xref: /openbmc/linux/net/ipv4/udp.c (revision c8dbaa22)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	/* Initial allocation may have already happened via setsockopt */
235 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
236 		return reuseport_alloc(sk);
237 	return 0;
238 }
239 
240 /**
241  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
242  *
243  *  @sk:          socket struct in question
244  *  @snum:        port number to look up
245  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
246  *                   with NULL address
247  */
248 int udp_lib_get_port(struct sock *sk, unsigned short snum,
249 		     unsigned int hash2_nulladdr)
250 {
251 	struct udp_hslot *hslot, *hslot2;
252 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
253 	int    error = 1;
254 	struct net *net = sock_net(sk);
255 
256 	if (!snum) {
257 		int low, high, remaining;
258 		unsigned int rand;
259 		unsigned short first, last;
260 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
261 
262 		inet_get_local_port_range(net, &low, &high);
263 		remaining = (high - low) + 1;
264 
265 		rand = prandom_u32();
266 		first = reciprocal_scale(rand, remaining) + low;
267 		/*
268 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
269 		 */
270 		rand = (rand | 1) * (udptable->mask + 1);
271 		last = first + udptable->mask + 1;
272 		do {
273 			hslot = udp_hashslot(udptable, net, first);
274 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
275 			spin_lock_bh(&hslot->lock);
276 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
277 					    udptable->log);
278 
279 			snum = first;
280 			/*
281 			 * Iterate on all possible values of snum for this hash.
282 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
283 			 * give us randomization and full range coverage.
284 			 */
285 			do {
286 				if (low <= snum && snum <= high &&
287 				    !test_bit(snum >> udptable->log, bitmap) &&
288 				    !inet_is_local_reserved_port(net, snum))
289 					goto found;
290 				snum += rand;
291 			} while (snum != first);
292 			spin_unlock_bh(&hslot->lock);
293 			cond_resched();
294 		} while (++first != last);
295 		goto fail;
296 	} else {
297 		hslot = udp_hashslot(udptable, net, snum);
298 		spin_lock_bh(&hslot->lock);
299 		if (hslot->count > 10) {
300 			int exist;
301 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
302 
303 			slot2          &= udptable->mask;
304 			hash2_nulladdr &= udptable->mask;
305 
306 			hslot2 = udp_hashslot2(udptable, slot2);
307 			if (hslot->count < hslot2->count)
308 				goto scan_primary_hash;
309 
310 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
311 			if (!exist && (hash2_nulladdr != slot2)) {
312 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
313 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
314 							     sk);
315 			}
316 			if (exist)
317 				goto fail_unlock;
318 			else
319 				goto found;
320 		}
321 scan_primary_hash:
322 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
323 			goto fail_unlock;
324 	}
325 found:
326 	inet_sk(sk)->inet_num = snum;
327 	udp_sk(sk)->udp_port_hash = snum;
328 	udp_sk(sk)->udp_portaddr_hash ^= snum;
329 	if (sk_unhashed(sk)) {
330 		if (sk->sk_reuseport &&
331 		    udp_reuseport_add_sock(sk, hslot)) {
332 			inet_sk(sk)->inet_num = 0;
333 			udp_sk(sk)->udp_port_hash = 0;
334 			udp_sk(sk)->udp_portaddr_hash ^= snum;
335 			goto fail_unlock;
336 		}
337 
338 		sk_add_node_rcu(sk, &hslot->head);
339 		hslot->count++;
340 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
341 
342 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
343 		spin_lock(&hslot2->lock);
344 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
345 		    sk->sk_family == AF_INET6)
346 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		else
349 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
350 					   &hslot2->head);
351 		hslot2->count++;
352 		spin_unlock(&hslot2->lock);
353 	}
354 	sock_set_flag(sk, SOCK_RCU_FREE);
355 	error = 0;
356 fail_unlock:
357 	spin_unlock_bh(&hslot->lock);
358 fail:
359 	return error;
360 }
361 EXPORT_SYMBOL(udp_lib_get_port);
362 
363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
364 			      unsigned int port)
365 {
366 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
367 }
368 
369 int udp_v4_get_port(struct sock *sk, unsigned short snum)
370 {
371 	unsigned int hash2_nulladdr =
372 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
373 	unsigned int hash2_partial =
374 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
375 
376 	/* precompute partial secondary hash */
377 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
378 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
379 }
380 
381 static int compute_score(struct sock *sk, struct net *net,
382 			 __be32 saddr, __be16 sport,
383 			 __be32 daddr, unsigned short hnum, int dif,
384 			 bool exact_dif)
385 {
386 	int score;
387 	struct inet_sock *inet;
388 
389 	if (!net_eq(sock_net(sk), net) ||
390 	    udp_sk(sk)->udp_port_hash != hnum ||
391 	    ipv6_only_sock(sk))
392 		return -1;
393 
394 	score = (sk->sk_family == PF_INET) ? 2 : 1;
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr) {
398 		if (inet->inet_rcv_saddr != daddr)
399 			return -1;
400 		score += 4;
401 	}
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if || exact_dif) {
416 		if (sk->sk_bound_dev_if != dif)
417 			return -1;
418 		score += 4;
419 	}
420 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
421 		score++;
422 	return score;
423 }
424 
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif, bool exact_dif,
441 		struct udp_hslot *hslot2,
442 		struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 		score = compute_score(sk, net, saddr, sport,
452 				      daddr, hnum, dif, exact_dif);
453 		if (score > badness) {
454 			reuseport = sk->sk_reuseport;
455 			if (reuseport) {
456 				hash = udp_ehashfn(net, daddr, hnum,
457 						   saddr, sport);
458 				result = reuseport_select_sock(sk, hash, skb,
459 							sizeof(struct udphdr));
460 				if (result)
461 					return result;
462 				matches = 1;
463 			}
464 			badness = score;
465 			result = sk;
466 		} else if (score == badness && reuseport) {
467 			matches++;
468 			if (reciprocal_scale(hash, matches) == 0)
469 				result = sk;
470 			hash = next_pseudo_random32(hash);
471 		}
472 	}
473 	return result;
474 }
475 
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477  * harder than this. -DaveM
478  */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 		__be16 sport, __be32 daddr, __be16 dport,
481 		int dif, struct udp_table *udptable, struct sk_buff *skb)
482 {
483 	struct sock *sk, *result;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
488 	int score, badness, matches = 0, reuseport = 0;
489 	u32 hash = 0;
490 
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  exact_dif, hslot2, skb);
501 		if (!result) {
502 			unsigned int old_slot2 = slot2;
503 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 			slot2 = hash2 & udptable->mask;
505 			/* avoid searching the same slot again. */
506 			if (unlikely(slot2 == old_slot2))
507 				return result;
508 
509 			hslot2 = &udptable->hash2[slot2];
510 			if (hslot->count < hslot2->count)
511 				goto begin;
512 
513 			result = udp4_lib_lookup2(net, saddr, sport,
514 						  daddr, hnum, dif,
515 						  exact_dif, hslot2, skb);
516 		}
517 		return result;
518 	}
519 begin:
520 	result = NULL;
521 	badness = 0;
522 	sk_for_each_rcu(sk, &hslot->head) {
523 		score = compute_score(sk, net, saddr, sport,
524 				      daddr, hnum, dif, exact_dif);
525 		if (score > badness) {
526 			reuseport = sk->sk_reuseport;
527 			if (reuseport) {
528 				hash = udp_ehashfn(net, daddr, hnum,
529 						   saddr, sport);
530 				result = reuseport_select_sock(sk, hash, skb,
531 							sizeof(struct udphdr));
532 				if (result)
533 					return result;
534 				matches = 1;
535 			}
536 			result = sk;
537 			badness = score;
538 		} else if (score == badness && reuseport) {
539 			matches++;
540 			if (reciprocal_scale(hash, matches) == 0)
541 				result = sk;
542 			hash = next_pseudo_random32(hash);
543 		}
544 	}
545 	return result;
546 }
547 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
548 
549 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
550 						 __be16 sport, __be16 dport,
551 						 struct udp_table *udptable)
552 {
553 	const struct iphdr *iph = ip_hdr(skb);
554 
555 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
556 				 iph->daddr, dport, inet_iif(skb),
557 				 udptable, skb);
558 }
559 
560 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
561 				 __be16 sport, __be16 dport)
562 {
563 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566 
567 /* Must be called under rcu_read_lock().
568  * Does increment socket refcount.
569  */
570 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
571     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
572     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
573 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
574 			     __be32 daddr, __be16 dport, int dif)
575 {
576 	struct sock *sk;
577 
578 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
579 			       dif, &udp_table, NULL);
580 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
581 		sk = NULL;
582 	return sk;
583 }
584 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
585 #endif
586 
587 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
588 				       __be16 loc_port, __be32 loc_addr,
589 				       __be16 rmt_port, __be32 rmt_addr,
590 				       int dif, unsigned short hnum)
591 {
592 	struct inet_sock *inet = inet_sk(sk);
593 
594 	if (!net_eq(sock_net(sk), net) ||
595 	    udp_sk(sk)->udp_port_hash != hnum ||
596 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
597 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
598 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
599 	    ipv6_only_sock(sk) ||
600 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
601 		return false;
602 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
603 		return false;
604 	return true;
605 }
606 
607 /*
608  * This routine is called by the ICMP module when it gets some
609  * sort of error condition.  If err < 0 then the socket should
610  * be closed and the error returned to the user.  If err > 0
611  * it's just the icmp type << 8 | icmp code.
612  * Header points to the ip header of the error packet. We move
613  * on past this. Then (as it used to claim before adjustment)
614  * header points to the first 8 bytes of the udp header.  We need
615  * to find the appropriate port.
