 735 up->len = 0; 736 up->pending = 0; 737 ip_flush_pending_frames(sk); 738 } 739 } 740 EXPORT_SYMBOL(udp_flush_pending_frames); 741 742 /** 743 * udp4_hwcsum - handle outgoing HW checksumming 744 * @skb: sk_buff containing the filled-in UDP header 745 * (checksum field must be zeroed out) 746 * @src: source IP address 747 * @dst: destination IP address 748 */ 749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 750 { 751 struct udphdr *uh = udp_hdr(skb); 752 int offset = skb_transport_offset(skb); 753 int len = skb->len - offset; 754 int hlen = len; 755 __wsum csum = 0; 756 757 if (!skb_has_frag_list(skb)) { 758 /* 759 * Only one fragment on the socket. 760 */ 761 skb->csum_start = skb_transport_header(skb) - skb->head; 762 skb->csum_offset = offsetof(struct udphdr, check); 763 uh->check = ~csum_tcpudp_magic(src, dst, len, 764 IPPROTO_UDP, 0); 765 } else { 766 struct sk_buff *frags; 767 768 /* 769 * HW-checksum won't work as there are two or more 770 * fragments on the socket so that all csums of sk_buffs 771 * should be together 772 */ 773 skb_walk_frags(skb, frags) { 774 csum = csum_add(csum, frags->csum); 775 hlen -= frags->len; 776 } 777 778 csum = skb_checksum(skb, offset, hlen, csum); 779 skb->ip_summed = CHECKSUM_NONE; 780 781 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 782 if (uh->check == 0) 783 uh->check = CSUM_MANGLED_0; 784 } 785 } 786 EXPORT_SYMBOL_GPL(udp4_hwcsum); 787 788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 789 * for the simple case like when setting the checksum for a UDP tunnel. 790 */ 791 void udp_set_csum(bool nocheck, struct sk_buff *skb, 792 __be32 saddr, __be32 daddr, int len) 793 { 794 struct udphdr *uh = udp_hdr(skb); 795 796 if (nocheck) { 797 uh->check = 0; 798 } else if (skb_is_gso(skb)) { 799 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 800 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 801 uh->check = 0; 802 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 803 if (uh->check == 0) 804 uh->check = CSUM_MANGLED_0; 805 } else { 806 skb->ip_summed = CHECKSUM_PARTIAL; 807 skb->csum_start = skb_transport_header(skb) - skb->head; 808 skb->csum_offset = offsetof(struct udphdr, check); 809 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 810 } 811 } 812 EXPORT_SYMBOL(udp_set_csum); 813 814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 815 struct inet_cork *cork) 816 { 817 struct sock *sk = skb->sk; 818 struct inet_sock *inet = inet_sk(sk); 819 struct udphdr *uh; 820 int err = 0; 821 int is_udplite = IS_UDPLITE(sk); 822 int offset = skb_transport_offset(skb); 823 int len = skb->len - offset; 824 int datalen = len - sizeof(*uh); 825 __wsum csum = 0; 826 827 /* 828 * Create a UDP header 829 */ 830 uh = udp_hdr(skb); 831 uh->source = inet->inet_sport; 832 uh->dest = fl4->fl4_dport; 833 uh->len = htons(len); 834 uh->check = 0; 835 836 if (cork->gso_size) { 837 const int hlen = skb_network_header_len(skb) + 838 sizeof(struct udphdr); 839 840 if (hlen + cork->gso_size > cork->fragsize) { 841 kfree_skb(skb); 842 return -EINVAL; 843 } 844 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 845 kfree_skb(skb); 846 return -EINVAL; 847 } 848 if (sk->sk_no_check_tx) { 849 kfree_skb(skb); 850 return -EINVAL; 851 } 852 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 853 dst_xfrm(skb_dst(skb))) { 854 kfree_skb(skb); 855 return -EIO; 856 } 857 858 if (datalen > cork->gso_size) { 859 skb_shinfo(skb)->gso_size = cork->gso_size; 860 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 861 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 862 cork->gso_size); 863 } 864 goto csum_partial; 865 } 866 867 if (is_udplite) /* UDP-Lite */ 868 csum = udplite_csum(skb); 869 870 else if (sk->sk_no_check_tx) { /* UDP csum off */ 871 872 skb->ip_summed = CHECKSUM_NONE; 873 goto send; 874 875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 876 csum_partial: 877 878 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 879 goto send; 880 881 } else 882 csum = udp_csum(skb); 883 884 /* add protocol-dependent pseudo-header */ 885 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 886 sk->sk_protocol, csum); 887 if (uh->check == 0) 888 uh->check = CSUM_MANGLED_0; 889 890 send: 891 err = ip_send_skb(sock_net(sk), skb); 892 if (err) { 893 if (err == -ENOBUFS && !inet->recverr) { 894 UDP_INC_STATS(sock_net(sk), 895 UDP_MIB_SNDBUFERRORS, is_udplite); 896 err = 0; 897 } 898 } else 899 UDP_INC_STATS(sock_net(sk), 900 UDP_MIB_OUTDATAGRAMS, is_udplite); 901 return err; 902 } 903 904 /* 905 * Push out all pending data as one UDP datagram. Socket is locked. 906 */ 907 int udp_push_pending_frames(struct sock *sk) 908 { 909 struct udp_sock *up = udp_sk(sk); 910 struct inet_sock *inet = inet_sk(sk); 911 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 912 struct sk_buff *skb; 913 int err = 0; 914 915 skb = ip_finish_skb(sk, fl4); 916 if (!skb) 917 goto out; 918 919 err = udp_send_skb(skb, fl4, &inet->cork.base); 920 921 out: 922 up->len = 0; 923 up->pending = 0; 924 return err; 925 } 926 EXPORT_SYMBOL(udp_push_pending_frames); 927 928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 929 { 930 switch (cmsg->cmsg_type) { 931 case UDP_SEGMENT: 932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 933 return -EINVAL; 934 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 935 return 0; 936 default: 937 return -EINVAL; 938 } 939 } 940 941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 942 { 943 struct cmsghdr *cmsg; 944 bool need_ip = false; 945 int err; 946 947 for_each_cmsghdr(cmsg, msg) { 948 if (!CMSG_OK(msg, cmsg)) 949 return -EINVAL; 950 951 if (cmsg->cmsg_level != SOL_UDP) { 952 need_ip = true; 953 continue; 954 } 955 956 err = __udp_cmsg_send(cmsg, gso_size); 957 if (err) 958 return err; 959 } 960 961 return need_ip; 962 } 963 EXPORT_SYMBOL_GPL(udp_cmsg_send); 964 965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 966 { 967 struct inet_sock *inet = inet_sk(sk); 968 struct udp_sock *up = udp_sk(sk); 969 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 970 struct flowi4 fl4_stack; 971 struct flowi4 *fl4; 972 int ulen = len; 973 struct ipcm_cookie ipc; 974 struct rtable *rt = NULL; 975 int free = 0; 976 int connected = 0; 977 __be32 daddr, faddr, saddr; 978 __be16 dport; 979 u8 tos; 980 int err, is_udplite = IS_UDPLITE(sk); 981 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 982 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 983 struct sk_buff *skb; 984 struct ip_options_data opt_copy; 985 986 if (len > 0xFFFF) 987 return -EMSGSIZE; 988 989 /* 990 * Check the flags. 991 */ 992 993 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 994 return -EOPNOTSUPP; 995 996 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 997 998 fl4 = &inet->cork.fl.u.ip4; 999 if (up->pending) { 1000 /* 1001 * There are pending frames. 1002 * The socket lock must be held while it's corked. 1003 */ 1004 lock_sock(sk); 1005 if (likely(up->pending)) { 1006 if (unlikely(up->pending != AF_INET)) { 1007 release_sock(sk); 1008 return -EINVAL; 1009 } 1010 goto do_append_data; 1011 } 1012 release_sock(sk); 1013 } 1014 ulen += sizeof(struct udphdr); 1015 1016 /* 1017 * Get and verify the address. 1018 */ 1019 if (usin) { 1020 if (msg->msg_namelen < sizeof(*usin)) 1021 return -EINVAL; 1022 if (usin->sin_family != AF_INET) { 1023 if (usin->sin_family != AF_UNSPEC) 1024 return -EAFNOSUPPORT; 1025 } 1026 1027 daddr = usin->sin_addr.s_addr; 1028 dport = usin->sin_port; 1029 if (dport == 0) 1030 return -EINVAL; 1031 } else { 1032 if (sk->sk_state != TCP_ESTABLISHED) 1033 return -EDESTADDRREQ; 1034 daddr = inet->inet_daddr; 1035 dport = inet->inet_dport; 1036 /* Open fast path for connected socket. 