xref: /openbmc/linux/net/ipv4/udp.c (revision ca481398)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	/* Initial allocation may have already happened via setsockopt */
235 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
236 		return reuseport_alloc(sk);
237 	return 0;
238 }
239 
240 /**
241  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
242  *
243  *  @sk:          socket struct in question
244  *  @snum:        port number to look up
245  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
246  *                   with NULL address
247  */
248 int udp_lib_get_port(struct sock *sk, unsigned short snum,
249 		     unsigned int hash2_nulladdr)
250 {
251 	struct udp_hslot *hslot, *hslot2;
252 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
253 	int    error = 1;
254 	struct net *net = sock_net(sk);
255 
256 	if (!snum) {
257 		int low, high, remaining;
258 		unsigned int rand;
259 		unsigned short first, last;
260 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
261 
262 		inet_get_local_port_range(net, &low, &high);
263 		remaining = (high - low) + 1;
264 
265 		rand = prandom_u32();
266 		first = reciprocal_scale(rand, remaining) + low;
267 		/*
268 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
269 		 */
270 		rand = (rand | 1) * (udptable->mask + 1);
271 		last = first + udptable->mask + 1;
272 		do {
273 			hslot = udp_hashslot(udptable, net, first);
274 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
275 			spin_lock_bh(&hslot->lock);
276 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
277 					    udptable->log);
278 
279 			snum = first;
280 			/*
281 			 * Iterate on all possible values of snum for this hash.
282 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
283 			 * give us randomization and full range coverage.
284 			 */
285 			do {
286 				if (low <= snum && snum <= high &&
287 				    !test_bit(snum >> udptable->log, bitmap) &&
288 				    !inet_is_local_reserved_port(net, snum))
289 					goto found;
290 				snum += rand;
291 			} while (snum != first);
292 			spin_unlock_bh(&hslot->lock);
293 			cond_resched();
294 		} while (++first != last);
295 		goto fail;
296 	} else {
297 		hslot = udp_hashslot(udptable, net, snum);
298 		spin_lock_bh(&hslot->lock);
299 		if (hslot->count > 10) {
300 			int exist;
301 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
302 
303 			slot2          &= udptable->mask;
304 			hash2_nulladdr &= udptable->mask;
305 
306 			hslot2 = udp_hashslot2(udptable, slot2);
307 			if (hslot->count < hslot2->count)
308 				goto scan_primary_hash;
309 
310 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
311 			if (!exist && (hash2_nulladdr != slot2)) {
312 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
313 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
314 							     sk);
315 			}
316 			if (exist)
317 				goto fail_unlock;
318 			else
319 				goto found;
320 		}
321 scan_primary_hash:
322 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
323 			goto fail_unlock;
324 	}
325 found:
326 	inet_sk(sk)->inet_num = snum;
327 	udp_sk(sk)->udp_port_hash = snum;
328 	udp_sk(sk)->udp_portaddr_hash ^= snum;
329 	if (sk_unhashed(sk)) {
330 		if (sk->sk_reuseport &&
331 		    udp_reuseport_add_sock(sk, hslot)) {
332 			inet_sk(sk)->inet_num = 0;
333 			udp_sk(sk)->udp_port_hash = 0;
334 			udp_sk(sk)->udp_portaddr_hash ^= snum;
335 			goto fail_unlock;
336 		}
337 
338 		sk_add_node_rcu(sk, &hslot->head);
339 		hslot->count++;
340 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
341 
342 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
343 		spin_lock(&hslot2->lock);
344 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
345 		    sk->sk_family == AF_INET6)
346 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		else
349 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
350 					   &hslot2->head);
351 		hslot2->count++;
352 		spin_unlock(&hslot2->lock);
353 	}
354 	sock_set_flag(sk, SOCK_RCU_FREE);
355 	error = 0;
356 fail_unlock:
357 	spin_unlock_bh(&hslot->lock);
358 fail:
359 	return error;
360 }
361 EXPORT_SYMBOL(udp_lib_get_port);
362 
363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
364 			      unsigned int port)
365 {
366 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
367 }
368 
369 int udp_v4_get_port(struct sock *sk, unsigned short snum)
370 {
371 	unsigned int hash2_nulladdr =
372 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
373 	unsigned int hash2_partial =
374 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
375 
376 	/* precompute partial secondary hash */
377 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
378 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
379 }
380 
381 static int compute_score(struct sock *sk, struct net *net,
382 			 __be32 saddr, __be16 sport,
383 			 __be32 daddr, unsigned short hnum,
384 			 int dif, int sdif, bool exact_dif)
385 {
386 	int score;
387 	struct inet_sock *inet;
388 
389 	if (!net_eq(sock_net(sk), net) ||
390 	    udp_sk(sk)->udp_port_hash != hnum ||
391 	    ipv6_only_sock(sk))
392 		return -1;
393 
394 	score = (sk->sk_family == PF_INET) ? 2 : 1;
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr) {
398 		if (inet->inet_rcv_saddr != daddr)
399 			return -1;
400 		score += 4;
401 	}
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if || exact_dif) {
416 		bool dev_match = (sk->sk_bound_dev_if == dif ||
417 				  sk->sk_bound_dev_if == sdif);
418 
419 		if (exact_dif && !dev_match)
420 			return -1;
421 		if (sk->sk_bound_dev_if && dev_match)
422 			score += 4;
423 	}
424 
425 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
426 		score++;
427 	return score;
428 }
429 
430 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
431 		       const __u16 lport, const __be32 faddr,
432 		       const __be16 fport)
433 {
434 	static u32 udp_ehash_secret __read_mostly;
435 
436 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
437 
438 	return __inet_ehashfn(laddr, lport, faddr, fport,
439 			      udp_ehash_secret + net_hash_mix(net));
440 }
441 
442 /* called with rcu_read_lock() */
443 static struct sock *udp4_lib_lookup2(struct net *net,
444 				     __be32 saddr, __be16 sport,
445 				     __be32 daddr, unsigned int hnum,
446 				     int dif, int sdif, bool exact_dif,
447 				     struct udp_hslot *hslot2,
448 				     struct sk_buff *skb)
449 {
450 	struct sock *sk, *result;
451 	int score, badness, matches = 0, reuseport = 0;
452 	u32 hash = 0;
453 
454 	result = NULL;
455 	badness = 0;
456 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
457 		score = compute_score(sk, net, saddr, sport,
458 				      daddr, hnum, dif, sdif, exact_dif);
459 		if (score > badness) {
460 			reuseport = sk->sk_reuseport;
461 			if (reuseport) {
462 				hash = udp_ehashfn(net, daddr, hnum,
463 						   saddr, sport);
464 				result = reuseport_select_sock(sk, hash, skb,
465 							sizeof(struct udphdr));
466 				if (result)
467 					return result;
468 				matches = 1;
469 			}
470 			badness = score;
471 			result = sk;
472 		} else if (score == badness && reuseport) {
473 			matches++;
474 			if (reciprocal_scale(hash, matches) == 0)
475 				result = sk;
476 			hash = next_pseudo_random32(hash);
477 		}
478 	}
479 	return result;
480 }
481 
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483  * harder than this. -DaveM
484  */
485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 		__be16 sport, __be32 daddr, __be16 dport, int dif,
487 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 	struct sock *sk, *result;
490 	unsigned short hnum = ntohs(dport);
491 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
492 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
493 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
494 	int score, badness, matches = 0, reuseport = 0;
495 	u32 hash = 0;
496 
497 	if (hslot->count > 10) {
498 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
499 		slot2 = hash2 & udptable->mask;
500 		hslot2 = &udptable->hash2[slot2];
501 		if (hslot->count < hslot2->count)
502 			goto begin;
503 
504 		result = udp4_lib_lookup2(net, saddr, sport,
505 					  daddr, hnum, dif, sdif,
506 					  exact_dif, hslot2, skb);
507 		if (!result) {
508 			unsigned int old_slot2 = slot2;
509 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 			slot2 = hash2 & udptable->mask;
511 			/* avoid searching the same slot again. */
512 			if (unlikely(slot2 == old_slot2))
513 				return result;
514 
515 			hslot2 = &udptable->hash2[slot2];
516 			if (hslot->count < hslot2->count)
517 				goto begin;
518 
519 			result = udp4_lib_lookup2(net, saddr, sport,
520 						  daddr, hnum, dif, sdif,
521 						  exact_dif, hslot2, skb);
522 		}
523 		return result;
524 	}
525 begin:
526 	result = NULL;
527 	badness = 0;
528 	sk_for_each_rcu(sk, &hslot->head) {
529 		score = compute_score(sk, net, saddr, sport,
530 				      daddr, hnum, dif, sdif, exact_dif);
531 		if (score > badness) {
532 			reuseport = sk->sk_reuseport;
533 			if (reuseport) {
534 				hash = udp_ehashfn(net, daddr, hnum,
535 						   saddr, sport);
536 				result = reuseport_select_sock(sk, hash, skb,
537 							sizeof(struct udphdr));
538 				if (result)
539 					return result;
540 				matches = 1;
541 			}
542 			result = sk;
543 			badness = score;
544 		} else if (score == badness && reuseport) {
545 			matches++;
546 			if (reciprocal_scale(hash, matches) == 0)
547 				result = sk;
548 			hash = next_pseudo_random32(hash);
549 		}
550 	}
551 	return result;
552 }
553 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
554 
555 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
556 						 __be16 sport, __be16 dport,
557 						 struct udp_table *udptable)
558 {
559 	const struct iphdr *iph = ip_hdr(skb);
560 
561 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
562 				 iph->daddr, dport, inet_iif(skb),
563 				 inet_sdif(skb), udptable, skb);
564 }
565 
566 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
567 				 __be16 sport, __be16 dport)
568 {
569 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
570 }
571 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
572 
573 /* Must be called under rcu_read_lock().
574  * Does increment socket refcount.
