xref: /openbmc/linux/net/ipv4/udp.c (revision c819e2cf)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119 
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122 
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125 
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128 
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134 
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 			       const struct udp_hslot *hslot,
137 			       unsigned long *bitmap,
138 			       struct sock *sk,
139 			       int (*saddr_comp)(const struct sock *sk1,
140 						 const struct sock *sk2),
141 			       unsigned int log)
142 {
143 	struct sock *sk2;
144 	struct hlist_nulls_node *node;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_nulls_for_each(sk2, node, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 		     !uid_eq(uid, sock_i_uid(sk2))) &&
156 		    saddr_comp(sk, sk2)) {
157 			if (!bitmap)
158 				return 1;
159 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 				struct udp_hslot *hslot2,
171 				struct sock *sk,
172 				int (*saddr_comp)(const struct sock *sk1,
173 						  const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		     !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    saddr_comp(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
199 /**
200  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
201  *
202  *  @sk:          socket struct in question
203  *  @snum:        port number to look up
204  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
205  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206  *                   with NULL address
207  */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 		     int (*saddr_comp)(const struct sock *sk1,
210 				       const struct sock *sk2),
211 		     unsigned int hash2_nulladdr)
212 {
213 	struct udp_hslot *hslot, *hslot2;
214 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 	int    error = 1;
216 	struct net *net = sock_net(sk);
217 
218 	if (!snum) {
219 		int low, high, remaining;
220 		unsigned int rand;
221 		unsigned short first, last;
222 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223 
224 		inet_get_local_port_range(net, &low, &high);
225 		remaining = (high - low) + 1;
226 
227 		rand = prandom_u32();
228 		first = reciprocal_scale(rand, remaining) + low;
229 		/*
230 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 		 */
232 		rand = (rand | 1) * (udptable->mask + 1);
233 		last = first + udptable->mask + 1;
234 		do {
235 			hslot = udp_hashslot(udptable, net, first);
236 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 			spin_lock_bh(&hslot->lock);
238 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 					    saddr_comp, udptable->log);
240 
241 			snum = first;
242 			/*
243 			 * Iterate on all possible values of snum for this hash.
244 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 			 * give us randomization and full range coverage.
246 			 */
247 			do {
248 				if (low <= snum && snum <= high &&
249 				    !test_bit(snum >> udptable->log, bitmap) &&
250 				    !inet_is_local_reserved_port(net, snum))
251 					goto found;
252 				snum += rand;
253 			} while (snum != first);
254 			spin_unlock_bh(&hslot->lock);
255 		} while (++first != last);
256 		goto fail;
257 	} else {
258 		hslot = udp_hashslot(udptable, net, snum);
259 		spin_lock_bh(&hslot->lock);
260 		if (hslot->count > 10) {
261 			int exist;
262 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263 
264 			slot2          &= udptable->mask;
265 			hash2_nulladdr &= udptable->mask;
266 
267 			hslot2 = udp_hashslot2(udptable, slot2);
268 			if (hslot->count < hslot2->count)
269 				goto scan_primary_hash;
270 
271 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 						     sk, saddr_comp);
273 			if (!exist && (hash2_nulladdr != slot2)) {
274 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 							     sk, saddr_comp);
277 			}
278 			if (exist)
279 				goto fail_unlock;
280 			else
281 				goto found;
282 		}
283 scan_primary_hash:
284 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 					saddr_comp, 0))
286 			goto fail_unlock;
287 	}
288 found:
289 	inet_sk(sk)->inet_num = snum;
290 	udp_sk(sk)->udp_port_hash = snum;
