xref: /openbmc/linux/net/ipv4/udp.c (revision c8ec3743)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/memblock.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/ip_tunnels.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 #include <net/sock_reuseport.h>
118 #include <net/addrconf.h>
119 #include <net/udp_tunnel.h>
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 
133 /* IPCB reference means this can not be used from early demux */
134 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
135 {
136 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
137 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
138 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
139 		return true;
140 #endif
141 	return false;
142 }
143 
144 static int udp_lib_lport_inuse(struct net *net, __u16 num,
145 			       const struct udp_hslot *hslot,
146 			       unsigned long *bitmap,
147 			       struct sock *sk, unsigned int log)
148 {
149 	struct sock *sk2;
150 	kuid_t uid = sock_i_uid(sk);
151 
152 	sk_for_each(sk2, &hslot->head) {
153 		if (net_eq(sock_net(sk2), net) &&
154 		    sk2 != sk &&
155 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
156 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
157 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
158 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
159 		    inet_rcv_saddr_equal(sk, sk2, true)) {
160 			if (sk2->sk_reuseport && sk->sk_reuseport &&
161 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
162 			    uid_eq(uid, sock_i_uid(sk2))) {
163 				if (!bitmap)
164 					return 0;
165 			} else {
166 				if (!bitmap)
167 					return 1;
168 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
169 					  bitmap);
170 			}
171 		}
172 	}
173 	return 0;
174 }
175 
176 /*
177  * Note: we still hold spinlock of primary hash chain, so no other writer
178  * can insert/delete a socket with local_port == num
179  */
180 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
181 				struct udp_hslot *hslot2,
182 				struct sock *sk)
183 {
184 	struct sock *sk2;
185 	kuid_t uid = sock_i_uid(sk);
186 	int res = 0;
187 
188 	spin_lock(&hslot2->lock);
189 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
190 		if (net_eq(sock_net(sk2), net) &&
191 		    sk2 != sk &&
192 		    (udp_sk(sk2)->udp_port_hash == num) &&
193 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
194 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
195 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
196 		    inet_rcv_saddr_equal(sk, sk2, true)) {
197 			if (sk2->sk_reuseport && sk->sk_reuseport &&
198 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
199 			    uid_eq(uid, sock_i_uid(sk2))) {
200 				res = 0;
201 			} else {
202 				res = 1;
203 			}
204 			break;
205 		}
206 	}
207 	spin_unlock(&hslot2->lock);
208 	return res;
209 }
210 
211 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
212 {
213 	struct net *net = sock_net(sk);
214 	kuid_t uid = sock_i_uid(sk);
215 	struct sock *sk2;
216 
217 	sk_for_each(sk2, &hslot->head) {
218 		if (net_eq(sock_net(sk2), net) &&
219 		    sk2 != sk &&
220 		    sk2->sk_family == sk->sk_family &&
221 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
222 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
223 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
224 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
225 		    inet_rcv_saddr_equal(sk, sk2, false)) {
226 			return reuseport_add_sock(sk, sk2,
227 						  inet_rcv_saddr_any(sk));
228 		}
229 	}
230 
231 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
232 }
233 
234 /**
235  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
236  *
237  *  @sk:          socket struct in question
238  *  @snum:        port number to look up
239  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240  *                   with NULL address
241  */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 			cond_resched();
288 		} while (++first != last);
289 		goto fail;
290 	} else {
291 		hslot = udp_hashslot(udptable, net, snum);
292 		spin_lock_bh(&hslot->lock);
293 		if (hslot->count > 10) {
294 			int exist;
295 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296 
297 			slot2          &= udptable->mask;
298 			hash2_nulladdr &= udptable->mask;
299 
300 			hslot2 = udp_hashslot2(udptable, slot2);
301 			if (hslot->count < hslot2->count)
302 				goto scan_primary_hash;
303 
304 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
317 			goto fail_unlock;
318 	}
319 found:
320 	inet_sk(sk)->inet_num = snum;
321 	udp_sk(sk)->udp_port_hash = snum;
322 	udp_sk(sk)->udp_portaddr_hash ^= snum;
323 	if (sk_unhashed(sk)) {
324 		if (sk->sk_reuseport &&
325 		    udp_reuseport_add_sock(sk, hslot)) {
326 			inet_sk(sk)->inet_num = 0;
327 			udp_sk(sk)->udp_port_hash = 0;
328 			udp_sk(sk)->udp_portaddr_hash ^= snum;
329 			goto fail_unlock;
330 		}
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 	sock_set_flag(sk, SOCK_RCU_FREE);
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif, bool exact_dif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	score += 4;
406 
407 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
413 		       const __u16 lport, const __be32 faddr,
414 		       const __be16 fport)
415 {
416 	static u32 udp_ehash_secret __read_mostly;
417 
418 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419 
420 	return __inet_ehashfn(laddr, lport, faddr, fport,
421 			      udp_ehash_secret + net_hash_mix(net));
422 }
423 
424 /* called with rcu_read_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 				     __be32 saddr, __be16 sport,
427 				     __be32 daddr, unsigned int hnum,
428 				     int dif, int sdif, bool exact_dif,
429 				     struct udp_hslot *hslot2,
430 				     struct sk_buff *skb)
431 {
432 	struct sock *sk, *result;
433 	int score, badness;
434 	u32 hash = 0;
435 
436 	result = NULL;
437 	badness = 0;
438 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
439 		score = compute_score(sk, net, saddr, sport,
440 				      daddr, hnum, dif, sdif, exact_dif);
441 		if (score > badness) {
442 			if (sk->sk_reuseport) {
443 				hash = udp_ehashfn(net, daddr, hnum,
444 						   saddr, sport);
445 				result = reuseport_select_sock(sk, hash, skb,
446 							sizeof(struct udphdr));
447 				if (result)
448 					return result;
449 			}
450 			badness = score;
451 			result = sk;
452 		}
453 	}
454 	return result;
455 }
456 
457 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
458  * harder than this. -DaveM
459  */
460 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
461 		__be16 sport, __be32 daddr, __be16 dport, int dif,
462 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
463 {
464 	struct sock *result;
465 	unsigned short hnum = ntohs(dport);
466 	unsigned int hash2, slot2;
467 	struct udp_hslot *hslot2;
468 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
469 
470 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
471 	slot2 = hash2 & udptable->mask;
472 	hslot2 = &udptable->hash2[slot2];
473 
474 	result = udp4_lib_lookup2(net, saddr, sport,
475 				  daddr, hnum, dif, sdif,
476 				  exact_dif, hslot2, skb);
477 	if (!result) {
478 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
479 		slot2 = hash2 & udptable->mask;
480 		hslot2 = &udptable->hash2[slot2];
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  htonl(INADDR_ANY), hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 	}
486 	if (unlikely(IS_ERR(result)))
487 		return NULL;
488 	return result;
489 }
490 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
491 
492 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
493 						 __be16 sport, __be16 dport,
494 						 struct udp_table *udptable)
495 {
496 	const struct iphdr *iph = ip_hdr(skb);
497 
498 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
499 				 iph->daddr, dport, inet_iif(skb),
500 				 inet_sdif(skb), udptable, skb);
501 }
502 
503 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
504 				 __be16 sport, __be16 dport)
505 {
506 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
507 }
508 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
509 
510 /* Must be called under rcu_read_lock().
511  * Does increment socket refcount.
512  */
513 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
514 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
515 			     __be32 daddr, __be16 dport, int dif)
516 {
517 	struct sock *sk;
518 
519 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
520 			       dif, 0, &udp_table, NULL);
521 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
522 		sk = NULL;
523 	return sk;
524 }
525 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
526 #endif
527 
528 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
529 				       __be16 loc_port, __be32 loc_addr,
530 				       __be16 rmt_port, __be32 rmt_addr,
531 				       int dif, int sdif, unsigned short hnum)
532 {
533 	struct inet_sock *inet = inet_sk(sk);
534 
535 	if (!net_eq(sock_net(sk), net) ||
536 	    udp_sk(sk)->udp_port_hash != hnum ||
537 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
538 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
539 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
540 	    ipv6_only_sock(sk) ||
541 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
542 	     sk->sk_bound_dev_if != sdif))
543 		return false;
544 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
545 		return false;
546 	return true;
547 }
548 
549 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
550 void udp_encap_enable(void)
551 {
552 	static_branch_inc(&udp_encap_needed_key);
553 }
554 EXPORT_SYMBOL(udp_encap_enable);
555 
556 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
557  * through error handlers in encapsulations looking for a match.
558  */
559 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
560 {
561 	int i;
562 
563 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
564 		int (*handler)(struct sk_buff *skb, u32 info);
565 
566 		if (!iptun_encaps[i])
567 			continue;
568 		handler = rcu_dereference(iptun_encaps[i]->err_handler);
569 		if (handler && !handler(skb, info))
570 			return 0;
571 	}
572 
573 	return -ENOENT;
574 }
575 
576 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
577  * reversing source and destination port: this will match tunnels that force the
578  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
579  * lwtunnels might actually break this assumption by being configured with
580  * different destination ports on endpoints, in this case we won't be able to
581  * trace ICMP messages back to them.
582  *
583  * If this doesn't match any socket, probe tunnels with arbitrary destination
584  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
585  * we've sent packets to won't necessarily match the local destination port.
586  *
587  * Then ask the tunnel implementation to match the error against a valid
588  * association.
589  *
590  * Return an error if we can't find a match, the socket if we need further
591  * processing, zero otherwise.
592  */
593 static struct sock *__udp4_lib_err_encap(struct net *net,
594 					 const struct iphdr *iph,
595 					 struct udphdr *uh,
596 					 struct udp_table *udptable,
597 					 struct sk_buff *skb, u32 info)
598 {
599 	int network_offset, transport_offset;
600 	struct sock *sk;
601 
602 	network_offset = skb_network_offset(skb);
603 	transport_offset = skb_transport_offset(skb);
604 
605 	/* Network header needs to point to the outer IPv4 header inside ICMP */
606 	skb_reset_network_header(skb);
607 
608 	/* Transport header needs to point to the UDP header */
609 	skb_set_transport_header(skb, iph->ihl << 2);
610 
611 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
612 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
613 			       udptable, NULL);
614 	if (sk) {
615 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
616 		struct udp_sock *up = udp_sk(sk);
617 
618 		lookup = READ_ONCE(up->encap_err_lookup);
619 		if (!lookup || lookup(sk, skb))
620 			sk = NULL;
621 	}
622 
623 	if (!sk)
624 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
625 
626 	skb_set_transport_header(skb, transport_offset);
627 	skb_set_network_header(skb, network_offset);
628 
629 	return sk;
630 }
631 
632 /*
633  * This routine is called by the ICMP module when it gets some
634  * sort of error condition.  If err < 0 then the socket should
635  * be closed and the error returned to the user.  If err > 0
636  * it's just the icmp type << 8 | icmp code.