1037 Route will not be used, if at least one option is set. 1038 */ 1039 connected = 1; 1040 } 1041 1042 ipcm_init_sk(&ipc, inet); 1043 ipc.gso_size = up->gso_size; 1044 1045 if (msg->msg_controllen) { 1046 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1047 if (err > 0) 1048 err = ip_cmsg_send(sk, msg, &ipc, 1049 sk->sk_family == AF_INET6); 1050 if (unlikely(err < 0)) { 1051 kfree(ipc.opt); 1052 return err; 1053 } 1054 if (ipc.opt) 1055 free = 1; 1056 connected = 0; 1057 } 1058 if (!ipc.opt) { 1059 struct ip_options_rcu *inet_opt; 1060 1061 rcu_read_lock(); 1062 inet_opt = rcu_dereference(inet->inet_opt); 1063 if (inet_opt) { 1064 memcpy(&opt_copy, inet_opt, 1065 sizeof(*inet_opt) + inet_opt->opt.optlen); 1066 ipc.opt = &opt_copy.opt; 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 if (cgroup_bpf_enabled && !connected) { 1072 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1073 (struct sockaddr *)usin, &ipc.addr); 1074 if (err) 1075 goto out_free; 1076 if (usin) { 1077 if (usin->sin_port == 0) { 1078 /* BPF program set invalid port. Reject it. */ 1079 err = -EINVAL; 1080 goto out_free; 1081 } 1082 daddr = usin->sin_addr.s_addr; 1083 dport = usin->sin_port; 1084 } 1085 } 1086 1087 saddr = ipc.addr; 1088 ipc.addr = faddr = daddr; 1089 1090 if (ipc.opt && ipc.opt->opt.srr) { 1091 if (!daddr) { 1092 err = -EINVAL; 1093 goto out_free; 1094 } 1095 faddr = ipc.opt->opt.faddr; 1096 connected = 0; 1097 } 1098 tos = get_rttos(&ipc, inet); 1099 if (sock_flag(sk, SOCK_LOCALROUTE) || 1100 (msg->msg_flags & MSG_DONTROUTE) || 1101 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1102 tos |= RTO_ONLINK; 1103 connected = 0; 1104 } 1105 1106 if (ipv4_is_multicast(daddr)) { 1107 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1108 ipc.oif = inet->mc_index; 1109 if (!saddr) 1110 saddr = inet->mc_addr; 1111 connected = 0; 1112 } else if (!ipc.oif) { 1113 ipc.oif = inet->uc_index; 1114 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1115 /* oif is set, packet is to local broadcast and 1116 * and uc_index is set. oif is most likely set 1117 * by sk_bound_dev_if. If uc_index != oif check if the 1118 * oif is an L3 master and uc_index is an L3 slave. 1119 * If so, we want to allow the send using the uc_index. 1120 */ 1121 if (ipc.oif != inet->uc_index && 1122 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1123 inet->uc_index)) { 1124 ipc.oif = inet->uc_index; 1125 } 1126 } 1127 1128 if (connected) 1129 rt = (struct rtable *)sk_dst_check(sk, 0); 1130 1131 if (!rt) { 1132 struct net *net = sock_net(sk); 1133 __u8 flow_flags = inet_sk_flowi_flags(sk); 1134 1135 fl4 = &fl4_stack; 1136 1137 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1138 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1139 flow_flags, 1140 faddr, saddr, dport, inet->inet_sport, 1141 sk->sk_uid); 1142 1143 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1144 rt = ip_route_output_flow(net, fl4, sk); 1145 if (IS_ERR(rt)) { 1146 err = PTR_ERR(rt); 1147 rt = NULL; 1148 if (err == -ENETUNREACH) 1149 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1150 goto out; 1151 } 1152 1153 err = -EACCES; 1154 if ((rt->rt_flags & RTCF_BROADCAST) && 1155 !sock_flag(sk, SOCK_BROADCAST)) 1156 goto out; 1157 if (connected) 1158 sk_dst_set(sk, dst_clone(&rt->dst)); 1159 } 1160 1161 if (msg->msg_flags&MSG_CONFIRM) 1162 goto do_confirm; 1163 back_from_confirm: 1164 1165 saddr = fl4->saddr; 1166 if (!ipc.addr) 1167 daddr = ipc.addr = fl4->daddr; 1168 1169 /* Lockless fast path for the non-corking case. */ 1170 if (!corkreq) { 1171 struct inet_cork cork; 1172 1173 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1174 sizeof(struct udphdr), &ipc, &rt, 1175 &cork, msg->msg_flags); 1176 err = PTR_ERR(skb); 1177 if (!IS_ERR_OR_NULL(skb)) 1178 err = udp_send_skb(skb, fl4, &cork); 1179 goto out; 1180 } 1181 1182 lock_sock(sk); 1183 if (unlikely(up->pending)) { 1184 /* The socket is already corked while preparing it. */ 1185 /* ... which is an evident application bug. --ANK */ 1186 release_sock(sk); 1187 1188 net_dbg_ratelimited("socket already corked\n"); 1189 err = -EINVAL; 1190 goto out; 1191 } 1192 /* 1193 * Now cork the socket to pend data. 1194 */ 1195 fl4 = &inet->cork.fl.u.ip4; 1196 fl4->daddr = daddr; 1197 fl4->saddr = saddr; 1198 fl4->fl4_dport = dport; 1199 fl4->fl4_sport = inet->inet_sport; 1200 up->pending = AF_INET; 1201 1202 do_append_data: 1203 up->len += ulen; 1204 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1205 sizeof(struct udphdr), &ipc, &rt, 1206 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1207 if (err) 1208 udp_flush_pending_frames(sk); 1209 else if (!corkreq) 1210 err = udp_push_pending_frames(sk); 1211 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1212 up->pending = 0; 1213 release_sock(sk); 1214 1215 out: 1216 ip_rt_put(rt); 1217 out_free: 1218 if (free) 1219 kfree(ipc.opt); 1220 if (!err) 1221 return len; 1222 /* 1223 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1224 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1225 * we don't have a good statistic (IpOutDiscards but it can be too many 1226 * things). We could add another new stat but at least for now that 1227 * seems like overkill. 1228 */ 1229 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1230 UDP_INC_STATS(sock_net(sk), 1231 UDP_MIB_SNDBUFERRORS, is_udplite); 1232 } 1233 return err; 1234 1235 do_confirm: 1236 if (msg->msg_flags & MSG_PROBE) 1237 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1238 if (!(msg->msg_flags&MSG_PROBE) || len) 1239 goto back_from_confirm; 1240 err = 0; 1241 goto out; 1242 } 1243 EXPORT_SYMBOL(udp_sendmsg); 1244 1245 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1246 size_t size, int flags) 1247 { 1248 struct inet_sock *inet = inet_sk(sk); 1249 struct udp_sock *up = udp_sk(sk); 1250 int ret; 1251 1252 if (flags & MSG_SENDPAGE_NOTLAST) 1253 flags |= MSG_MORE; 1254 1255 if (!up->pending) { 1256 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1257 1258 /* Call udp_sendmsg to specify destination address which 1259 * sendpage interface can't pass. 1260 * This will succeed only when the socket is connected. 1261 */ 1262 ret = udp_sendmsg(sk, &msg, 0); 1263 if (ret < 0) 1264 return ret; 1265 } 1266 1267 lock_sock(sk); 1268 1269 if (unlikely(!up->pending)) { 1270 release_sock(sk); 1271 1272 net_dbg_ratelimited("cork failed\n"); 1273 return -EINVAL; 1274 } 1275 1276 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1277 page, offset, size, flags); 1278 if (ret == -EOPNOTSUPP) { 1279 release_sock(sk); 1280 return sock_no_sendpage(sk->sk_socket, page, offset, 1281 size, flags); 1282 } 1283 if (ret < 0) { 1284 udp_flush_pending_frames(sk); 1285 goto out; 1286 } 1287 1288 up->len += size; 1289 if (!(up->corkflag || (flags&MSG_MORE))) 1290 ret = udp_push_pending_frames(sk); 1291 if (!ret) 1292 ret = size; 1293 out: 1294 release_sock(sk); 1295 return ret; 1296 } 1297 1298 #define UDP_SKB_IS_STATELESS 0x80000000 1299 1300 /* all head states (dst, sk, nf conntrack) except skb extensions are 1301 * cleared by udp_rcv(). 1302 * 1303 * We need to preserve secpath, if present, to eventually process 1304 * IP_CMSG_PASSSEC at recvmsg() time. 1305 * 1306 * Other extensions can be cleared. 1307 */ 1308 static bool udp_try_make_stateless(struct sk_buff *skb) 1309 { 1310 if (!skb_has_extensions(skb)) 1311 return true; 1312 1313 if (!secpath_exists(skb)) { 1314 skb_ext_reset(skb); 1315 return true; 1316 } 1317 1318 return false; 1319 } 1320 1321 static void udp_set_dev_scratch(struct sk_buff *skb) 1322 { 1323 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1324 1325 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1326 scratch->_tsize_state = skb->truesize; 1327 #if BITS_PER_LONG == 64 1328 scratch->len = skb->len; 1329 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1330 scratch->is_linear = !skb_is_nonlinear(skb); 1331 #endif 1332 if (udp_try_make_stateless(skb)) 1333 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1334 } 1335 1336 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1337 { 1338 /* We come here after udp_lib_checksum_complete() returned 0. 1339 * This means that __skb_checksum_complete() might have 1340 * set skb->csum_valid to 1. 1341 * On 64bit platforms, we can set csum_unnecessary 1342 * to true, but only if the skb is not shared. 