291 	udp_sk(sk)->udp_portaddr_hash ^= snum;
292 	if (sk_unhashed(sk)) {
293 		sk_nulls_add_node_rcu(sk, &hslot->head);
294 		hslot->count++;
295 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296 
297 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 		spin_lock(&hslot2->lock);
299 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 					 &hslot2->head);
301 		hslot2->count++;
302 		spin_unlock(&hslot2->lock);
303 	}
304 	error = 0;
305 fail_unlock:
306 	spin_unlock_bh(&hslot->lock);
307 fail:
308 	return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311 
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315 
316 	return 	(!ipv6_only_sock(sk2)  &&
317 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320 
321 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
322 				       unsigned int port)
323 {
324 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326 
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 	unsigned int hash2_nulladdr =
330 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 	unsigned int hash2_partial =
332 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333 
334 	/* precompute partial secondary hash */
335 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338 
339 static inline int compute_score(struct sock *sk, struct net *net,
340 				__be32 saddr, unsigned short hnum, __be16 sport,
341 				__be32 daddr, __be16 dport, int dif)
342 {
343 	int score;
344 	struct inet_sock *inet;
345 
346 	if (!net_eq(sock_net(sk), net) ||
347 	    udp_sk(sk)->udp_port_hash != hnum ||
348 	    ipv6_only_sock(sk))
349 		return -1;
350 
351 	score = (sk->sk_family == PF_INET) ? 2 : 1;
352 	inet = inet_sk(sk);
353 
354 	if (inet->inet_rcv_saddr) {
355 		if (inet->inet_rcv_saddr != daddr)
356 			return -1;
357 		score += 4;
358 	}
359 
360 	if (inet->inet_daddr) {
361 		if (inet->inet_daddr != saddr)
362 			return -1;
363 		score += 4;
364 	}
365 
366 	if (inet->inet_dport) {
367 		if (inet->inet_dport != sport)
368 			return -1;
369 		score += 4;
370 	}
371 
372 	if (sk->sk_bound_dev_if) {
373 		if (sk->sk_bound_dev_if != dif)
374 			return -1;
375 		score += 4;
376 	}
377 
378 	return score;
379 }
380 
381 /*
382  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
383  */
384 static inline int compute_score2(struct sock *sk, struct net *net,
385 				 __be32 saddr, __be16 sport,
386 				 __be32 daddr, unsigned int hnum, int dif)
387 {
388 	int score;
389 	struct inet_sock *inet;
390 
391 	if (!net_eq(sock_net(sk), net) ||
392 	    ipv6_only_sock(sk))
393 		return -1;
394 
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr != daddr ||
398 	    inet->inet_num != hnum)
399 		return -1;
400 
401 	score = (sk->sk_family == PF_INET) ? 2 : 1;
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if) {
416 		if (sk->sk_bound_dev_if != dif)
417 			return -1;
418 		score += 4;
419 	}
420 
421 	return score;
422 }
423 
424 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
425 				 const __u16 lport, const __be32 faddr,
426 				 const __be16 fport)
427 {
428 	static u32 udp_ehash_secret __read_mostly;
429 
430 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
431 
432 	return __inet_ehashfn(laddr, lport, faddr, fport,
433 			      udp_ehash_secret + net_hash_mix(net));
434 }
435 
436 
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif,
441 		struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 	struct sock *sk, *result;
444 	struct hlist_nulls_node *node;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 begin:
449 	result = NULL;
450 	badness = 0;
451 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 		score = compute_score2(sk, net, saddr, sport,
453 				      daddr, hnum, dif);
454 		if (score > badness) {
455 			result = sk;
456 			badness = score;
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				matches = 1;
462 			}
463 		} else if (score == badness && reuseport) {
464 			matches++;
465 			if (reciprocal_scale(hash, matches) == 0)
466 				result = sk;
467 			hash = next_pseudo_random32(hash);
468 		}
469 	}
470 	/*
471 	 * if the nulls value we got at the end of this lookup is
472 	 * not the expected one, we must restart lookup.
473 	 * We probably met an item that was moved to another chain.