637  * Header points to the ip header of the error packet. We move
638  * on past this. Then (as it used to claim before adjustment)
639  * header points to the first 8 bytes of the udp header.  We need
640  * to find the appropriate port.
641  */
642 
643 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
644 {
645 	struct inet_sock *inet;
646 	const struct iphdr *iph = (const struct iphdr *)skb->data;
647 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
648 	const int type = icmp_hdr(skb)->type;
649 	const int code = icmp_hdr(skb)->code;
650 	bool tunnel = false;
651 	struct sock *sk;
652 	int harderr;
653 	int err;
654 	struct net *net = dev_net(skb->dev);
655 
656 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
657 			       iph->saddr, uh->source, skb->dev->ifindex,
658 			       inet_sdif(skb), udptable, NULL);
659 	if (!sk) {
660 		/* No socket for error: try tunnels before discarding */
661 		sk = ERR_PTR(-ENOENT);
662 		if (static_branch_unlikely(&udp_encap_needed_key)) {
663 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
664 						  info);
665 			if (!sk)
666 				return 0;
667 		}
668 
669 		if (IS_ERR(sk)) {
670 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
671 			return PTR_ERR(sk);
672 		}
673 
674 		tunnel = true;
675 	}
676 
677 	err = 0;
678 	harderr = 0;
679 	inet = inet_sk(sk);
680 
681 	switch (type) {
682 	default:
683 	case ICMP_TIME_EXCEEDED:
684 		err = EHOSTUNREACH;
685 		break;
686 	case ICMP_SOURCE_QUENCH:
687 		goto out;
688 	case ICMP_PARAMETERPROB:
689 		err = EPROTO;
690 		harderr = 1;
691 		break;
692 	case ICMP_DEST_UNREACH:
693 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
694 			ipv4_sk_update_pmtu(skb, sk, info);
695 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
696 				err = EMSGSIZE;
697 				harderr = 1;
698 				break;
699 			}
700 			goto out;
701 		}
702 		err = EHOSTUNREACH;
703 		if (code <= NR_ICMP_UNREACH) {
704 			harderr = icmp_err_convert[code].fatal;
705 			err = icmp_err_convert[code].errno;
706 		}
707 		break;
708 	case ICMP_REDIRECT:
709 		ipv4_sk_redirect(skb, sk);
710 		goto out;
711 	}
712 
713 	/*
714 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
715 	 *	4.1.3.3.
716 	 */
717 	if (tunnel) {
718 		/* ...not for tunnels though: we don't have a sending socket */
719 		goto out;
720 	}
721 	if (!inet->recverr) {
722 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
723 			goto out;
724 	} else
725 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
726 
727 	sk->sk_err = err;
728 	sk->sk_error_report(sk);
729 out:
730 	return 0;
731 }
732 
733 int udp_err(struct sk_buff *skb, u32 info)
734 {
735 	return __udp4_lib_err(skb, info, &udp_table);
736 }
737 
738 /*
739  * Throw away all pending data and cancel the corking. Socket is locked.
740  */
741 void udp_flush_pending_frames(struct sock *sk)
742 {
743 	struct udp_sock *up = udp_sk(sk);
744 
745 	if (up->pending) {
746 		up->len = 0;
747 		up->pending = 0;
748 		ip_flush_pending_frames(sk);
749 	}
750 }
751 EXPORT_SYMBOL(udp_flush_pending_frames);
752 
753 /**
754  * 	udp4_hwcsum  -  handle outgoing HW checksumming
755  * 	@skb: 	sk_buff containing the filled-in UDP header
756  * 	        (checksum field must be zeroed out)
757  *	@src:	source IP address
758  *	@dst:	destination IP address
759  */
760 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
761 {
762 	struct udphdr *uh = udp_hdr(skb);
763 	int offset = skb_transport_offset(skb);
764 	int len = skb->len - offset;
765 	int hlen = len;
766 	__wsum csum = 0;
767 
768 	if (!skb_has_frag_list(skb)) {
769 		/*
770 		 * Only one fragment on the socket.
771 		 */
772 		skb->csum_start = skb_transport_header(skb) - skb->head;
773 		skb->csum_offset = offsetof(struct udphdr, check);
774 		uh->check = ~csum_tcpudp_magic(src, dst, len,
775 					       IPPROTO_UDP, 0);
776 	} else {
777 		struct sk_buff *frags;
778 
779 		/*
780 		 * HW-checksum won't work as there are two or more
781 		 * fragments on the socket so that all csums of sk_buffs
782 		 * should be together
783 		 */
784 		skb_walk_frags(skb, frags) {
785 			csum = csum_add(csum, frags->csum);
786 			hlen -= frags->len;
787 		}
788 
789 		csum = skb_checksum(skb, offset, hlen, csum);
790 		skb->ip_summed = CHECKSUM_NONE;
791 
792 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
793 		if (uh->check == 0)
794 			uh->check = CSUM_MANGLED_0;
795 	}
796 }
797 EXPORT_SYMBOL_GPL(udp4_hwcsum);
798 
799 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
800  * for the simple case like when setting the checksum for a UDP tunnel.
801  */
802 void udp_set_csum(bool nocheck, struct sk_buff *skb,
803 		  __be32 saddr, __be32 daddr, int len)
804 {
805 	struct udphdr *uh = udp_hdr(skb);
806 
807 	if (nocheck) {
808 		uh->check = 0;
809 	} else if (skb_is_gso(skb)) {
810 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
811 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
812 		uh->check = 0;
813 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
814 		if (uh->check == 0)
815 			uh->check = CSUM_MANGLED_0;
816 	} else {
817 		skb->ip_summed = CHECKSUM_PARTIAL;
818 		skb->csum_start = skb_transport_header(skb) - skb->head;
819 		skb->csum_offset = offsetof(struct udphdr, check);
820 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
821 	}
822 }
823 EXPORT_SYMBOL(udp_set_csum);
824 
825 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
826 			struct inet_cork *cork)
827 {
828 	struct sock *sk = skb->sk;
829 	struct inet_sock *inet = inet_sk(sk);
830 	struct udphdr *uh;
831 	int err = 0;
832 	int is_udplite = IS_UDPLITE(sk);
833 	int offset = skb_transport_offset(skb);
834 	int len = skb->len - offset;
835 	__wsum csum = 0;
836 
837 	/*
838 	 * Create a UDP header
839 	 */
840 	uh = udp_hdr(skb);
841 	uh->source = inet->inet_sport;
842 	uh->dest = fl4->fl4_dport;
843 	uh->len = htons(len);
844 	uh->check = 0;
845 
846 	if (cork->gso_size) {
847 		const int hlen = skb_network_header_len(skb) +
848 				 sizeof(struct udphdr);
849 
850 		if (hlen + cork->gso_size > cork->fragsize) {
851 			kfree_skb(skb);
852 			return -EINVAL;
853 		}
854 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
855 			kfree_skb(skb);
856 			return -EINVAL;
857 		}
858 		if (sk->sk_no_check_tx) {
859 			kfree_skb(skb);
860 			return -EINVAL;
861 		}
862 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
863 		    dst_xfrm(skb_dst(skb))) {
864 			kfree_skb(skb);
865 			return -EIO;
866 		}
867 
868 		skb_shinfo(skb)->gso_size = cork->gso_size;
869 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
870 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
871 							 cork->gso_size);
872 		goto csum_partial;
873 	}
874 
875 	if (is_udplite)  				 /*     UDP-Lite      */
876 		csum = udplite_csum(skb);
877 
878 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
879 
880 		skb->ip_summed = CHECKSUM_NONE;
881 		goto send;
882 
883 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
884 csum_partial:
885 
886 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
887 		goto send;
888 
889 	} else
890 		csum = udp_csum(skb);
891 
892 	/* add protocol-dependent pseudo-header */
893 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
894 				      sk->sk_protocol, csum);
895 	if (uh->check == 0)
896 		uh->check = CSUM_MANGLED_0;
897 
898 send:
899 	err = ip_send_skb(sock_net(sk), skb);
900 	if (err) {
901 		if (err == -ENOBUFS && !inet->recverr) {
902 			UDP_INC_STATS(sock_net(sk),
903 				      UDP_MIB_SNDBUFERRORS, is_udplite);
904 			err = 0;
905 		}
906 	} else
907 		UDP_INC_STATS(sock_net(sk),
908 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
909 	return err;
910 }
911 
912 /*
913  * Push out all pending data as one UDP datagram. Socket is locked.
914  */
915 int udp_push_pending_frames(struct sock *sk)
916 {
917 	struct udp_sock  *up = udp_sk(sk);
918 	struct inet_sock *inet = inet_sk(sk);
919 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
920 	struct sk_buff *skb;
921 	int err = 0;
922 
923 	skb = ip_finish_skb(sk, fl4);
924 	if (!skb)
925 		goto out;
926 
927 	err = udp_send_skb(skb, fl4, &inet->cork.base);
928 
929 out:
930 	up->len = 0;
931 	up->pending = 0;
932 	return err;
933 }
934 EXPORT_SYMBOL(udp_push_pending_frames);
935 
936 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
937 {
938 	switch (cmsg->cmsg_type) {
939 	case UDP_SEGMENT:
940 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
941 			return -EINVAL;
942 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
943 		return 0;
944 	default:
945 		return -EINVAL;
946 	}
947 }
948 
949 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
950 {
951 	struct cmsghdr *cmsg;
952 	bool need_ip = false;
953 	int err;
954 
955 	for_each_cmsghdr(cmsg, msg) {
956 		if (!CMSG_OK(msg, cmsg))
957 			return -EINVAL;
958 
959 		if (cmsg->cmsg_level != SOL_UDP) {
960 			need_ip = true;
961 			continue;
962 		}
963 
964 		err = __udp_cmsg_send(cmsg, gso_size);
965 		if (err)
966 			return err;
967 	}
968 
969 	return need_ip;
970 }
971 EXPORT_SYMBOL_GPL(udp_cmsg_send);
972 
973 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
974 {
975 	struct inet_sock *inet = inet_sk(sk);
976 	struct udp_sock *up = udp_sk(sk);
977 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
978 	struct flowi4 fl4_stack;
979 	struct flowi4 *fl4;
980 	int ulen = len;
981 	struct ipcm_cookie ipc;
982 	struct rtable *rt = NULL;
983 	int free = 0;
984 	int connected = 0;
985 	__be32 daddr, faddr, saddr;
986 	__be16 dport;
987 	u8  tos;
988 	int err, is_udplite = IS_UDPLITE(sk);
989 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
990 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
991 	struct sk_buff *skb;
992 	struct ip_options_data opt_copy;
993 
994 	if (len > 0xFFFF)
995 		return -EMSGSIZE;
996 
997 	/*
998 	 *	Check the flags.