1343 */ 1344 #if BITS_PER_LONG == 64 1345 if (!skb_shared(skb)) 1346 udp_skb_scratch(skb)->csum_unnecessary = true; 1347 #endif 1348 } 1349 1350 static int udp_skb_truesize(struct sk_buff *skb) 1351 { 1352 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1353 } 1354 1355 static bool udp_skb_has_head_state(struct sk_buff *skb) 1356 { 1357 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1358 } 1359 1360 /* fully reclaim rmem/fwd memory allocated for skb */ 1361 static void udp_rmem_release(struct sock *sk, int size, int partial, 1362 bool rx_queue_lock_held) 1363 { 1364 struct udp_sock *up = udp_sk(sk); 1365 struct sk_buff_head *sk_queue; 1366 int amt; 1367 1368 if (likely(partial)) { 1369 up->forward_deficit += size; 1370 size = up->forward_deficit; 1371 if (size < (sk->sk_rcvbuf >> 2) && 1372 !skb_queue_empty(&up->reader_queue)) 1373 return; 1374 } else { 1375 size += up->forward_deficit; 1376 } 1377 up->forward_deficit = 0; 1378 1379 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1380 * if the called don't held it already 1381 */ 1382 sk_queue = &sk->sk_receive_queue; 1383 if (!rx_queue_lock_held) 1384 spin_lock(&sk_queue->lock); 1385 1386 1387 sk->sk_forward_alloc += size; 1388 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1389 sk->sk_forward_alloc -= amt; 1390 1391 if (amt) 1392 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1393 1394 atomic_sub(size, &sk->sk_rmem_alloc); 1395 1396 /* this can save us from acquiring the rx queue lock on next receive */ 1397 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1398 1399 if (!rx_queue_lock_held) 1400 spin_unlock(&sk_queue->lock); 1401 } 1402 1403 /* Note: called with reader_queue.lock held. 1404 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1405 * This avoids a cache line miss while receive_queue lock is held. 1406 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1407 */ 1408 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1409 { 1410 prefetch(&skb->data); 1411 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1412 } 1413 EXPORT_SYMBOL(udp_skb_destructor); 1414 1415 /* as above, but the caller held the rx queue lock, too */ 1416 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1417 { 1418 prefetch(&skb->data); 1419 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1420 } 1421 1422 /* Idea of busylocks is to let producers grab an extra spinlock 1423 * to relieve pressure on the receive_queue spinlock shared by consumer. 1424 * Under flood, this means that only one producer can be in line 1425 * trying to acquire the receive_queue spinlock. 1426 * These busylock can be allocated on a per cpu manner, instead of a 1427 * per socket one (that would consume a cache line per socket) 1428 */ 1429 static int udp_busylocks_log __read_mostly; 1430 static spinlock_t *udp_busylocks __read_mostly; 1431 1432 static spinlock_t *busylock_acquire(void *ptr) 1433 { 1434 spinlock_t *busy; 1435 1436 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1437 spin_lock(busy); 1438 return busy; 1439 } 1440 1441 static void busylock_release(spinlock_t *busy) 1442 { 1443 if (busy) 1444 spin_unlock(busy); 1445 } 1446 1447 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1448 { 1449 struct sk_buff_head *list = &sk->sk_receive_queue; 1450 int rmem, delta, amt, err = -ENOMEM; 1451 spinlock_t *busy = NULL; 1452 int size; 1453 1454 /* try to avoid the costly atomic add/sub pair when the receive 1455 * queue is full; always allow at least a packet 1456 */ 1457 rmem = atomic_read(&sk->sk_rmem_alloc); 1458 if (rmem > sk->sk_rcvbuf) 1459 goto drop; 1460 1461 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1462 * having linear skbs : 1463 * - Reduce memory overhead and thus increase receive queue capacity 1464 * - Less cache line misses at copyout() time 1465 * - Less work at consume_skb() (less alien page frag freeing) 1466 */ 1467 if (rmem > (sk->sk_rcvbuf >> 1)) { 1468 skb_condense(skb); 1469 1470 busy = busylock_acquire(sk); 1471 } 1472 size = skb->truesize; 1473 udp_set_dev_scratch(skb); 1474 1475 /* we drop only if the receive buf is full and the receive 1476 * queue contains some other skb 1477 */ 1478 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1479 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1480 goto uncharge_drop; 1481 1482 spin_lock(&list->lock); 1483 if (size >= sk->sk_forward_alloc) { 1484 amt = sk_mem_pages(size); 1485 delta = amt << SK_MEM_QUANTUM_SHIFT; 1486 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1487 err = -ENOBUFS; 1488 spin_unlock(&list->lock); 1489 goto uncharge_drop; 1490 } 1491 1492 sk->sk_forward_alloc += delta; 1493 } 1494 1495 sk->sk_forward_alloc -= size; 1496 1497 /* no need to setup a destructor, we will explicitly release the 1498 * forward allocated memory on dequeue 1499 */ 1500 sock_skb_set_dropcount(sk, skb); 1501 1502 __skb_queue_tail(list, skb); 1503 spin_unlock(&list->lock); 1504 1505 if (!sock_flag(sk, SOCK_DEAD)) 1506 sk->sk_data_ready(sk); 1507 1508 busylock_release(busy); 1509 return 0; 1510 1511 uncharge_drop: 1512 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1513 1514 drop: 1515 atomic_inc(&sk->sk_drops); 1516 busylock_release(busy); 1517 return err; 1518 } 1519 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1520 1521 void udp_destruct_sock(struct sock *sk) 1522 { 1523 /* reclaim completely the forward allocated memory */ 1524 struct udp_sock *up = udp_sk(sk); 1525 unsigned int total = 0; 1526 struct sk_buff *skb; 1527 1528 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1529 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1530 total += skb->truesize; 1531 kfree_skb(skb); 1532 } 1533 udp_rmem_release(sk, total, 0, true); 1534 1535 inet_sock_destruct(sk); 1536 } 1537 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1538 1539 int udp_init_sock(struct sock *sk) 1540 { 1541 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1542 sk->sk_destruct = udp_destruct_sock; 1543 return 0; 1544 } 1545 EXPORT_SYMBOL_GPL(udp_init_sock); 1546 1547 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1548 { 1549 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1550 bool slow = lock_sock_fast(sk); 1551 1552 sk_peek_offset_bwd(sk, len); 1553 unlock_sock_fast(sk, slow); 1554 } 1555 1556 if (!skb_unref(skb)) 1557 return; 1558 1559 /* In the more common cases we cleared the head states previously, 1560 * see __udp_queue_rcv_skb(). 1561 */ 1562 if (unlikely(udp_skb_has_head_state(skb))) 1563 skb_release_head_state(skb); 1564 __consume_stateless_skb(skb); 1565 } 1566 EXPORT_SYMBOL_GPL(skb_consume_udp); 1567 1568 static struct sk_buff *__first_packet_length(struct sock *sk, 1569 struct sk_buff_head *rcvq, 1570 int *total) 1571 { 1572 struct sk_buff *skb; 1573 1574 while ((skb = skb_peek(rcvq)) != NULL) { 1575 if (udp_lib_checksum_complete(skb)) { 1576 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1577 IS_UDPLITE(sk)); 1578 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1579 IS_UDPLITE(sk)); 1580 atomic_inc(&sk->sk_drops); 1581 __skb_unlink(skb, rcvq); 1582 *total += skb->truesize; 1583 kfree_skb(skb); 1584 } else { 1585 udp_skb_csum_unnecessary_set(skb); 1586 break; 1587 } 1588 } 1589 return skb; 1590 } 1591 1592 /** 1593 * first_packet_length - return length of first packet in receive queue 1594 * @sk: socket 1595 * 1596 * Drops all bad checksum frames, until a valid one is found. 1597 * Returns the length of found skb, or -1 if none is found. 