474 	 */
475 	if (get_nulls_value(node) != slot2)
476 		goto begin;
477 	if (result) {
478 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 			result = NULL;
480 		else if (unlikely(compute_score2(result, net, saddr, sport,
481 				  daddr, hnum, dif) < badness)) {
482 			sock_put(result);
483 			goto begin;
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable)
495 {
496 	struct sock *sk, *result;
497 	struct hlist_nulls_node *node;
498 	unsigned short hnum = ntohs(dport);
499 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 	int score, badness, matches = 0, reuseport = 0;
502 	u32 hash = 0;
503 
504 	rcu_read_lock();
505 	if (hslot->count > 10) {
506 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 		slot2 = hash2 & udptable->mask;
508 		hslot2 = &udptable->hash2[slot2];
509 		if (hslot->count < hslot2->count)
510 			goto begin;
511 
512 		result = udp4_lib_lookup2(net, saddr, sport,
513 					  daddr, hnum, dif,
514 					  hslot2, slot2);
515 		if (!result) {
516 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 			slot2 = hash2 & udptable->mask;
518 			hslot2 = &udptable->hash2[slot2];
519 			if (hslot->count < hslot2->count)
520 				goto begin;
521 
522 			result = udp4_lib_lookup2(net, saddr, sport,
523 						  htonl(INADDR_ANY), hnum, dif,
524 						  hslot2, slot2);
525 		}
526 		rcu_read_unlock();
527 		return result;
528 	}
529 begin:
530 	result = NULL;
531 	badness = 0;
532 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 		score = compute_score(sk, net, saddr, hnum, sport,
534 				      daddr, dport, dif);
535 		if (score > badness) {
536 			result = sk;
537 			badness = score;
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				matches = 1;
543 			}
544 		} else if (score == badness && reuseport) {
545 			matches++;
546 			if (reciprocal_scale(hash, matches) == 0)
547 				result = sk;
548 			hash = next_pseudo_random32(hash);
549 		}
550 	}
551 	/*
552 	 * if the nulls value we got at the end of this lookup is
553 	 * not the expected one, we must restart lookup.
554 	 * We probably met an item that was moved to another chain.
555 	 */
556 	if (get_nulls_value(node) != slot)
557 		goto begin;
558 
559 	if (result) {
560 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 			result = NULL;
562 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 				  daddr, dport, dif) < badness)) {
564 			sock_put(result);
565 			goto begin;
566 		}
567 	}
568 	rcu_read_unlock();
569 	return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572 
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 						 __be16 sport, __be16 dport,
575 						 struct udp_table *udptable)
576 {
577 	const struct iphdr *iph = ip_hdr(skb);
578 
579 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 				 iph->daddr, dport, inet_iif(skb),
581 				 udptable);
582 }
583 
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 			     __be32 daddr, __be16 dport, int dif)
586 {
587 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590 
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 				       __be16 loc_port, __be32 loc_addr,
593 				       __be16 rmt_port, __be32 rmt_addr,
594 				       int dif, unsigned short hnum)
595 {
596 	struct inet_sock *inet = inet_sk(sk);
597 
598 	if (!net_eq(sock_net(sk), net) ||
599 	    udp_sk(sk)->udp_port_hash != hnum ||
600 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 	    ipv6_only_sock(sk) ||
604 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 	if (sk == NULL) {
637 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 		return;	/* No socket for error */
639 	}
640 
641 	err = 0;
642 	harderr = 0;
643 	inet = inet_sk(sk);
644 
645 	switch (type) {
646 	default:
647 	case ICMP_TIME_EXCEEDED:
648 		err = EHOSTUNREACH;
649 		break;
650 	case ICMP_SOURCE_QUENCH:
651 		goto out;
652 	case ICMP_PARAMETERPROB:
653 		err = EPROTO;
654 		harderr = 1;
655 		break;
656 	case ICMP_DEST_UNREACH:
657 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 			ipv4_sk_update_pmtu(skb, sk, info);
659 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 				err = EMSGSIZE;
661 				harderr = 1;
662 				break;
663 			}
664 			goto out;
665 		}
666 		err = EHOSTUNREACH;
667 		if (code <= NR_ICMP_UNREACH) {
668 			harderr = icmp_err_convert[code].fatal;
669 			err = icmp_err_convert[code].errno;
670 		}
671 		break;
672 	case ICMP_REDIRECT:
673 		ipv4_sk_redirect(skb, sk);
674 		goto out;
675 	}
676 
677 	/*
678 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
679 	 *	4.1.3.3.
680 	 */
681 	if (!inet->recverr) {
682 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 			goto out;
684 	} else
685 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686 
687 	sk->sk_err = err;
688 	sk->sk_error_report(sk);
689 out:
690 	sock_put(sk);
691 }
692 
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 	__udp4_lib_err(skb, info, &udp_table);
696 }
697 
698 /*
699  * Throw away all pending data and cancel the corking. Socket is locked.