999 	 */
1000 
1001 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1002 		return -EOPNOTSUPP;
1003 
1004 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1005 
1006 	fl4 = &inet->cork.fl.u.ip4;
1007 	if (up->pending) {
1008 		/*
1009 		 * There are pending frames.
1010 		 * The socket lock must be held while it's corked.
1011 		 */
1012 		lock_sock(sk);
1013 		if (likely(up->pending)) {
1014 			if (unlikely(up->pending != AF_INET)) {
1015 				release_sock(sk);
1016 				return -EINVAL;
1017 			}
1018 			goto do_append_data;
1019 		}
1020 		release_sock(sk);
1021 	}
1022 	ulen += sizeof(struct udphdr);
1023 
1024 	/*
1025 	 *	Get and verify the address.
1026 	 */
1027 	if (usin) {
1028 		if (msg->msg_namelen < sizeof(*usin))
1029 			return -EINVAL;
1030 		if (usin->sin_family != AF_INET) {
1031 			if (usin->sin_family != AF_UNSPEC)
1032 				return -EAFNOSUPPORT;
1033 		}
1034 
1035 		daddr = usin->sin_addr.s_addr;
1036 		dport = usin->sin_port;
1037 		if (dport == 0)
1038 			return -EINVAL;
1039 	} else {
1040 		if (sk->sk_state != TCP_ESTABLISHED)
1041 			return -EDESTADDRREQ;
1042 		daddr = inet->inet_daddr;
1043 		dport = inet->inet_dport;
1044 		/* Open fast path for connected socket.
1045 		   Route will not be used, if at least one option is set.
1046 		 */
1047 		connected = 1;
1048 	}
1049 
1050 	ipcm_init_sk(&ipc, inet);
1051 	ipc.gso_size = up->gso_size;
1052 
1053 	if (msg->msg_controllen) {
1054 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1055 		if (err > 0)
1056 			err = ip_cmsg_send(sk, msg, &ipc,
1057 					   sk->sk_family == AF_INET6);
1058 		if (unlikely(err < 0)) {
1059 			kfree(ipc.opt);
1060 			return err;
1061 		}
1062 		if (ipc.opt)
1063 			free = 1;
1064 		connected = 0;
1065 	}
1066 	if (!ipc.opt) {
1067 		struct ip_options_rcu *inet_opt;
1068 
1069 		rcu_read_lock();
1070 		inet_opt = rcu_dereference(inet->inet_opt);
1071 		if (inet_opt) {
1072 			memcpy(&opt_copy, inet_opt,
1073 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1074 			ipc.opt = &opt_copy.opt;
1075 		}
1076 		rcu_read_unlock();
1077 	}
1078 
1079 	if (cgroup_bpf_enabled && !connected) {
1080 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1081 					    (struct sockaddr *)usin, &ipc.addr);
1082 		if (err)
1083 			goto out_free;
1084 		if (usin) {
1085 			if (usin->sin_port == 0) {
1086 				/* BPF program set invalid port. Reject it. */
1087 				err = -EINVAL;
1088 				goto out_free;
1089 			}
1090 			daddr = usin->sin_addr.s_addr;
1091 			dport = usin->sin_port;
1092 		}
1093 	}
1094 
1095 	saddr = ipc.addr;
1096 	ipc.addr = faddr = daddr;
1097 
1098 	if (ipc.opt && ipc.opt->opt.srr) {
1099 		if (!daddr) {
1100 			err = -EINVAL;
1101 			goto out_free;
1102 		}
1103 		faddr = ipc.opt->opt.faddr;
1104 		connected = 0;
1105 	}
1106 	tos = get_rttos(&ipc, inet);
1107 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1108 	    (msg->msg_flags & MSG_DONTROUTE) ||
1109 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1110 		tos |= RTO_ONLINK;
1111 		connected = 0;
1112 	}
1113 
1114 	if (ipv4_is_multicast(daddr)) {
1115 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1116 			ipc.oif = inet->mc_index;
1117 		if (!saddr)
1118 			saddr = inet->mc_addr;
1119 		connected = 0;
1120 	} else if (!ipc.oif) {
1121 		ipc.oif = inet->uc_index;
1122 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1123 		/* oif is set, packet is to local broadcast and
1124 		 * and uc_index is set. oif is most likely set
1125 		 * by sk_bound_dev_if. If uc_index != oif check if the
1126 		 * oif is an L3 master and uc_index is an L3 slave.
1127 		 * If so, we want to allow the send using the uc_index.
1128 		 */
1129 		if (ipc.oif != inet->uc_index &&
1130 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1131 							      inet->uc_index)) {
1132 			ipc.oif = inet->uc_index;
1133 		}
1134 	}
1135 
1136 	if (connected)
1137 		rt = (struct rtable *)sk_dst_check(sk, 0);
1138 
1139 	if (!rt) {
1140 		struct net *net = sock_net(sk);
1141 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1142 
1143 		fl4 = &fl4_stack;
1144 
1145 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1146 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1147 				   flow_flags,
1148 				   faddr, saddr, dport, inet->inet_sport,
1149 				   sk->sk_uid);
1150 
1151 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1152 		rt = ip_route_output_flow(net, fl4, sk);
1153 		if (IS_ERR(rt)) {
1154 			err = PTR_ERR(rt);
1155 			rt = NULL;
1156 			if (err == -ENETUNREACH)
1157 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1158 			goto out;
1159 		}
1160 
1161 		err = -EACCES;
1162 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1163 		    !sock_flag(sk, SOCK_BROADCAST))
1164 			goto out;
1165 		if (connected)
1166 			sk_dst_set(sk, dst_clone(&rt->dst));
1167 	}
1168 
1169 	if (msg->msg_flags&MSG_CONFIRM)
1170 		goto do_confirm;
1171 back_from_confirm:
1172 
1173 	saddr = fl4->saddr;
1174 	if (!ipc.addr)
1175 		daddr = ipc.addr = fl4->daddr;
1176 
1177 	/* Lockless fast path for the non-corking case. */
1178 	if (!corkreq) {
1179 		struct inet_cork cork;
1180 
1181 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1182 				  sizeof(struct udphdr), &ipc, &rt,
1183 				  &cork, msg->msg_flags);
1184 		err = PTR_ERR(skb);
1185 		if (!IS_ERR_OR_NULL(skb))
1186 			err = udp_send_skb(skb, fl4, &cork);
1187 		goto out;
1188 	}
1189 
1190 	lock_sock(sk);
1191 	if (unlikely(up->pending)) {
1192 		/* The socket is already corked while preparing it. */
1193 		/* ... which is an evident application bug. --ANK */
1194 		release_sock(sk);
1195 
1196 		net_dbg_ratelimited("socket already corked\n");
1197 		err = -EINVAL;
1198 		goto out;
1199 	}
1200 	/*
1201 	 *	Now cork the socket to pend data.
1202 	 */
1203 	fl4 = &inet->cork.fl.u.ip4;
1204 	fl4->daddr = daddr;
1205 	fl4->saddr = saddr;
1206 	fl4->fl4_dport = dport;
1207 	fl4->fl4_sport = inet->inet_sport;
1208 	up->pending = AF_INET;
1209 
1210 do_append_data:
1211 	up->len += ulen;
1212 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1213 			     sizeof(struct udphdr), &ipc, &rt,
1214 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1215 	if (err)
1216 		udp_flush_pending_frames(sk);
1217 	else if (!corkreq)
1218 		err = udp_push_pending_frames(sk);
1219 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1220 		up->pending = 0;
1221 	release_sock(sk);
1222 
1223 out:
1224 	ip_rt_put(rt);
1225 out_free:
1226 	if (free)
1227 		kfree(ipc.opt);
1228 	if (!err)
1229 		return len;
1230 	/*
1231 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1232 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1233 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1234 	 * things).  We could add another new stat but at least for now that
1235 	 * seems like overkill.
1236 	 */
1237 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1238 		UDP_INC_STATS(sock_net(sk),
1239 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1240 	}
1241 	return err;
1242 
1243 do_confirm:
1244 	if (msg->msg_flags & MSG_PROBE)
1245 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1246 	if (!(msg->msg_flags&MSG_PROBE) || len)
1247 		goto back_from_confirm;
1248 	err = 0;
1249 	goto out;
1250 }
1251 EXPORT_SYMBOL(udp_sendmsg);
1252 
1253 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1254 		 size_t size, int flags)
1255 {
1256 	struct inet_sock *inet = inet_sk(sk);
1257 	struct udp_sock *up = udp_sk(sk);
1258 	int ret;
1259 
1260 	if (flags & MSG_SENDPAGE_NOTLAST)
1261 		flags |= MSG_MORE;
1262 
1263 	if (!up->pending) {
1264 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1265 
1266 		/* Call udp_sendmsg to specify destination address which
1267 		 * sendpage interface can't pass.
1268 		 * This will succeed only when the socket is connected.