575  */
576 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
577     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
578     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
579 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
580 			     __be32 daddr, __be16 dport, int dif)
581 {
582 	struct sock *sk;
583 
584 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
585 			       dif, 0, &udp_table, NULL);
586 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
587 		sk = NULL;
588 	return sk;
589 }
590 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
591 #endif
592 
593 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
594 				       __be16 loc_port, __be32 loc_addr,
595 				       __be16 rmt_port, __be32 rmt_addr,
596 				       int dif, int sdif, unsigned short hnum)
597 {
598 	struct inet_sock *inet = inet_sk(sk);
599 
600 	if (!net_eq(sock_net(sk), net) ||
601 	    udp_sk(sk)->udp_port_hash != hnum ||
602 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
603 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
604 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
605 	    ipv6_only_sock(sk) ||
606 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
607 	     sk->sk_bound_dev_if != sdif))
608 		return false;
609 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
610 		return false;
611 	return true;
612 }
613 
614 /*
615  * This routine is called by the ICMP module when it gets some
616  * sort of error condition.  If err < 0 then the socket should
617  * be closed and the error returned to the user.  If err > 0
618  * it's just the icmp type << 8 | icmp code.
619  * Header points to the ip header of the error packet. We move
620  * on past this. Then (as it used to claim before adjustment)
621  * header points to the first 8 bytes of the udp header.  We need
622  * to find the appropriate port.
623  */
624 
625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
626 {
627 	struct inet_sock *inet;
628 	const struct iphdr *iph = (const struct iphdr *)skb->data;
629 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
630 	const int type = icmp_hdr(skb)->type;
631 	const int code = icmp_hdr(skb)->code;
632 	struct sock *sk;
633 	int harderr;
634 	int err;
635 	struct net *net = dev_net(skb->dev);
636 
637 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
638 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
639 			       udptable, NULL);
640 	if (!sk) {
641 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
642 		return;	/* No socket for error */
643 	}
644 
645 	err = 0;
646 	harderr = 0;
647 	inet = inet_sk(sk);
648 
649 	switch (type) {
650 	default:
651 	case ICMP_TIME_EXCEEDED:
652 		err = EHOSTUNREACH;
653 		break;
654 	case ICMP_SOURCE_QUENCH:
655 		goto out;
656 	case ICMP_PARAMETERPROB:
657 		err = EPROTO;
658 		harderr = 1;
659 		break;
660 	case ICMP_DEST_UNREACH:
661 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
662 			ipv4_sk_update_pmtu(skb, sk, info);
663 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
664 				err = EMSGSIZE;
665 				harderr = 1;
666 				break;
667 			}
668 			goto out;
669 		}
670 		err = EHOSTUNREACH;
671 		if (code <= NR_ICMP_UNREACH) {
672 			harderr = icmp_err_convert[code].fatal;
673 			err = icmp_err_convert[code].errno;
674 		}
675 		break;
676 	case ICMP_REDIRECT:
677 		ipv4_sk_redirect(skb, sk);
678 		goto out;
679 	}
680 
681 	/*
682 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
683 	 *	4.1.3.3.
684 	 */
685 	if (!inet->recverr) {
686 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
687 			goto out;
688 	} else
689 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
690 
691 	sk->sk_err = err;
692 	sk->sk_error_report(sk);
693 out:
694 	return;
695 }
696 
697 void udp_err(struct sk_buff *skb, u32 info)
698 {
699 	__udp4_lib_err(skb, info, &udp_table);
700 }
701 
702 /*
703  * Throw away all pending data and cancel the corking. Socket is locked.
704  */
705 void udp_flush_pending_frames(struct sock *sk)
706 {
707 	struct udp_sock *up = udp_sk(sk);
708 
709 	if (up->pending) {
710 		up->len = 0;
711 		up->pending = 0;
712 		ip_flush_pending_frames(sk);
713 	}
714 }
715 EXPORT_SYMBOL(udp_flush_pending_frames);
716 
717 /**
718  * 	udp4_hwcsum  -  handle outgoing HW checksumming
719  * 	@skb: 	sk_buff containing the filled-in UDP header
720  * 	        (checksum field must be zeroed out)
721  *	@src:	source IP address
722  *	@dst:	destination IP address
723  */
724 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
725 {
726 	struct udphdr *uh = udp_hdr(skb);
727 	int offset = skb_transport_offset(skb);
728 	int len = skb->len - offset;
729 	int hlen = len;
730 	__wsum csum = 0;
731 
732 	if (!skb_has_frag_list(skb)) {
733 		/*
734 		 * Only one fragment on the socket.
735 		 */
736 		skb->csum_start = skb_transport_header(skb) - skb->head;
737 		skb->csum_offset = offsetof(struct udphdr, check);
738 		uh->check = ~csum_tcpudp_magic(src, dst, len,
739 					       IPPROTO_UDP, 0);
740 	} else {
741 		struct sk_buff *frags;
742 
743 		/*
744 		 * HW-checksum won't work as there are two or more
745 		 * fragments on the socket so that all csums of sk_buffs
746 		 * should be together
747 		 */
748 		skb_walk_frags(skb, frags) {
749 			csum = csum_add(csum, frags->csum);
750 			hlen -= frags->len;
751 		}
752 
753 		csum = skb_checksum(skb, offset, hlen, csum);
754 		skb->ip_summed = CHECKSUM_NONE;
755 
756 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
757 		if (uh->check == 0)
758 			uh->check = CSUM_MANGLED_0;
759 	}
760 }
761 EXPORT_SYMBOL_GPL(udp4_hwcsum);
762 
763 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
764  * for the simple case like when setting the checksum for a UDP tunnel.
765  */
766 void udp_set_csum(bool nocheck, struct sk_buff *skb,
767 		  __be32 saddr, __be32 daddr, int len)
768 {
769 	struct udphdr *uh = udp_hdr(skb);
770 
771 	if (nocheck) {
772 		uh->check = 0;
773 	} else if (skb_is_gso(skb)) {
774 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
775 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
776 		uh->check = 0;
777 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
778 		if (uh->check == 0)
779 			uh->check = CSUM_MANGLED_0;
780 	} else {
781 		skb->ip_summed = CHECKSUM_PARTIAL;
782 		skb->csum_start = skb_transport_header(skb) - skb->head;
783 		skb->csum_offset = offsetof(struct udphdr, check);
784 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
785 	}
786 }
787 EXPORT_SYMBOL(udp_set_csum);
788 
789 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
790 {
791 	struct sock *sk = skb->sk;
792 	struct inet_sock *inet = inet_sk(sk);
793 	struct udphdr *uh;
794 	int err = 0;
795 	int is_udplite = IS_UDPLITE(sk);
796 	int offset = skb_transport_offset(skb);
797 	int len = skb->len - offset;
798 	__wsum csum = 0;
799 
800 	/*
801 	 * Create a UDP header
802 	 */
803 	uh = udp_hdr(skb);
804 	uh->source = inet->inet_sport;
805 	uh->dest = fl4->fl4_dport;
806 	uh->len = htons(len);
807 	uh->check = 0;
808 
809 	if (is_udplite)  				 /*     UDP-Lite      */
810 		csum = udplite_csum(skb);
811 
812 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
813 
814 		skb->ip_summed = CHECKSUM_NONE;
815 		goto send;
816 
817 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
818 
819 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
820 		goto send;
821 
822 	} else
823 		csum = udp_csum(skb);
824 
825 	/* add protocol-dependent pseudo-header */
826 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
827 				      sk->sk_protocol, csum);
828 	if (uh->check == 0)
829 		uh->check = CSUM_MANGLED_0;
830 
831 send:
832 	err = ip_send_skb(sock_net(sk), skb);
833 	if (err) {
834 		if (err == -ENOBUFS && !inet->recverr) {
835 			UDP_INC_STATS(sock_net(sk),
836 				      UDP_MIB_SNDBUFERRORS, is_udplite);
837 			err = 0;
838 		}
839 	} else
840 		UDP_INC_STATS(sock_net(sk),
841 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
842 	return err;
843 }
844 
845 /*
846  * Push out all pending data as one UDP datagram. Socket is locked.
847  */
848 int udp_push_pending_frames(struct sock *sk)
849 {
850 	struct udp_sock  *up = udp_sk(sk);
851 	struct inet_sock *inet = inet_sk(sk);
852 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
853 	struct sk_buff *skb;
854 	int err = 0;
855 
856 	skb = ip_finish_skb(sk, fl4);
857 	if (!skb)
858 		goto out;
859 
860 	err = udp_send_skb(skb, fl4);
861 
862 out:
863 	up->len = 0;
864 	up->pending = 0;
865 	return err;
866 }
867 EXPORT_SYMBOL(udp_push_pending_frames);
868 
869 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
870 {
871 	struct inet_sock *inet = inet_sk(sk);
872 	struct udp_sock *up = udp_sk(sk);
873 	struct flowi4 fl4_stack;
874 	struct flowi4 *fl4;
875 	int ulen = len;
876 	struct ipcm_cookie ipc;
877 	struct rtable *rt = NULL;
878 	int free = 0;
879 	int connected = 0;
880 	__be32 daddr, faddr, saddr;
881 	__be16 dport;
882 	u8  tos;
883 	int err, is_udplite = IS_UDPLITE(sk);
884 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
885 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
886 	struct sk_buff *skb;
887 	struct ip_options_data opt_copy;
888 
889 	if (len > 0xFFFF)
890 		return -EMSGSIZE;
891 
892 	/*
893 	 *	Check the flags.
894 	 */
895 
896 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
897 		return -EOPNOTSUPP;
898 
899 	ipc.opt = NULL;
900 	ipc.tx_flags = 0;
901 	ipc.ttl = 0;
902 	ipc.tos = -1;
903 
904 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
905 
906 	fl4 = &inet->cork.fl.u.ip4;
907 	if (up->pending) {
908 		/*
909 		 * There are pending frames.
910 		 * The socket lock must be held while it's corked.
911 		 */
912 		lock_sock(sk);
913 		if (likely(up->pending)) {
914 			if (unlikely(up->pending != AF_INET)) {
915 				release_sock(sk);
916 				return -EINVAL;
917 			}
918 			goto do_append_data;
919 		}
920 		release_sock(sk);
921 	}
922 	ulen += sizeof(struct udphdr);
923 
924 	/*
925 	 *	Get and verify the address.