700  */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 	struct udp_sock *up = udp_sk(sk);
704 
705 	if (up->pending) {
706 		up->len = 0;
707 		up->pending = 0;
708 		ip_flush_pending_frames(sk);
709 	}
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712 
713 /**
714  * 	udp4_hwcsum  -  handle outgoing HW checksumming
715  * 	@skb: 	sk_buff containing the filled-in UDP header
716  * 	        (checksum field must be zeroed out)
717  *	@src:	source IP address
718  *	@dst:	destination IP address
719  */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 	struct udphdr *uh = udp_hdr(skb);
723 	int offset = skb_transport_offset(skb);
724 	int len = skb->len - offset;
725 	int hlen = len;
726 	__wsum csum = 0;
727 
728 	if (!skb_has_frag_list(skb)) {
729 		/*
730 		 * Only one fragment on the socket.
731 		 */
732 		skb->csum_start = skb_transport_header(skb) - skb->head;
733 		skb->csum_offset = offsetof(struct udphdr, check);
734 		uh->check = ~csum_tcpudp_magic(src, dst, len,
735 					       IPPROTO_UDP, 0);
736 	} else {
737 		struct sk_buff *frags;
738 
739 		/*
740 		 * HW-checksum won't work as there are two or more
741 		 * fragments on the socket so that all csums of sk_buffs
742 		 * should be together
743 		 */
744 		skb_walk_frags(skb, frags) {
745 			csum = csum_add(csum, frags->csum);
746 			hlen -= frags->len;
747 		}
748 
749 		csum = skb_checksum(skb, offset, hlen, csum);
750 		skb->ip_summed = CHECKSUM_NONE;
751 
752 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 		if (uh->check == 0)
754 			uh->check = CSUM_MANGLED_0;
755 	}
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758 
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760  * for the simple case like when setting the checksum for a UDP tunnel.
761  */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 		  __be32 saddr, __be32 daddr, int len)
764 {
765 	struct udphdr *uh = udp_hdr(skb);
766 
767 	if (nocheck)
768 		uh->check = 0;
769 	else if (skb_is_gso(skb))
770 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773 
774 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775 
776 		skb->ip_summed = CHECKSUM_PARTIAL;
777 		skb->csum_start = skb_transport_header(skb) - skb->head;
778 		skb->csum_offset = offsetof(struct udphdr, check);
779 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 	} else {
781 		__wsum csum;
782 
783 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784 
785 		uh->check = 0;
786 		csum = skb_checksum(skb, 0, len, 0);
787 		uh->check = udp_v4_check(len, saddr, daddr, csum);
788 		if (uh->check == 0)
789 			uh->check = CSUM_MANGLED_0;
790 
791 		skb->ip_summed = CHECKSUM_UNNECESSARY;
792 	}
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795 
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 	struct sock *sk = skb->sk;
799 	struct inet_sock *inet = inet_sk(sk);
800 	struct udphdr *uh;
801 	int err = 0;
802 	int is_udplite = IS_UDPLITE(sk);
803 	int offset = skb_transport_offset(skb);
804 	int len = skb->len - offset;
805 	__wsum csum = 0;
806 
807 	/*
808 	 * Create a UDP header
809 	 */
810 	uh = udp_hdr(skb);
811 	uh->source = inet->inet_sport;
812 	uh->dest = fl4->fl4_dport;
813 	uh->len = htons(len);
814 	uh->check = 0;
815 
816 	if (is_udplite)  				 /*     UDP-Lite      */
817 		csum = udplite_csum(skb);
818 
819 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
820 
821 		skb->ip_summed = CHECKSUM_NONE;
822 		goto send;
823 
824 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825 
826 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 		goto send;
828 
829 	} else
830 		csum = udp_csum(skb);
831 
832 	/* add protocol-dependent pseudo-header */
833 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 				      sk->sk_protocol, csum);
835 	if (uh->check == 0)
836 		uh->check = CSUM_MANGLED_0;
837 
838 send:
839 	err = ip_send_skb(sock_net(sk), skb);
840 	if (err) {
841 		if (err == -ENOBUFS && !inet->recverr) {
842 			UDP_INC_STATS_USER(sock_net(sk),
843 					   UDP_MIB_SNDBUFERRORS, is_udplite);
844 			err = 0;
845 		}
846 	} else
847 		UDP_INC_STATS_USER(sock_net(sk),
848 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
849 	return err;
850 }
851 
852 /*
853  * Push out all pending data as one UDP datagram. Socket is locked.