1269 		 */
1270 		ret = udp_sendmsg(sk, &msg, 0);
1271 		if (ret < 0)
1272 			return ret;
1273 	}
1274 
1275 	lock_sock(sk);
1276 
1277 	if (unlikely(!up->pending)) {
1278 		release_sock(sk);
1279 
1280 		net_dbg_ratelimited("cork failed\n");
1281 		return -EINVAL;
1282 	}
1283 
1284 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1285 			     page, offset, size, flags);
1286 	if (ret == -EOPNOTSUPP) {
1287 		release_sock(sk);
1288 		return sock_no_sendpage(sk->sk_socket, page, offset,
1289 					size, flags);
1290 	}
1291 	if (ret < 0) {
1292 		udp_flush_pending_frames(sk);
1293 		goto out;
1294 	}
1295 
1296 	up->len += size;
1297 	if (!(up->corkflag || (flags&MSG_MORE)))
1298 		ret = udp_push_pending_frames(sk);
1299 	if (!ret)
1300 		ret = size;
1301 out:
1302 	release_sock(sk);
1303 	return ret;
1304 }
1305 
1306 #define UDP_SKB_IS_STATELESS 0x80000000
1307 
1308 static void udp_set_dev_scratch(struct sk_buff *skb)
1309 {
1310 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1311 
1312 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1313 	scratch->_tsize_state = skb->truesize;
1314 #if BITS_PER_LONG == 64
1315 	scratch->len = skb->len;
1316 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1317 	scratch->is_linear = !skb_is_nonlinear(skb);
1318 #endif
1319 	/* all head states execept sp (dst, sk, nf) are always cleared by
1320 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1321 	 * process IP_CMSG_PASSSEC at recvmsg() time
1322 	 */
1323 	if (likely(!skb_sec_path(skb)))
1324 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1325 }
1326 
1327 static int udp_skb_truesize(struct sk_buff *skb)
1328 {
1329 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1330 }
1331 
1332 static bool udp_skb_has_head_state(struct sk_buff *skb)
1333 {
1334 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1335 }
1336 
1337 /* fully reclaim rmem/fwd memory allocated for skb */
1338 static void udp_rmem_release(struct sock *sk, int size, int partial,
1339 			     bool rx_queue_lock_held)
1340 {
1341 	struct udp_sock *up = udp_sk(sk);
1342 	struct sk_buff_head *sk_queue;
1343 	int amt;
1344 
1345 	if (likely(partial)) {
1346 		up->forward_deficit += size;
1347 		size = up->forward_deficit;
1348 		if (size < (sk->sk_rcvbuf >> 2))
1349 			return;
1350 	} else {
1351 		size += up->forward_deficit;
1352 	}
1353 	up->forward_deficit = 0;
1354 
1355 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1356 	 * if the called don't held it already
1357 	 */
1358 	sk_queue = &sk->sk_receive_queue;
1359 	if (!rx_queue_lock_held)
1360 		spin_lock(&sk_queue->lock);
1361 
1362 
1363 	sk->sk_forward_alloc += size;
1364 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1365 	sk->sk_forward_alloc -= amt;
1366 
1367 	if (amt)
1368 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1369 
1370 	atomic_sub(size, &sk->sk_rmem_alloc);
1371 
1372 	/* this can save us from acquiring the rx queue lock on next receive */
1373 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1374 
1375 	if (!rx_queue_lock_held)
1376 		spin_unlock(&sk_queue->lock);
1377 }
1378 
1379 /* Note: called with reader_queue.lock held.
1380  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1381  * This avoids a cache line miss while receive_queue lock is held.
1382  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1383  */
1384 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1385 {
1386 	prefetch(&skb->data);
1387 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1388 }
1389 EXPORT_SYMBOL(udp_skb_destructor);
1390 
1391 /* as above, but the caller held the rx queue lock, too */
1392 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1393 {
1394 	prefetch(&skb->data);
1395 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1396 }
1397 
1398 /* Idea of busylocks is to let producers grab an extra spinlock
1399  * to relieve pressure on the receive_queue spinlock shared by consumer.
1400  * Under flood, this means that only one producer can be in line
1401  * trying to acquire the receive_queue spinlock.
1402  * These busylock can be allocated on a per cpu manner, instead of a
1403  * per socket one (that would consume a cache line per socket)
1404  */
1405 static int udp_busylocks_log __read_mostly;
1406 static spinlock_t *udp_busylocks __read_mostly;
1407 
1408 static spinlock_t *busylock_acquire(void *ptr)
1409 {
1410 	spinlock_t *busy;
1411 
1412 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1413 	spin_lock(busy);
1414 	return busy;
1415 }
1416 
1417 static void busylock_release(spinlock_t *busy)
1418 {
1419 	if (busy)
1420 		spin_unlock(busy);
1421 }
1422 
1423 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 	struct sk_buff_head *list = &sk->sk_receive_queue;
1426 	int rmem, delta, amt, err = -ENOMEM;
1427 	spinlock_t *busy = NULL;
1428 	int size;
1429 
1430 	/* try to avoid the costly atomic add/sub pair when the receive
1431 	 * queue is full; always allow at least a packet
1432 	 */
1433 	rmem = atomic_read(&sk->sk_rmem_alloc);
1434 	if (rmem > sk->sk_rcvbuf)
1435 		goto drop;
1436 
1437 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1438 	 * having linear skbs :
1439 	 * - Reduce memory overhead and thus increase receive queue capacity
1440 	 * - Less cache line misses at copyout() time
1441 	 * - Less work at consume_skb() (less alien page frag freeing)
1442 	 */
1443 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1444 		skb_condense(skb);
1445 
1446 		busy = busylock_acquire(sk);
1447 	}
1448 	size = skb->truesize;
1449 	udp_set_dev_scratch(skb);
1450 
1451 	/* we drop only if the receive buf is full and the receive
1452 	 * queue contains some other skb
1453 	 */
1454 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1455 	if (rmem > (size + sk->sk_rcvbuf))
1456 		goto uncharge_drop;
1457 
1458 	spin_lock(&list->lock);
1459 	if (size >= sk->sk_forward_alloc) {
1460 		amt = sk_mem_pages(size);
1461 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1462 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1463 			err = -ENOBUFS;
1464 			spin_unlock(&list->lock);
1465 			goto uncharge_drop;
1466 		}
1467 
1468 		sk->sk_forward_alloc += delta;
1469 	}
1470 
1471 	sk->sk_forward_alloc -= size;
1472 
1473 	/* no need to setup a destructor, we will explicitly release the
1474 	 * forward allocated memory on dequeue
1475 	 */
1476 	sock_skb_set_dropcount(sk, skb);
1477 
1478 	__skb_queue_tail(list, skb);
1479 	spin_unlock(&list->lock);
1480 
1481 	if (!sock_flag(sk, SOCK_DEAD))
1482 		sk->sk_data_ready(sk);
1483 
1484 	busylock_release(busy);
1485 	return 0;
1486 
1487 uncharge_drop:
1488 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1489 
1490 drop:
1491 	atomic_inc(&sk->sk_drops);
1492 	busylock_release(busy);
1493 	return err;
1494 }
1495 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1496 
1497 void udp_destruct_sock(struct sock *sk)
1498 {
1499 	/* reclaim completely the forward allocated memory */
1500 	struct udp_sock *up = udp_sk(sk);
1501 	unsigned int total = 0;
1502 	struct sk_buff *skb;
1503 
1504 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1505 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1506 		total += skb->truesize;
1507 		kfree_skb(skb);
1508 	}
1509 	udp_rmem_release(sk, total, 0, true);
1510 
1511 	inet_sock_destruct(sk);
1512 }
1513 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1514 
1515 int udp_init_sock(struct sock *sk)
1516 {
1517 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1518 	sk->sk_destruct = udp_destruct_sock;
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(udp_init_sock);
1522 
1523 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1524 {
1525 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1526 		bool slow = lock_sock_fast(sk);
1527 
1528 		sk_peek_offset_bwd(sk, len);
1529 		unlock_sock_fast(sk, slow);
1530 	}
1531 
1532 	if (!skb_unref(skb))
1533 		return;
1534 
1535 	/* In the more common cases we cleared the head states previously,
1536 	 * see __udp_queue_rcv_skb().
1537 	 */
1538 	if (unlikely(udp_skb_has_head_state(skb)))
1539 		skb_release_head_state(skb);
1540 	__consume_stateless_skb(skb);
1541 }
1542 EXPORT_SYMBOL_GPL(skb_consume_udp);
1543 
1544 static struct sk_buff *__first_packet_length(struct sock *sk,
1545 					     struct sk_buff_head *rcvq,
1546 					     int *total)
1547 {
1548 	struct sk_buff *skb;
1549 
1550 	while ((skb = skb_peek(rcvq)) != NULL) {
1551 		if (udp_lib_checksum_complete(skb)) {
1552 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1553 					IS_UDPLITE(sk));
1554 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1555 					IS_UDPLITE(sk));
1556 			atomic_inc(&sk->sk_drops);
1557 			__skb_unlink(skb, rcvq);
1558 			*total += skb->truesize;
1559 			kfree_skb(skb);
1560 		} else {
1561 			/* the csum related bits could be changed, refresh
1562 			 * the scratch area
1563 			 */
1564 			udp_set_dev_scratch(skb);
1565 			break;
1566 		}
1567 	}
1568 	return skb;
1569 }
1570 
1571 /**
1572  *	first_packet_length	- return length of first packet in receive queue
1573  *	@sk: socket
1574  *
1575  *	Drops all bad checksum frames, until a valid one is found.
1576  *	Returns the length of found skb, or -1 if none is found.
1577  */
1578 static int first_packet_length(struct sock *sk)
1579 {
1580 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1581 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1582 	struct sk_buff *skb;
1583 	int total = 0;
1584 	int res;
1585 
1586 	spin_lock_bh(&rcvq->lock);
1587 	skb = __first_packet_length(sk, rcvq, &total);
1588 	if (!skb && !skb_queue_empty(sk_queue)) {
1589 		spin_lock(&sk_queue->lock);
1590 		skb_queue_splice_tail_init(sk_queue, rcvq);
1591 		spin_unlock(&sk_queue->lock);
1592 
1593 		skb = __first_packet_length(sk, rcvq, &total);
1594 	}
1595 	res = skb ? skb->len : -1;
1596 	if (total)
1597 		udp_rmem_release(sk, total, 1, false);
1598 	spin_unlock_bh(&rcvq->lock);
1599 	return res;
1600 }
1601 
1602 /*
1603  *	IOCTL requests applicable to the UDP protocol
1604  */
1605 
1606 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1607 {
1608 	switch (cmd) {
1609 	case SIOCOUTQ:
1610 	{
1611 		int amount = sk_wmem_alloc_get(sk);
1612 
1613 		return put_user(amount, (int __user *)arg);
1614 	}
1615 
1616 	case SIOCINQ:
1617 	{
1618 		int amount = max_t(int, 0, first_packet_length(sk));
1619 
1620 		return put_user(amount, (int __user *)arg);
1621 	}
1622 
1623 	default:
1624 		return -ENOIOCTLCMD;
1625 	}
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL(udp_ioctl);
1630 
1631 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1632 			       int noblock, int *peeked, int *off, int *err)
1633 {
1634 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1635 	struct sk_buff_head *queue;
1636 	struct sk_buff *last;
1637 	long timeo;
1638 	int error;
1639 
1640 	queue = &udp_sk(sk)->reader_queue;
1641 	flags |= noblock ? MSG_DONTWAIT : 0;
1642 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1643 	do {
1644 		struct sk_buff *skb;
1645 
1646 		error = sock_error(sk);
1647 		if (error)
1648 			break;
1649 
1650 		error = -EAGAIN;
1651 		*peeked = 0;
1652 		do {
1653 			spin_lock_bh(&queue->lock);
1654 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1655 							udp_skb_destructor,
1656 							peeked, off, err,
1657 							&last);
1658 			if (skb) {
1659 				spin_unlock_bh(&queue->lock);
1660 				return skb;
1661 			}
1662 
1663 			if (skb_queue_empty(sk_queue)) {
1664 				spin_unlock_bh(&queue->lock);
1665 				goto busy_check;
1666 			}
1667 
1668 			/* refill the reader queue and walk it again
1669 			 * keep both queues locked to avoid re-acquiring
1670 			 * the sk_receive_queue lock if fwd memory scheduling
1671 			 * is needed.