1598 */ 1599 static int first_packet_length(struct sock *sk) 1600 { 1601 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1602 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1603 struct sk_buff *skb; 1604 int total = 0; 1605 int res; 1606 1607 spin_lock_bh(&rcvq->lock); 1608 skb = __first_packet_length(sk, rcvq, &total); 1609 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1610 spin_lock(&sk_queue->lock); 1611 skb_queue_splice_tail_init(sk_queue, rcvq); 1612 spin_unlock(&sk_queue->lock); 1613 1614 skb = __first_packet_length(sk, rcvq, &total); 1615 } 1616 res = skb ? skb->len : -1; 1617 if (total) 1618 udp_rmem_release(sk, total, 1, false); 1619 spin_unlock_bh(&rcvq->lock); 1620 return res; 1621 } 1622 1623 /* 1624 * IOCTL requests applicable to the UDP protocol 1625 */ 1626 1627 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1628 { 1629 switch (cmd) { 1630 case SIOCOUTQ: 1631 { 1632 int amount = sk_wmem_alloc_get(sk); 1633 1634 return put_user(amount, (int __user *)arg); 1635 } 1636 1637 case SIOCINQ: 1638 { 1639 int amount = max_t(int, 0, first_packet_length(sk)); 1640 1641 return put_user(amount, (int __user *)arg); 1642 } 1643 1644 default: 1645 return -ENOIOCTLCMD; 1646 } 1647 1648 return 0; 1649 } 1650 EXPORT_SYMBOL(udp_ioctl); 1651 1652 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1653 int noblock, int *off, int *err) 1654 { 1655 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1656 struct sk_buff_head *queue; 1657 struct sk_buff *last; 1658 long timeo; 1659 int error; 1660 1661 queue = &udp_sk(sk)->reader_queue; 1662 flags |= noblock ? MSG_DONTWAIT : 0; 1663 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1664 do { 1665 struct sk_buff *skb; 1666 1667 error = sock_error(sk); 1668 if (error) 1669 break; 1670 1671 error = -EAGAIN; 1672 do { 1673 spin_lock_bh(&queue->lock); 1674 skb = __skb_try_recv_from_queue(sk, queue, flags, 1675 udp_skb_destructor, 1676 off, err, &last); 1677 if (skb) { 1678 spin_unlock_bh(&queue->lock); 1679 return skb; 1680 } 1681 1682 if (skb_queue_empty_lockless(sk_queue)) { 1683 spin_unlock_bh(&queue->lock); 1684 goto busy_check; 1685 } 1686 1687 /* refill the reader queue and walk it again 1688 * keep both queues locked to avoid re-acquiring 1689 * the sk_receive_queue lock if fwd memory scheduling 1690 * is needed. 1691 */ 1692 spin_lock(&sk_queue->lock); 1693 skb_queue_splice_tail_init(sk_queue, queue); 1694 1695 skb = __skb_try_recv_from_queue(sk, queue, flags, 1696 udp_skb_dtor_locked, 1697 off, err, &last); 1698 spin_unlock(&sk_queue->lock); 1699 spin_unlock_bh(&queue->lock); 1700 if (skb) 1701 return skb; 1702 1703 busy_check: 1704 if (!sk_can_busy_loop(sk)) 1705 break; 1706 1707 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1708 } while (!skb_queue_empty_lockless(sk_queue)); 1709 1710 /* sk_queue is empty, reader_queue may contain peeked packets */ 1711 } while (timeo && 1712 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1713 &error, &timeo, 1714 (struct sk_buff *)sk_queue)); 1715 1716 *err = error; 1717 return NULL; 1718 } 1719 EXPORT_SYMBOL(__skb_recv_udp); 1720 1721 /* 1722 * This should be easy, if there is something there we 1723 * return it, otherwise we block. 1724 */ 1725 1726 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1727 int flags, int *addr_len) 1728 { 1729 struct inet_sock *inet = inet_sk(sk); 1730 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1731 struct sk_buff *skb; 1732 unsigned int ulen, copied; 1733 int off, err, peeking = flags & MSG_PEEK; 1734 int is_udplite = IS_UDPLITE(sk); 1735 bool checksum_valid = false; 1736 1737 if (flags & MSG_ERRQUEUE) 1738 return ip_recv_error(sk, msg, len, addr_len); 1739 1740 try_again: 1741 off = sk_peek_offset(sk, flags); 1742 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1743 if (!skb) 1744 return err; 1745 1746 ulen = udp_skb_len(skb); 1747 copied = len; 1748 if (copied > ulen - off) 1749 copied = ulen - off; 1750 else if (copied < ulen) 1751 msg->msg_flags |= MSG_TRUNC; 1752 1753 /* 1754 * If checksum is needed at all, try to do it while copying the 1755 * data. If the data is truncated, or if we only want a partial 1756 * coverage checksum (UDP-Lite), do it before the copy. 1757 */ 1758 1759 if (copied < ulen || peeking || 1760 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1761 checksum_valid = udp_skb_csum_unnecessary(skb) || 1762 !__udp_lib_checksum_complete(skb); 1763 if (!checksum_valid) 1764 goto csum_copy_err; 1765 } 1766 1767 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1768 if (udp_skb_is_linear(skb)) 1769 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1770 else 1771 err = skb_copy_datagram_msg(skb, off, msg, copied); 1772 } else { 1773 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1774 1775 if (err == -EINVAL) 1776 goto csum_copy_err; 1777 } 1778 1779 if (unlikely(err)) { 1780 if (!peeking) { 1781 atomic_inc(&sk->sk_drops); 1782 UDP_INC_STATS(sock_net(sk), 1783 UDP_MIB_INERRORS, is_udplite); 1784 } 1785 kfree_skb(skb); 1786 return err; 1787 } 1788 1789 if (!peeking) 1790 UDP_INC_STATS(sock_net(sk), 1791 UDP_MIB_INDATAGRAMS, is_udplite); 1792 1793 sock_recv_ts_and_drops(msg, sk, skb); 1794 1795 /* Copy the address. */ 1796 if (sin) { 1797 sin->sin_family = AF_INET; 1798 sin->sin_port = udp_hdr(skb)->source; 1799 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1801 *addr_len = sizeof(*sin); 1802 1803 if (cgroup_bpf_enabled) 1804 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1805 (struct sockaddr *)sin); 1806 } 1807 1808 if (udp_sk(sk)->gro_enabled) 1809 udp_cmsg_recv(msg, sk, skb); 1810 1811 if (inet->cmsg_flags) 1812 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1813 1814 err = copied; 1815 if (flags & MSG_TRUNC) 1816 err = ulen; 1817 1818 skb_consume_udp(sk, skb, peeking ? -err : err); 1819 return err; 1820 1821 csum_copy_err: 1822 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1823 udp_skb_destructor)) { 1824 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1825 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1826 } 1827 kfree_skb(skb); 1828 1829 /* starting over for a new packet, but check if we need to yield */ 1830 cond_resched(); 1831 msg->msg_flags &= ~MSG_TRUNC; 1832 goto try_again; 1833 } 1834 1835 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1836 { 1837 /* This check is replicated from __ip4_datagram_connect() and 1838 * intended to prevent BPF program called below from accessing bytes 1839 * that are out of the bound specified by user in addr_len. 1840 */ 1841 if (addr_len < sizeof(struct sockaddr_in)) 1842 return -EINVAL; 1843 1844 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1845 } 1846 EXPORT_SYMBOL(udp_pre_connect); 1847 1848 int __udp_disconnect(struct sock *sk, int flags) 1849 { 1850 struct inet_sock *inet = inet_sk(sk); 1851 /* 1852 * 1003.1g - break association. 1853 */ 1854 1855 sk->sk_state = TCP_CLOSE; 1856 inet->inet_daddr = 0; 1857 inet->inet_dport = 0; 1858 sock_rps_reset_rxhash(sk); 1859 sk->sk_bound_dev_if = 0; 1860 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1861 inet_reset_saddr(sk); 1862 if (sk->sk_prot->rehash && 1863 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1864 sk->sk_prot->rehash(sk); 1865 } 1866 1867 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1868 sk->sk_prot->unhash(sk); 1869 inet->inet_sport = 0; 1870 } 1871 sk_dst_reset(sk); 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(__udp_disconnect); 1875 1876 int udp_disconnect(struct sock *sk, int flags) 1877 { 1878 lock_sock(sk); 1879 __udp_disconnect(sk, flags); 1880 release_sock(sk); 1881 return 0; 1882 } 1883 EXPORT_SYMBOL(udp_disconnect); 1884 1885 void udp_lib_unhash(struct sock *sk) 1886 { 1887 if (sk_hashed(sk)) { 1888 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1889 struct udp_hslot *hslot, *hslot2; 1890 1891 hslot = udp_hashslot(udptable, sock_net(sk), 1892 udp_sk(sk)->udp_port_hash); 1893 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1894 1895 spin_lock_bh(&hslot->lock); 1896 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1897 reuseport_detach_sock(sk); 1898 if (sk_del_node_init_rcu(sk)) { 1899 hslot->count--; 1900 inet_sk(sk)->inet_num = 0; 1901 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1902 1903 spin_lock(&hslot2->lock); 1904 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1905 hslot2->count--; 1906 spin_unlock(&hslot2->lock); 1907 } 1908 spin_unlock_bh(&hslot->lock); 1909 } 1910 } 1911 EXPORT_SYMBOL(udp_lib_unhash); 1912 1913 /* 1914 * inet_rcv_saddr was changed, we must rehash secondary hash 1915 */ 1916 void udp_lib_rehash(struct sock *sk, u16 newhash) 1917 { 1918 if (sk_hashed(sk)) { 1919 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1920 struct udp_hslot *hslot, *hslot2, *nhslot2; 1921 1922 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1923 nhslot2 = udp_hashslot2(udptable, newhash); 1924 