616  */
617 
618 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
619 {
620 	struct inet_sock *inet;
621 	const struct iphdr *iph = (const struct iphdr *)skb->data;
622 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
623 	const int type = icmp_hdr(skb)->type;
624 	const int code = icmp_hdr(skb)->code;
625 	struct sock *sk;
626 	int harderr;
627 	int err;
628 	struct net *net = dev_net(skb->dev);
629 
630 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
631 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
632 			NULL);
633 	if (!sk) {
634 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
635 		return;	/* No socket for error */
636 	}
637 
638 	err = 0;
639 	harderr = 0;
640 	inet = inet_sk(sk);
641 
642 	switch (type) {
643 	default:
644 	case ICMP_TIME_EXCEEDED:
645 		err = EHOSTUNREACH;
646 		break;
647 	case ICMP_SOURCE_QUENCH:
648 		goto out;
649 	case ICMP_PARAMETERPROB:
650 		err = EPROTO;
651 		harderr = 1;
652 		break;
653 	case ICMP_DEST_UNREACH:
654 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
655 			ipv4_sk_update_pmtu(skb, sk, info);
656 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
657 				err = EMSGSIZE;
658 				harderr = 1;
659 				break;
660 			}
661 			goto out;
662 		}
663 		err = EHOSTUNREACH;
664 		if (code <= NR_ICMP_UNREACH) {
665 			harderr = icmp_err_convert[code].fatal;
666 			err = icmp_err_convert[code].errno;
667 		}
668 		break;
669 	case ICMP_REDIRECT:
670 		ipv4_sk_redirect(skb, sk);
671 		goto out;
672 	}
673 
674 	/*
675 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
676 	 *	4.1.3.3.
677 	 */
678 	if (!inet->recverr) {
679 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
680 			goto out;
681 	} else
682 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
683 
684 	sk->sk_err = err;
685 	sk->sk_error_report(sk);
686 out:
687 	return;
688 }
689 
690 void udp_err(struct sk_buff *skb, u32 info)
691 {
692 	__udp4_lib_err(skb, info, &udp_table);
693 }
694 
695 /*
696  * Throw away all pending data and cancel the corking. Socket is locked.
697  */
698 void udp_flush_pending_frames(struct sock *sk)
699 {
700 	struct udp_sock *up = udp_sk(sk);
701 
702 	if (up->pending) {
703 		up->len = 0;
704 		up->pending = 0;
705 		ip_flush_pending_frames(sk);
706 	}
707 }
708 EXPORT_SYMBOL(udp_flush_pending_frames);
709 
710 /**
711  * 	udp4_hwcsum  -  handle outgoing HW checksumming
712  * 	@skb: 	sk_buff containing the filled-in UDP header
713  * 	        (checksum field must be zeroed out)
714  *	@src:	source IP address
715  *	@dst:	destination IP address
716  */
717 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
718 {
719 	struct udphdr *uh = udp_hdr(skb);
720 	int offset = skb_transport_offset(skb);
721 	int len = skb->len - offset;
722 	int hlen = len;
723 	__wsum csum = 0;
724 
725 	if (!skb_has_frag_list(skb)) {
726 		/*
727 		 * Only one fragment on the socket.
728 		 */
729 		skb->csum_start = skb_transport_header(skb) - skb->head;
730 		skb->csum_offset = offsetof(struct udphdr, check);
731 		uh->check = ~csum_tcpudp_magic(src, dst, len,
732 					       IPPROTO_UDP, 0);
733 	} else {
734 		struct sk_buff *frags;
735 
736 		/*
737 		 * HW-checksum won't work as there are two or more
738 		 * fragments on the socket so that all csums of sk_buffs
739 		 * should be together
740 		 */
741 		skb_walk_frags(skb, frags) {
742 			csum = csum_add(csum, frags->csum);
743 			hlen -= frags->len;
744 		}
745 
746 		csum = skb_checksum(skb, offset, hlen, csum);
747 		skb->ip_summed = CHECKSUM_NONE;
748 
749 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
750 		if (uh->check == 0)
751 			uh->check = CSUM_MANGLED_0;
752 	}
753 }
754 EXPORT_SYMBOL_GPL(udp4_hwcsum);
755 
756 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
757  * for the simple case like when setting the checksum for a UDP tunnel.
758  */
759 void udp_set_csum(bool nocheck, struct sk_buff *skb,
760 		  __be32 saddr, __be32 daddr, int len)
761 {
762 	struct udphdr *uh = udp_hdr(skb);
763 
764 	if (nocheck) {
765 		uh->check = 0;
766 	} else if (skb_is_gso(skb)) {
767 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
768 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
769 		uh->check = 0;
770 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
771 		if (uh->check == 0)
772 			uh->check = CSUM_MANGLED_0;
773 	} else {
774 		skb->ip_summed = CHECKSUM_PARTIAL;
775 		skb->csum_start = skb_transport_header(skb) - skb->head;
776 		skb->csum_offset = offsetof(struct udphdr, check);
777 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 	}
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781 
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 	struct sock *sk = skb->sk;
785 	struct inet_sock *inet = inet_sk(sk);
786 	struct udphdr *uh;
787 	int err = 0;
788 	int is_udplite = IS_UDPLITE(sk);
789 	int offset = skb_transport_offset(skb);
790 	int len = skb->len - offset;
791 	__wsum csum = 0;
792 
793 	/*
794 	 * Create a UDP header
795 	 */
796 	uh = udp_hdr(skb);
797 	uh->source = inet->inet_sport;
798 	uh->dest = fl4->fl4_dport;
799 	uh->len = htons(len);
800 	uh->check = 0;
801 
802 	if (is_udplite)  				 /*     UDP-Lite      */
803 		csum = udplite_csum(skb);
804 
805 	else if (sk->sk_no_check_tx && !skb_is_gso(skb)) {   /* UDP csum off */
806 
807 		skb->ip_summed = CHECKSUM_NONE;
808 		goto send;
809 
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS(sock_net(sk),
829 				      UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS(sock_net(sk),
834 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
863 {
864 	struct inet_sock *inet = inet_sk(sk);
865 	struct udp_sock *up = udp_sk(sk);
866 	struct flowi4 fl4_stack;
867 	struct flowi4 *fl4;
868 	int ulen = len;
869 	struct ipcm_cookie ipc;
870 	struct rtable *rt = NULL;
871 	int free = 0;
872 	int connected = 0;
873 	__be32 daddr, faddr, saddr;
874 	__be16 dport;
875 	u8  tos;
876 	int err, is_udplite = IS_UDPLITE(sk);
877 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
878 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
879 	struct sk_buff *skb;
880 	struct ip_options_data opt_copy;
881 
882 	if (len > 0xFFFF)
883 		return -EMSGSIZE;
884 
885 	/*
886 	 *	Check the flags.
887 	 */
888 
889 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
890 		return -EOPNOTSUPP;
891 
892 	ipc.opt = NULL;
893 	ipc.tx_flags = 0;
894 	ipc.ttl = 0;
895 	ipc.tos = -1;
896 
897 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
898 
899 	fl4 = &inet->cork.fl.u.ip4;
900 	if (up->pending) {
901 		/*
902 		 * There are pending frames.
903 		 * The socket lock must be held while it's corked.
904 		 */
905 		lock_sock(sk);
906 		if (likely(up->pending)) {
907 			if (unlikely(up->pending != AF_INET)) {
908 				release_sock(sk);
909 				return -EINVAL;
910 			}
911 			goto do_append_data;
912 		}
913 		release_sock(sk);
914 	}
915 	ulen += sizeof(struct udphdr);
916 
917 	/*
918 	 *	Get and verify the address.
919 	 */
920 	if (msg->msg_name) {
921 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
922 		if (msg->msg_namelen < sizeof(*usin))
923 			return -EINVAL;
924 		if (usin->sin_family != AF_INET) {
925 			if (usin->sin_family != AF_UNSPEC)
926 				return -EAFNOSUPPORT;
927 		}
928 
929 		daddr = usin->sin_addr.s_addr;
930 		dport = usin->sin_port;
931 		if (dport == 0)
932 			return -EINVAL;
933 	} else {
934 		if (sk->sk_state != TCP_ESTABLISHED)
935 			return -EDESTADDRREQ;
936 		daddr = inet->inet_daddr;
937 		dport = inet->inet_dport;
938 		/* Open fast path for connected socket.