854  */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 	struct udp_sock  *up = udp_sk(sk);
858 	struct inet_sock *inet = inet_sk(sk);
859 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 	struct sk_buff *skb;
861 	int err = 0;
862 
863 	skb = ip_finish_skb(sk, fl4);
864 	if (!skb)
865 		goto out;
866 
867 	err = udp_send_skb(skb, fl4);
868 
869 out:
870 	up->len = 0;
871 	up->pending = 0;
872 	return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875 
876 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
877 		size_t len)
878 {
879 	struct inet_sock *inet = inet_sk(sk);
880 	struct udp_sock *up = udp_sk(sk);
881 	struct flowi4 fl4_stack;
882 	struct flowi4 *fl4;
883 	int ulen = len;
884 	struct ipcm_cookie ipc;
885 	struct rtable *rt = NULL;
886 	int free = 0;
887 	int connected = 0;
888 	__be32 daddr, faddr, saddr;
889 	__be16 dport;
890 	u8  tos;
891 	int err, is_udplite = IS_UDPLITE(sk);
892 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
893 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
894 	struct sk_buff *skb;
895 	struct ip_options_data opt_copy;
896 
897 	if (len > 0xFFFF)
898 		return -EMSGSIZE;
899 
900 	/*
901 	 *	Check the flags.
902 	 */
903 
904 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
905 		return -EOPNOTSUPP;
906 
907 	ipc.opt = NULL;
908 	ipc.tx_flags = 0;
909 	ipc.ttl = 0;
910 	ipc.tos = -1;
911 
912 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
913 
914 	fl4 = &inet->cork.fl.u.ip4;
915 	if (up->pending) {
916 		/*
917 		 * There are pending frames.
918 		 * The socket lock must be held while it's corked.
919 		 */
920 		lock_sock(sk);
921 		if (likely(up->pending)) {
922 			if (unlikely(up->pending != AF_INET)) {
923 				release_sock(sk);
924 				return -EINVAL;
925 			}
926 			goto do_append_data;
927 		}
928 		release_sock(sk);
929 	}
930 	ulen += sizeof(struct udphdr);
931 
932 	/*
933 	 *	Get and verify the address.
934 	 */
935 	if (msg->msg_name) {
936 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
937 		if (msg->msg_namelen < sizeof(*usin))
938 			return -EINVAL;
939 		if (usin->sin_family != AF_INET) {
940 			if (usin->sin_family != AF_UNSPEC)
941 				return -EAFNOSUPPORT;
942 		}
943 
944 		daddr = usin->sin_addr.s_addr;
945 		dport = usin->sin_port;
946 		if (dport == 0)
947 			return -EINVAL;
948 	} else {
949 		if (sk->sk_state != TCP_ESTABLISHED)
950 			return -EDESTADDRREQ;
951 		daddr = inet->inet_daddr;
952 		dport = inet->inet_dport;
953 		/* Open fast path for connected socket.
954 		   Route will not be used, if at least one option is set.
955 		 */
956 		connected = 1;
957 	}
958 	ipc.addr = inet->inet_saddr;
959 
960 	ipc.oif = sk->sk_bound_dev_if;
961 
962 	sock_tx_timestamp(sk, &ipc.tx_flags);
963 
964 	if (msg->msg_controllen) {
965 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
966 				   sk->sk_family == AF_INET6);
967 		if (err)
968 			return err;
969 		if (ipc.opt)
970 			free = 1;
971 		connected = 0;
972 	}
973 	if (!ipc.opt) {
974 		struct ip_options_rcu *inet_opt;
975 
976 		rcu_read_lock();
977 		inet_opt = rcu_dereference(inet->inet_opt);
978 		if (inet_opt) {
979 			memcpy(&opt_copy, inet_opt,
980 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
981 			ipc.opt = &opt_copy.opt;
982 		}
983 		rcu_read_unlock();
984 	}
985 
986 	saddr = ipc.addr;
987 	ipc.addr = faddr = daddr;
988 
989 	if (ipc.opt && ipc.opt->opt.srr) {
990 		if (!daddr)
991 			return -EINVAL;
992 		faddr = ipc.opt->opt.faddr;
993 		connected = 0;
994 	}
995 	tos = get_rttos(&ipc, inet);
996 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
997 	    (msg->msg_flags & MSG_DONTROUTE) ||
998 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
999 		tos |= RTO_ONLINK;
1000 		connected = 0;
1001 	}
1002 
1003 	if (ipv4_is_multicast(daddr)) {
1004 		if (!ipc.oif)