926 	 */
927 	if (msg->msg_name) {
928 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
929 		if (msg->msg_namelen < sizeof(*usin))
930 			return -EINVAL;
931 		if (usin->sin_family != AF_INET) {
932 			if (usin->sin_family != AF_UNSPEC)
933 				return -EAFNOSUPPORT;
934 		}
935 
936 		daddr = usin->sin_addr.s_addr;
937 		dport = usin->sin_port;
938 		if (dport == 0)
939 			return -EINVAL;
940 	} else {
941 		if (sk->sk_state != TCP_ESTABLISHED)
942 			return -EDESTADDRREQ;
943 		daddr = inet->inet_daddr;
944 		dport = inet->inet_dport;
945 		/* Open fast path for connected socket.
946 		   Route will not be used, if at least one option is set.
947 		 */
948 		connected = 1;
949 	}
950 
951 	ipc.sockc.tsflags = sk->sk_tsflags;
952 	ipc.addr = inet->inet_saddr;
953 	ipc.oif = sk->sk_bound_dev_if;
954 
955 	if (msg->msg_controllen) {
956 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
957 		if (unlikely(err)) {
958 			kfree(ipc.opt);
959 			return err;
960 		}
961 		if (ipc.opt)
962 			free = 1;
963 		connected = 0;
964 	}
965 	if (!ipc.opt) {
966 		struct ip_options_rcu *inet_opt;
967 
968 		rcu_read_lock();
969 		inet_opt = rcu_dereference(inet->inet_opt);
970 		if (inet_opt) {
971 			memcpy(&opt_copy, inet_opt,
972 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
973 			ipc.opt = &opt_copy.opt;
974 		}
975 		rcu_read_unlock();
976 	}
977 
978 	saddr = ipc.addr;
979 	ipc.addr = faddr = daddr;
980 
981 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
982 
983 	if (ipc.opt && ipc.opt->opt.srr) {
984 		if (!daddr)
985 			return -EINVAL;
986 		faddr = ipc.opt->opt.faddr;
987 		connected = 0;
988 	}
989 	tos = get_rttos(&ipc, inet);
990 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
991 	    (msg->msg_flags & MSG_DONTROUTE) ||
992 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
993 		tos |= RTO_ONLINK;
994 		connected = 0;
995 	}
996 
997 	if (ipv4_is_multicast(daddr)) {
998 		if (!ipc.oif)
999 			ipc.oif = inet->mc_index;
1000 		if (!saddr)
1001 			saddr = inet->mc_addr;
1002 		connected = 0;
1003 	} else if (!ipc.oif)
1004 		ipc.oif = inet->uc_index;
1005 
1006 	if (connected)
1007 		rt = (struct rtable *)sk_dst_check(sk, 0);
1008 
1009 	if (!rt) {
1010 		struct net *net = sock_net(sk);
1011 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1012 
1013 		fl4 = &fl4_stack;
1014 
1015 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1016 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1017 				   flow_flags,
1018 				   faddr, saddr, dport, inet->inet_sport,
1019 				   sk->sk_uid);
1020 
1021 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1022 		rt = ip_route_output_flow(net, fl4, sk);
1023 		if (IS_ERR(rt)) {
1024 			err = PTR_ERR(rt);
1025 			rt = NULL;
1026 			if (err == -ENETUNREACH)
1027 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1028 			goto out;
1029 		}
1030 
1031 		err = -EACCES;
1032 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1033 		    !sock_flag(sk, SOCK_BROADCAST))
1034 			goto out;
1035 		if (connected)
1036 			sk_dst_set(sk, dst_clone(&rt->dst));
1037 	}
1038 
1039 	if (msg->msg_flags&MSG_CONFIRM)
1040 		goto do_confirm;
1041 back_from_confirm:
1042 
1043 	saddr = fl4->saddr;
1044 	if (!ipc.addr)
1045 		daddr = ipc.addr = fl4->daddr;
1046 
1047 	/* Lockless fast path for the non-corking case. */
1048 	if (!corkreq) {
1049 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1050 				  sizeof(struct udphdr), &ipc, &rt,
1051 				  msg->msg_flags);
1052 		err = PTR_ERR(skb);
1053 		if (!IS_ERR_OR_NULL(skb))
1054 			err = udp_send_skb(skb, fl4);
1055 		goto out;
1056 	}
1057 
1058 	lock_sock(sk);
1059 	if (unlikely(up->pending)) {
1060 		/* The socket is already corked while preparing it. */
1061 		/* ... which is an evident application bug. --ANK */
1062 		release_sock(sk);
1063 
1064 		net_dbg_ratelimited("cork app bug 2\n");
1065 		err = -EINVAL;
1066 		goto out;
1067 	}
1068 	/*
1069 	 *	Now cork the socket to pend data.
1070 	 */
1071 	fl4 = &inet->cork.fl.u.ip4;
1072 	fl4->daddr = daddr;
1073 	fl4->saddr = saddr;
1074 	fl4->fl4_dport = dport;
1075 	fl4->fl4_sport = inet->inet_sport;
1076 	up->pending = AF_INET;
1077 
1078 do_append_data:
1079 	up->len += ulen;
1080 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1081 			     sizeof(struct udphdr), &ipc, &rt,
1082 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1083 	if (err)
1084 		udp_flush_pending_frames(sk);
1085 	else if (!corkreq)
1086 		err = udp_push_pending_frames(sk);
1087 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1088 		up->pending = 0;
1089 	release_sock(sk);
1090 
1091 out:
1092 	ip_rt_put(rt);
1093 	if (free)
1094 		kfree(ipc.opt);
1095 	if (!err)
1096 		return len;
1097 	/*
1098 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1099 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1100 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1101 	 * things).  We could add another new stat but at least for now that
1102 	 * seems like overkill.
1103 	 */
1104 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1105 		UDP_INC_STATS(sock_net(sk),
1106 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1107 	}
1108 	return err;
1109 
1110 do_confirm:
1111 	if (msg->msg_flags & MSG_PROBE)
1112 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1113 	if (!(msg->msg_flags&MSG_PROBE) || len)
1114 		goto back_from_confirm;
1115 	err = 0;
1116 	goto out;
1117 }
1118 EXPORT_SYMBOL(udp_sendmsg);
1119 
1120 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1121 		 size_t size, int flags)
1122 {
1123 	struct inet_sock *inet = inet_sk(sk);
1124 	struct udp_sock *up = udp_sk(sk);
1125 	int ret;
1126 
1127 	if (flags & MSG_SENDPAGE_NOTLAST)
1128 		flags |= MSG_MORE;
1129 
1130 	if (!up->pending) {
1131 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1132 
1133 		/* Call udp_sendmsg to specify destination address which
1134 		 * sendpage interface can't pass.
1135 		 * This will succeed only when the socket is connected.
1136 		 */
1137 		ret = udp_sendmsg(sk, &msg, 0);
1138 		if (ret < 0)
1139 			return ret;
1140 	}
1141 
1142 	lock_sock(sk);
1143 
1144 	if (unlikely(!up->pending)) {
1145 		release_sock(sk);
1146 
1147 		net_dbg_ratelimited("udp cork app bug 3\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1152 			     page, offset, size, flags);
1153 	if (ret == -EOPNOTSUPP) {
1154 		release_sock(sk);
1155 		return sock_no_sendpage(sk->sk_socket, page, offset,
1156 					size, flags);
1157 	}
1158 	if (ret < 0) {
1159 		udp_flush_pending_frames(sk);
1160 		goto out;
1161 	}
1162 
1163 	up->len += size;
1164 	if (!(up->corkflag || (flags&MSG_MORE)))
1165 		ret = udp_push_pending_frames(sk);
1166 	if (!ret)
1167 		ret = size;
1168 out:
1169 	release_sock(sk);
1170 	return ret;
1171 }
1172 
1173 #define UDP_SKB_IS_STATELESS 0x80000000
1174 
1175 static void udp_set_dev_scratch(struct sk_buff *skb)
1176 {
1177 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1178 
1179 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1180 	scratch->_tsize_state = skb->truesize;
1181 #if BITS_PER_LONG == 64
1182 	scratch->len = skb->len;
1183 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1184 	scratch->is_linear = !skb_is_nonlinear(skb);
1185 #endif
1186 	/* all head states execept sp (dst, sk, nf) are always cleared by
1187 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1188 	 * process IP_CMSG_PASSSEC at recvmsg() time
1189 	 */
1190 	if (likely(!skb_sec_path(skb)))
1191 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1192 }
1193 
1194 static int udp_skb_truesize(struct sk_buff *skb)
1195 {
1196 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1197 }
1198 
1199 static bool udp_skb_has_head_state(struct sk_buff *skb)
1200 {
1201 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1202 }
1203 
1204 /* fully reclaim rmem/fwd memory allocated for skb */
1205 static void udp_rmem_release(struct sock *sk, int size, int partial,
1206 			     bool rx_queue_lock_held)
1207 {
1208 	struct udp_sock *up = udp_sk(sk);
1209 	struct sk_buff_head *sk_queue;
1210 	int amt;
1211 
1212 	if (likely(partial)) {
1213 		up->forward_deficit += size;
1214 		size = up->forward_deficit;
1215 		if (size < (sk->sk_rcvbuf >> 2) &&
1216 		    !skb_queue_empty(&up->reader_queue))
1217 			return;
1218 	} else {
1219 		size += up->forward_deficit;
1220 	}
1221 	up->forward_deficit = 0;
1222 
1223 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1224 	 * if the called don't held it already
1225 	 */
1226 	sk_queue = &sk->sk_receive_queue;
1227 	if (!rx_queue_lock_held)
1228 		spin_lock(&sk_queue->lock);
1229 
1230 
1231 	sk->sk_forward_alloc += size;
1232 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1233 	sk->sk_forward_alloc -= amt;
1234 
1235 	if (amt)
1236 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1237 
1238 	atomic_sub(size, &sk->sk_rmem_alloc);
1239 
1240 	/* this can save us from acquiring the rx queue lock on next receive */
1241 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1242 
1243 	if (!rx_queue_lock_held)
1244 		spin_unlock(&sk_queue->lock);
1245 }
1246 
1247 /* Note: called with reader_queue.lock held.