939 		   Route will not be used, if at least one option is set.
940 		 */
941 		connected = 1;
942 	}
943 
944 	ipc.sockc.tsflags = sk->sk_tsflags;
945 	ipc.addr = inet->inet_saddr;
946 	ipc.oif = sk->sk_bound_dev_if;
947 
948 	if (msg->msg_controllen) {
949 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
950 		if (unlikely(err)) {
951 			kfree(ipc.opt);
952 			return err;
953 		}
954 		if (ipc.opt)
955 			free = 1;
956 		connected = 0;
957 	}
958 	if (!ipc.opt) {
959 		struct ip_options_rcu *inet_opt;
960 
961 		rcu_read_lock();
962 		inet_opt = rcu_dereference(inet->inet_opt);
963 		if (inet_opt) {
964 			memcpy(&opt_copy, inet_opt,
965 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
966 			ipc.opt = &opt_copy.opt;
967 		}
968 		rcu_read_unlock();
969 	}
970 
971 	saddr = ipc.addr;
972 	ipc.addr = faddr = daddr;
973 
974 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
975 
976 	if (ipc.opt && ipc.opt->opt.srr) {
977 		if (!daddr)
978 			return -EINVAL;
979 		faddr = ipc.opt->opt.faddr;
980 		connected = 0;
981 	}
982 	tos = get_rttos(&ipc, inet);
983 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 	    (msg->msg_flags & MSG_DONTROUTE) ||
985 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 		tos |= RTO_ONLINK;
987 		connected = 0;
988 	}
989 
990 	if (ipv4_is_multicast(daddr)) {
991 		if (!ipc.oif)
992 			ipc.oif = inet->mc_index;
993 		if (!saddr)
994 			saddr = inet->mc_addr;
995 		connected = 0;
996 	} else if (!ipc.oif)
997 		ipc.oif = inet->uc_index;
998 
999 	if (connected)
1000 		rt = (struct rtable *)sk_dst_check(sk, 0);
1001 
1002 	if (!rt) {
1003 		struct net *net = sock_net(sk);
1004 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1005 
1006 		fl4 = &fl4_stack;
1007 
1008 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1009 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1010 				   flow_flags,
1011 				   faddr, saddr, dport, inet->inet_sport,
1012 				   sk->sk_uid);
1013 
1014 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1015 		rt = ip_route_output_flow(net, fl4, sk);
1016 		if (IS_ERR(rt)) {
1017 			err = PTR_ERR(rt);
1018 			rt = NULL;
1019 			if (err == -ENETUNREACH)
1020 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1021 			goto out;
1022 		}
1023 
1024 		err = -EACCES;
1025 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1026 		    !sock_flag(sk, SOCK_BROADCAST))
1027 			goto out;
1028 		if (connected)
1029 			sk_dst_set(sk, dst_clone(&rt->dst));
1030 	}
1031 
1032 	if (msg->msg_flags&MSG_CONFIRM)
1033 		goto do_confirm;
1034 back_from_confirm:
1035 
1036 	saddr = fl4->saddr;
1037 	if (!ipc.addr)
1038 		daddr = ipc.addr = fl4->daddr;
1039 
1040 	/* Lockless fast path for the non-corking case. */
1041 	if (!corkreq) {
1042 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1043 				  sizeof(struct udphdr), &ipc, &rt,
1044 				  msg->msg_flags);
1045 		err = PTR_ERR(skb);
1046 		if (!IS_ERR_OR_NULL(skb))
1047 			err = udp_send_skb(skb, fl4);
1048 		goto out;
1049 	}
1050 
1051 	lock_sock(sk);
1052 	if (unlikely(up->pending)) {
1053 		/* The socket is already corked while preparing it. */
1054 		/* ... which is an evident application bug. --ANK */
1055 		release_sock(sk);
1056 
1057 		net_dbg_ratelimited("cork app bug 2\n");
1058 		err = -EINVAL;
1059 		goto out;
1060 	}
1061 	/*
1062 	 *	Now cork the socket to pend data.
1063 	 */
1064 	fl4 = &inet->cork.fl.u.ip4;
1065 	fl4->daddr = daddr;
1066 	fl4->saddr = saddr;
1067 	fl4->fl4_dport = dport;
1068 	fl4->fl4_sport = inet->inet_sport;
1069 	up->pending = AF_INET;
1070 
1071 do_append_data:
1072 	up->len += ulen;
1073 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1074 			     sizeof(struct udphdr), &ipc, &rt,
1075 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1076 	if (err)
1077 		udp_flush_pending_frames(sk);
1078 	else if (!corkreq)
1079 		err = udp_push_pending_frames(sk);
1080 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1081 		up->pending = 0;
1082 	release_sock(sk);
1083 
1084 out:
1085 	ip_rt_put(rt);
1086 	if (free)
1087 		kfree(ipc.opt);
1088 	if (!err)
1089 		return len;
1090 	/*
1091 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1092 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1093 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1094 	 * things).  We could add another new stat but at least for now that
1095 	 * seems like overkill.
1096 	 */
1097 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1098 		UDP_INC_STATS(sock_net(sk),
1099 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1100 	}
1101 	return err;
1102 
1103 do_confirm:
1104 	if (msg->msg_flags & MSG_PROBE)
1105 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1106 	if (!(msg->msg_flags&MSG_PROBE) || len)
1107 		goto back_from_confirm;
1108 	err = 0;
1109 	goto out;
1110 }
1111 EXPORT_SYMBOL(udp_sendmsg);
1112 
1113 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1114 		 size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct udp_sock *up = udp_sk(sk);
1118 	int ret;
1119 
1120 	if (flags & MSG_SENDPAGE_NOTLAST)
1121 		flags |= MSG_MORE;
1122 
1123 	if (!up->pending) {
1124 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1125 
1126 		/* Call udp_sendmsg to specify destination address which
1127 		 * sendpage interface can't pass.
1128 		 * This will succeed only when the socket is connected.
1129 		 */
1130 		ret = udp_sendmsg(sk, &msg, 0);
1131 		if (ret < 0)
1132 			return ret;
1133 	}
1134 
1135 	lock_sock(sk);
1136 
1137 	if (unlikely(!up->pending)) {
1138 		release_sock(sk);
1139 
1140 		net_dbg_ratelimited("udp cork app bug 3\n");
1141 		return -EINVAL;
1142 	}
1143 
1144 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1145 			     page, offset, size, flags);
1146 	if (ret == -EOPNOTSUPP) {
1147 		release_sock(sk);
1148 		return sock_no_sendpage(sk->sk_socket, page, offset,
1149 					size, flags);
1150 	}
1151 	if (ret < 0) {
1152 		udp_flush_pending_frames(sk);
1153 		goto out;
1154 	}
1155 
1156 	up->len += size;
1157 	if (!(up->corkflag || (flags&MSG_MORE)))
1158 		ret = udp_push_pending_frames(sk);
1159 	if (!ret)
1160 		ret = size;
1161 out:
1162 	release_sock(sk);
1163 	return ret;
1164 }
1165 
1166 #define UDP_SKB_IS_STATELESS 0x80000000
1167 
1168 static void udp_set_dev_scratch(struct sk_buff *skb)
1169 {
1170 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1171 
1172 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1173 	scratch->_tsize_state = skb->truesize;
1174 #if BITS_PER_LONG == 64
1175 	scratch->len = skb->len;
1176 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1177 	scratch->is_linear = !skb_is_nonlinear(skb);
1178 #endif
1179 	if (likely(!skb->_skb_refdst))
1180 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1181 }
1182 
1183 static int udp_skb_truesize(struct sk_buff *skb)
1184 {
1185 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1186 }
1187 
1188 static bool udp_skb_has_head_state(struct sk_buff *skb)
1189 {
1190 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1191 }
1192 
1193 /* fully reclaim rmem/fwd memory allocated for skb */
1194 static void udp_rmem_release(struct sock *sk, int size, int partial,
1195 			     bool rx_queue_lock_held)
1196 {
1197 	struct udp_sock *up = udp_sk(sk);
1198 	struct sk_buff_head *sk_queue;
1199 	int amt;
1200 
1201 	if (likely(partial)) {
1202 		up->forward_deficit += size;
1203 		size = up->forward_deficit;
1204 		if (size < (sk->sk_rcvbuf >> 2) &&
1205 		    !skb_queue_empty(&up->reader_queue))
1206 			return;
1207 	} else {
1208 		size += up->forward_deficit;
1209 	}
1210 	up->forward_deficit = 0;
1211 
1212 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1213 	 * if the called don't held it already
1214 	 */
1215 	sk_queue = &sk->sk_receive_queue;
1216 	if (!rx_queue_lock_held)
1217 		spin_lock(&sk_queue->lock);
1218 
1219 
1220 	sk->sk_forward_alloc += size;
1221 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1222 	sk->sk_forward_alloc -= amt;
1223 
1224 	if (amt)
1225 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1226 
1227 	atomic_sub(size, &sk->sk_rmem_alloc);
1228 
1229 	/* this can save us from acquiring the rx queue lock on next receive */
1230 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1231 
1232 	if (!rx_queue_lock_held)
1233 		spin_unlock(&sk_queue->lock);
1234 }
1235 
1236 /* Note: called with reader_queue.lock held.
1237  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1238  * This avoids a cache line miss while receive_queue lock is held.
1239  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1240  */
1241 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1242 {
1243 	prefetch(&skb->data);
1244 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1245 }
1246 EXPORT_SYMBOL(udp_skb_destructor);
1247 
1248 /* as above, but the caller held the rx queue lock, too */
1249 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1250 {
1251 	prefetch(&skb->data);
1252 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1253 }
1254 
1255 /* Idea of busylocks is to let producers grab an extra spinlock
1256  * to relieve pressure on the receive_queue spinlock shared by consumer.
1257  * Under flood, this means that only one producer can be in line
1258  * trying to acquire the receive_queue spinlock.