1005 			ipc.oif = inet->mc_index;
1006 		if (!saddr)
1007 			saddr = inet->mc_addr;
1008 		connected = 0;
1009 	} else if (!ipc.oif)
1010 		ipc.oif = inet->uc_index;
1011 
1012 	if (connected)
1013 		rt = (struct rtable *)sk_dst_check(sk, 0);
1014 
1015 	if (rt == NULL) {
1016 		struct net *net = sock_net(sk);
1017 
1018 		fl4 = &fl4_stack;
1019 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1020 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1021 				   inet_sk_flowi_flags(sk),
1022 				   faddr, saddr, dport, inet->inet_sport);
1023 
1024 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1025 		rt = ip_route_output_flow(net, fl4, sk);
1026 		if (IS_ERR(rt)) {
1027 			err = PTR_ERR(rt);
1028 			rt = NULL;
1029 			if (err == -ENETUNREACH)
1030 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1031 			goto out;
1032 		}
1033 
1034 		err = -EACCES;
1035 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1036 		    !sock_flag(sk, SOCK_BROADCAST))
1037 			goto out;
1038 		if (connected)
1039 			sk_dst_set(sk, dst_clone(&rt->dst));
1040 	}
1041 
1042 	if (msg->msg_flags&MSG_CONFIRM)
1043 		goto do_confirm;
1044 back_from_confirm:
1045 
1046 	saddr = fl4->saddr;
1047 	if (!ipc.addr)
1048 		daddr = ipc.addr = fl4->daddr;
1049 
1050 	/* Lockless fast path for the non-corking case. */
1051 	if (!corkreq) {
1052 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1053 				  sizeof(struct udphdr), &ipc, &rt,
1054 				  msg->msg_flags);
1055 		err = PTR_ERR(skb);
1056 		if (!IS_ERR_OR_NULL(skb))
1057 			err = udp_send_skb(skb, fl4);
1058 		goto out;
1059 	}
1060 
1061 	lock_sock(sk);
1062 	if (unlikely(up->pending)) {
1063 		/* The socket is already corked while preparing it. */
1064 		/* ... which is an evident application bug. --ANK */
1065 		release_sock(sk);
1066 
1067 		net_dbg_ratelimited("cork app bug 2\n");
1068 		err = -EINVAL;
1069 		goto out;
1070 	}
1071 	/*
1072 	 *	Now cork the socket to pend data.
1073 	 */
1074 	fl4 = &inet->cork.fl.u.ip4;
1075 	fl4->daddr = daddr;
1076 	fl4->saddr = saddr;
1077 	fl4->fl4_dport = dport;
1078 	fl4->fl4_sport = inet->inet_sport;
1079 	up->pending = AF_INET;
1080 
1081 do_append_data:
1082 	up->len += ulen;
1083 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1084 			     sizeof(struct udphdr), &ipc, &rt,
1085 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1086 	if (err)
1087 		udp_flush_pending_frames(sk);
1088 	else if (!corkreq)
1089 		err = udp_push_pending_frames(sk);
1090 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1091 		up->pending = 0;
1092 	release_sock(sk);
1093 
1094 out:
1095 	ip_rt_put(rt);
1096 	if (free)
1097 		kfree(ipc.opt);
1098 	if (!err)
1099 		return len;
1100 	/*
1101 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1102 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1103 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1104 	 * things).  We could add another new stat but at least for now that
1105 	 * seems like overkill.
1106 	 */
1107 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1108 		UDP_INC_STATS_USER(sock_net(sk),
1109 				UDP_MIB_SNDBUFERRORS, is_udplite);
1110 	}
1111 	return err;
1112 
1113 do_confirm:
1114 	dst_confirm(&rt->dst);
1115 	if (!(msg->msg_flags&MSG_PROBE) || len)
1116 		goto back_from_confirm;
1117 	err = 0;
1118 	goto out;
1119 }
1120 EXPORT_SYMBOL(udp_sendmsg);
1121 
1122 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1123 		 size_t size, int flags)
1124 {
1125 	struct inet_sock *inet = inet_sk(sk);
1126 	struct udp_sock *up = udp_sk(sk);
1127 	int ret;
1128 
1129 	if (flags & MSG_SENDPAGE_NOTLAST)
1130 		flags |= MSG_MORE;
1131 
1132 	if (!up->pending) {
1133 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1134 
1135 		/* Call udp_sendmsg to specify destination address which
1136 		 * sendpage interface can't pass.