1248  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1249  * This avoids a cache line miss while receive_queue lock is held.
1250  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1251  */
1252 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1253 {
1254 	prefetch(&skb->data);
1255 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1256 }
1257 EXPORT_SYMBOL(udp_skb_destructor);
1258 
1259 /* as above, but the caller held the rx queue lock, too */
1260 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1261 {
1262 	prefetch(&skb->data);
1263 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1264 }
1265 
1266 /* Idea of busylocks is to let producers grab an extra spinlock
1267  * to relieve pressure on the receive_queue spinlock shared by consumer.
1268  * Under flood, this means that only one producer can be in line
1269  * trying to acquire the receive_queue spinlock.
1270  * These busylock can be allocated on a per cpu manner, instead of a
1271  * per socket one (that would consume a cache line per socket)
1272  */
1273 static int udp_busylocks_log __read_mostly;
1274 static spinlock_t *udp_busylocks __read_mostly;
1275 
1276 static spinlock_t *busylock_acquire(void *ptr)
1277 {
1278 	spinlock_t *busy;
1279 
1280 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1281 	spin_lock(busy);
1282 	return busy;
1283 }
1284 
1285 static void busylock_release(spinlock_t *busy)
1286 {
1287 	if (busy)
1288 		spin_unlock(busy);
1289 }
1290 
1291 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1292 {
1293 	struct sk_buff_head *list = &sk->sk_receive_queue;
1294 	int rmem, delta, amt, err = -ENOMEM;
1295 	spinlock_t *busy = NULL;
1296 	int size;
1297 
1298 	/* try to avoid the costly atomic add/sub pair when the receive
1299 	 * queue is full; always allow at least a packet
1300 	 */
1301 	rmem = atomic_read(&sk->sk_rmem_alloc);
1302 	if (rmem > sk->sk_rcvbuf)
1303 		goto drop;
1304 
1305 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1306 	 * having linear skbs :
1307 	 * - Reduce memory overhead and thus increase receive queue capacity
1308 	 * - Less cache line misses at copyout() time
1309 	 * - Less work at consume_skb() (less alien page frag freeing)
1310 	 */
1311 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1312 		skb_condense(skb);
1313 
1314 		busy = busylock_acquire(sk);
1315 	}
1316 	size = skb->truesize;
1317 	udp_set_dev_scratch(skb);
1318 
1319 	/* we drop only if the receive buf is full and the receive
1320 	 * queue contains some other skb
1321 	 */
1322 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1323 	if (rmem > (size + sk->sk_rcvbuf))
1324 		goto uncharge_drop;
1325 
1326 	spin_lock(&list->lock);
1327 	if (size >= sk->sk_forward_alloc) {
1328 		amt = sk_mem_pages(size);
1329 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1330 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1331 			err = -ENOBUFS;
1332 			spin_unlock(&list->lock);
1333 			goto uncharge_drop;
1334 		}
1335 
1336 		sk->sk_forward_alloc += delta;
1337 	}
1338 
1339 	sk->sk_forward_alloc -= size;
1340 
1341 	/* no need to setup a destructor, we will explicitly release the
1342 	 * forward allocated memory on dequeue
1343 	 */
1344 	sock_skb_set_dropcount(sk, skb);
1345 
1346 	__skb_queue_tail(list, skb);
1347 	spin_unlock(&list->lock);
1348 
1349 	if (!sock_flag(sk, SOCK_DEAD))
1350 		sk->sk_data_ready(sk);
1351 
1352 	busylock_release(busy);
1353 	return 0;
1354 
1355 uncharge_drop:
1356 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1357 
1358 drop:
1359 	atomic_inc(&sk->sk_drops);
1360 	busylock_release(busy);
1361 	return err;
1362 }
1363 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1364 
1365 void udp_destruct_sock(struct sock *sk)
1366 {
1367 	/* reclaim completely the forward allocated memory */
1368 	struct udp_sock *up = udp_sk(sk);
1369 	unsigned int total = 0;
1370 	struct sk_buff *skb;
1371 
1372 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1373 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1374 		total += skb->truesize;
1375 		kfree_skb(skb);
1376 	}
1377 	udp_rmem_release(sk, total, 0, true);
1378 
1379 	inet_sock_destruct(sk);
1380 }
1381 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1382 
1383 int udp_init_sock(struct sock *sk)
1384 {
1385 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1386 	sk->sk_destruct = udp_destruct_sock;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(udp_init_sock);
1390 
1391 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1392 {
1393 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1394 		bool slow = lock_sock_fast(sk);
1395 
1396 		sk_peek_offset_bwd(sk, len);
1397 		unlock_sock_fast(sk, slow);
1398 	}
1399 
1400 	if (!skb_unref(skb))
1401 		return;
1402 
1403 	/* In the more common cases we cleared the head states previously,
1404 	 * see __udp_queue_rcv_skb().
1405 	 */
1406 	if (unlikely(udp_skb_has_head_state(skb)))
1407 		skb_release_head_state(skb);
1408 	__consume_stateless_skb(skb);
1409 }
1410 EXPORT_SYMBOL_GPL(skb_consume_udp);
1411 
1412 static struct sk_buff *__first_packet_length(struct sock *sk,
1413 					     struct sk_buff_head *rcvq,
1414 					     int *total)
1415 {
1416 	struct sk_buff *skb;
1417 
1418 	while ((skb = skb_peek(rcvq)) != NULL) {
1419 		if (udp_lib_checksum_complete(skb)) {
1420 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1421 					IS_UDPLITE(sk));
1422 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1423 					IS_UDPLITE(sk));
1424 			atomic_inc(&sk->sk_drops);
1425 			__skb_unlink(skb, rcvq);
1426 			*total += skb->truesize;
1427 			kfree_skb(skb);
1428 		} else {
1429 			/* the csum related bits could be changed, refresh
1430 			 * the scratch area
1431 			 */
1432 			udp_set_dev_scratch(skb);
1433 			break;
1434 		}
1435 	}
1436 	return skb;
1437 }
1438 
1439 /**
1440  *	first_packet_length	- return length of first packet in receive queue
1441  *	@sk: socket
1442  *
1443  *	Drops all bad checksum frames, until a valid one is found.
1444  *	Returns the length of found skb, or -1 if none is found.
1445  */
1446 static int first_packet_length(struct sock *sk)
1447 {
1448 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1449 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1450 	struct sk_buff *skb;
1451 	int total = 0;
1452 	int res;
1453 
1454 	spin_lock_bh(&rcvq->lock);
1455 	skb = __first_packet_length(sk, rcvq, &total);
1456 	if (!skb && !skb_queue_empty(sk_queue)) {
1457 		spin_lock(&sk_queue->lock);
1458 		skb_queue_splice_tail_init(sk_queue, rcvq);
1459 		spin_unlock(&sk_queue->lock);
1460 
1461 		skb = __first_packet_length(sk, rcvq, &total);
1462 	}
1463 	res = skb ? skb->len : -1;
1464 	if (total)
1465 		udp_rmem_release(sk, total, 1, false);
1466 	spin_unlock_bh(&rcvq->lock);
1467 	return res;
1468 }
1469 
1470 /*
1471  *	IOCTL requests applicable to the UDP protocol
1472  */
1473 
1474 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1475 {
1476 	switch (cmd) {
1477 	case SIOCOUTQ:
1478 	{
1479 		int amount = sk_wmem_alloc_get(sk);
1480 
1481 		return put_user(amount, (int __user *)arg);
1482 	}
1483 
1484 	case SIOCINQ:
1485 	{
1486 		int amount = max_t(int, 0, first_packet_length(sk));
1487 
1488 		return put_user(amount, (int __user *)arg);
1489 	}
1490 
1491 	default:
1492 		return -ENOIOCTLCMD;
1493 	}
1494 
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL(udp_ioctl);
1498 
1499 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1500 			       int noblock, int *peeked, int *off, int *err)
1501 {
1502 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1503 	struct sk_buff_head *queue;
1504 	struct sk_buff *last;
1505 	long timeo;
1506 	int error;
1507 
1508 	queue = &udp_sk(sk)->reader_queue;
1509 	flags |= noblock ? MSG_DONTWAIT : 0;
1510 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1511 	do {
1512 		struct sk_buff *skb;
1513 
1514 		error = sock_error(sk);
1515 		if (error)
1516 			break;
1517 
1518 		error = -EAGAIN;
1519 		*peeked = 0;
1520 		do {
1521 			spin_lock_bh(&queue->lock);
1522 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1523 							udp_skb_destructor,
1524 							peeked, off, err,
1525 							&last);
1526 			if (skb) {
1527 				spin_unlock_bh(&queue->lock);
1528 				return skb;
1529 			}
1530 
1531 			if (skb_queue_empty(sk_queue)) {
1532 				spin_unlock_bh(&queue->lock);
1533 				goto busy_check;
1534 			}
1535 
1536 			/* refill the reader queue and walk it again
1537 			 * keep both queues locked to avoid re-acquiring
1538 			 * the sk_receive_queue lock if fwd memory scheduling
1539 			 * is needed.
1540 			 */
1541 			spin_lock(&sk_queue->lock);
1542 			skb_queue_splice_tail_init(sk_queue, queue);
1543 
1544 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1545 							udp_skb_dtor_locked,
1546 							peeked, off, err,
1547 							&last);
1548 			spin_unlock(&sk_queue->lock);
1549 			spin_unlock_bh(&queue->lock);
1550 			if (skb)
1551 				return skb;
1552 
1553 busy_check:
1554 			if (!sk_can_busy_loop(sk))
1555 				break;
1556 
1557 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1558 		} while (!skb_queue_empty(sk_queue));
1559 
1560 		/* sk_queue is empty, reader_queue may contain peeked packets */
1561 	} while (timeo &&
1562 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1563 					      (struct sk_buff *)sk_queue));
1564 
1565 	*err = error;
1566 	return NULL;
1567 }
1568 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1569 
1570 /*
1571  * 	This should be easy, if there is something there we
1572  * 	return it, otherwise we block.