1259  * These busylock can be allocated on a per cpu manner, instead of a
1260  * per socket one (that would consume a cache line per socket)
1261  */
1262 static int udp_busylocks_log __read_mostly;
1263 static spinlock_t *udp_busylocks __read_mostly;
1264 
1265 static spinlock_t *busylock_acquire(void *ptr)
1266 {
1267 	spinlock_t *busy;
1268 
1269 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1270 	spin_lock(busy);
1271 	return busy;
1272 }
1273 
1274 static void busylock_release(spinlock_t *busy)
1275 {
1276 	if (busy)
1277 		spin_unlock(busy);
1278 }
1279 
1280 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1281 {
1282 	struct sk_buff_head *list = &sk->sk_receive_queue;
1283 	int rmem, delta, amt, err = -ENOMEM;
1284 	spinlock_t *busy = NULL;
1285 	int size;
1286 
1287 	/* try to avoid the costly atomic add/sub pair when the receive
1288 	 * queue is full; always allow at least a packet
1289 	 */
1290 	rmem = atomic_read(&sk->sk_rmem_alloc);
1291 	if (rmem > sk->sk_rcvbuf)
1292 		goto drop;
1293 
1294 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1295 	 * having linear skbs :
1296 	 * - Reduce memory overhead and thus increase receive queue capacity
1297 	 * - Less cache line misses at copyout() time
1298 	 * - Less work at consume_skb() (less alien page frag freeing)
1299 	 */
1300 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1301 		skb_condense(skb);
1302 
1303 		busy = busylock_acquire(sk);
1304 	}
1305 	size = skb->truesize;
1306 	udp_set_dev_scratch(skb);
1307 
1308 	/* we drop only if the receive buf is full and the receive
1309 	 * queue contains some other skb
1310 	 */
1311 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1312 	if (rmem > (size + sk->sk_rcvbuf))
1313 		goto uncharge_drop;
1314 
1315 	spin_lock(&list->lock);
1316 	if (size >= sk->sk_forward_alloc) {
1317 		amt = sk_mem_pages(size);
1318 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1319 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1320 			err = -ENOBUFS;
1321 			spin_unlock(&list->lock);
1322 			goto uncharge_drop;
1323 		}
1324 
1325 		sk->sk_forward_alloc += delta;
1326 	}
1327 
1328 	sk->sk_forward_alloc -= size;
1329 
1330 	/* no need to setup a destructor, we will explicitly release the
1331 	 * forward allocated memory on dequeue
1332 	 */
1333 	sock_skb_set_dropcount(sk, skb);
1334 
1335 	__skb_queue_tail(list, skb);
1336 	spin_unlock(&list->lock);
1337 
1338 	if (!sock_flag(sk, SOCK_DEAD))
1339 		sk->sk_data_ready(sk);
1340 
1341 	busylock_release(busy);
1342 	return 0;
1343 
1344 uncharge_drop:
1345 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1346 
1347 drop:
1348 	atomic_inc(&sk->sk_drops);
1349 	busylock_release(busy);
1350 	return err;
1351 }
1352 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1353 
1354 void udp_destruct_sock(struct sock *sk)
1355 {
1356 	/* reclaim completely the forward allocated memory */
1357 	struct udp_sock *up = udp_sk(sk);
1358 	unsigned int total = 0;
1359 	struct sk_buff *skb;
1360 
1361 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1362 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1363 		total += skb->truesize;
1364 		kfree_skb(skb);
1365 	}
1366 	udp_rmem_release(sk, total, 0, true);
1367 
1368 	inet_sock_destruct(sk);
1369 }
1370 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1371 
1372 int udp_init_sock(struct sock *sk)
1373 {
1374 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1375 	sk->sk_destruct = udp_destruct_sock;
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL_GPL(udp_init_sock);
1379 
1380 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1381 {
1382 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1383 		bool slow = lock_sock_fast(sk);
1384 
1385 		sk_peek_offset_bwd(sk, len);
1386 		unlock_sock_fast(sk, slow);
1387 	}
1388 
1389 	/* In the more common cases we cleared the head states previously,
1390 	 * see __udp_queue_rcv_skb().
1391 	 */
1392 	if (unlikely(udp_skb_has_head_state(skb)))
1393 		skb_release_head_state(skb);
1394 	consume_stateless_skb(skb);
1395 }
1396 EXPORT_SYMBOL_GPL(skb_consume_udp);
1397 
1398 static struct sk_buff *__first_packet_length(struct sock *sk,
1399 					     struct sk_buff_head *rcvq,
1400 					     int *total)
1401 {
1402 	struct sk_buff *skb;
1403 
1404 	while ((skb = skb_peek(rcvq)) != NULL) {
1405 		if (udp_lib_checksum_complete(skb)) {
1406 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1407 					IS_UDPLITE(sk));
1408 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1409 					IS_UDPLITE(sk));
1410 			atomic_inc(&sk->sk_drops);
1411 			__skb_unlink(skb, rcvq);
1412 			*total += skb->truesize;
1413 			kfree_skb(skb);
1414 		} else {
1415 			/* the csum related bits could be changed, refresh
1416 			 * the scratch area
1417 			 */
1418 			udp_set_dev_scratch(skb);
1419 			break;
1420 		}
1421 	}
1422 	return skb;
1423 }
1424 
1425 /**
1426  *	first_packet_length	- return length of first packet in receive queue
1427  *	@sk: socket
1428  *
1429  *	Drops all bad checksum frames, until a valid one is found.
1430  *	Returns the length of found skb, or -1 if none is found.
1431  */
1432 static int first_packet_length(struct sock *sk)
1433 {
1434 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1435 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1436 	struct sk_buff *skb;
1437 	int total = 0;
1438 	int res;
1439 
1440 	spin_lock_bh(&rcvq->lock);
1441 	skb = __first_packet_length(sk, rcvq, &total);
1442 	if (!skb && !skb_queue_empty(sk_queue)) {
1443 		spin_lock(&sk_queue->lock);
1444 		skb_queue_splice_tail_init(sk_queue, rcvq);
1445 		spin_unlock(&sk_queue->lock);
1446 
1447 		skb = __first_packet_length(sk, rcvq, &total);
1448 	}
1449 	res = skb ? skb->len : -1;
1450 	if (total)
1451 		udp_rmem_release(sk, total, 1, false);
1452 	spin_unlock_bh(&rcvq->lock);
1453 	return res;
1454 }
1455 
1456 /*
1457  *	IOCTL requests applicable to the UDP protocol
1458  */
1459 
1460 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1461 {
1462 	switch (cmd) {
1463 	case SIOCOUTQ:
1464 	{
1465 		int amount = sk_wmem_alloc_get(sk);
1466 
1467 		return put_user(amount, (int __user *)arg);
1468 	}
1469 
1470 	case SIOCINQ:
1471 	{
1472 		int amount = max_t(int, 0, first_packet_length(sk));
1473 
1474 		return put_user(amount, (int __user *)arg);
1475 	}
1476 
1477 	default:
1478 		return -ENOIOCTLCMD;
1479 	}
1480 
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(udp_ioctl);
1484 
1485 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1486 			       int noblock, int *peeked, int *off, int *err)
1487 {
1488 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1489 	struct sk_buff_head *queue;
1490 	struct sk_buff *last;
1491 	long timeo;
1492 	int error;
1493 
1494 	queue = &udp_sk(sk)->reader_queue;
1495 	flags |= noblock ? MSG_DONTWAIT : 0;
1496 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1497 	do {
1498 		struct sk_buff *skb;
1499 
1500 		error = sock_error(sk);
1501 		if (error)
1502 			break;
1503 
1504 		error = -EAGAIN;
1505 		*peeked = 0;
1506 		do {
1507 			spin_lock_bh(&queue->lock);
1508 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1509 							udp_skb_destructor,
1510 							peeked, off, err,
1511 							&last);
1512 			if (skb) {
1513 				spin_unlock_bh(&queue->lock);
1514 				return skb;
1515 			}
1516 
1517 			if (skb_queue_empty(sk_queue)) {
1518 				spin_unlock_bh(&queue->lock);
1519 				goto busy_check;
1520 			}
1521 
1522 			/* refill the reader queue and walk it again
1523 			 * keep both queues locked to avoid re-acquiring
1524 			 * the sk_receive_queue lock if fwd memory scheduling
1525 			 * is needed.
1526 			 */
1527 			spin_lock(&sk_queue->lock);
1528 			skb_queue_splice_tail_init(sk_queue, queue);
1529 
1530 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1531 							udp_skb_dtor_locked,
1532 							peeked, off, err,
1533 							&last);
1534 			spin_unlock(&sk_queue->lock);
1535 			spin_unlock_bh(&queue->lock);
1536 			if (skb)
1537 				return skb;
1538 
1539 busy_check:
1540 			if (!sk_can_busy_loop(sk))
1541 				break;
1542 
1543 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1544 		} while (!skb_queue_empty(sk_queue));
1545 
1546 		/* sk_queue is empty, reader_queue may contain peeked packets */
1547 	} while (timeo &&
1548 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1549 					      (struct sk_buff *)sk_queue));
1550 
1551 	*err = error;
1552 	return NULL;
1553 }
1554 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1555 
1556 /*
1557  * 	This should be easy, if there is something there we
1558  * 	return it, otherwise we block.
1559  */
1560 
1561 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1562 		int flags, int *addr_len)
1563 {
1564 	struct inet_sock *inet = inet_sk(sk);
1565 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1566 	struct sk_buff *skb;
1567 	unsigned int ulen, copied;
1568 	int peeked, peeking, off;
1569 	int err;
1570 	int is_udplite = IS_UDPLITE(sk);
1571 	bool checksum_valid = false;
1572 
1573 	if (flags & MSG_ERRQUEUE)
1574 		return ip_recv_error(sk, msg, len, addr_len);
1575 
1576 try_again:
1577 	peeking = off = sk_peek_offset(sk, flags);
1578 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1579 	if (!skb)
1580 		return err;
1581 
1582 	ulen = udp_skb_len(skb);
1583 	copied = len;
1584 	if (copied > ulen - off)
1585 		copied = ulen - off;
1586 	else if (copied < ulen)
1587 		msg->msg_flags |= MSG_TRUNC;
1588 
1589 	/*
1590 	 * If checksum is needed at all, try to do it while copying the
1591 	 * data.  If the data is truncated, or if we only want a partial
1592 	 * coverage checksum (UDP-Lite), do it before the copy.