1137 		 * This will succeed only when the socket is connected.
1138 		 */
1139 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1140 		if (ret < 0)
1141 			return ret;
1142 	}
1143 
1144 	lock_sock(sk);
1145 
1146 	if (unlikely(!up->pending)) {
1147 		release_sock(sk);
1148 
1149 		net_dbg_ratelimited("udp cork app bug 3\n");
1150 		return -EINVAL;
1151 	}
1152 
1153 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1154 			     page, offset, size, flags);
1155 	if (ret == -EOPNOTSUPP) {
1156 		release_sock(sk);
1157 		return sock_no_sendpage(sk->sk_socket, page, offset,
1158 					size, flags);
1159 	}
1160 	if (ret < 0) {
1161 		udp_flush_pending_frames(sk);
1162 		goto out;
1163 	}
1164 
1165 	up->len += size;
1166 	if (!(up->corkflag || (flags&MSG_MORE)))
1167 		ret = udp_push_pending_frames(sk);
1168 	if (!ret)
1169 		ret = size;
1170 out:
1171 	release_sock(sk);
1172 	return ret;
1173 }
1174 
1175 
1176 /**
1177  *	first_packet_length	- return length of first packet in receive queue
1178  *	@sk: socket
1179  *
1180  *	Drops all bad checksum frames, until a valid one is found.
1181  *	Returns the length of found skb, or 0 if none is found.
1182  */
1183 static unsigned int first_packet_length(struct sock *sk)
1184 {
1185 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1186 	struct sk_buff *skb;
1187 	unsigned int res;
1188 
1189 	__skb_queue_head_init(&list_kill);
1190 
1191 	spin_lock_bh(&rcvq->lock);
1192 	while ((skb = skb_peek(rcvq)) != NULL &&
1193 		udp_lib_checksum_complete(skb)) {
1194 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1195 				 IS_UDPLITE(sk));
1196 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1197 				 IS_UDPLITE(sk));
1198 		atomic_inc(&sk->sk_drops);
1199 		__skb_unlink(skb, rcvq);
1200 		__skb_queue_tail(&list_kill, skb);
1201 	}
1202 	res = skb ? skb->len : 0;
1203 	spin_unlock_bh(&rcvq->lock);
1204 
1205 	if (!skb_queue_empty(&list_kill)) {
1206 		bool slow = lock_sock_fast(sk);
1207 
1208 		__skb_queue_purge(&list_kill);
1209 		sk_mem_reclaim_partial(sk);
1210 		unlock_sock_fast(sk, slow);
1211 	}
1212 	return res;
1213 }
1214 
1215 /*
1216  *	IOCTL requests applicable to the UDP protocol
1217  */
1218 
1219 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1220 {
1221 	switch (cmd) {
1222 	case SIOCOUTQ:
1223 	{
1224 		int amount = sk_wmem_alloc_get(sk);
1225 
1226 		return put_user(amount, (int __user *)arg);
1227 	}
1228 
1229 	case SIOCINQ:
1230 	{
1231 		unsigned int amount = first_packet_length(sk);
1232 
1233 		if (amount)
1234 			/*
1235 			 * We will only return the amount
1236 			 * of this packet since that is all
1237 			 * that will be read.
1238 			 */
1239 			amount -= sizeof(struct udphdr);
1240 
1241 		return put_user(amount, (int __user *)arg);
1242 	}
1243 
1244 	default:
1245 		return -ENOIOCTLCMD;
1246 	}
1247 
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL(udp_ioctl);
1251 
1252 /*
1253  * 	This should be easy, if there is something there we
1254  * 	return it, otherwise we block.