1573  */
1574 
1575 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1576 		int flags, int *addr_len)
1577 {
1578 	struct inet_sock *inet = inet_sk(sk);
1579 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1580 	struct sk_buff *skb;
1581 	unsigned int ulen, copied;
1582 	int peeked, peeking, off;
1583 	int err;
1584 	int is_udplite = IS_UDPLITE(sk);
1585 	bool checksum_valid = false;
1586 
1587 	if (flags & MSG_ERRQUEUE)
1588 		return ip_recv_error(sk, msg, len, addr_len);
1589 
1590 try_again:
1591 	peeking = flags & MSG_PEEK;
1592 	off = sk_peek_offset(sk, flags);
1593 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1594 	if (!skb)
1595 		return err;
1596 
1597 	ulen = udp_skb_len(skb);
1598 	copied = len;
1599 	if (copied > ulen - off)
1600 		copied = ulen - off;
1601 	else if (copied < ulen)
1602 		msg->msg_flags |= MSG_TRUNC;
1603 
1604 	/*
1605 	 * If checksum is needed at all, try to do it while copying the
1606 	 * data.  If the data is truncated, or if we only want a partial
1607 	 * coverage checksum (UDP-Lite), do it before the copy.
1608 	 */
1609 
1610 	if (copied < ulen || peeking ||
1611 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1612 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1613 				!__udp_lib_checksum_complete(skb);
1614 		if (!checksum_valid)
1615 			goto csum_copy_err;
1616 	}
1617 
1618 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1619 		if (udp_skb_is_linear(skb))
1620 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1621 		else
1622 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1623 	} else {
1624 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1625 
1626 		if (err == -EINVAL)
1627 			goto csum_copy_err;
1628 	}
1629 
1630 	if (unlikely(err)) {
1631 		if (!peeked) {
1632 			atomic_inc(&sk->sk_drops);
1633 			UDP_INC_STATS(sock_net(sk),
1634 				      UDP_MIB_INERRORS, is_udplite);
1635 		}
1636 		kfree_skb(skb);
1637 		return err;
1638 	}
1639 
1640 	if (!peeked)
1641 		UDP_INC_STATS(sock_net(sk),
1642 			      UDP_MIB_INDATAGRAMS, is_udplite);
1643 
1644 	sock_recv_ts_and_drops(msg, sk, skb);
1645 
1646 	/* Copy the address. */
1647 	if (sin) {
1648 		sin->sin_family = AF_INET;
1649 		sin->sin_port = udp_hdr(skb)->source;
1650 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1651 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1652 		*addr_len = sizeof(*sin);
1653 	}
1654 	if (inet->cmsg_flags)
1655 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1656 
1657 	err = copied;
1658 	if (flags & MSG_TRUNC)
1659 		err = ulen;
1660 
1661 	skb_consume_udp(sk, skb, peeking ? -err : err);
1662 	return err;
1663 
1664 csum_copy_err:
1665 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1666 				 udp_skb_destructor)) {
1667 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1668 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1669 	}
1670 	kfree_skb(skb);
1671 
1672 	/* starting over for a new packet, but check if we need to yield */
1673 	cond_resched();
1674 	msg->msg_flags &= ~MSG_TRUNC;
1675 	goto try_again;
1676 }
1677 
1678 int __udp_disconnect(struct sock *sk, int flags)
1679 {
1680 	struct inet_sock *inet = inet_sk(sk);
1681 	/*
1682 	 *	1003.1g - break association.
1683 	 */
1684 
1685 	sk->sk_state = TCP_CLOSE;
1686 	inet->inet_daddr = 0;
1687 	inet->inet_dport = 0;
1688 	sock_rps_reset_rxhash(sk);
1689 	sk->sk_bound_dev_if = 0;
1690 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1691 		inet_reset_saddr(sk);
1692 
1693 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1694 		sk->sk_prot->unhash(sk);
1695 		inet->inet_sport = 0;
1696 	}
1697 	sk_dst_reset(sk);
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL(__udp_disconnect);
1701 
1702 int udp_disconnect(struct sock *sk, int flags)
1703 {
1704 	lock_sock(sk);
1705 	__udp_disconnect(sk, flags);
1706 	release_sock(sk);
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(udp_disconnect);
1710 
1711 void udp_lib_unhash(struct sock *sk)
1712 {
1713 	if (sk_hashed(sk)) {
1714 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1715 		struct udp_hslot *hslot, *hslot2;
1716 
1717 		hslot  = udp_hashslot(udptable, sock_net(sk),
1718 				      udp_sk(sk)->udp_port_hash);
1719 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1720 
1721 		spin_lock_bh(&hslot->lock);
1722 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1723 			reuseport_detach_sock(sk);
1724 		if (sk_del_node_init_rcu(sk)) {
1725 			hslot->count--;
1726 			inet_sk(sk)->inet_num = 0;
1727 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1728 
1729 			spin_lock(&hslot2->lock);
1730 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1731 			hslot2->count--;
1732 			spin_unlock(&hslot2->lock);
1733 		}
1734 		spin_unlock_bh(&hslot->lock);
1735 	}
1736 }
1737 EXPORT_SYMBOL(udp_lib_unhash);
1738 
1739 /*
1740  * inet_rcv_saddr was changed, we must rehash secondary hash
1741  */
1742 void udp_lib_rehash(struct sock *sk, u16 newhash)
1743 {
1744 	if (sk_hashed(sk)) {
1745 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1746 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1747 
1748 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1749 		nhslot2 = udp_hashslot2(udptable, newhash);
1750 		udp_sk(sk)->udp_portaddr_hash = newhash;
1751 
1752 		if (hslot2 != nhslot2 ||
1753 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1754 			hslot = udp_hashslot(udptable, sock_net(sk),
1755 					     udp_sk(sk)->udp_port_hash);
1756 			/* we must lock primary chain too */
1757 			spin_lock_bh(&hslot->lock);
1758 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1759 				reuseport_detach_sock(sk);
1760 
1761 			if (hslot2 != nhslot2) {
1762 				spin_lock(&hslot2->lock);
1763 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1764 				hslot2->count--;
1765 				spin_unlock(&hslot2->lock);
1766 
1767 				spin_lock(&nhslot2->lock);
1768 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1769 							 &nhslot2->head);
1770 				nhslot2->count++;
1771 				spin_unlock(&nhslot2->lock);
1772 			}
1773 
1774 			spin_unlock_bh(&hslot->lock);
1775 		}
1776 	}
1777 }
1778 EXPORT_SYMBOL(udp_lib_rehash);
1779 
1780 static void udp_v4_rehash(struct sock *sk)
1781 {
1782 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1783 					  inet_sk(sk)->inet_rcv_saddr,
1784 					  inet_sk(sk)->inet_num);
1785 	udp_lib_rehash(sk, new_hash);
1786 }
1787 
1788 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1789 {
1790 	int rc;
1791 
1792 	if (inet_sk(sk)->inet_daddr) {
1793 		sock_rps_save_rxhash(sk, skb);
1794 		sk_mark_napi_id(sk, skb);
1795 		sk_incoming_cpu_update(sk);
1796 	} else {
1797 		sk_mark_napi_id_once(sk, skb);
1798 	}
1799 
1800 	rc = __udp_enqueue_schedule_skb(sk, skb);
1801 	if (rc < 0) {
1802 		int is_udplite = IS_UDPLITE(sk);
1803 
1804 		/* Note that an ENOMEM error is charged twice */
1805 		if (rc == -ENOMEM)
1806 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1807 					is_udplite);
1808 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1809 		kfree_skb(skb);
1810 		trace_udp_fail_queue_rcv_skb(rc, sk);
1811 		return -1;
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static struct static_key udp_encap_needed __read_mostly;
1818 void udp_encap_enable(void)
1819 {
1820 	static_key_enable(&udp_encap_needed);
1821 }
1822 EXPORT_SYMBOL(udp_encap_enable);
1823 
1824 /* returns:
1825  *  -1: error
1826  *   0: success
1827  *  >0: "udp encap" protocol resubmission
1828  *
1829  * Note that in the success and error cases, the skb is assumed to
1830  * have either been requeued or freed.
1831  */
1832 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1833 {
1834 	struct udp_sock *up = udp_sk(sk);
1835 	int is_udplite = IS_UDPLITE(sk);
1836 
1837 	/*
1838 	 *	Charge it to the socket, dropping if the queue is full.
1839 	 */
1840 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1841 		goto drop;
1842 	nf_reset(skb);
1843 
1844 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1845 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1846 
1847 		/*
1848 		 * This is an encapsulation socket so pass the skb to
1849 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1850 		 * fall through and pass this up the UDP socket.
1851 		 * up->encap_rcv() returns the following value:
1852 		 * =0 if skb was successfully passed to the encap
1853 		 *    handler or was discarded by it.
1854 		 * >0 if skb should be passed on to UDP.
1855 		 * <0 if skb should be resubmitted as proto -N
1856 		 */
1857 
1858 		/* if we're overly short, let UDP handle it */
1859 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1860 		if (encap_rcv) {
1861 			int ret;
1862 
1863 			/* Verify checksum before giving to encap */
1864 			if (udp_lib_checksum_complete(skb))
1865 				goto csum_error;
1866 
1867 			ret = encap_rcv(sk, skb);
1868 			if (ret <= 0) {
1869 				__UDP_INC_STATS(sock_net(sk),
1870 						UDP_MIB_INDATAGRAMS,
1871 						is_udplite);
1872 				return -ret;
1873 			}
1874 		}
1875 
1876 		/* FALLTHROUGH -- it's a UDP Packet */
1877 	}
1878 
1879 	/*
1880 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1881 	 */
1882 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1883 
1884 		/*
1885 		 * MIB statistics other than incrementing the error count are
1886 		 * disabled for the following two types of errors: these depend
1887 		 * on the application settings, not on the functioning of the
1888 		 * protocol stack as such.
1889 		 *
1890 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1891 		 * way ... to ... at least let the receiving application block
1892 		 * delivery of packets with coverage values less than a value
1893 		 * provided by the application."