1672 			 */
1673 			spin_lock(&sk_queue->lock);
1674 			skb_queue_splice_tail_init(sk_queue, queue);
1675 
1676 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1677 							udp_skb_dtor_locked,
1678 							peeked, off, err,
1679 							&last);
1680 			spin_unlock(&sk_queue->lock);
1681 			spin_unlock_bh(&queue->lock);
1682 			if (skb)
1683 				return skb;
1684 
1685 busy_check:
1686 			if (!sk_can_busy_loop(sk))
1687 				break;
1688 
1689 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1690 		} while (!skb_queue_empty(sk_queue));
1691 
1692 		/* sk_queue is empty, reader_queue may contain peeked packets */
1693 	} while (timeo &&
1694 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1695 					      (struct sk_buff *)sk_queue));
1696 
1697 	*err = error;
1698 	return NULL;
1699 }
1700 EXPORT_SYMBOL(__skb_recv_udp);
1701 
1702 /*
1703  * 	This should be easy, if there is something there we
1704  * 	return it, otherwise we block.
1705  */
1706 
1707 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1708 		int flags, int *addr_len)
1709 {
1710 	struct inet_sock *inet = inet_sk(sk);
1711 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1712 	struct sk_buff *skb;
1713 	unsigned int ulen, copied;
1714 	int peeked, peeking, off;
1715 	int err;
1716 	int is_udplite = IS_UDPLITE(sk);
1717 	bool checksum_valid = false;
1718 
1719 	if (flags & MSG_ERRQUEUE)
1720 		return ip_recv_error(sk, msg, len, addr_len);
1721 
1722 try_again:
1723 	peeking = flags & MSG_PEEK;
1724 	off = sk_peek_offset(sk, flags);
1725 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1726 	if (!skb)
1727 		return err;
1728 
1729 	ulen = udp_skb_len(skb);
1730 	copied = len;
1731 	if (copied > ulen - off)
1732 		copied = ulen - off;
1733 	else if (copied < ulen)
1734 		msg->msg_flags |= MSG_TRUNC;
1735 
1736 	/*
1737 	 * If checksum is needed at all, try to do it while copying the
1738 	 * data.  If the data is truncated, or if we only want a partial
1739 	 * coverage checksum (UDP-Lite), do it before the copy.
1740 	 */
1741 
1742 	if (copied < ulen || peeking ||
1743 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1744 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1745 				!__udp_lib_checksum_complete(skb);
1746 		if (!checksum_valid)
1747 			goto csum_copy_err;
1748 	}
1749 
1750 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1751 		if (udp_skb_is_linear(skb))
1752 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1753 		else
1754 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1755 	} else {
1756 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1757 
1758 		if (err == -EINVAL)
1759 			goto csum_copy_err;
1760 	}
1761 
1762 	if (unlikely(err)) {
1763 		if (!peeked) {
1764 			atomic_inc(&sk->sk_drops);
1765 			UDP_INC_STATS(sock_net(sk),
1766 				      UDP_MIB_INERRORS, is_udplite);
1767 		}
1768 		kfree_skb(skb);
1769 		return err;
1770 	}
1771 
1772 	if (!peeked)
1773 		UDP_INC_STATS(sock_net(sk),
1774 			      UDP_MIB_INDATAGRAMS, is_udplite);
1775 
1776 	sock_recv_ts_and_drops(msg, sk, skb);
1777 
1778 	/* Copy the address. */
1779 	if (sin) {
1780 		sin->sin_family = AF_INET;
1781 		sin->sin_port = udp_hdr(skb)->source;
1782 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1783 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1784 		*addr_len = sizeof(*sin);
1785 	}
1786 
1787 	if (udp_sk(sk)->gro_enabled)
1788 		udp_cmsg_recv(msg, sk, skb);
1789 
1790 	if (inet->cmsg_flags)
1791 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1792 
1793 	err = copied;
1794 	if (flags & MSG_TRUNC)
1795 		err = ulen;
1796 
1797 	skb_consume_udp(sk, skb, peeking ? -err : err);
1798 	return err;
1799 
1800 csum_copy_err:
1801 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1802 				 udp_skb_destructor)) {
1803 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1804 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1805 	}
1806 	kfree_skb(skb);
1807 
1808 	/* starting over for a new packet, but check if we need to yield */
1809 	cond_resched();
1810 	msg->msg_flags &= ~MSG_TRUNC;
1811 	goto try_again;
1812 }
1813 
1814 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1815 {
1816 	/* This check is replicated from __ip4_datagram_connect() and
1817 	 * intended to prevent BPF program called below from accessing bytes
1818 	 * that are out of the bound specified by user in addr_len.
1819 	 */
1820 	if (addr_len < sizeof(struct sockaddr_in))
1821 		return -EINVAL;
1822 
1823 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1824 }
1825 EXPORT_SYMBOL(udp_pre_connect);
1826 
1827 int __udp_disconnect(struct sock *sk, int flags)
1828 {
1829 	struct inet_sock *inet = inet_sk(sk);
1830 	/*
1831 	 *	1003.1g - break association.
1832 	 */
1833 
1834 	sk->sk_state = TCP_CLOSE;
1835 	inet->inet_daddr = 0;
1836 	inet->inet_dport = 0;
1837 	sock_rps_reset_rxhash(sk);
1838 	sk->sk_bound_dev_if = 0;
1839 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1840 		inet_reset_saddr(sk);
1841 
1842 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1843 		sk->sk_prot->unhash(sk);
1844 		inet->inet_sport = 0;
1845 	}
1846 	sk_dst_reset(sk);
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(__udp_disconnect);
1850 
1851 int udp_disconnect(struct sock *sk, int flags)
1852 {
1853 	lock_sock(sk);
1854 	__udp_disconnect(sk, flags);
1855 	release_sock(sk);
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL(udp_disconnect);
1859 
1860 void udp_lib_unhash(struct sock *sk)
1861 {
1862 	if (sk_hashed(sk)) {
1863 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1864 		struct udp_hslot *hslot, *hslot2;
1865 
1866 		hslot  = udp_hashslot(udptable, sock_net(sk),
1867 				      udp_sk(sk)->udp_port_hash);
1868 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1869 
1870 		spin_lock_bh(&hslot->lock);
1871 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1872 			reuseport_detach_sock(sk);
1873 		if (sk_del_node_init_rcu(sk)) {
1874 			hslot->count--;
1875 			inet_sk(sk)->inet_num = 0;
1876 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1877 
1878 			spin_lock(&hslot2->lock);
1879 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1880 			hslot2->count--;
1881 			spin_unlock(&hslot2->lock);
1882 		}
1883 		spin_unlock_bh(&hslot->lock);
1884 	}
1885 }
1886 EXPORT_SYMBOL(udp_lib_unhash);
1887 
1888 /*
1889  * inet_rcv_saddr was changed, we must rehash secondary hash
1890  */
1891 void udp_lib_rehash(struct sock *sk, u16 newhash)
1892 {
1893 	if (sk_hashed(sk)) {
1894 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1895 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1896 
1897 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1898 		nhslot2 = udp_hashslot2(udptable, newhash);
1899 		udp_sk(sk)->udp_portaddr_hash = newhash;
1900 
1901 		if (hslot2 != nhslot2 ||
1902 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1903 			hslot = udp_hashslot(udptable, sock_net(sk),
1904 					     udp_sk(sk)->udp_port_hash);
1905 			/* we must lock primary chain too */
1906 			spin_lock_bh(&hslot->lock);
1907 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1908 				reuseport_detach_sock(sk);
1909 
1910 			if (hslot2 != nhslot2) {
1911 				spin_lock(&hslot2->lock);
1912 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1913 				hslot2->count--;
1914 				spin_unlock(&hslot2->lock);
1915 
1916 				spin_lock(&nhslot2->lock);
1917 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1918 							 &nhslot2->head);
1919 				nhslot2->count++;
1920 				spin_unlock(&nhslot2->lock);
1921 			}
1922 
1923 			spin_unlock_bh(&hslot->lock);
1924 		}
1925 	}
1926 }
1927 EXPORT_SYMBOL(udp_lib_rehash);
1928 
1929 void udp_v4_rehash(struct sock *sk)
1930 {
1931 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1932 					  inet_sk(sk)->inet_rcv_saddr,
1933 					  inet_sk(sk)->inet_num);
1934 	udp_lib_rehash(sk, new_hash);
1935 }
1936 
1937 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1938 {
1939 	int rc;
1940 
1941 	if (inet_sk(sk)->inet_daddr) {
1942 		sock_rps_save_rxhash(sk, skb);
1943 		sk_mark_napi_id(sk, skb);
1944 		sk_incoming_cpu_update(sk);
1945 	} else {
1946 		sk_mark_napi_id_once(sk, skb);
1947 	}
1948 
1949 	rc = __udp_enqueue_schedule_skb(sk, skb);
1950 	if (rc < 0) {
1951 		int is_udplite = IS_UDPLITE(sk);
1952 
1953 		/* Note that an ENOMEM error is charged twice */
1954 		if (rc == -ENOMEM)
1955 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1956 					is_udplite);
1957 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1958 		kfree_skb(skb);
1959 		trace_udp_fail_queue_rcv_skb(rc, sk);
1960 		return -1;
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 /* returns:
1967  *  -1: error
1968  *   0: success
1969  *  >0: "udp encap" protocol resubmission
1970  *
1971  * Note that in the success and error cases, the skb is assumed to
1972  * have either been requeued or freed.
1973  */
1974 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1975 {
1976 	struct udp_sock *up = udp_sk(sk);
1977 	int is_udplite = IS_UDPLITE(sk);
1978 
1979 	/*
1980 	 *	Charge it to the socket, dropping if the queue is full.
1981 	 */
1982 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1983 		goto drop;
1984 	nf_reset(skb);
1985 
1986 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1987 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1988 
1989 		/*
1990 		 * This is an encapsulation socket so pass the skb to
1991 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1992 		 * fall through and pass this up the UDP socket.
1993 		 * up->encap_rcv() returns the following value:
1994 		 * =0 if skb was successfully passed to the encap
1995 		 *    handler or was discarded by it.
1996 		 * >0 if skb should be passed on to UDP.