1593 	 */
1594 
1595 	if (copied < ulen || peeking ||
1596 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1597 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1598 				!__udp_lib_checksum_complete(skb);
1599 		if (!checksum_valid)
1600 			goto csum_copy_err;
1601 	}
1602 
1603 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1604 		if (udp_skb_is_linear(skb))
1605 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1606 		else
1607 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1608 	} else {
1609 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1610 
1611 		if (err == -EINVAL)
1612 			goto csum_copy_err;
1613 	}
1614 
1615 	if (unlikely(err)) {
1616 		if (!peeked) {
1617 			atomic_inc(&sk->sk_drops);
1618 			UDP_INC_STATS(sock_net(sk),
1619 				      UDP_MIB_INERRORS, is_udplite);
1620 		}
1621 		kfree_skb(skb);
1622 		return err;
1623 	}
1624 
1625 	if (!peeked)
1626 		UDP_INC_STATS(sock_net(sk),
1627 			      UDP_MIB_INDATAGRAMS, is_udplite);
1628 
1629 	sock_recv_ts_and_drops(msg, sk, skb);
1630 
1631 	/* Copy the address. */
1632 	if (sin) {
1633 		sin->sin_family = AF_INET;
1634 		sin->sin_port = udp_hdr(skb)->source;
1635 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1636 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1637 		*addr_len = sizeof(*sin);
1638 	}
1639 	if (inet->cmsg_flags)
1640 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1641 
1642 	err = copied;
1643 	if (flags & MSG_TRUNC)
1644 		err = ulen;
1645 
1646 	skb_consume_udp(sk, skb, peeking ? -err : err);
1647 	return err;
1648 
1649 csum_copy_err:
1650 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1651 				 udp_skb_destructor)) {
1652 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1653 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1654 	}
1655 	kfree_skb(skb);
1656 
1657 	/* starting over for a new packet, but check if we need to yield */
1658 	cond_resched();
1659 	msg->msg_flags &= ~MSG_TRUNC;
1660 	goto try_again;
1661 }
1662 
1663 int __udp_disconnect(struct sock *sk, int flags)
1664 {
1665 	struct inet_sock *inet = inet_sk(sk);
1666 	/*
1667 	 *	1003.1g - break association.
1668 	 */
1669 
1670 	sk->sk_state = TCP_CLOSE;
1671 	inet->inet_daddr = 0;
1672 	inet->inet_dport = 0;
1673 	sock_rps_reset_rxhash(sk);
1674 	sk->sk_bound_dev_if = 0;
1675 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1676 		inet_reset_saddr(sk);
1677 
1678 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1679 		sk->sk_prot->unhash(sk);
1680 		inet->inet_sport = 0;
1681 	}
1682 	sk_dst_reset(sk);
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(__udp_disconnect);
1686 
1687 int udp_disconnect(struct sock *sk, int flags)
1688 {
1689 	lock_sock(sk);
1690 	__udp_disconnect(sk, flags);
1691 	release_sock(sk);
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(udp_disconnect);
1695 
1696 void udp_lib_unhash(struct sock *sk)
1697 {
1698 	if (sk_hashed(sk)) {
1699 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1700 		struct udp_hslot *hslot, *hslot2;
1701 
1702 		hslot  = udp_hashslot(udptable, sock_net(sk),
1703 				      udp_sk(sk)->udp_port_hash);
1704 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1705 
1706 		spin_lock_bh(&hslot->lock);
1707 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1708 			reuseport_detach_sock(sk);
1709 		if (sk_del_node_init_rcu(sk)) {
1710 			hslot->count--;
1711 			inet_sk(sk)->inet_num = 0;
1712 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1713 
1714 			spin_lock(&hslot2->lock);
1715 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1716 			hslot2->count--;
1717 			spin_unlock(&hslot2->lock);
1718 		}
1719 		spin_unlock_bh(&hslot->lock);
1720 	}
1721 }
1722 EXPORT_SYMBOL(udp_lib_unhash);
1723 
1724 /*
1725  * inet_rcv_saddr was changed, we must rehash secondary hash
1726  */
1727 void udp_lib_rehash(struct sock *sk, u16 newhash)
1728 {
1729 	if (sk_hashed(sk)) {
1730 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1731 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1732 
1733 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1734 		nhslot2 = udp_hashslot2(udptable, newhash);
1735 		udp_sk(sk)->udp_portaddr_hash = newhash;
1736 
1737 		if (hslot2 != nhslot2 ||
1738 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1739 			hslot = udp_hashslot(udptable, sock_net(sk),
1740 					     udp_sk(sk)->udp_port_hash);
1741 			/* we must lock primary chain too */
1742 			spin_lock_bh(&hslot->lock);
1743 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1744 				reuseport_detach_sock(sk);
1745 
1746 			if (hslot2 != nhslot2) {
1747 				spin_lock(&hslot2->lock);
1748 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1749 				hslot2->count--;
1750 				spin_unlock(&hslot2->lock);
1751 
1752 				spin_lock(&nhslot2->lock);
1753 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1754 							 &nhslot2->head);
1755 				nhslot2->count++;
1756 				spin_unlock(&nhslot2->lock);
1757 			}
1758 
1759 			spin_unlock_bh(&hslot->lock);
1760 		}
1761 	}
1762 }
1763 EXPORT_SYMBOL(udp_lib_rehash);
1764 
1765 static void udp_v4_rehash(struct sock *sk)
1766 {
1767 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1768 					  inet_sk(sk)->inet_rcv_saddr,
1769 					  inet_sk(sk)->inet_num);
1770 	udp_lib_rehash(sk, new_hash);
1771 }
1772 
1773 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1774 {
1775 	int rc;
1776 
1777 	if (inet_sk(sk)->inet_daddr) {
1778 		sock_rps_save_rxhash(sk, skb);
1779 		sk_mark_napi_id(sk, skb);
1780 		sk_incoming_cpu_update(sk);
1781 	} else {
1782 		sk_mark_napi_id_once(sk, skb);
1783 	}
1784 
1785 	/* At recvmsg() time we may access skb->dst or skb->sp depending on
1786 	 * the IP options and the cmsg flags, elsewhere can we clear all
1787 	 * pending head states while they are hot in the cache
1788 	 */
1789 	if (likely(IPCB(skb)->opt.optlen == 0 && !skb_sec_path(skb)))
1790 		skb_release_head_state(skb);
1791 
1792 	rc = __udp_enqueue_schedule_skb(sk, skb);
1793 	if (rc < 0) {
1794 		int is_udplite = IS_UDPLITE(sk);
1795 
1796 		/* Note that an ENOMEM error is charged twice */
1797 		if (rc == -ENOMEM)
1798 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1799 					is_udplite);
1800 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1801 		kfree_skb(skb);
1802 		trace_udp_fail_queue_rcv_skb(rc, sk);
1803 		return -1;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static struct static_key udp_encap_needed __read_mostly;
1810 void udp_encap_enable(void)
1811 {
1812 	if (!static_key_enabled(&udp_encap_needed))
1813 		static_key_slow_inc(&udp_encap_needed);
1814 }
1815 EXPORT_SYMBOL(udp_encap_enable);
1816 
1817 /* returns:
1818  *  -1: error
1819  *   0: success
1820  *  >0: "udp encap" protocol resubmission
1821  *
1822  * Note that in the success and error cases, the skb is assumed to
1823  * have either been requeued or freed.
1824  */
1825 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1826 {
1827 	struct udp_sock *up = udp_sk(sk);
1828 	int is_udplite = IS_UDPLITE(sk);
1829 
1830 	/*
1831 	 *	Charge it to the socket, dropping if the queue is full.
1832 	 */
1833 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1834 		goto drop;
1835 	nf_reset(skb);
1836 
1837 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1838 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1839 
1840 		/*
1841 		 * This is an encapsulation socket so pass the skb to
1842 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1843 		 * fall through and pass this up the UDP socket.
1844 		 * up->encap_rcv() returns the following value:
1845 		 * =0 if skb was successfully passed to the encap
1846 		 *    handler or was discarded by it.
1847 		 * >0 if skb should be passed on to UDP.
1848 		 * <0 if skb should be resubmitted as proto -N
1849 		 */
1850 
1851 		/* if we're overly short, let UDP handle it */
1852 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1853 		if (encap_rcv) {
1854 			int ret;
1855 
1856 			/* Verify checksum before giving to encap */
1857 			if (udp_lib_checksum_complete(skb))
1858 				goto csum_error;
1859 
1860 			ret = encap_rcv(sk, skb);
1861 			if (ret <= 0) {
1862 				__UDP_INC_STATS(sock_net(sk),
1863 						UDP_MIB_INDATAGRAMS,
1864 						is_udplite);
1865 				return -ret;
1866 			}
1867 		}
1868 
1869 		/* FALLTHROUGH -- it's a UDP Packet */
1870 	}
1871 
1872 	/*
1873 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1874 	 */
1875 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1876 
1877 		/*
1878 		 * MIB statistics other than incrementing the error count are
1879 		 * disabled for the following two types of errors: these depend
1880 		 * on the application settings, not on the functioning of the
1881 		 * protocol stack as such.
1882 		 *
1883 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1884 		 * way ... to ... at least let the receiving application block
1885 		 * delivery of packets with coverage values less than a value
1886 		 * provided by the application."
1887 		 */
1888 		if (up->pcrlen == 0) {          /* full coverage was set  */
1889 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1890 					    UDP_SKB_CB(skb)->cscov, skb->len);
1891 			goto drop;
1892 		}
1893 		/* The next case involves violating the min. coverage requested
1894 		 * by the receiver. This is subtle: if receiver wants x and x is
1895 		 * greater than the buffersize/MTU then receiver will complain
1896 		 * that it wants x while sender emits packets of smaller size y.
1897 		 * Therefore the above ...()->partial_cov statement is essential.