1894 		 */
1895 		if (up->pcrlen == 0) {          /* full coverage was set  */
1896 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1897 					    UDP_SKB_CB(skb)->cscov, skb->len);
1898 			goto drop;
1899 		}
1900 		/* The next case involves violating the min. coverage requested
1901 		 * by the receiver. This is subtle: if receiver wants x and x is
1902 		 * greater than the buffersize/MTU then receiver will complain
1903 		 * that it wants x while sender emits packets of smaller size y.
1904 		 * Therefore the above ...()->partial_cov statement is essential.
1905 		 */
1906 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1907 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1908 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1909 			goto drop;
1910 		}
1911 	}
1912 
1913 	prefetch(&sk->sk_rmem_alloc);
1914 	if (rcu_access_pointer(sk->sk_filter) &&
1915 	    udp_lib_checksum_complete(skb))
1916 			goto csum_error;
1917 
1918 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1919 		goto drop;
1920 
1921 	udp_csum_pull_header(skb);
1922 
1923 	ipv4_pktinfo_prepare(sk, skb);
1924 	return __udp_queue_rcv_skb(sk, skb);
1925 
1926 csum_error:
1927 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1928 drop:
1929 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1930 	atomic_inc(&sk->sk_drops);
1931 	kfree_skb(skb);
1932 	return -1;
1933 }
1934 
1935 /* For TCP sockets, sk_rx_dst is protected by socket lock
1936  * For UDP, we use xchg() to guard against concurrent changes.
1937  */
1938 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1939 {
1940 	struct dst_entry *old;
1941 
1942 	if (dst_hold_safe(dst)) {
1943 		old = xchg(&sk->sk_rx_dst, dst);
1944 		dst_release(old);
1945 		return old != dst;
1946 	}
1947 	return false;
1948 }
1949 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1950 
1951 /*
1952  *	Multicasts and broadcasts go to each listener.
1953  *
1954  *	Note: called only from the BH handler context.
1955  */
1956 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1957 				    struct udphdr  *uh,
1958 				    __be32 saddr, __be32 daddr,
1959 				    struct udp_table *udptable,
1960 				    int proto)
1961 {
1962 	struct sock *sk, *first = NULL;
1963 	unsigned short hnum = ntohs(uh->dest);
1964 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1965 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1966 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1967 	int dif = skb->dev->ifindex;
1968 	int sdif = inet_sdif(skb);
1969 	struct hlist_node *node;
1970 	struct sk_buff *nskb;
1971 
1972 	if (use_hash2) {
1973 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1974 			    udptable->mask;
1975 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1976 start_lookup:
1977 		hslot = &udptable->hash2[hash2];
1978 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1979 	}
1980 
1981 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1982 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1983 					 uh->source, saddr, dif, sdif, hnum))
1984 			continue;
1985 
1986 		if (!first) {
1987 			first = sk;
1988 			continue;
1989 		}
1990 		nskb = skb_clone(skb, GFP_ATOMIC);
1991 
1992 		if (unlikely(!nskb)) {
1993 			atomic_inc(&sk->sk_drops);
1994 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1995 					IS_UDPLITE(sk));
1996 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1997 					IS_UDPLITE(sk));
1998 			continue;
1999 		}
2000 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2001 			consume_skb(nskb);
2002 	}
2003 
2004 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2005 	if (use_hash2 && hash2 != hash2_any) {
2006 		hash2 = hash2_any;
2007 		goto start_lookup;
2008 	}
2009 
2010 	if (first) {
2011 		if (udp_queue_rcv_skb(first, skb) > 0)
2012 			consume_skb(skb);
2013 	} else {
2014 		kfree_skb(skb);
2015 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2016 				proto == IPPROTO_UDPLITE);
2017 	}
2018 	return 0;
2019 }
2020 
2021 /* Initialize UDP checksum. If exited with zero value (success),
2022  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2023  * Otherwise, csum completion requires chacksumming packet body,
2024  * including udp header and folding it to skb->csum.
2025  */
2026 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2027 				 int proto)
2028 {
2029 	int err;
2030 
2031 	UDP_SKB_CB(skb)->partial_cov = 0;
2032 	UDP_SKB_CB(skb)->cscov = skb->len;
2033 
2034 	if (proto == IPPROTO_UDPLITE) {
2035 		err = udplite_checksum_init(skb, uh);
2036 		if (err)
2037 			return err;
2038 	}
2039 
2040 	/* Note, we are only interested in != 0 or == 0, thus the
2041 	 * force to int.
2042 	 */
2043 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2044 							 inet_compute_pseudo);
2045 }
2046 
2047 /*
2048  *	All we need to do is get the socket, and then do a checksum.
2049  */
2050 
2051 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2052 		   int proto)
2053 {
2054 	struct sock *sk;
2055 	struct udphdr *uh;
2056 	unsigned short ulen;
2057 	struct rtable *rt = skb_rtable(skb);
2058 	__be32 saddr, daddr;
2059 	struct net *net = dev_net(skb->dev);
2060 
2061 	/*
2062 	 *  Validate the packet.
2063 	 */
2064 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2065 		goto drop;		/* No space for header. */
2066 
2067 	uh   = udp_hdr(skb);
2068 	ulen = ntohs(uh->len);
2069 	saddr = ip_hdr(skb)->saddr;
2070 	daddr = ip_hdr(skb)->daddr;
2071 
2072 	if (ulen > skb->len)
2073 		goto short_packet;
2074 
2075 	if (proto == IPPROTO_UDP) {
2076 		/* UDP validates ulen. */
2077 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2078 			goto short_packet;
2079 		uh = udp_hdr(skb);
2080 	}
2081 
2082 	if (udp4_csum_init(skb, uh, proto))
2083 		goto csum_error;
2084 
2085 	sk = skb_steal_sock(skb);
2086 	if (sk) {
2087 		struct dst_entry *dst = skb_dst(skb);
2088 		int ret;
2089 
2090 		if (unlikely(sk->sk_rx_dst != dst))
2091 			udp_sk_rx_dst_set(sk, dst);
2092 
2093 		ret = udp_queue_rcv_skb(sk, skb);
2094 		sock_put(sk);
2095 		/* a return value > 0 means to resubmit the input, but
2096 		 * it wants the return to be -protocol, or 0
2097 		 */
2098 		if (ret > 0)
2099 			return -ret;
2100 		return 0;
2101 	}
2102 
2103 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2104 		return __udp4_lib_mcast_deliver(net, skb, uh,
2105 						saddr, daddr, udptable, proto);
2106 
2107 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2108 	if (sk) {
2109 		int ret;
2110 
2111 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2112 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2113 						 inet_compute_pseudo);
2114 
2115 		ret = udp_queue_rcv_skb(sk, skb);
2116 
2117 		/* a return value > 0 means to resubmit the input, but
2118 		 * it wants the return to be -protocol, or 0
2119 		 */
2120 		if (ret > 0)
2121 			return -ret;
2122 		return 0;
2123 	}
2124 
2125 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2126 		goto drop;
2127 	nf_reset(skb);
2128 
2129 	/* No socket. Drop packet silently, if checksum is wrong */
2130 	if (udp_lib_checksum_complete(skb))
2131 		goto csum_error;
2132 
2133 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2134 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2135 
2136 	/*
2137 	 * Hmm.  We got an UDP packet to a port to which we
2138 	 * don't wanna listen.  Ignore it.
2139 	 */
2140 	kfree_skb(skb);
2141 	return 0;
2142 
2143 short_packet:
2144 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2145 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2146 			    &saddr, ntohs(uh->source),
2147 			    ulen, skb->len,
2148 			    &daddr, ntohs(uh->dest));
2149 	goto drop;
2150 
2151 csum_error:
2152 	/*
2153 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2154 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2155 	 */
2156 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2157 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2158 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2159 			    ulen);
2160 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2161 drop:
2162 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2163 	kfree_skb(skb);
2164 	return 0;
2165 }
2166 
2167 /* We can only early demux multicast if there is a single matching socket.
2168  * If more than one socket found returns NULL
2169  */
2170 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2171 						  __be16 loc_port, __be32 loc_addr,
2172 						  __be16 rmt_port, __be32 rmt_addr,
2173 						  int dif, int sdif)
2174 {
2175 	struct sock *sk, *result;
2176 	unsigned short hnum = ntohs(loc_port);
2177 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2178 	struct udp_hslot *hslot = &udp_table.hash[slot];
2179 
2180 	/* Do not bother scanning a too big list */
2181 	if (hslot->count > 10)
2182 		return NULL;
2183 
2184 	result = NULL;
2185 	sk_for_each_rcu(sk, &hslot->head) {
2186 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2187 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2188 			if (result)
2189 				return NULL;
2190 			result = sk;
2191 		}
2192 	}
2193 
2194 	return result;
2195 }
2196 
2197 /* For unicast we should only early demux connected sockets or we can
2198  * break forwarding setups.  The chains here can be long so only check
2199  * if the first socket is an exact match and if not move on.
2200  */
2201 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2202 					    __be16 loc_port, __be32 loc_addr,
2203 					    __be16 rmt_port, __be32 rmt_addr,
2204 					    int dif, int sdif)
2205 {
2206 	unsigned short hnum = ntohs(loc_port);
2207 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2208 	unsigned int slot2 = hash2 & udp_table.mask;
2209 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2210 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2211 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2212 	struct sock *sk;
2213 
2214 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2215 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2216 			       loc_addr, ports, dif, sdif))
2217 			return sk;
2218 		/* Only check first socket in chain */
2219 		break;
2220 	}
2221 	return NULL;
2222 }
2223 
2224 int udp_v4_early_demux(struct sk_buff *skb)
2225 {
2226 	struct net *net = dev_net(skb->dev);
2227 	struct in_device *in_dev = NULL;
2228 	const struct iphdr *iph;
2229 	const struct udphdr *uh;
2230 	struct sock *sk = NULL;
2231 	struct dst_entry *dst;
2232 	int dif = skb->dev->ifindex;
2233 	int sdif = inet_sdif(skb);
2234 	int ours;
2235 
2236 	/* validate the packet */
2237 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2238 		return 0;
2239 
2240 	iph = ip_hdr(skb);
2241 	uh = udp_hdr(skb);
2242 
2243 	if (skb->pkt_type == PACKET_BROADCAST ||
2244 	    skb->pkt_type == PACKET_MULTICAST) {
2245 		in_dev = __in_dev_get_rcu(skb->dev);
2246 
2247 		if (!in_dev)
2248 			return 0;
2249 
2250 		/* we are supposed to accept bcast packets */
2251 		if (skb->pkt_type == PACKET_MULTICAST) {
2252 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2253 					       iph->protocol);
2254 			if (!ours)
2255 				return 0;
2256 		}
2257 
2258 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2259 						   uh->source, iph->saddr,
2260 						   dif, sdif);
2261 	} else if (skb->pkt_type == PACKET_HOST) {
2262 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2263 					     uh->source, iph->saddr, dif, sdif);
2264 	}
2265 
2266 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2267 		return 0;
2268 
2269 	skb->sk = sk;
2270 	skb->destructor = sock_efree;
2271 	dst = READ_ONCE(sk->sk_rx_dst);
2272 
2273 	if (dst)
2274 		dst = dst_check(dst, 0);
2275 	if (dst) {
2276 		u32 itag = 0;
2277 
2278 		/* set noref for now.