udp_sk(sk)->udp_portaddr_hash = newhash; 1925 1926 if (hslot2 != nhslot2 || 1927 rcu_access_pointer(sk->sk_reuseport_cb)) { 1928 hslot = udp_hashslot(udptable, sock_net(sk), 1929 udp_sk(sk)->udp_port_hash); 1930 /* we must lock primary chain too */ 1931 spin_lock_bh(&hslot->lock); 1932 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1933 reuseport_detach_sock(sk); 1934 1935 if (hslot2 != nhslot2) { 1936 spin_lock(&hslot2->lock); 1937 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1938 hslot2->count--; 1939 spin_unlock(&hslot2->lock); 1940 1941 spin_lock(&nhslot2->lock); 1942 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1943 &nhslot2->head); 1944 nhslot2->count++; 1945 spin_unlock(&nhslot2->lock); 1946 } 1947 1948 spin_unlock_bh(&hslot->lock); 1949 } 1950 } 1951 } 1952 EXPORT_SYMBOL(udp_lib_rehash); 1953 1954 void udp_v4_rehash(struct sock *sk) 1955 { 1956 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1957 inet_sk(sk)->inet_rcv_saddr, 1958 inet_sk(sk)->inet_num); 1959 udp_lib_rehash(sk, new_hash); 1960 } 1961 1962 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1963 { 1964 int rc; 1965 1966 if (inet_sk(sk)->inet_daddr) { 1967 sock_rps_save_rxhash(sk, skb); 1968 sk_mark_napi_id(sk, skb); 1969 sk_incoming_cpu_update(sk); 1970 } else { 1971 sk_mark_napi_id_once(sk, skb); 1972 } 1973 1974 rc = __udp_enqueue_schedule_skb(sk, skb); 1975 if (rc < 0) { 1976 int is_udplite = IS_UDPLITE(sk); 1977 1978 /* Note that an ENOMEM error is charged twice */ 1979 if (rc == -ENOMEM) 1980 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1981 is_udplite); 1982 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1983 kfree_skb(skb); 1984 trace_udp_fail_queue_rcv_skb(rc, sk); 1985 return -1; 1986 } 1987 1988 return 0; 1989 } 1990 1991 /* returns: 1992 * -1: error 1993 * 0: success 1994 * >0: "udp encap" protocol resubmission 1995 * 1996 * Note that in the success and error cases, the skb is assumed to 1997 * have either been requeued or freed. 1998 */ 1999 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2000 { 2001 struct udp_sock *up = udp_sk(sk); 2002 int is_udplite = IS_UDPLITE(sk); 2003 2004 /* 2005 * Charge it to the socket, dropping if the queue is full. 2006 */ 2007 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2008 goto drop; 2009 nf_reset_ct(skb); 2010 2011 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2012 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2013 2014 /* 2015 * This is an encapsulation socket so pass the skb to 2016 * the socket's udp_encap_rcv() hook. Otherwise, just 2017 * fall through and pass this up the UDP socket. 2018 * up->encap_rcv() returns the following value: 2019 * =0 if skb was successfully passed to the encap 2020 * handler or was discarded by it. 2021 * >0 if skb should be passed on to UDP. 2022 * <0 if skb should be resubmitted as proto -N 2023 */ 2024 2025 /* if we're overly short, let UDP handle it */ 2026 encap_rcv = READ_ONCE(up->encap_rcv); 2027 if (encap_rcv) { 2028 int ret; 2029 2030 /* Verify checksum before giving to encap */ 2031 if (udp_lib_checksum_complete(skb)) 2032 goto csum_error; 2033 2034 ret = encap_rcv(sk, skb); 2035 if (ret <= 0) { 2036 __UDP_INC_STATS(sock_net(sk), 2037 UDP_MIB_INDATAGRAMS, 2038 is_udplite); 2039 return -ret; 2040 } 2041 } 2042 2043 /* FALLTHROUGH -- it's a UDP Packet */ 2044 } 2045 2046 /* 2047 * UDP-Lite specific tests, ignored on UDP sockets 2048 */ 2049 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2050 2051 /* 2052 * MIB statistics other than incrementing the error count are 2053 * disabled for the following two types of errors: these depend 2054 * on the application settings, not on the functioning of the 2055 * protocol stack as such. 2056 * 2057 * RFC 3828 here recommends (sec 3.3): "There should also be a 2058 * way ... to ... at least let the receiving application block 2059 * delivery of packets with coverage values less than a value 2060 * provided by the application." 2061 */ 2062 if (up->pcrlen == 0) { /* full coverage was set */ 2063 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2064 UDP_SKB_CB(skb)->cscov, skb->len); 2065 goto drop; 2066 } 2067 /* The next case involves violating the min. coverage requested 2068 * by the receiver. This is subtle: if receiver wants x and x is 2069 * greater than the buffersize/MTU then receiver will complain 2070 * that it wants x while sender emits packets of smaller size y. 2071 * Therefore the above ...()->partial_cov statement is essential. 2072 */ 2073 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2074 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2075 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2076 goto drop; 2077 } 2078 } 2079 2080 prefetch(&sk->sk_rmem_alloc); 2081 if (rcu_access_pointer(sk->sk_filter) && 2082 udp_lib_checksum_complete(skb)) 2083 goto csum_error; 2084 2085 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2086 goto drop; 2087 2088 udp_csum_pull_header(skb); 2089 2090 ipv4_pktinfo_prepare(sk, skb); 2091 return __udp_queue_rcv_skb(sk, skb); 2092 2093 csum_error: 2094 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2095 drop: 2096 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2097 atomic_inc(&sk->sk_drops); 2098 kfree_skb(skb); 2099 return -1; 2100 } 2101 2102 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2103 { 2104 struct sk_buff *next, *segs; 2105 int ret; 2106 2107 if (likely(!udp_unexpected_gso(sk, skb))) 2108 return udp_queue_rcv_one_skb(sk, skb); 2109 2110 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2111 __skb_push(skb, -skb_mac_offset(skb)); 2112 segs = udp_rcv_segment(sk, skb, true); 2113 skb_list_walk_safe(segs, skb, next) { 2114 __skb_pull(skb, skb_transport_offset(skb)); 2115 ret = udp_queue_rcv_one_skb(sk, skb); 2116 if (ret > 0) 2117 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2118 } 2119 return 0; 2120 } 2121 2122 /* For TCP sockets, sk_rx_dst is protected by socket lock 2123 * For UDP, we use xchg() to guard against concurrent changes. 2124 */ 2125 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2126 { 2127 struct dst_entry *old; 2128 2129 if (dst_hold_safe(dst)) { 2130 old = xchg(&sk->sk_rx_dst, dst); 2131 dst_release(old); 2132 return old != dst; 2133 } 2134 return false; 2135 } 2136 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2137 2138 /* 2139 * Multicasts and broadcasts go to each listener. 2140 * 2141 * Note: called only from the BH handler context. 2142 */ 2143 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2144 struct udphdr *uh, 2145 __be32 saddr, __be32 daddr, 2146 struct udp_table *udptable, 2147 int proto) 2148 { 2149 struct sock *sk, *first = NULL; 2150 unsigned short hnum = ntohs(uh->dest); 2151 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2152 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2153 unsigned int offset = offsetof(typeof(*sk), sk_node); 2154 int dif = skb->dev->ifindex; 2155 int sdif = inet_sdif(skb); 2156 struct hlist_node *node; 2157 struct sk_buff *nskb; 2158 2159 if (use_hash2) { 2160 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2161 udptable->mask; 2162 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2163 start_lookup: 2164 hslot = &udptable->hash2[hash2]; 2165 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2166 } 2167 2168 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2169 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2170 uh->source, saddr, dif, sdif, hnum)) 2171 continue; 2172 2173 if (!first) { 2174 first = sk; 2175 continue; 2176 } 2177 nskb = skb_clone(skb, GFP_ATOMIC); 2178 2179 if (unlikely(!nskb)) { 2180 atomic_inc(&sk->sk_drops); 2181 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2182 IS_UDPLITE(sk)); 2183 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2184 IS_UDPLITE(sk)); 2185 continue; 2186 } 2187 if (udp_queue_rcv_skb(sk, nskb) > 0) 2188 consume_skb(nskb); 2189 } 2190 2191 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2192 if (use_hash2 && hash2 != hash2_any) { 2193 hash2 = hash2_any; 2194 goto start_lookup; 2195 } 2196 2197 if (first) { 2198 if (udp_queue_rcv_skb(first, skb) > 0) 2199 consume_skb(skb); 2200 } else { 2201 kfree_skb(skb); 2202 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2203 proto == IPPROTO_UDPLITE); 2204 } 2205 return 0; 2206 } 2207 2208 /* Initialize UDP checksum. If exited with zero value (success), 2209 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2210 * Otherwise, csum completion requires checksumming packet body, 2211 * including udp header and folding it to skb->csum. 2212 */ 2213 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2214 int proto) 2215 { 2216 int err; 2217 2218 UDP_SKB_CB(skb)->partial_cov = 0; 2219 UDP_SKB_CB(skb)->cscov = skb->len; 2220 2221 if (proto == IPPROTO_UDPLITE) { 2222 err = udplite_checksum_init(skb, uh); 2223 if (err) 2224 return err; 2225 2226 if (UDP_SKB_CB(skb)->partial_cov) { 2227 skb->csum = inet_compute_pseudo(skb, proto); 2228 return 0; 2229 } 2230 } 2231 2232 /* Note, we are only interested in != 0 or == 0, thus the 2233 * force to int. 2234 */ 2235 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2236 inet_compute_pseudo); 2237 if (err) 2238 return err; 2239 2240 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2241 /* If SW calculated the value, we know it's bad */ 2242 if (skb->csum_complete_sw) 2243 return 1; 2244 2245 /* HW says the value is bad. Let's validate that. 2246 * skb->csum is no longer the full packet checksum, 2247 * so don't treat it as such. 2248 */ 2249 skb_checksum_complete_unset(skb); 2250 } 2251 2252 return 0; 2253 } 2254 2255 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2256 * return code conversion for ip layer consumption 2257 */ 2258 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2259 struct udphdr *uh) 2260 { 2261 int ret; 2262 2263 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2264 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2265 2266 ret = udp_queue_rcv_skb(sk, skb); 2267 2268 /* a return value > 0 means to resubmit the input, but 2269 * it wants the return to be -protocol, or 0 2270 */ 2271 if (ret > 0) 2272 return -ret; 2273 return 0; 2274 } 2275 2276 /* 2277 * All we need to do is get the socket, and then do a checksum. 2278 */ 2279 2280 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2281 int proto) 2282 { 2283 struct sock *sk; 2284 struct udphdr *uh; 2285 unsigned short ulen; 2286 struct rtable *rt = skb_rtable(skb); 2287 __be32 saddr, daddr; 2288 struct net *net = dev_net(skb->dev); 2289 2290 /* 2291 * Validate the packet. 2292 */ 2293 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2294 goto drop; /* No space for header. */ 2295 2296 uh = udp_hdr(skb); 2297 ulen = ntohs(uh->len); 2298 saddr = ip_hdr(skb)->saddr; 2299 daddr = ip_hdr(skb)->daddr; 2300 2301 if (ulen > skb->len) 2302 goto short_packet; 2303 2304 if (proto == IPPROTO_UDP) { 2305 /* UDP validates ulen. */ 2306 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2307 goto short_packet; 2308 uh = udp_hdr(skb); 2309 } 2310 2311 if (udp4_csum_init(skb, uh, proto)) 2312 goto csum_error; 2313 2314 sk = skb_steal_sock(skb); 2315 if (sk) { 2316 struct dst_entry *dst = skb_dst(skb); 2317 int ret; 2318 2319 if (unlikely(sk->sk_rx_dst != dst)) 2320 udp_sk_rx_dst_set(sk, dst); 2321 2322 ret = udp_unicast_rcv_skb(sk, skb, uh); 2323 sock_put(sk); 2324 return ret; 2325 } 2326 2327 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2328 return __udp4_lib_mcast_deliver(net, skb, uh, 2329 saddr, daddr, udptable, proto); 2330 2331 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2332 if (sk) 2333 return udp_unicast_rcv_skb(sk, skb, uh); 2334 2335 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2336 goto drop; 2337 nf_reset_ct(skb); 2338 2339 /* No socket. Drop packet silently, if checksum is wrong */ 2340 if (udp_lib_checksum_complete(skb)) 2341 goto csum_error; 2342 2343 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2344 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2345 2346 /* 2347 * Hmm. We got an UDP packet to a port to which we 2348 * don't wanna listen. Ignore it. 2349 */ 2350 kfree_skb(skb); 2351 return 0; 2352 2353 short_packet: 2354 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2355 proto == IPPROTO_UDPLITE ? "Lite" : "", 2356 &saddr, ntohs(uh->source), 2357 ulen, skb->len, 2358 &daddr, ntohs(uh->dest)); 2359 goto drop; 2360 2361 csum_error: 2362 /* 2363 * RFC1122: OK. Discards the bad packet silently (as far as 2364 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2365 */ 2366 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2367 proto == IPPROTO_UDPLITE ? "Lite" : "", 2368 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2369 ulen); 2370 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2371 drop: 2372 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2373 kfree_skb(skb); 2374 return 0; 2375 } 2376 2377 /* We can only early demux multicast if there is a single matching socket. 2378 * If more than one socket found returns NULL 2379 */ 2380 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2381 __be16 loc_port, __be32 loc_addr, 2382 __be16 rmt_port, __be32 rmt_addr, 2383 int dif, int sdif) 2384 { 2385 struct sock *sk, *result; 2386 unsigned short hnum = ntohs(loc_port); 2387 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2388 struct udp_hslot *hslot = &udp_table.hash[slot]; 2389 2390 /* Do not bother scanning a too big list */ 2391 if (hslot->count > 10) 2392 return NULL; 2393 2394 result = NULL; 2395 sk_for_each_rcu(sk, &hslot->head) { 2396 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2397 rmt_port, rmt_addr, dif, sdif, hnum)) { 2398 if (result) 2399 return NULL; 2400 result = sk; 2401 } 2402 } 2403 2404 return result; 2405 } 2406 2407 /* For unicast we should only early demux connected sockets or we can 2408 * break forwarding setups. The chains here can be long so only check 2409 * if the first socket is an exact match and if not move on. 2410 */ 2411 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2412 __be16 loc_port, __be32 loc_addr, 2413 __be16 rmt_port, __be32 rmt_addr, 2414 int dif, int sdif) 2415 { 2416 unsigned short hnum = ntohs(loc_port); 2417 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2418 unsigned int slot2 = hash2 & udp_table.mask; 2419 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2420 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2421 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2422 struct sock *sk; 2423 2424 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2425 if (INET_MATCH(sk, net, acookie, rmt_addr, 2426 loc_addr, ports, dif, sdif)) 2427 return sk; 2428 /* Only check first socket in chain */ 2429 break; 2430 } 2431 return NULL; 2432 } 2433 2434 int udp_v4_early_demux(struct sk_buff *skb) 2435 { 2436 struct net *net = dev_net(skb->dev); 2437 struct in_device *in_dev = NULL; 2438 const struct iphdr *iph; 2439 const struct udphdr *uh; 2440 struct sock *sk = NULL; 2441 struct dst_entry *dst; 2442 int dif = skb->dev->ifindex; 2443 int sdif = inet_sdif(skb); 2444 int ours; 2445 2446 /* validate the packet */ 2447 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2448 return 0; 2449 2450 iph = ip_hdr(skb); 2451 uh = udp_hdr(skb); 2452 2453 if (skb->pkt_type == PACKET_MULTICAST) { 2454 in_dev = __in_dev_get_rcu(skb->dev); 2455 2456 if (!in_dev) 2457 return 0; 2458 2459 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2460 iph->protocol); 2461 if (!ours) 2462 return 0; 2463 2464 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2465 uh->source, iph->saddr, 2466 dif, sdif); 2467 } else if (skb->pkt_type == PACKET_HOST) { 2468 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2469 uh->source, iph->saddr, dif, sdif); 2470 } 2471 2472 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2473 return 0; 2474 2475 skb->sk = sk; 2476 skb->destructor = sock_efree; 2477 dst = READ_ONCE(sk->sk_rx_dst); 2478 2479 if (dst) 2480 dst = dst_check(dst, 0); 2481 if (dst) { 2482 u32 itag = 0; 2483 2484 /* set noref for now. 2485 * any place which wants to hold dst has to call 2486 * dst_hold_safe() 2487 */ 2488 skb_dst_set_noref(skb, dst); 2489 2490 /* for