1898 		 */
1899 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1900 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1901 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1902 			goto drop;
1903 		}
1904 	}
1905 
1906 	prefetch(&sk->sk_rmem_alloc);
1907 	if (rcu_access_pointer(sk->sk_filter) &&
1908 	    udp_lib_checksum_complete(skb))
1909 			goto csum_error;
1910 
1911 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1912 		goto drop;
1913 
1914 	udp_csum_pull_header(skb);
1915 
1916 	ipv4_pktinfo_prepare(sk, skb);
1917 	return __udp_queue_rcv_skb(sk, skb);
1918 
1919 csum_error:
1920 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1921 drop:
1922 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1923 	atomic_inc(&sk->sk_drops);
1924 	kfree_skb(skb);
1925 	return -1;
1926 }
1927 
1928 /* For TCP sockets, sk_rx_dst is protected by socket lock
1929  * For UDP, we use xchg() to guard against concurrent changes.
1930  */
1931 void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1932 {
1933 	struct dst_entry *old;
1934 
1935 	if (dst_hold_safe(dst)) {
1936 		old = xchg(&sk->sk_rx_dst, dst);
1937 		dst_release(old);
1938 	}
1939 }
1940 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1941 
1942 /*
1943  *	Multicasts and broadcasts go to each listener.
1944  *
1945  *	Note: called only from the BH handler context.
1946  */
1947 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1948 				    struct udphdr  *uh,
1949 				    __be32 saddr, __be32 daddr,
1950 				    struct udp_table *udptable,
1951 				    int proto)
1952 {
1953 	struct sock *sk, *first = NULL;
1954 	unsigned short hnum = ntohs(uh->dest);
1955 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1956 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1957 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1958 	int dif = skb->dev->ifindex;
1959 	struct hlist_node *node;
1960 	struct sk_buff *nskb;
1961 
1962 	if (use_hash2) {
1963 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1964 			    udptable->mask;
1965 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1966 start_lookup:
1967 		hslot = &udptable->hash2[hash2];
1968 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1969 	}
1970 
1971 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1972 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1973 					 uh->source, saddr, dif, hnum))
1974 			continue;
1975 
1976 		if (!first) {
1977 			first = sk;
1978 			continue;
1979 		}
1980 		nskb = skb_clone(skb, GFP_ATOMIC);
1981 
1982 		if (unlikely(!nskb)) {
1983 			atomic_inc(&sk->sk_drops);
1984 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1985 					IS_UDPLITE(sk));
1986 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1987 					IS_UDPLITE(sk));
1988 			continue;
1989 		}
1990 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1991 			consume_skb(nskb);
1992 	}
1993 
1994 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1995 	if (use_hash2 && hash2 != hash2_any) {
1996 		hash2 = hash2_any;
1997 		goto start_lookup;
1998 	}
1999 
2000 	if (first) {
2001 		if (udp_queue_rcv_skb(first, skb) > 0)
2002 			consume_skb(skb);
2003 	} else {
2004 		kfree_skb(skb);
2005 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2006 				proto == IPPROTO_UDPLITE);
2007 	}
2008 	return 0;
2009 }
2010 
2011 /* Initialize UDP checksum. If exited with zero value (success),
2012  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2013  * Otherwise, csum completion requires chacksumming packet body,
2014  * including udp header and folding it to skb->csum.
2015  */
2016 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2017 				 int proto)
2018 {
2019 	int err;
2020 
2021 	UDP_SKB_CB(skb)->partial_cov = 0;
2022 	UDP_SKB_CB(skb)->cscov = skb->len;
2023 
2024 	if (proto == IPPROTO_UDPLITE) {
2025 		err = udplite_checksum_init(skb, uh);
2026 		if (err)
2027 			return err;
2028 	}
2029 
2030 	/* Note, we are only interested in != 0 or == 0, thus the
2031 	 * force to int.
2032 	 */
2033 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2034 							 inet_compute_pseudo);
2035 }
2036 
2037 /*
2038  *	All we need to do is get the socket, and then do a checksum.
2039  */
2040 
2041 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2042 		   int proto)
2043 {
2044 	struct sock *sk;
2045 	struct udphdr *uh;
2046 	unsigned short ulen;
2047 	struct rtable *rt = skb_rtable(skb);
2048 	__be32 saddr, daddr;
2049 	struct net *net = dev_net(skb->dev);
2050 
2051 	/*
2052 	 *  Validate the packet.
2053 	 */
2054 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2055 		goto drop;		/* No space for header. */
2056 
2057 	uh   = udp_hdr(skb);
2058 	ulen = ntohs(uh->len);
2059 	saddr = ip_hdr(skb)->saddr;
2060 	daddr = ip_hdr(skb)->daddr;
2061 
2062 	if (ulen > skb->len)
2063 		goto short_packet;
2064 
2065 	if (proto == IPPROTO_UDP) {
2066 		/* UDP validates ulen. */
2067 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2068 			goto short_packet;
2069 		uh = udp_hdr(skb);
2070 	}
2071 
2072 	if (udp4_csum_init(skb, uh, proto))
2073 		goto csum_error;
2074 
2075 	sk = skb_steal_sock(skb);
2076 	if (sk) {
2077 		struct dst_entry *dst = skb_dst(skb);
2078 		int ret;
2079 
2080 		if (unlikely(sk->sk_rx_dst != dst))
2081 			udp_sk_rx_dst_set(sk, dst);
2082 
2083 		ret = udp_queue_rcv_skb(sk, skb);
2084 		sock_put(sk);
2085 		/* a return value > 0 means to resubmit the input, but
2086 		 * it wants the return to be -protocol, or 0
2087 		 */
2088 		if (ret > 0)
2089 			return -ret;
2090 		return 0;
2091 	}
2092 
2093 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2094 		return __udp4_lib_mcast_deliver(net, skb, uh,
2095 						saddr, daddr, udptable, proto);
2096 
2097 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2098 	if (sk) {
2099 		int ret;
2100 
2101 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2102 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2103 						 inet_compute_pseudo);
2104 
2105 		ret = udp_queue_rcv_skb(sk, skb);
2106 
2107 		/* a return value > 0 means to resubmit the input, but
2108 		 * it wants the return to be -protocol, or 0
2109 		 */
2110 		if (ret > 0)
2111 			return -ret;
2112 		return 0;
2113 	}
2114 
2115 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2116 		goto drop;
2117 	nf_reset(skb);
2118 
2119 	/* No socket. Drop packet silently, if checksum is wrong */
2120 	if (udp_lib_checksum_complete(skb))
2121 		goto csum_error;
2122 
2123 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2124 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2125 
2126 	/*
2127 	 * Hmm.  We got an UDP packet to a port to which we
2128 	 * don't wanna listen.  Ignore it.
2129 	 */
2130 	kfree_skb(skb);
2131 	return 0;
2132 
2133 short_packet:
2134 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2135 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2136 			    &saddr, ntohs(uh->source),
2137 			    ulen, skb->len,
2138 			    &daddr, ntohs(uh->dest));
2139 	goto drop;
2140 
2141 csum_error:
2142 	/*
2143 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2144 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2145 	 */
2146 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2147 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2148 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2149 			    ulen);
2150 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2151 drop:
2152 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2153 	kfree_skb(skb);
2154 	return 0;
2155 }
2156 
2157 /* We can only early demux multicast if there is a single matching socket.
2158  * If more than one socket found returns NULL
2159  */
2160 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2161 						  __be16 loc_port, __be32 loc_addr,
2162 						  __be16 rmt_port, __be32 rmt_addr,
2163 						  int dif)
2164 {
2165 	struct sock *sk, *result;
2166 	unsigned short hnum = ntohs(loc_port);
2167 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2168 	struct udp_hslot *hslot = &udp_table.hash[slot];
2169 
2170 	/* Do not bother scanning a too big list */
2171 	if (hslot->count > 10)
2172 		return NULL;
2173 
2174 	result = NULL;
2175 	sk_for_each_rcu(sk, &hslot->head) {
2176 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2177 					rmt_port, rmt_addr, dif, hnum)) {
2178 			if (result)
2179 				return NULL;
2180 			result = sk;
2181 		}
2182 	}
2183 
2184 	return result;
2185 }
2186 
2187 /* For unicast we should only early demux connected sockets or we can
2188  * break forwarding setups.  The chains here can be long so only check
2189  * if the first socket is an exact match and if not move on.
2190  */
2191 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2192 					    __be16 loc_port, __be32 loc_addr,
2193 					    __be16 rmt_port, __be32 rmt_addr,
2194 					    int dif)
2195 {
2196 	unsigned short hnum = ntohs(loc_port);
2197 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2198 	unsigned int slot2 = hash2 & udp_table.mask;
2199 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2200 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2201 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2202 	struct sock *sk;
2203 
2204 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2205 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2206 			       loc_addr, ports, dif))
2207 			return sk;
2208 		/* Only check first socket in chain */
2209 		break;
2210 	}
2211 	return NULL;
2212 }
2213 
2214 void udp_v4_early_demux(struct sk_buff *skb)
2215 {
2216 	struct net *net = dev_net(skb->dev);
2217 	const struct iphdr *iph;
2218 	const struct udphdr *uh;
2219 	struct sock *sk = NULL;
2220 	struct dst_entry *dst;
2221 	int dif = skb->dev->ifindex;
2222 	int ours;
2223 
2224 	/* validate the packet */
2225 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2226 		return;
2227 
2228 	iph = ip_hdr(skb);
2229 	uh = udp_hdr(skb);
2230 
2231 	if (skb->pkt_type == PACKET_BROADCAST ||
2232 	    skb->pkt_type == PACKET_MULTICAST) {
2233 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2234 
2235 		if (!in_dev)
2236 			return;
2237 
2238 		/* we are supposed to accept bcast packets */
2239 		if (skb->pkt_type == PACKET_MULTICAST) {
2240 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2241 					       iph->protocol);
2242 			if (!ours)
2243 				return;
2244 		}
2245 
2246 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2247 						   uh->source, iph->saddr, dif);
2248 	} else if (skb->pkt_type == PACKET_HOST) {
2249 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2250 					     uh->source, iph->saddr, dif);
2251 	}
2252 
2253 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2254 		return;
2255 
2256 	skb->sk = sk;
2257 	skb->destructor = sock_efree;
2258 	dst = READ_ONCE(sk->sk_rx_dst);
2259 
2260 	if (dst)
2261 		dst = dst_check(dst, 0);
2262 	if (dst) {
2263 		/* set noref for now.