1997 		 * <0 if skb should be resubmitted as proto -N
1998 		 */
1999 
2000 		/* if we're overly short, let UDP handle it */
2001 		encap_rcv = READ_ONCE(up->encap_rcv);
2002 		if (encap_rcv) {
2003 			int ret;
2004 
2005 			/* Verify checksum before giving to encap */
2006 			if (udp_lib_checksum_complete(skb))
2007 				goto csum_error;
2008 
2009 			ret = encap_rcv(sk, skb);
2010 			if (ret <= 0) {
2011 				__UDP_INC_STATS(sock_net(sk),
2012 						UDP_MIB_INDATAGRAMS,
2013 						is_udplite);
2014 				return -ret;
2015 			}
2016 		}
2017 
2018 		/* FALLTHROUGH -- it's a UDP Packet */
2019 	}
2020 
2021 	/*
2022 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2023 	 */
2024 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2025 
2026 		/*
2027 		 * MIB statistics other than incrementing the error count are
2028 		 * disabled for the following two types of errors: these depend
2029 		 * on the application settings, not on the functioning of the
2030 		 * protocol stack as such.
2031 		 *
2032 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2033 		 * way ... to ... at least let the receiving application block
2034 		 * delivery of packets with coverage values less than a value
2035 		 * provided by the application."
2036 		 */
2037 		if (up->pcrlen == 0) {          /* full coverage was set  */
2038 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2039 					    UDP_SKB_CB(skb)->cscov, skb->len);
2040 			goto drop;
2041 		}
2042 		/* The next case involves violating the min. coverage requested
2043 		 * by the receiver. This is subtle: if receiver wants x and x is
2044 		 * greater than the buffersize/MTU then receiver will complain
2045 		 * that it wants x while sender emits packets of smaller size y.
2046 		 * Therefore the above ...()->partial_cov statement is essential.
2047 		 */
2048 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2049 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2050 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2051 			goto drop;
2052 		}
2053 	}
2054 
2055 	prefetch(&sk->sk_rmem_alloc);
2056 	if (rcu_access_pointer(sk->sk_filter) &&
2057 	    udp_lib_checksum_complete(skb))
2058 			goto csum_error;
2059 
2060 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2061 		goto drop;
2062 
2063 	udp_csum_pull_header(skb);
2064 
2065 	ipv4_pktinfo_prepare(sk, skb);
2066 	return __udp_queue_rcv_skb(sk, skb);
2067 
2068 csum_error:
2069 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2070 drop:
2071 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2072 	atomic_inc(&sk->sk_drops);
2073 	kfree_skb(skb);
2074 	return -1;
2075 }
2076 
2077 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2078 {
2079 	struct sk_buff *next, *segs;
2080 	int ret;
2081 
2082 	if (likely(!udp_unexpected_gso(sk, skb)))
2083 		return udp_queue_rcv_one_skb(sk, skb);
2084 
2085 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2086 	__skb_push(skb, -skb_mac_offset(skb));
2087 	segs = udp_rcv_segment(sk, skb, true);
2088 	for (skb = segs; skb; skb = next) {
2089 		next = skb->next;
2090 		__skb_pull(skb, skb_transport_offset(skb));
2091 		ret = udp_queue_rcv_one_skb(sk, skb);
2092 		if (ret > 0)
2093 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2094 	}
2095 	return 0;
2096 }
2097 
2098 /* For TCP sockets, sk_rx_dst is protected by socket lock
2099  * For UDP, we use xchg() to guard against concurrent changes.
2100  */
2101 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2102 {
2103 	struct dst_entry *old;
2104 
2105 	if (dst_hold_safe(dst)) {
2106 		old = xchg(&sk->sk_rx_dst, dst);
2107 		dst_release(old);
2108 		return old != dst;
2109 	}
2110 	return false;
2111 }
2112 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2113 
2114 /*
2115  *	Multicasts and broadcasts go to each listener.
2116  *
2117  *	Note: called only from the BH handler context.
2118  */
2119 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2120 				    struct udphdr  *uh,
2121 				    __be32 saddr, __be32 daddr,
2122 				    struct udp_table *udptable,
2123 				    int proto)
2124 {
2125 	struct sock *sk, *first = NULL;
2126 	unsigned short hnum = ntohs(uh->dest);
2127 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2128 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2129 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2130 	int dif = skb->dev->ifindex;
2131 	int sdif = inet_sdif(skb);
2132 	struct hlist_node *node;
2133 	struct sk_buff *nskb;
2134 
2135 	if (use_hash2) {
2136 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2137 			    udptable->mask;
2138 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2139 start_lookup:
2140 		hslot = &udptable->hash2[hash2];
2141 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2142 	}
2143 
2144 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2145 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2146 					 uh->source, saddr, dif, sdif, hnum))
2147 			continue;
2148 
2149 		if (!first) {
2150 			first = sk;
2151 			continue;
2152 		}
2153 		nskb = skb_clone(skb, GFP_ATOMIC);
2154 
2155 		if (unlikely(!nskb)) {
2156 			atomic_inc(&sk->sk_drops);
2157 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2158 					IS_UDPLITE(sk));
2159 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2160 					IS_UDPLITE(sk));
2161 			continue;
2162 		}
2163 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2164 			consume_skb(nskb);
2165 	}
2166 
2167 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2168 	if (use_hash2 && hash2 != hash2_any) {
2169 		hash2 = hash2_any;
2170 		goto start_lookup;
2171 	}
2172 
2173 	if (first) {
2174 		if (udp_queue_rcv_skb(first, skb) > 0)
2175 			consume_skb(skb);
2176 	} else {
2177 		kfree_skb(skb);
2178 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2179 				proto == IPPROTO_UDPLITE);
2180 	}
2181 	return 0;
2182 }
2183 
2184 /* Initialize UDP checksum. If exited with zero value (success),
2185  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2186  * Otherwise, csum completion requires chacksumming packet body,
2187  * including udp header and folding it to skb->csum.
2188  */
2189 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2190 				 int proto)
2191 {
2192 	int err;
2193 
2194 	UDP_SKB_CB(skb)->partial_cov = 0;
2195 	UDP_SKB_CB(skb)->cscov = skb->len;
2196 
2197 	if (proto == IPPROTO_UDPLITE) {
2198 		err = udplite_checksum_init(skb, uh);
2199 		if (err)
2200 			return err;
2201 
2202 		if (UDP_SKB_CB(skb)->partial_cov) {
2203 			skb->csum = inet_compute_pseudo(skb, proto);
2204 			return 0;
2205 		}
2206 	}
2207 
2208 	/* Note, we are only interested in != 0 or == 0, thus the
2209 	 * force to int.
2210 	 */
2211 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2212 							inet_compute_pseudo);
2213 	if (err)
2214 		return err;
2215 
2216 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2217 		/* If SW calculated the value, we know it's bad */
2218 		if (skb->csum_complete_sw)
2219 			return 1;
2220 
2221 		/* HW says the value is bad. Let's validate that.
2222 		 * skb->csum is no longer the full packet checksum,
2223 		 * so don't treat it as such.
2224 		 */
2225 		skb_checksum_complete_unset(skb);
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2232  * return code conversion for ip layer consumption
2233  */
2234 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2235 			       struct udphdr *uh)
2236 {
2237 	int ret;
2238 
2239 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2240 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2241 					 inet_compute_pseudo);
2242 
2243 	ret = udp_queue_rcv_skb(sk, skb);
2244 
2245 	/* a return value > 0 means to resubmit the input, but
2246 	 * it wants the return to be -protocol, or 0
2247 	 */
2248 	if (ret > 0)
2249 		return -ret;
2250 	return 0;
2251 }
2252 
2253 /*
2254  *	All we need to do is get the socket, and then do a checksum.
2255  */
2256 
2257 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2258 		   int proto)
2259 {
2260 	struct sock *sk;
2261 	struct udphdr *uh;
2262 	unsigned short ulen;
2263 	struct rtable *rt = skb_rtable(skb);
2264 	__be32 saddr, daddr;
2265 	struct net *net = dev_net(skb->dev);
2266 
2267 	/*
2268 	 *  Validate the packet.
2269 	 */
2270 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2271 		goto drop;		/* No space for header. */
2272 
2273 	uh   = udp_hdr(skb);
2274 	ulen = ntohs(uh->len);
2275 	saddr = ip_hdr(skb)->saddr;
2276 	daddr = ip_hdr(skb)->daddr;
2277 
2278 	if (ulen > skb->len)
2279 		goto short_packet;
2280 
2281 	if (proto == IPPROTO_UDP) {
2282 		/* UDP validates ulen. */
2283 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2284 			goto short_packet;
2285 		uh = udp_hdr(skb);
2286 	}
2287 
2288 	if (udp4_csum_init(skb, uh, proto))
2289 		goto csum_error;
2290 
2291 	sk = skb_steal_sock(skb);
2292 	if (sk) {
2293 		struct dst_entry *dst = skb_dst(skb);
2294 		int ret;
2295 
2296 		if (unlikely(sk->sk_rx_dst != dst))
2297 			udp_sk_rx_dst_set(sk, dst);
2298 
2299 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2300 		sock_put(sk);
2301 		return ret;
2302 	}
2303 
2304 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2305 		return __udp4_lib_mcast_deliver(net, skb, uh,
2306 						saddr, daddr, udptable, proto);
2307 
2308 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2309 	if (sk)
2310 		return udp_unicast_rcv_skb(sk, skb, uh);
2311 
2312 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2313 		goto drop;
2314 	nf_reset(skb);
2315 
2316 	/* No socket. Drop packet silently, if checksum is wrong */
2317 	if (udp_lib_checksum_complete(skb))
2318 		goto csum_error;
2319 
2320 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2321 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2322 
2323 	/*
2324 	 * Hmm.  We got an UDP packet to a port to which we
2325 	 * don't wanna listen.  Ignore it.
2326 	 */
2327 	kfree_skb(skb);
2328 	return 0;
2329 
2330 short_packet:
2331 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2332 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2333 			    &saddr, ntohs(uh->source),
2334 			    ulen, skb->len,
2335 			    &daddr, ntohs(uh->dest));
2336 	goto drop;
2337 
2338 csum_error:
2339 	/*
2340 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2341 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2342 	 */
2343 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2344 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2345 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2346 			    ulen);
2347 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2348 drop:
2349 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2350 	kfree_skb(skb);
2351 	return 0;
2352 }
2353 
2354 /* We can only early demux multicast if there is a single matching socket.
2355  * If more than one socket found returns NULL
2356  */
2357 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2358 						  __be16 loc_port, __be32 loc_addr,
2359 						  __be16 rmt_port, __be32 rmt_addr,
2360 						  int dif, int sdif)
2361 {
2362 	struct sock *sk, *result;
2363 	unsigned short hnum = ntohs(loc_port);
2364 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2365 	struct udp_hslot *hslot = &udp_table.hash[slot];
2366 
2367 	/* Do not bother scanning a too big list */
2368 	if (hslot->count > 10)
2369 		return NULL;
2370 
2371 	result = NULL;
2372 	sk_for_each_rcu(sk, &hslot->head) {
2373 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2374 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2375 			if (result)
2376 				return NULL;
2377 			result = sk;
2378 		}
2379 	}
2380 
2381 	return result;
2382 }
2383 
2384 /* For unicast we should only early demux connected sockets or we can
2385  * break forwarding setups.  The chains here can be long so only check
2386  * if the first socket is an exact match and if not move on.