2279 		 * any place which wants to hold dst has to call
2280 		 * dst_hold_safe()
2281 		 */
2282 		skb_dst_set_noref(skb, dst);
2283 
2284 		/* for unconnected multicast sockets we need to validate
2285 		 * the source on each packet
2286 		 */
2287 		if (!inet_sk(sk)->inet_daddr && in_dev)
2288 			return ip_mc_validate_source(skb, iph->daddr,
2289 						     iph->saddr, iph->tos,
2290 						     skb->dev, in_dev, &itag);
2291 	}
2292 	return 0;
2293 }
2294 
2295 int udp_rcv(struct sk_buff *skb)
2296 {
2297 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2298 }
2299 
2300 void udp_destroy_sock(struct sock *sk)
2301 {
2302 	struct udp_sock *up = udp_sk(sk);
2303 	bool slow = lock_sock_fast(sk);
2304 	udp_flush_pending_frames(sk);
2305 	unlock_sock_fast(sk, slow);
2306 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2307 		void (*encap_destroy)(struct sock *sk);
2308 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2309 		if (encap_destroy)
2310 			encap_destroy(sk);
2311 	}
2312 }
2313 
2314 /*
2315  *	Socket option code for UDP
2316  */
2317 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2318 		       char __user *optval, unsigned int optlen,
2319 		       int (*push_pending_frames)(struct sock *))
2320 {
2321 	struct udp_sock *up = udp_sk(sk);
2322 	int val, valbool;
2323 	int err = 0;
2324 	int is_udplite = IS_UDPLITE(sk);
2325 
2326 	if (optlen < sizeof(int))
2327 		return -EINVAL;
2328 
2329 	if (get_user(val, (int __user *)optval))
2330 		return -EFAULT;
2331 
2332 	valbool = val ? 1 : 0;
2333 
2334 	switch (optname) {
2335 	case UDP_CORK:
2336 		if (val != 0) {
2337 			up->corkflag = 1;
2338 		} else {
2339 			up->corkflag = 0;
2340 			lock_sock(sk);
2341 			push_pending_frames(sk);
2342 			release_sock(sk);
2343 		}
2344 		break;
2345 
2346 	case UDP_ENCAP:
2347 		switch (val) {
2348 		case 0:
2349 		case UDP_ENCAP_ESPINUDP:
2350 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2351 			up->encap_rcv = xfrm4_udp_encap_rcv;
2352 			/* FALLTHROUGH */
2353 		case UDP_ENCAP_L2TPINUDP:
2354 			up->encap_type = val;
2355 			udp_encap_enable();
2356 			break;
2357 		default:
2358 			err = -ENOPROTOOPT;
2359 			break;
2360 		}
2361 		break;
2362 
2363 	case UDP_NO_CHECK6_TX:
2364 		up->no_check6_tx = valbool;
2365 		break;
2366 
2367 	case UDP_NO_CHECK6_RX:
2368 		up->no_check6_rx = valbool;
2369 		break;
2370 
2371 	/*
2372 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2373 	 */
2374 	/* The sender sets actual checksum coverage length via this option.
2375 	 * The case coverage > packet length is handled by send module. */
2376 	case UDPLITE_SEND_CSCOV:
2377 		if (!is_udplite)         /* Disable the option on UDP sockets */
2378 			return -ENOPROTOOPT;
2379 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2380 			val = 8;
2381 		else if (val > USHRT_MAX)
2382 			val = USHRT_MAX;
2383 		up->pcslen = val;
2384 		up->pcflag |= UDPLITE_SEND_CC;
2385 		break;
2386 
2387 	/* The receiver specifies a minimum checksum coverage value. To make
2388 	 * sense, this should be set to at least 8 (as done below). If zero is
2389 	 * used, this again means full checksum coverage.                     */
2390 	case UDPLITE_RECV_CSCOV:
2391 		if (!is_udplite)         /* Disable the option on UDP sockets */
2392 			return -ENOPROTOOPT;
2393 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2394 			val = 8;
2395 		else if (val > USHRT_MAX)
2396 			val = USHRT_MAX;
2397 		up->pcrlen = val;
2398 		up->pcflag |= UDPLITE_RECV_CC;
2399 		break;
2400 
2401 	default:
2402 		err = -ENOPROTOOPT;
2403 		break;
2404 	}
2405 
2406 	return err;
2407 }
2408 EXPORT_SYMBOL(udp_lib_setsockopt);
2409 
2410 int udp_setsockopt(struct sock *sk, int level, int optname,
2411 		   char __user *optval, unsigned int optlen)
2412 {
2413 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2414 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2415 					  udp_push_pending_frames);
2416 	return ip_setsockopt(sk, level, optname, optval, optlen);
2417 }
2418 
2419 #ifdef CONFIG_COMPAT
2420 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2421 			  char __user *optval, unsigned int optlen)
2422 {
2423 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2424 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2425 					  udp_push_pending_frames);
2426 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2427 }
2428 #endif
2429 
2430 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2431 		       char __user *optval, int __user *optlen)
2432 {
2433 	struct udp_sock *up = udp_sk(sk);
2434 	int val, len;
2435 
2436 	if (get_user(len, optlen))
2437 		return -EFAULT;
2438 
2439 	len = min_t(unsigned int, len, sizeof(int));
2440 
2441 	if (len < 0)
2442 		return -EINVAL;
2443 
2444 	switch (optname) {
2445 	case UDP_CORK:
2446 		val = up->corkflag;
2447 		break;
2448 
2449 	case UDP_ENCAP:
2450 		val = up->encap_type;
2451 		break;
2452 
2453 	case UDP_NO_CHECK6_TX:
2454 		val = up->no_check6_tx;
2455 		break;
2456 
2457 	case UDP_NO_CHECK6_RX:
2458 		val = up->no_check6_rx;
2459 		break;
2460 
2461 	/* The following two cannot be changed on UDP sockets, the return is
2462 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2463 	case UDPLITE_SEND_CSCOV:
2464 		val = up->pcslen;
2465 		break;
2466 
2467 	case UDPLITE_RECV_CSCOV:
2468 		val = up->pcrlen;
2469 		break;
2470 
2471 	default:
2472 		return -ENOPROTOOPT;
2473 	}
2474 
2475 	if (put_user(len, optlen))
2476 		return -EFAULT;
2477 	if (copy_to_user(optval, &val, len))
2478 		return -EFAULT;
2479 	return 0;
2480 }
2481 EXPORT_SYMBOL(udp_lib_getsockopt);
2482 
2483 int udp_getsockopt(struct sock *sk, int level, int optname,
2484 		   char __user *optval, int __user *optlen)
2485 {
2486 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2487 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2488 	return ip_getsockopt(sk, level, optname, optval, optlen);
2489 }
2490 
2491 #ifdef CONFIG_COMPAT
2492 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2493 				 char __user *optval, int __user *optlen)
2494 {
2495 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2496 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2497 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2498 }
2499 #endif
2500 /**
2501  * 	udp_poll - wait for a UDP event.
2502  *	@file - file struct
2503  *	@sock - socket
2504  *	@wait - poll table
2505  *
2506  *	This is same as datagram poll, except for the special case of
2507  *	blocking sockets. If application is using a blocking fd
2508  *	and a packet with checksum error is in the queue;
2509  *	then it could get return from select indicating data available
2510  *	but then block when reading it. Add special case code
2511  *	to work around these arguably broken applications.