2264 		 * any place which wants to hold dst has to call
2265 		 * dst_hold_safe()
2266 		 */
2267 		skb_dst_set_noref(skb, dst);
2268 	}
2269 }
2270 
2271 int udp_rcv(struct sk_buff *skb)
2272 {
2273 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2274 }
2275 
2276 void udp_destroy_sock(struct sock *sk)
2277 {
2278 	struct udp_sock *up = udp_sk(sk);
2279 	bool slow = lock_sock_fast(sk);
2280 	udp_flush_pending_frames(sk);
2281 	unlock_sock_fast(sk, slow);
2282 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2283 		void (*encap_destroy)(struct sock *sk);
2284 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2285 		if (encap_destroy)
2286 			encap_destroy(sk);
2287 	}
2288 }
2289 
2290 /*
2291  *	Socket option code for UDP
2292  */
2293 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2294 		       char __user *optval, unsigned int optlen,
2295 		       int (*push_pending_frames)(struct sock *))
2296 {
2297 	struct udp_sock *up = udp_sk(sk);
2298 	int val, valbool;
2299 	int err = 0;
2300 	int is_udplite = IS_UDPLITE(sk);
2301 
2302 	if (optlen < sizeof(int))
2303 		return -EINVAL;
2304 
2305 	if (get_user(val, (int __user *)optval))
2306 		return -EFAULT;
2307 
2308 	valbool = val ? 1 : 0;
2309 
2310 	switch (optname) {
2311 	case UDP_CORK:
2312 		if (val != 0) {
2313 			up->corkflag = 1;
2314 		} else {
2315 			up->corkflag = 0;
2316 			lock_sock(sk);
2317 			push_pending_frames(sk);
2318 			release_sock(sk);
2319 		}
2320 		break;
2321 
2322 	case UDP_ENCAP:
2323 		switch (val) {
2324 		case 0:
2325 		case UDP_ENCAP_ESPINUDP:
2326 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2327 			up->encap_rcv = xfrm4_udp_encap_rcv;
2328 			/* FALLTHROUGH */
2329 		case UDP_ENCAP_L2TPINUDP:
2330 			up->encap_type = val;
2331 			udp_encap_enable();
2332 			break;
2333 		default:
2334 			err = -ENOPROTOOPT;
2335 			break;
2336 		}
2337 		break;
2338 
2339 	case UDP_NO_CHECK6_TX:
2340 		up->no_check6_tx = valbool;
2341 		break;
2342 
2343 	case UDP_NO_CHECK6_RX:
2344 		up->no_check6_rx = valbool;
2345 		break;
2346 
2347 	/*
2348 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2349 	 */
2350 	/* The sender sets actual checksum coverage length via this option.
2351 	 * The case coverage > packet length is handled by send module. */
2352 	case UDPLITE_SEND_CSCOV:
2353 		if (!is_udplite)         /* Disable the option on UDP sockets */
2354 			return -ENOPROTOOPT;
2355 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2356 			val = 8;
2357 		else if (val > USHRT_MAX)
2358 			val = USHRT_MAX;
2359 		up->pcslen = val;
2360 		up->pcflag |= UDPLITE_SEND_CC;
2361 		break;
2362 
2363 	/* The receiver specifies a minimum checksum coverage value. To make
2364 	 * sense, this should be set to at least 8 (as done below). If zero is
2365 	 * used, this again means full checksum coverage.                     */
2366 	case UDPLITE_RECV_CSCOV:
2367 		if (!is_udplite)         /* Disable the option on UDP sockets */
2368 			return -ENOPROTOOPT;
2369 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2370 			val = 8;
2371 		else if (val > USHRT_MAX)
2372 			val = USHRT_MAX;
2373 		up->pcrlen = val;
2374 		up->pcflag |= UDPLITE_RECV_CC;
2375 		break;
2376 
2377 	default:
2378 		err = -ENOPROTOOPT;
2379 		break;
2380 	}
2381 
2382 	return err;
2383 }
2384 EXPORT_SYMBOL(udp_lib_setsockopt);
2385 
2386 int udp_setsockopt(struct sock *sk, int level, int optname,
2387 		   char __user *optval, unsigned int optlen)
2388 {
2389 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2390 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2391 					  udp_push_pending_frames);
2392 	return ip_setsockopt(sk, level, optname, optval, optlen);
2393 }
2394 
2395 #ifdef CONFIG_COMPAT
2396 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2397 			  char __user *optval, unsigned int optlen)
2398 {
2399 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2400 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2401 					  udp_push_pending_frames);
2402 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2403 }
2404 #endif
2405 
2406 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2407 		       char __user *optval, int __user *optlen)
2408 {
2409 	struct udp_sock *up = udp_sk(sk);
2410 	int val, len;
2411 
2412 	if (get_user(len, optlen))
2413 		return -EFAULT;
2414 
2415 	len = min_t(unsigned int, len, sizeof(int));
2416 
2417 	if (len < 0)
2418 		return -EINVAL;
2419 
2420 	switch (optname) {
2421 	case UDP_CORK:
2422 		val = up->corkflag;
2423 		break;
2424 
2425 	case UDP_ENCAP:
2426 		val = up->encap_type;
2427 		break;
2428 
2429 	case UDP_NO_CHECK6_TX:
2430 		val = up->no_check6_tx;
2431 		break;
2432 
2433 	case UDP_NO_CHECK6_RX:
2434 		val = up->no_check6_rx;
2435 		break;
2436 
2437 	/* The following two cannot be changed on UDP sockets, the return is
2438 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2439 	case UDPLITE_SEND_CSCOV:
2440 		val = up->pcslen;
2441 		break;
2442 
2443 	case UDPLITE_RECV_CSCOV:
2444 		val = up->pcrlen;
2445 		break;
2446 
2447 	default:
2448 		return -ENOPROTOOPT;
2449 	}
2450 
2451 	if (put_user(len, optlen))
2452 		return -EFAULT;
2453 	if (copy_to_user(optval, &val, len))
2454 		return -EFAULT;
2455 	return 0;
2456 }
2457 EXPORT_SYMBOL(udp_lib_getsockopt);
2458 
2459 int udp_getsockopt(struct sock *sk, int level, int optname,
2460 		   char __user *optval, int __user *optlen)
2461 {
2462 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2463 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2464 	return ip_getsockopt(sk, level, optname, optval, optlen);
2465 }
2466 
2467 #ifdef CONFIG_COMPAT
2468 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2469 				 char __user *optval, int __user *optlen)
2470 {
2471 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2472 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2473 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2474 }
2475 #endif
2476 /**
2477  * 	udp_poll - wait for a UDP event.
2478  *	@file - file struct
2479  *	@sock - socket
2480  *	@wait - poll table
2481  *
2482  *	This is same as datagram poll, except for the special case of
2483  *	blocking sockets. If application is using a blocking fd
2484  *	and a packet with checksum error is in the queue;
2485  *	then it could get return from select indicating data available
2486  *	but then block when reading it. Add special case code
2487  *	to work around these arguably broken applications.