2387  */
2388 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2389 					    __be16 loc_port, __be32 loc_addr,
2390 					    __be16 rmt_port, __be32 rmt_addr,
2391 					    int dif, int sdif)
2392 {
2393 	unsigned short hnum = ntohs(loc_port);
2394 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2395 	unsigned int slot2 = hash2 & udp_table.mask;
2396 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2397 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2398 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2399 	struct sock *sk;
2400 
2401 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2402 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2403 			       loc_addr, ports, dif, sdif))
2404 			return sk;
2405 		/* Only check first socket in chain */
2406 		break;
2407 	}
2408 	return NULL;
2409 }
2410 
2411 int udp_v4_early_demux(struct sk_buff *skb)
2412 {
2413 	struct net *net = dev_net(skb->dev);
2414 	struct in_device *in_dev = NULL;
2415 	const struct iphdr *iph;
2416 	const struct udphdr *uh;
2417 	struct sock *sk = NULL;
2418 	struct dst_entry *dst;
2419 	int dif = skb->dev->ifindex;
2420 	int sdif = inet_sdif(skb);
2421 	int ours;
2422 
2423 	/* validate the packet */
2424 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2425 		return 0;
2426 
2427 	iph = ip_hdr(skb);
2428 	uh = udp_hdr(skb);
2429 
2430 	if (skb->pkt_type == PACKET_MULTICAST) {
2431 		in_dev = __in_dev_get_rcu(skb->dev);
2432 
2433 		if (!in_dev)
2434 			return 0;
2435 
2436 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2437 				       iph->protocol);
2438 		if (!ours)
2439 			return 0;
2440 
2441 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2442 						   uh->source, iph->saddr,
2443 						   dif, sdif);
2444 	} else if (skb->pkt_type == PACKET_HOST) {
2445 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2446 					     uh->source, iph->saddr, dif, sdif);
2447 	}
2448 
2449 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2450 		return 0;
2451 
2452 	skb->sk = sk;
2453 	skb->destructor = sock_efree;
2454 	dst = READ_ONCE(sk->sk_rx_dst);
2455 
2456 	if (dst)
2457 		dst = dst_check(dst, 0);
2458 	if (dst) {
2459 		u32 itag = 0;
2460 
2461 		/* set noref for now.
2462 		 * any place which wants to hold dst has to call
2463 		 * dst_hold_safe()
2464 		 */
2465 		skb_dst_set_noref(skb, dst);
2466 
2467 		/* for unconnected multicast sockets we need to validate
2468 		 * the source on each packet
2469 		 */
2470 		if (!inet_sk(sk)->inet_daddr && in_dev)
2471 			return ip_mc_validate_source(skb, iph->daddr,
2472 						     iph->saddr, iph->tos,
2473 						     skb->dev, in_dev, &itag);
2474 	}
2475 	return 0;
2476 }
2477 
2478 int udp_rcv(struct sk_buff *skb)
2479 {
2480 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2481 }
2482 
2483 void udp_destroy_sock(struct sock *sk)
2484 {
2485 	struct udp_sock *up = udp_sk(sk);
2486 	bool slow = lock_sock_fast(sk);
2487 	udp_flush_pending_frames(sk);
2488 	unlock_sock_fast(sk, slow);
2489 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2490 		if (up->encap_type) {
2491 			void (*encap_destroy)(struct sock *sk);
2492 			encap_destroy = READ_ONCE(up->encap_destroy);
2493 			if (encap_destroy)
2494 				encap_destroy(sk);
2495 		}
2496 		if (up->encap_enabled)
2497 			static_branch_dec(&udp_encap_needed_key);
2498 	}
2499 }
2500 
2501 /*
2502  *	Socket option code for UDP
2503  */
2504 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2505 		       char __user *optval, unsigned int optlen,
2506 		       int (*push_pending_frames)(struct sock *))
2507 {
2508 	struct udp_sock *up = udp_sk(sk);
2509 	int val, valbool;
2510 	int err = 0;
2511 	int is_udplite = IS_UDPLITE(sk);
2512 
2513 	if (optlen < sizeof(int))
2514 		return -EINVAL;
2515 
2516 	if (get_user(val, (int __user *)optval))
2517 		return -EFAULT;
2518 
2519 	valbool = val ? 1 : 0;
2520 
2521 	switch (optname) {
2522 	case UDP_CORK:
2523 		if (val != 0) {
2524 			up->corkflag = 1;
2525 		} else {
2526 			up->corkflag = 0;
2527 			lock_sock(sk);
2528 			push_pending_frames(sk);
2529 			release_sock(sk);
2530 		}
2531 		break;
2532 
2533 	case UDP_ENCAP:
2534 		switch (val) {
2535 		case 0:
2536 		case UDP_ENCAP_ESPINUDP:
2537 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2538 			up->encap_rcv = xfrm4_udp_encap_rcv;
2539 			/* FALLTHROUGH */
2540 		case UDP_ENCAP_L2TPINUDP:
2541 			up->encap_type = val;
2542 			lock_sock(sk);
2543 			udp_tunnel_encap_enable(sk->sk_socket);
2544 			release_sock(sk);
2545 			break;
2546 		default:
2547 			err = -ENOPROTOOPT;
2548 			break;
2549 		}
2550 		break;
2551 
2552 	case UDP_NO_CHECK6_TX:
2553 		up->no_check6_tx = valbool;
2554 		break;
2555 
2556 	case UDP_NO_CHECK6_RX:
2557 		up->no_check6_rx = valbool;
2558 		break;
2559 
2560 	case UDP_SEGMENT:
2561 		if (val < 0 || val > USHRT_MAX)
2562 			return -EINVAL;
2563 		up->gso_size = val;
2564 		break;
2565 
2566 	case UDP_GRO:
2567 		lock_sock(sk);
2568 		if (valbool)
2569 			udp_tunnel_encap_enable(sk->sk_socket);
2570 		up->gro_enabled = valbool;
2571 		release_sock(sk);
2572 		break;
2573 
2574 	/*
2575 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2576 	 */
2577 	/* The sender sets actual checksum coverage length via this option.
2578 	 * The case coverage > packet length is handled by send module. */
2579 	case UDPLITE_SEND_CSCOV:
2580 		if (!is_udplite)         /* Disable the option on UDP sockets */
2581 			return -ENOPROTOOPT;
2582 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2583 			val = 8;
2584 		else if (val > USHRT_MAX)
2585 			val = USHRT_MAX;
2586 		up->pcslen = val;
2587 		up->pcflag |= UDPLITE_SEND_CC;
2588 		break;
2589 
2590 	/* The receiver specifies a minimum checksum coverage value. To make
2591 	 * sense, this should be set to at least 8 (as done below). If zero is
2592 	 * used, this again means full checksum coverage.                     */
2593 	case UDPLITE_RECV_CSCOV:
2594 		if (!is_udplite)         /* Disable the option on UDP sockets */
2595 			return -ENOPROTOOPT;
2596 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2597 			val = 8;
2598 		else if (val > USHRT_MAX)
2599 			val = USHRT_MAX;
2600 		up->pcrlen = val;
2601 		up->pcflag |= UDPLITE_RECV_CC;
2602 		break;
2603 
2604 	default:
2605 		err = -ENOPROTOOPT;
2606 		break;
2607 	}
2608 
2609 	return err;
2610 }
2611 EXPORT_SYMBOL(udp_lib_setsockopt);
2612 
2613 int udp_setsockopt(struct sock *sk, int level, int optname,
2614 		   char __user *optval, unsigned int optlen)
2615 {
2616 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2617 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2618 					  udp_push_pending_frames);
2619 	return ip_setsockopt(sk, level, optname, optval, optlen);
2620 }
2621 
2622 #ifdef CONFIG_COMPAT
2623 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2624 			  char __user *optval, unsigned int optlen)
2625 {
2626 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2627 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2628 					  udp_push_pending_frames);
2629 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2630 }
2631 #endif
2632 
2633 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2634 		       char __user *optval, int __user *optlen)
2635 {
2636 	struct udp_sock *up = udp_sk(sk);
2637 	int val, len;
2638 
2639 	if (get_user(len, optlen))
2640 		return -EFAULT;
2641 
2642 	len = min_t(unsigned int, len, sizeof(int));
2643 
2644 	if (len < 0)
2645 		return -EINVAL;
2646 
2647 	switch (optname) {
2648 	case UDP_CORK:
2649 		val = up->corkflag;
2650 		break;
2651 
2652 	case UDP_ENCAP:
2653 		val = up->encap_type;
2654 		break;
2655 
2656 	case UDP_NO_CHECK6_TX:
2657 		val = up->no_check6_tx;
2658 		break;
2659 
2660 	case UDP_NO_CHECK6_RX:
2661 		val = up->no_check6_rx;
2662 		break;
2663 
2664 	case UDP_SEGMENT:
2665 		val = up->gso_size;
2666 		break;
2667 
2668 	/* The following two cannot be changed on UDP sockets, the return is
2669 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2670 	case UDPLITE_SEND_CSCOV:
2671 		val = up->pcslen;
2672 		break;
2673 
2674 	case UDPLITE_RECV_CSCOV:
2675 		val = up->pcrlen;
2676 		break;
2677 
2678 	default:
2679 		return -ENOPROTOOPT;
2680 	}
2681 
2682 	if (put_user(len, optlen))
2683 		return -EFAULT;
2684 	if (copy_to_user(optval, &val, len))
2685 		return -EFAULT;
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL(udp_lib_getsockopt);
2689 
2690 int udp_getsockopt(struct sock *sk, int level, int optname,
2691 		   char __user *optval, int __user *optlen)
2692 {
2693 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2694 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2695 	return ip_getsockopt(sk, level, optname, optval, optlen);
2696 }
2697 
2698 #ifdef CONFIG_COMPAT
2699 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2700 				 char __user *optval, int __user *optlen)
2701 {
2702 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2703 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2704 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2705 }
2706 #endif
2707 /**
2708  * 	udp_poll - wait for a UDP event.
2709  *	@file - file struct
2710  *	@sock - socket
2711  *	@wait - poll table
2712  *
2713  *	This is same as datagram poll, except for the special case of
2714  *	blocking sockets. If application is using a blocking fd
2715  *	and a packet with checksum error is in the queue;
2716  *	then it could get return from select indicating data available
2717  *	but then block when reading it. Add special case code
2718  *	to work around these arguably broken applications.