2512  */
2513 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2514 {
2515 	unsigned int mask = datagram_poll(file, sock, wait);
2516 	struct sock *sk = sock->sk;
2517 
2518 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2519 		mask |= POLLIN | POLLRDNORM;
2520 
2521 	sock_rps_record_flow(sk);
2522 
2523 	/* Check for false positives due to checksum errors */
2524 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2525 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2526 		mask &= ~(POLLIN | POLLRDNORM);
2527 
2528 	return mask;
2529 
2530 }
2531 EXPORT_SYMBOL(udp_poll);
2532 
2533 int udp_abort(struct sock *sk, int err)
2534 {
2535 	lock_sock(sk);
2536 
2537 	sk->sk_err = err;
2538 	sk->sk_error_report(sk);
2539 	__udp_disconnect(sk, 0);
2540 
2541 	release_sock(sk);
2542 
2543 	return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(udp_abort);
2546 
2547 struct proto udp_prot = {
2548 	.name		   = "UDP",
2549 	.owner		   = THIS_MODULE,
2550 	.close		   = udp_lib_close,
2551 	.connect	   = ip4_datagram_connect,
2552 	.disconnect	   = udp_disconnect,
2553 	.ioctl		   = udp_ioctl,
2554 	.init		   = udp_init_sock,
2555 	.destroy	   = udp_destroy_sock,
2556 	.setsockopt	   = udp_setsockopt,
2557 	.getsockopt	   = udp_getsockopt,
2558 	.sendmsg	   = udp_sendmsg,
2559 	.recvmsg	   = udp_recvmsg,
2560 	.sendpage	   = udp_sendpage,
2561 	.release_cb	   = ip4_datagram_release_cb,
2562 	.hash		   = udp_lib_hash,
2563 	.unhash		   = udp_lib_unhash,
2564 	.rehash		   = udp_v4_rehash,
2565 	.get_port	   = udp_v4_get_port,
2566 	.memory_allocated  = &udp_memory_allocated,
2567 	.sysctl_mem	   = sysctl_udp_mem,
2568 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2569 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2570 	.obj_size	   = sizeof(struct udp_sock),
2571 	.h.udp_table	   = &udp_table,
2572 #ifdef CONFIG_COMPAT
2573 	.compat_setsockopt = compat_udp_setsockopt,
2574 	.compat_getsockopt = compat_udp_getsockopt,
2575 #endif
2576 	.diag_destroy	   = udp_abort,
2577 };
2578 EXPORT_SYMBOL(udp_prot);
2579 
2580 /* ------------------------------------------------------------------------ */
2581 #ifdef CONFIG_PROC_FS
2582 
2583 static struct sock *udp_get_first(struct seq_file *seq, int start)
2584 {
2585 	struct sock *sk;
2586 	struct udp_iter_state *state = seq->private;
2587 	struct net *net = seq_file_net(seq);
2588 
2589 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2590 	     ++state->bucket) {
2591 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2592 
2593 		if (hlist_empty(&hslot->head))
2594 			continue;
2595 
2596 		spin_lock_bh(&hslot->lock);
2597 		sk_for_each(sk, &hslot->head) {
2598 			if (!net_eq(sock_net(sk), net))
2599 				continue;
2600 			if (sk->sk_family == state->family)
2601 				goto found;
2602 		}
2603 		spin_unlock_bh(&hslot->lock);
2604 	}
2605 	sk = NULL;
2606 found:
2607 	return sk;
2608 }
2609 
2610 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2611 {
2612 	struct udp_iter_state *state = seq->private;
2613 	struct net *net = seq_file_net(seq);
2614 
2615 	do {
2616 		sk = sk_next(sk);
2617 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2618 
2619 	if (!sk) {
2620 		if (state->bucket <= state->udp_table->mask)
2621 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2622 		return udp_get_first(seq, state->bucket + 1);
2623 	}
2624 	return sk;
2625 }
2626 
2627 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2628 {
2629 	struct sock *sk = udp_get_first(seq, 0);
2630 
2631 	if (sk)
2632 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2633 			--pos;
2634 	return pos ? NULL : sk;
2635 }
2636 
2637 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2638 {
2639 	struct udp_iter_state *state = seq->private;
2640 	state->bucket = MAX_UDP_PORTS;
2641 
2642 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2643 }
2644 
2645 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2646 {
2647 	struct sock *sk;
2648 
2649 	if (v == SEQ_START_TOKEN)
2650 		sk = udp_get_idx(seq, 0);
2651 	else
2652 		sk = udp_get_next(seq, v);
2653 
2654 	++*pos;
2655 	return sk;
2656 }
2657 
2658 static void udp_seq_stop(struct seq_file *seq, void *v)
2659 {
2660 	struct udp_iter_state *state = seq->private;
2661 
2662 	if (state->bucket <= state->udp_table->mask)
2663 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2664 }
2665 
2666 int udp_seq_open(struct inode *inode, struct file *file)
2667 {
2668 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2669 	struct udp_iter_state *s;
2670 	int err;
2671 
2672 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2673 			   sizeof(struct udp_iter_state));
2674 	if (err < 0)
2675 		return err;
2676 
2677 	s = ((struct seq_file *)file->private_data)->private;
2678 	s->family		= afinfo->family;
2679 	s->udp_table		= afinfo->udp_table;
2680 	return err;
2681 }
2682 EXPORT_SYMBOL(udp_seq_open);
2683 
2684 /* ------------------------------------------------------------------------ */
2685 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2686 {
2687 	struct proc_dir_entry *p;
2688 	int rc = 0;
2689 
2690 	afinfo->seq_ops.start		= udp_seq_start;
2691 	afinfo->seq_ops.next		= udp_seq_next;
2692 	afinfo->seq_ops.stop		= udp_seq_stop;
2693 
2694 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2695 			     afinfo->seq_fops, afinfo);
2696 	if (!p)
2697 		rc = -ENOMEM;
2698 	return rc;
2699 }
2700 EXPORT_SYMBOL(udp_proc_register);
2701 
2702 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2703 {
2704 	remove_proc_entry(afinfo->name, net->proc_net);
2705 }
2706 EXPORT_SYMBOL(udp_proc_unregister);
2707 
2708 /* ------------------------------------------------------------------------ */
2709 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2710 		int bucket)
2711 {
2712 	struct inet_sock *inet = inet_sk(sp);
2713 	__be32 dest = inet->inet_daddr;
2714 	__be32 src  = inet->inet_rcv_saddr;
2715 	__u16 destp	  = ntohs(inet->inet_dport);
2716 	__u16 srcp	  = ntohs(inet->inet_sport);
2717 
2718 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2719 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2720 		bucket, src, srcp, dest, destp, sp->sk_state,
2721 		sk_wmem_alloc_get(sp),
2722 		sk_rmem_alloc_get(sp),
2723 		0, 0L, 0,
2724 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2725 		0, sock_i_ino(sp),
2726 		refcount_read(&sp->sk_refcnt), sp,
2727 		atomic_read(&sp->sk_drops));
2728 }
2729 
2730 int udp4_seq_show(struct seq_file *seq, void *v)
2731 {
2732 	seq_setwidth(seq, 127);
2733 	if (v == SEQ_START_TOKEN)
2734 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2735 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2736 			   "inode ref pointer drops");
2737 	else {
2738 		struct udp_iter_state *state = seq->private;
2739 
2740 		udp4_format_sock(v, seq, state->bucket);
2741 	}
2742 	seq_pad(seq, '\n');
2743 	return 0;
2744 }
2745 
2746 static const struct file_operations udp_afinfo_seq_fops = {
2747 	.owner    = THIS_MODULE,
2748 	.open     = udp_seq_open,
2749 	.read     = seq_read,
2750 	.llseek   = seq_lseek,
2751 	.release  = seq_release_net
2752 };
2753 
2754 /* ------------------------------------------------------------------------ */
2755 static struct udp_seq_afinfo udp4_seq_afinfo = {
2756 	.name		= "udp",
2757 	.family		= AF_INET,
2758 	.udp_table	= &udp_table,
2759 	.seq_fops	= &udp_afinfo_seq_fops,
2760 	.seq_ops	= {
2761 		.show		= udp4_seq_show,
2762 	},
2763 };
2764 
2765 static int __net_init udp4_proc_init_net(struct net *net)
2766 {
2767 	return udp_proc_register(net, &udp4_seq_afinfo);
2768 }
2769 
2770 static void __net_exit udp4_proc_exit_net(struct net *net)
2771 {
2772 	udp_proc_unregister(net, &udp4_seq_afinfo);
2773 }
2774 
2775 static struct pernet_operations udp4_net_ops = {
2776 	.init = udp4_proc_init_net,
2777 	.exit = udp4_proc_exit_net,
2778 };
2779 
2780 int __init udp4_proc_init(void)
2781 {
2782 	return register_pernet_subsys(&udp4_net_ops);
2783 }
2784 
2785 void udp4_proc_exit(void)
2786 {
2787 	unregister_pernet_subsys(&udp4_net_ops);
2788 }
2789 #endif /* CONFIG_PROC_FS */
2790 
2791 static __initdata unsigned long uhash_entries;
2792 static int __init set_uhash_entries(char *str)
2793 {
2794 	ssize_t ret;
2795 
2796 	if (!str)
2797 		return 0;
2798 
2799 	ret = kstrtoul(str, 0, &uhash_entries);
2800 	if (ret)
2801 		return 0;
2802 
2803 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2804 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2805 	return 1;
2806 }
2807 __setup("uhash_entries=", set_uhash_entries);
2808 
2809 void __init udp_table_init(struct udp_table *table, const char *name)
2810 {
2811 	unsigned int i;
2812 
2813 	table->hash = alloc_large_system_hash(name,
2814 					      2 * sizeof(struct udp_hslot),
2815 					      uhash_entries,
2816 					      21, /* one slot per 2 MB */
2817 					      0,
2818 					      &table->log,
2819 					      &table->mask,
2820 					      UDP_HTABLE_SIZE_MIN,
2821 					      64 * 1024);
2822 
2823 	table->hash2 = table->hash + (table->mask + 1);
2824 	for (i = 0; i <= table->mask; i++) {
2825 		INIT_HLIST_HEAD(&table->hash[i].head);
2826 		table->hash[i].count = 0;
2827 		spin_lock_init(&table->hash[i].lock);
2828 	}
2829 	for (i = 0; i <= table->mask; i++) {
2830 		INIT_HLIST_HEAD(&table->hash2[i].head);
2831 		table->hash2[i].count = 0;
2832 		spin_lock_init(&table->hash2[i].lock);
2833 	}
2834 }
2835 
2836 u32 udp_flow_hashrnd(void)
2837 {
2838 	static u32 hashrnd __read_mostly;
2839 
2840 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2841 
2842 	return hashrnd;
2843 }
2844 EXPORT_SYMBOL(udp_flow_hashrnd);
2845 
2846 void __init udp_init(void)
2847 {
2848 	unsigned long limit;
2849 	unsigned int i;
2850 
2851 	udp_table_init(&udp_table, "UDP");
2852 	limit = nr_free_buffer_pages() / 8;
2853 	limit = max(limit, 128UL);
2854 	sysctl_udp_mem[0] = limit / 4 * 3;
2855 	sysctl_udp_mem[1] = limit;
2856 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2857 
2858 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2859 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2860 
2861 	/* 16 spinlocks per cpu */
2862 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2863 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2864 				GFP_KERNEL);
2865 	if (!udp_busylocks)
2866 		panic("UDP: failed to alloc udp_busylocks\n");
2867 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2868 		spin_lock_init(udp_busylocks + i);
2869 }
2870