2488  */
2489 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2490 {
2491 	unsigned int mask = datagram_poll(file, sock, wait);
2492 	struct sock *sk = sock->sk;
2493 
2494 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2495 		mask |= POLLIN | POLLRDNORM;
2496 
2497 	sock_rps_record_flow(sk);
2498 
2499 	/* Check for false positives due to checksum errors */
2500 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2501 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2502 		mask &= ~(POLLIN | POLLRDNORM);
2503 
2504 	return mask;
2505 
2506 }
2507 EXPORT_SYMBOL(udp_poll);
2508 
2509 int udp_abort(struct sock *sk, int err)
2510 {
2511 	lock_sock(sk);
2512 
2513 	sk->sk_err = err;
2514 	sk->sk_error_report(sk);
2515 	__udp_disconnect(sk, 0);
2516 
2517 	release_sock(sk);
2518 
2519 	return 0;
2520 }
2521 EXPORT_SYMBOL_GPL(udp_abort);
2522 
2523 struct proto udp_prot = {
2524 	.name		   = "UDP",
2525 	.owner		   = THIS_MODULE,
2526 	.close		   = udp_lib_close,
2527 	.connect	   = ip4_datagram_connect,
2528 	.disconnect	   = udp_disconnect,
2529 	.ioctl		   = udp_ioctl,
2530 	.init		   = udp_init_sock,
2531 	.destroy	   = udp_destroy_sock,
2532 	.setsockopt	   = udp_setsockopt,
2533 	.getsockopt	   = udp_getsockopt,
2534 	.sendmsg	   = udp_sendmsg,
2535 	.recvmsg	   = udp_recvmsg,
2536 	.sendpage	   = udp_sendpage,
2537 	.release_cb	   = ip4_datagram_release_cb,
2538 	.hash		   = udp_lib_hash,
2539 	.unhash		   = udp_lib_unhash,
2540 	.rehash		   = udp_v4_rehash,
2541 	.get_port	   = udp_v4_get_port,
2542 	.memory_allocated  = &udp_memory_allocated,
2543 	.sysctl_mem	   = sysctl_udp_mem,
2544 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2545 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2546 	.obj_size	   = sizeof(struct udp_sock),
2547 	.h.udp_table	   = &udp_table,
2548 #ifdef CONFIG_COMPAT
2549 	.compat_setsockopt = compat_udp_setsockopt,
2550 	.compat_getsockopt = compat_udp_getsockopt,
2551 #endif
2552 	.diag_destroy	   = udp_abort,
2553 };
2554 EXPORT_SYMBOL(udp_prot);
2555 
2556 /* ------------------------------------------------------------------------ */
2557 #ifdef CONFIG_PROC_FS
2558 
2559 static struct sock *udp_get_first(struct seq_file *seq, int start)
2560 {
2561 	struct sock *sk;
2562 	struct udp_iter_state *state = seq->private;
2563 	struct net *net = seq_file_net(seq);
2564 
2565 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2566 	     ++state->bucket) {
2567 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2568 
2569 		if (hlist_empty(&hslot->head))
2570 			continue;
2571 
2572 		spin_lock_bh(&hslot->lock);
2573 		sk_for_each(sk, &hslot->head) {
2574 			if (!net_eq(sock_net(sk), net))
2575 				continue;
2576 			if (sk->sk_family == state->family)
2577 				goto found;
2578 		}
2579 		spin_unlock_bh(&hslot->lock);
2580 	}
2581 	sk = NULL;
2582 found:
2583 	return sk;
2584 }
2585 
2586 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2587 {
2588 	struct udp_iter_state *state = seq->private;
2589 	struct net *net = seq_file_net(seq);
2590 
2591 	do {
2592 		sk = sk_next(sk);
2593 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2594 
2595 	if (!sk) {
2596 		if (state->bucket <= state->udp_table->mask)
2597 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2598 		return udp_get_first(seq, state->bucket + 1);
2599 	}
2600 	return sk;
2601 }
2602 
2603 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2604 {
2605 	struct sock *sk = udp_get_first(seq, 0);
2606 
2607 	if (sk)
2608 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2609 			--pos;
2610 	return pos ? NULL : sk;
2611 }
2612 
2613 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2614 {
2615 	struct udp_iter_state *state = seq->private;
2616 	state->bucket = MAX_UDP_PORTS;
2617 
2618 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2619 }
2620 
2621 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2622 {
2623 	struct sock *sk;
2624 
2625 	if (v == SEQ_START_TOKEN)
2626 		sk = udp_get_idx(seq, 0);
2627 	else
2628 		sk = udp_get_next(seq, v);
2629 
2630 	++*pos;
2631 	return sk;
2632 }
2633 
2634 static void udp_seq_stop(struct seq_file *seq, void *v)
2635 {
2636 	struct udp_iter_state *state = seq->private;
2637 
2638 	if (state->bucket <= state->udp_table->mask)
2639 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2640 }
2641 
2642 int udp_seq_open(struct inode *inode, struct file *file)
2643 {
2644 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2645 	struct udp_iter_state *s;
2646 	int err;
2647 
2648 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2649 			   sizeof(struct udp_iter_state));
2650 	if (err < 0)
2651 		return err;
2652 
2653 	s = ((struct seq_file *)file->private_data)->private;
2654 	s->family		= afinfo->family;
2655 	s->udp_table		= afinfo->udp_table;
2656 	return err;
2657 }
2658 EXPORT_SYMBOL(udp_seq_open);
2659 
2660 /* ------------------------------------------------------------------------ */
2661 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2662 {
2663 	struct proc_dir_entry *p;
2664 	int rc = 0;
2665 
2666 	afinfo->seq_ops.start		= udp_seq_start;
2667 	afinfo->seq_ops.next		= udp_seq_next;
2668 	afinfo->seq_ops.stop		= udp_seq_stop;
2669 
2670 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2671 			     afinfo->seq_fops, afinfo);
2672 	if (!p)
2673 		rc = -ENOMEM;
2674 	return rc;
2675 }
2676 EXPORT_SYMBOL(udp_proc_register);
2677 
2678 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2679 {
2680 	remove_proc_entry(afinfo->name, net->proc_net);
2681 }
2682 EXPORT_SYMBOL(udp_proc_unregister);
2683 
2684 /* ------------------------------------------------------------------------ */
2685 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2686 		int bucket)
2687 {
2688 	struct inet_sock *inet = inet_sk(sp);
2689 	__be32 dest = inet->inet_daddr;
2690 	__be32 src  = inet->inet_rcv_saddr;
2691 	__u16 destp	  = ntohs(inet->inet_dport);
2692 	__u16 srcp	  = ntohs(inet->inet_sport);
2693 
2694 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2695 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2696 		bucket, src, srcp, dest, destp, sp->sk_state,
2697 		sk_wmem_alloc_get(sp),
2698 		sk_rmem_alloc_get(sp),
2699 		0, 0L, 0,
2700 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2701 		0, sock_i_ino(sp),
2702 		refcount_read(&sp->sk_refcnt), sp,
2703 		atomic_read(&sp->sk_drops));
2704 }
2705 
2706 int udp4_seq_show(struct seq_file *seq, void *v)
2707 {
2708 	seq_setwidth(seq, 127);
2709 	if (v == SEQ_START_TOKEN)
2710 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2711 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2712 			   "inode ref pointer drops");
2713 	else {
2714 		struct udp_iter_state *state = seq->private;
2715 
2716 		udp4_format_sock(v, seq, state->bucket);
2717 	}
2718 	seq_pad(seq, '\n');
2719 	return 0;
2720 }
2721 
2722 static const struct file_operations udp_afinfo_seq_fops = {
2723 	.owner    = THIS_MODULE,
2724 	.open     = udp_seq_open,
2725 	.read     = seq_read,
2726 	.llseek   = seq_lseek,
2727 	.release  = seq_release_net
2728 };
2729 
2730 /* ------------------------------------------------------------------------ */
2731 static struct udp_seq_afinfo udp4_seq_afinfo = {
2732 	.name		= "udp",
2733 	.family		= AF_INET,
2734 	.udp_table	= &udp_table,
2735 	.seq_fops	= &udp_afinfo_seq_fops,
2736 	.seq_ops	= {
2737 		.show		= udp4_seq_show,
2738 	},
2739 };
2740 
2741 static int __net_init udp4_proc_init_net(struct net *net)
2742 {
2743 	return udp_proc_register(net, &udp4_seq_afinfo);
2744 }
2745 
2746 static void __net_exit udp4_proc_exit_net(struct net *net)
2747 {
2748 	udp_proc_unregister(net, &udp4_seq_afinfo);
2749 }
2750 
2751 static struct pernet_operations udp4_net_ops = {
2752 	.init = udp4_proc_init_net,
2753 	.exit = udp4_proc_exit_net,
2754 };
2755 
2756 int __init udp4_proc_init(void)
2757 {
2758 	return register_pernet_subsys(&udp4_net_ops);
2759 }
2760 
2761 void udp4_proc_exit(void)
2762 {
2763 	unregister_pernet_subsys(&udp4_net_ops);
2764 }
2765 #endif /* CONFIG_PROC_FS */
2766 
2767 static __initdata unsigned long uhash_entries;
2768 static int __init set_uhash_entries(char *str)
2769 {
2770 	ssize_t ret;
2771 
2772 	if (!str)
2773 		return 0;
2774 
2775 	ret = kstrtoul(str, 0, &uhash_entries);
2776 	if (ret)
2777 		return 0;
2778 
2779 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2780 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2781 	return 1;
2782 }
2783 __setup("uhash_entries=", set_uhash_entries);
2784 
2785 void __init udp_table_init(struct udp_table *table, const char *name)
2786 {
2787 	unsigned int i;
2788 
2789 	table->hash = alloc_large_system_hash(name,
2790 					      2 * sizeof(struct udp_hslot),
2791 					      uhash_entries,
2792 					      21, /* one slot per 2 MB */
2793 					      0,
2794 					      &table->log,
2795 					      &table->mask,
2796 					      UDP_HTABLE_SIZE_MIN,
2797 					      64 * 1024);
2798 
2799 	table->hash2 = table->hash + (table->mask + 1);
2800 	for (i = 0; i <= table->mask; i++) {
2801 		INIT_HLIST_HEAD(&table->hash[i].head);
2802 		table->hash[i].count = 0;
2803 		spin_lock_init(&table->hash[i].lock);
2804 	}
2805 	for (i = 0; i <= table->mask; i++) {
2806 		INIT_HLIST_HEAD(&table->hash2[i].head);
2807 		table->hash2[i].count = 0;
2808 		spin_lock_init(&table->hash2[i].lock);
2809 	}
2810 }
2811 
2812 u32 udp_flow_hashrnd(void)
2813 {
2814 	static u32 hashrnd __read_mostly;
2815 
2816 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2817 
2818 	return hashrnd;
2819 }
2820 EXPORT_SYMBOL(udp_flow_hashrnd);
2821 
2822 void __init udp_init(void)
2823 {
2824 	unsigned long limit;
2825 	unsigned int i;
2826 
2827 	udp_table_init(&udp_table, "UDP");
2828 	limit = nr_free_buffer_pages() / 8;
2829 	limit = max(limit, 128UL);
2830 	sysctl_udp_mem[0] = limit / 4 * 3;
2831 	sysctl_udp_mem[1] = limit;
2832 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2833 
2834 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2835 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2836 
2837 	/* 16 spinlocks per cpu */
2838 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2839 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2840 				GFP_KERNEL);
2841 	if (!udp_busylocks)
2842 		panic("UDP: failed to alloc udp_busylocks\n");
2843 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2844 		spin_lock_init(udp_busylocks + i);
2845 }
2846