2719  */
2720 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2721 {
2722 	__poll_t mask = datagram_poll(file, sock, wait);
2723 	struct sock *sk = sock->sk;
2724 
2725 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2726 		mask |= EPOLLIN | EPOLLRDNORM;
2727 
2728 	/* Check for false positives due to checksum errors */
2729 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2730 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2731 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2732 
2733 	return mask;
2734 
2735 }
2736 EXPORT_SYMBOL(udp_poll);
2737 
2738 int udp_abort(struct sock *sk, int err)
2739 {
2740 	lock_sock(sk);
2741 
2742 	sk->sk_err = err;
2743 	sk->sk_error_report(sk);
2744 	__udp_disconnect(sk, 0);
2745 
2746 	release_sock(sk);
2747 
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(udp_abort);
2751 
2752 struct proto udp_prot = {
2753 	.name			= "UDP",
2754 	.owner			= THIS_MODULE,
2755 	.close			= udp_lib_close,
2756 	.pre_connect		= udp_pre_connect,
2757 	.connect		= ip4_datagram_connect,
2758 	.disconnect		= udp_disconnect,
2759 	.ioctl			= udp_ioctl,
2760 	.init			= udp_init_sock,
2761 	.destroy		= udp_destroy_sock,
2762 	.setsockopt		= udp_setsockopt,
2763 	.getsockopt		= udp_getsockopt,
2764 	.sendmsg		= udp_sendmsg,
2765 	.recvmsg		= udp_recvmsg,
2766 	.sendpage		= udp_sendpage,
2767 	.release_cb		= ip4_datagram_release_cb,
2768 	.hash			= udp_lib_hash,
2769 	.unhash			= udp_lib_unhash,
2770 	.rehash			= udp_v4_rehash,
2771 	.get_port		= udp_v4_get_port,
2772 	.memory_allocated	= &udp_memory_allocated,
2773 	.sysctl_mem		= sysctl_udp_mem,
2774 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2775 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2776 	.obj_size		= sizeof(struct udp_sock),
2777 	.h.udp_table		= &udp_table,
2778 #ifdef CONFIG_COMPAT
2779 	.compat_setsockopt	= compat_udp_setsockopt,
2780 	.compat_getsockopt	= compat_udp_getsockopt,
2781 #endif
2782 	.diag_destroy		= udp_abort,
2783 };
2784 EXPORT_SYMBOL(udp_prot);
2785 
2786 /* ------------------------------------------------------------------------ */
2787 #ifdef CONFIG_PROC_FS
2788 
2789 static struct sock *udp_get_first(struct seq_file *seq, int start)
2790 {
2791 	struct sock *sk;
2792 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2793 	struct udp_iter_state *state = seq->private;
2794 	struct net *net = seq_file_net(seq);
2795 
2796 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2797 	     ++state->bucket) {
2798 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2799 
2800 		if (hlist_empty(&hslot->head))
2801 			continue;
2802 
2803 		spin_lock_bh(&hslot->lock);
2804 		sk_for_each(sk, &hslot->head) {
2805 			if (!net_eq(sock_net(sk), net))
2806 				continue;
2807 			if (sk->sk_family == afinfo->family)
2808 				goto found;
2809 		}
2810 		spin_unlock_bh(&hslot->lock);
2811 	}
2812 	sk = NULL;
2813 found:
2814 	return sk;
2815 }
2816 
2817 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2818 {
2819 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2820 	struct udp_iter_state *state = seq->private;
2821 	struct net *net = seq_file_net(seq);
2822 
2823 	do {
2824 		sk = sk_next(sk);
2825 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2826 
2827 	if (!sk) {
2828 		if (state->bucket <= afinfo->udp_table->mask)
2829 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2830 		return udp_get_first(seq, state->bucket + 1);
2831 	}
2832 	return sk;
2833 }
2834 
2835 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2836 {
2837 	struct sock *sk = udp_get_first(seq, 0);
2838 
2839 	if (sk)
2840 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2841 			--pos;
2842 	return pos ? NULL : sk;
2843 }
2844 
2845 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2846 {
2847 	struct udp_iter_state *state = seq->private;
2848 	state->bucket = MAX_UDP_PORTS;
2849 
2850 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2851 }
2852 EXPORT_SYMBOL(udp_seq_start);
2853 
2854 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2855 {
2856 	struct sock *sk;
2857 
2858 	if (v == SEQ_START_TOKEN)
2859 		sk = udp_get_idx(seq, 0);
2860 	else
2861 		sk = udp_get_next(seq, v);
2862 
2863 	++*pos;
2864 	return sk;
2865 }
2866 EXPORT_SYMBOL(udp_seq_next);
2867 
2868 void udp_seq_stop(struct seq_file *seq, void *v)
2869 {
2870 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2871 	struct udp_iter_state *state = seq->private;
2872 
2873 	if (state->bucket <= afinfo->udp_table->mask)
2874 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2875 }
2876 EXPORT_SYMBOL(udp_seq_stop);
2877 
2878 /* ------------------------------------------------------------------------ */
2879 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2880 		int bucket)
2881 {
2882 	struct inet_sock *inet = inet_sk(sp);
2883 	__be32 dest = inet->inet_daddr;
2884 	__be32 src  = inet->inet_rcv_saddr;
2885 	__u16 destp	  = ntohs(inet->inet_dport);
2886 	__u16 srcp	  = ntohs(inet->inet_sport);
2887 
2888 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2889 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2890 		bucket, src, srcp, dest, destp, sp->sk_state,
2891 		sk_wmem_alloc_get(sp),
2892 		udp_rqueue_get(sp),
2893 		0, 0L, 0,
2894 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2895 		0, sock_i_ino(sp),
2896 		refcount_read(&sp->sk_refcnt), sp,
2897 		atomic_read(&sp->sk_drops));
2898 }
2899 
2900 int udp4_seq_show(struct seq_file *seq, void *v)
2901 {
2902 	seq_setwidth(seq, 127);
2903 	if (v == SEQ_START_TOKEN)
2904 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2905 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2906 			   "inode ref pointer drops");
2907 	else {
2908 		struct udp_iter_state *state = seq->private;
2909 
2910 		udp4_format_sock(v, seq, state->bucket);
2911 	}
2912 	seq_pad(seq, '\n');
2913 	return 0;
2914 }
2915 
2916 const struct seq_operations udp_seq_ops = {
2917 	.start		= udp_seq_start,
2918 	.next		= udp_seq_next,
2919 	.stop		= udp_seq_stop,
2920 	.show		= udp4_seq_show,
2921 };
2922 EXPORT_SYMBOL(udp_seq_ops);
2923 
2924 static struct udp_seq_afinfo udp4_seq_afinfo = {
2925 	.family		= AF_INET,
2926 	.udp_table	= &udp_table,
2927 };
2928 
2929 static int __net_init udp4_proc_init_net(struct net *net)
2930 {
2931 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2932 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2933 		return -ENOMEM;
2934 	return 0;
2935 }
2936 
2937 static void __net_exit udp4_proc_exit_net(struct net *net)
2938 {
2939 	remove_proc_entry("udp", net->proc_net);
2940 }
2941 
2942 static struct pernet_operations udp4_net_ops = {
2943 	.init = udp4_proc_init_net,
2944 	.exit = udp4_proc_exit_net,
2945 };
2946 
2947 int __init udp4_proc_init(void)
2948 {
2949 	return register_pernet_subsys(&udp4_net_ops);
2950 }
2951 
2952 void udp4_proc_exit(void)
2953 {
2954 	unregister_pernet_subsys(&udp4_net_ops);
2955 }
2956 #endif /* CONFIG_PROC_FS */
2957 
2958 static __initdata unsigned long uhash_entries;
2959 static int __init set_uhash_entries(char *str)
2960 {
2961 	ssize_t ret;
2962 
2963 	if (!str)
2964 		return 0;
2965 
2966 	ret = kstrtoul(str, 0, &uhash_entries);
2967 	if (ret)
2968 		return 0;
2969 
2970 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2971 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2972 	return 1;
2973 }
2974 __setup("uhash_entries=", set_uhash_entries);
2975 
2976 void __init udp_table_init(struct udp_table *table, const char *name)
2977 {
2978 	unsigned int i;
2979 
2980 	table->hash = alloc_large_system_hash(name,
2981 					      2 * sizeof(struct udp_hslot),
2982 					      uhash_entries,
2983 					      21, /* one slot per 2 MB */
2984 					      0,
2985 					      &table->log,
2986 					      &table->mask,
2987 					      UDP_HTABLE_SIZE_MIN,
2988 					      64 * 1024);
2989 
2990 	table->hash2 = table->hash + (table->mask + 1);
2991 	for (i = 0; i <= table->mask; i++) {
2992 		INIT_HLIST_HEAD(&table->hash[i].head);
2993 		table->hash[i].count = 0;
2994 		spin_lock_init(&table->hash[i].lock);
2995 	}
2996 	for (i = 0; i <= table->mask; i++) {
2997 		INIT_HLIST_HEAD(&table->hash2[i].head);
2998 		table->hash2[i].count = 0;
2999 		spin_lock_init(&table->hash2[i].lock);
3000 	}
3001 }
3002 
3003 u32 udp_flow_hashrnd(void)
3004 {
3005 	static u32 hashrnd __read_mostly;
3006 
3007 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3008 
3009 	return hashrnd;
3010 }
3011 EXPORT_SYMBOL(udp_flow_hashrnd);
3012 
3013 static void __udp_sysctl_init(struct net *net)
3014 {
3015 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3016 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3017 
3018 #ifdef CONFIG_NET_L3_MASTER_DEV
3019 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3020 #endif
3021 }
3022 
3023 static int __net_init udp_sysctl_init(struct net *net)
3024 {
3025 	__udp_sysctl_init(net);
3026 	return 0;
3027 }
3028 
3029 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3030 	.init	= udp_sysctl_init,
3031 };
3032 
3033 void __init udp_init(void)
3034 {
3035 	unsigned long limit;
3036 	unsigned int i;
3037 
3038 	udp_table_init(&udp_table, "UDP");
3039 	limit = nr_free_buffer_pages() / 8;
3040 	limit = max(limit, 128UL);
3041 	sysctl_udp_mem[0] = limit / 4 * 3;
3042 	sysctl_udp_mem[1] = limit;
3043 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3044 
3045 	__udp_sysctl_init(&init_net);
3046 
3047 	/* 16 spinlocks per cpu */
3048 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3049 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3050 				GFP_KERNEL);
3051 	if (!udp_busylocks)
3052 		panic("UDP: failed to alloc udp_busylocks\n");
3053 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3054 		spin_lock_init(udp_busylocks + i);
3055 
3056 	if (register_pernet_subsys(&udp_sysctl_ops))
3057 		panic("UDP: failed to init sysctl parameters.\n");
3058 }
3059