unconnected multicast sockets we need to validate 2491 * the source on each packet 2492 */ 2493 if (!inet_sk(sk)->inet_daddr && in_dev) 2494 return ip_mc_validate_source(skb, iph->daddr, 2495 iph->saddr, iph->tos, 2496 skb->dev, in_dev, &itag); 2497 } 2498 return 0; 2499 } 2500 2501 int udp_rcv(struct sk_buff *skb) 2502 { 2503 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2504 } 2505 2506 void udp_destroy_sock(struct sock *sk) 2507 { 2508 struct udp_sock *up = udp_sk(sk); 2509 bool slow = lock_sock_fast(sk); 2510 udp_flush_pending_frames(sk); 2511 unlock_sock_fast(sk, slow); 2512 if (static_branch_unlikely(&udp_encap_needed_key)) { 2513 if (up->encap_type) { 2514 void (*encap_destroy)(struct sock *sk); 2515 encap_destroy = READ_ONCE(up->encap_destroy); 2516 if (encap_destroy) 2517 encap_destroy(sk); 2518 } 2519 if (up->encap_enabled) 2520 static_branch_dec(&udp_encap_needed_key); 2521 } 2522 } 2523 2524 /* 2525 * Socket option code for UDP 2526 */ 2527 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2528 char __user *optval, unsigned int optlen, 2529 int (*push_pending_frames)(struct sock *)) 2530 { 2531 struct udp_sock *up = udp_sk(sk); 2532 int val, valbool; 2533 int err = 0; 2534 int is_udplite = IS_UDPLITE(sk); 2535 2536 if (optlen < sizeof(int)) 2537 return -EINVAL; 2538 2539 if (get_user(val, (int __user *)optval)) 2540 return -EFAULT; 2541 2542 valbool = val ? 1 : 0; 2543 2544 switch (optname) { 2545 case UDP_CORK: 2546 if (val != 0) { 2547 up->corkflag = 1; 2548 } else { 2549 up->corkflag = 0; 2550 lock_sock(sk); 2551 push_pending_frames(sk); 2552 release_sock(sk); 2553 } 2554 break; 2555 2556 case UDP_ENCAP: 2557 switch (val) { 2558 case 0: 2559 #ifdef CONFIG_XFRM 2560 case UDP_ENCAP_ESPINUDP: 2561 case UDP_ENCAP_ESPINUDP_NON_IKE: 2562 up->encap_rcv = xfrm4_udp_encap_rcv; 2563 #endif 2564 /* FALLTHROUGH */ 2565 case UDP_ENCAP_L2TPINUDP: 2566 up->encap_type = val; 2567 lock_sock(sk); 2568 udp_tunnel_encap_enable(sk->sk_socket); 2569 release_sock(sk); 2570 break; 2571 default: 2572 err = -ENOPROTOOPT; 2573 break; 2574 } 2575 break; 2576 2577 case UDP_NO_CHECK6_TX: 2578 up->no_check6_tx = valbool; 2579 break; 2580 2581 case UDP_NO_CHECK6_RX: 2582 up->no_check6_rx = valbool; 2583 break; 2584 2585 case UDP_SEGMENT: 2586 if (val < 0 || val > USHRT_MAX) 2587 return -EINVAL; 2588 up->gso_size = val; 2589 break; 2590 2591 case UDP_GRO: 2592 lock_sock(sk); 2593 if (valbool) 2594 udp_tunnel_encap_enable(sk->sk_socket); 2595 up->gro_enabled = valbool; 2596 release_sock(sk); 2597 break; 2598 2599 /* 2600 * UDP-Lite's partial checksum coverage (RFC 3828). 2601 */ 2602 /* The sender sets actual checksum coverage length via this option. 2603 * The case coverage > packet length is handled by send module. */ 2604 case UDPLITE_SEND_CSCOV: 2605 if (!is_udplite) /* Disable the option on UDP sockets */ 2606 return -ENOPROTOOPT; 2607 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2608 val = 8; 2609 else if (val > USHRT_MAX) 2610 val = USHRT_MAX; 2611 up->pcslen = val; 2612 up->pcflag |= UDPLITE_SEND_CC; 2613 break; 2614 2615 /* The receiver specifies a minimum checksum coverage value. To make 2616 * sense, this should be set to at least 8 (as done below). If zero is 2617 * used, this again means full checksum coverage. */ 2618 case UDPLITE_RECV_CSCOV: 2619 if (!is_udplite) /* Disable the option on UDP sockets */ 2620 return -ENOPROTOOPT; 2621 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2622 val = 8; 2623 else if (val > USHRT_MAX) 2624 val = USHRT_MAX; 2625 up->pcrlen = val; 2626 up->pcflag |= UDPLITE_RECV_CC; 2627 break; 2628 2629 default: 2630 err = -ENOPROTOOPT; 2631 break; 2632 } 2633 2634 return err; 2635 } 2636 EXPORT_SYMBOL(udp_lib_setsockopt); 2637 2638 int udp_setsockopt(struct sock *sk, int level, int optname, 2639 char __user *optval, unsigned int optlen) 2640 { 2641 if (level == SOL_UDP || level == SOL_UDPLITE) 2642 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2643 udp_push_pending_frames); 2644 return ip_setsockopt(sk, level, optname, optval, optlen); 2645 } 2646 2647 #ifdef CONFIG_COMPAT 2648 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2649 char __user *optval, unsigned int optlen) 2650 { 2651 if (level == SOL_UDP || level == SOL_UDPLITE) 2652 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2653 udp_push_pending_frames); 2654 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2655 } 2656 #endif 2657 2658 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2659 char __user *optval, int __user *optlen) 2660 { 2661 struct udp_sock *up = udp_sk(sk); 2662 int val, len; 2663 2664 if (get_user(len, optlen)) 2665 return -EFAULT; 2666 2667 len = min_t(unsigned int, len, sizeof(int)); 2668 2669 if (len < 0) 2670 return -EINVAL; 2671 2672 switch (optname) { 2673 case UDP_CORK: 2674 val = up->corkflag; 2675 break; 2676 2677 case UDP_ENCAP: 2678 val = up->encap_type; 2679 break; 2680 2681 case UDP_NO_CHECK6_TX: 2682 val = up->no_check6_tx; 2683 break; 2684 2685 case UDP_NO_CHECK6_RX: 2686 val = up->no_check6_rx; 2687 break; 2688 2689 case UDP_SEGMENT: 2690 val = up->gso_size; 2691 break; 2692 2693 /* The following two cannot be changed on UDP sockets, the return is 2694 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2695 case UDPLITE_SEND_CSCOV: 2696 val = up->pcslen; 2697 break; 2698 2699 case UDPLITE_RECV_CSCOV: 2700 val = up->pcrlen; 2701 break; 2702 2703 default: 2704 return -ENOPROTOOPT; 2705 } 2706 2707 if (put_user(len, optlen)) 2708 return -EFAULT; 2709 if (copy_to_user(optval, &val, len)) 2710 return -EFAULT; 2711 return 0; 2712 } 2713 EXPORT_SYMBOL(udp_lib_getsockopt); 2714 2715 int udp_getsockopt(struct sock *sk, int level, int optname, 2716 char __user *optval, int __user *optlen) 2717 { 2718 if (level == SOL_UDP || level == SOL_UDPLITE) 2719 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2720 return ip_getsockopt(sk, level, optname, optval, optlen); 2721 } 2722 2723 #ifdef CONFIG_COMPAT 2724 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2725 char __user *optval, int __user *optlen) 2726 { 2727 if (level == SOL_UDP || level == SOL_UDPLITE) 2728 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2729 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2730 } 2731 #endif 2732 /** 2733 * udp_poll - wait for a UDP event. 2734 * @file - file struct 2735 * @sock - socket 2736 * @wait - poll table 2737 * 2738 * This is same as datagram poll, except for the special case of 2739 * blocking sockets. If application is using a blocking fd 2740 * and a packet with checksum error is in the queue; 2741 * then it could get return from select indicating data available 2742 * but then block when reading it. Add special case code 2743 * to work around these arguably broken applications. 2744 */ 2745 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2746 { 2747 __poll_t mask = datagram_poll(file, sock, wait); 2748 struct sock *sk = sock->sk; 2749 2750 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2751 mask |= EPOLLIN | EPOLLRDNORM; 2752 2753 /* Check for false positives due to checksum errors */ 2754 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2755 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2756 mask &= ~(EPOLLIN | EPOLLRDNORM); 2757 2758 return mask; 2759 2760 } 2761 EXPORT_SYMBOL(udp_poll); 2762 2763 int udp_abort(struct sock *sk, int err) 2764 { 2765 lock_sock(sk); 2766 2767 sk->sk_err = err; 2768 sk->sk_error_report(sk); 2769 __udp_disconnect(sk, 0); 2770 2771 release_sock(sk); 2772 2773 return 0; 2774 } 2775 EXPORT_SYMBOL_GPL(udp_abort); 2776 2777 struct proto udp_prot = { 2778 .name = "UDP", 2779 .owner = THIS_MODULE, 2780 .close = udp_lib_close, 2781 .pre_connect = udp_pre_connect, 2782 .connect = ip4_datagram_connect, 2783 .disconnect = udp_disconnect, 2784 .ioctl = udp_ioctl, 2785 .init = udp_init_sock, 2786 .destroy = udp_destroy_sock, 2787 .setsockopt = udp_setsockopt, 2788 .getsockopt = udp_getsockopt, 2789 .sendmsg = udp_sendmsg, 2790 .recvmsg = udp_recvmsg, 2791 .sendpage = udp_sendpage, 2792 .release_cb = ip4_datagram_release_cb, 2793 .hash = udp_lib_hash, 2794 .unhash = udp_lib_unhash, 2795 .rehash = udp_v4_rehash, 2796 .get_port = udp_v4_get_port, 2797 .memory_allocated = &udp_memory_allocated, 2798 .sysctl_mem = sysctl_udp_mem, 2799 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2800 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2801 .obj_size = sizeof(struct udp_sock), 2802 .h.udp_table = &udp_table, 2803 #ifdef CONFIG_COMPAT 2804 .compat_setsockopt = compat_udp_setsockopt, 2805 .compat_getsockopt = compat_udp_getsockopt, 2806 #endif 2807 .diag_destroy = udp_abort, 2808 }; 2809 EXPORT_SYMBOL(udp_prot); 2810 2811 /* ------------------------------------------------------------------------ */ 2812 #ifdef CONFIG_PROC_FS 2813 2814 static struct sock *udp_get_first(struct seq_file *seq, int start) 2815 { 2816 struct sock *sk; 2817 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2818 struct udp_iter_state *state = seq->private; 2819 struct net *net = seq_file_net(seq); 2820 2821 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2822 ++state->bucket) { 2823 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2824 2825 if (hlist_empty(&hslot->head)) 2826 continue; 2827 2828 spin_lock_bh(&hslot->lock); 2829 sk_for_each(sk, &hslot->head) { 2830 if (!net_eq(sock_net(sk), net)) 2831 continue; 2832 if (sk->sk_family == afinfo->family) 2833 goto found; 2834 } 2835 spin_unlock_bh(&hslot->lock); 2836 } 2837 sk = NULL; 2838 found: 2839 return sk; 2840 } 2841 2842 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2843 { 2844 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2845 struct udp_iter_state *state = seq->private; 2846 struct net *net = seq_file_net(seq); 2847 2848 do { 2849 sk = sk_next(sk); 2850 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2851 2852 if (!sk) { 2853 if (state->bucket <= afinfo->udp_table->mask) 2854 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2855 return udp_get_first(seq, state->bucket + 1); 2856 } 2857 return sk; 2858 } 2859 2860 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2861 { 2862 struct sock *sk = udp_get_first(seq, 0); 2863 2864 if (sk) 2865 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2866 --pos; 2867 return pos ? NULL : sk; 2868 } 2869 2870 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2871 { 2872 struct udp_iter_state *state = seq->private; 2873 state->bucket = MAX_UDP_PORTS; 2874 2875 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2876 } 2877 EXPORT_SYMBOL(udp_seq_start); 2878 2879 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2880 { 2881 struct sock *sk; 2882 2883 if (v == SEQ_START_TOKEN) 2884 sk = udp_get_idx(seq, 0); 2885 else 2886 sk = udp_get_next(seq, v); 2887 2888 ++*pos; 2889 return sk; 2890 } 2891 EXPORT_SYMBOL(udp_seq_next); 2892 2893 void udp_seq_stop(struct seq_file *seq, void *v) 2894 { 2895 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2896 struct udp_iter_state *state = seq->private; 2897 2898 if (state->bucket <= afinfo->udp_table->mask) 2899 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2900 } 2901 EXPORT_SYMBOL(udp_seq_stop); 2902 2903 /* ------------------------------------------------------------------------ */ 2904 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2905 int bucket) 2906 { 2907 struct inet_sock *inet = inet_sk(sp); 2908 __be32 dest = inet->inet_daddr; 2909 __be32 src = inet->inet_rcv_saddr; 2910 __u16 destp = ntohs(inet->inet_dport); 2911 __u16 srcp = ntohs(inet->inet_sport); 2912 2913 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2914 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 2915 bucket, src, srcp, dest, destp, sp->sk_state, 2916 sk_wmem_alloc_get(sp), 2917 udp_rqueue_get(sp), 2918 0, 0L, 0, 2919 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2920 0, sock_i_ino(sp), 2921 refcount_read(&sp->sk_refcnt), sp, 2922 atomic_read(&sp->sk_drops)); 2923 } 2924 2925 int udp4_seq_show(struct seq_file *seq, void *v) 2926 { 2927 seq_setwidth(seq, 127); 2928 if (v == SEQ_START_TOKEN) 2929 seq_puts(seq, " sl local_address rem_address st tx_queue " 2930 "rx_queue tr tm->when retrnsmt uid timeout " 2931 "inode ref pointer drops"); 2932 else { 2933 struct udp_iter_state *state = seq->private; 2934 2935 udp4_format_sock(v, seq, state->bucket); 2936 } 2937 seq_pad(seq, '\n'); 2938 return 0; 2939 } 2940 2941 const struct seq_operations udp_seq_ops = { 2942 .start = udp_seq_start, 2943 .next = udp_seq_next, 2944 .stop = udp_seq_stop, 2945 .show = udp4_seq_show, 2946 }; 2947 EXPORT_SYMBOL(udp_seq_ops); 2948 2949 static struct udp_seq_afinfo udp4_seq_afinfo = { 2950 .family = AF_INET, 2951 .udp_table = &udp_table, 2952 }; 2953 2954 static int __net_init udp4_proc_init_net(struct net *net) 2955 { 2956 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2957 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2958 return -ENOMEM; 2959 return 0; 2960 } 2961 2962 static void __net_exit udp4_proc_exit_net(struct net *net) 2963 { 2964 remove_proc_entry("udp", net->proc_net); 2965 } 2966 2967 static struct pernet_operations udp4_net_ops = { 2968 .init = udp4_proc_init_net, 2969 .exit = udp4_proc_exit_net, 2970 }; 2971 2972 int __init udp4_proc_init(void) 2973 { 2974 return register_pernet_subsys(&udp4_net_ops); 2975 } 2976 2977 void udp4_proc_exit(void) 2978 { 2979 unregister_pernet_subsys(&udp4_net_ops); 2980 } 2981 #endif /* CONFIG_PROC_FS */ 2982 2983 static __initdata unsigned long uhash_entries; 2984 static int __init set_uhash_entries(char *str) 2985 { 2986 ssize_t ret; 2987 2988 if (!str) 2989 return 0; 2990 2991 ret = kstrtoul(str, 0, &uhash_entries); 2992 if (ret) 2993 return 0; 2994 2995 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2996 uhash_entries = UDP_HTABLE_SIZE_MIN; 2997 return 1; 2998 } 2999 __setup("uhash_entries=", set_uhash_entries); 3000 3001 void __init udp_table_init(struct udp_table *table, const char *name) 3002 { 3003 unsigned int i; 3004 3005 table->hash = alloc_large_system_hash(name, 3006 2 * sizeof(struct udp_hslot), 3007 uhash_entries, 3008 21, /* one slot per 2 MB */ 3009 0, 3010 &table->log, 3011 &table->mask, 3012 UDP_HTABLE_SIZE_MIN, 3013 64 * 1024); 3014 3015 table->hash2 = table->hash + (table->mask + 1); 3016 for (i = 0; i <= table->mask; i++) { 3017 INIT_HLIST_HEAD(&table->hash[i].head); 3018 table->hash[i].count = 0; 3019 spin_lock_init(&table->hash[i].lock); 3020 } 3021 for (i = 0; i <= table->mask; i++) { 3022 INIT_HLIST_HEAD(&table->hash2[i].head); 3023 table->hash2[i].count = 0; 3024 spin_lock_init(&table->hash2[i].lock); 3025 } 3026 } 3027 3028 u32 udp_flow_hashrnd(void) 3029 { 3030 static u32 hashrnd __read_mostly; 3031 3032 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3033 3034 return hashrnd; 3035 } 3036 EXPORT_SYMBOL(udp_flow_hashrnd); 3037 3038 static void __udp_sysctl_init(struct net *net) 3039 { 3040 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3041 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3042 3043 #ifdef CONFIG_NET_L3_MASTER_DEV 3044 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3045 #endif 3046 } 3047 3048 static int __net_init udp_sysctl_init(struct net *net) 3049 { 3050 __udp_sysctl_init(net); 3051 return 0; 3052 } 3053 3054 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3055 .init = udp_sysctl_init, 3056 }; 3057 3058 void __init udp_init(void) 3059 { 3060 unsigned long limit; 3061 unsigned int i; 3062 3063 udp_table_init(&udp_table, "UDP"); 3064 limit = nr_free_buffer_pages() / 8; 3065 limit = max(limit, 128UL); 3066 sysctl_udp_mem[0] = limit / 4 * 3; 3067 sysctl_udp_mem[1] = limit; 3068 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3069 3070 __udp_sysctl_init(&init_net); 3071 3072 /* 16 spinlocks per cpu */ 3073 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3074 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3075 GFP_KERNEL); 3076 if (!udp_busylocks) 3077 panic("UDP: failed to alloc udp_busylocks\n"); 3078 for (i = 0; i < (1U << udp_busylocks_log); i++) 3079 spin_lock_init(udp_busylocks + i); 3080 3081 if (register_pernet_subsys(&udp_sysctl_ops)) 3082 panic("UDP: failed to init sysctl parameters.\n"); 3083 } 3084