1255  */
1256 
1257 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1258 		size_t len, int noblock, int flags, int *addr_len)
1259 {
1260 	struct inet_sock *inet = inet_sk(sk);
1261 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1262 	struct sk_buff *skb;
1263 	unsigned int ulen, copied;
1264 	int peeked, off = 0;
1265 	int err;
1266 	int is_udplite = IS_UDPLITE(sk);
1267 	bool slow;
1268 
1269 	if (flags & MSG_ERRQUEUE)
1270 		return ip_recv_error(sk, msg, len, addr_len);
1271 
1272 try_again:
1273 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1274 				  &peeked, &off, &err);
1275 	if (!skb)
1276 		goto out;
1277 
1278 	ulen = skb->len - sizeof(struct udphdr);
1279 	copied = len;
1280 	if (copied > ulen)
1281 		copied = ulen;
1282 	else if (copied < ulen)
1283 		msg->msg_flags |= MSG_TRUNC;
1284 
1285 	/*
1286 	 * If checksum is needed at all, try to do it while copying the
1287 	 * data.  If the data is truncated, or if we only want a partial
1288 	 * coverage checksum (UDP-Lite), do it before the copy.
1289 	 */
1290 
1291 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1292 		if (udp_lib_checksum_complete(skb))
1293 			goto csum_copy_err;
1294 	}
1295 
1296 	if (skb_csum_unnecessary(skb))
1297 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1298 					    msg, copied);
1299 	else {
1300 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1301 						     msg);
1302 
1303 		if (err == -EINVAL)
1304 			goto csum_copy_err;
1305 	}
1306 
1307 	if (unlikely(err)) {
1308 		trace_kfree_skb(skb, udp_recvmsg);
1309 		if (!peeked) {
1310 			atomic_inc(&sk->sk_drops);
1311 			UDP_INC_STATS_USER(sock_net(sk),
1312 					   UDP_MIB_INERRORS, is_udplite);
1313 		}
1314 		goto out_free;
1315 	}
1316 
1317 	if (!peeked)
1318 		UDP_INC_STATS_USER(sock_net(sk),
1319 				UDP_MIB_INDATAGRAMS, is_udplite);
1320 
1321 	sock_recv_ts_and_drops(msg, sk, skb);
1322 
1323 	/* Copy the address. */
1324 	if (sin) {
1325 		sin->sin_family = AF_INET;
1326 		sin->sin_port = udp_hdr(skb)->source;
1327 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1328 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1329 		*addr_len = sizeof(*sin);
1330 	}
1331 	if (inet->cmsg_flags)
1332 		ip_cmsg_recv(msg, skb);
1333 
1334 	err = copied;
1335 	if (flags & MSG_TRUNC)
1336 		err = ulen;
1337 
1338 out_free:
1339 	skb_free_datagram_locked(sk, skb);
1340 out:
1341 	return err;
1342 
1343 csum_copy_err:
1344 	slow = lock_sock_fast(sk);
1345 	if (!skb_kill_datagram(sk, skb, flags)) {
1346 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1347 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1348 	}
1349 	unlock_sock_fast(sk, slow);
1350 
1351 	if (noblock)
1352 		return -EAGAIN;
1353 
1354 	/* starting over for a new packet */
1355 	msg->msg_flags &= ~MSG_TRUNC;
1356 	goto try_again;
1357 }
1358 
1359 
1360 int udp_disconnect(struct sock *sk, int flags)
1361 {
1362 	struct inet_sock *inet = inet_sk(sk);
1363 	/*
1364 	 *	1003.1g - break association.
1365 	 */
1366 
1367 	sk->sk_state = TCP_CLOSE;
1368 	inet->inet_daddr = 0;
1369 	inet->inet_dport = 0;
1370 	sock_rps_reset_rxhash(sk);
1371 	sk->sk_bound_dev_if = 0;
1372 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1373 		inet_reset_saddr(sk);
1374 
1375 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1376 		sk->sk_prot->unhash(sk);
1377 		inet->inet_sport = 0;
1378 	}
1379 	sk_dst_reset(sk);
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL(udp_disconnect);
1383 
1384 void udp_lib_unhash(struct sock *sk)
1385 {
1386 	if (sk_hashed(sk)) {
1387 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1388 		struct udp_hslot *hslot, *hslot2;
1389 
1390 		hslot  = udp_hashslot(udptable, sock_net(sk),
1391 				      udp_sk(sk)->udp_port_hash);
1392 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1393 
1394 		spin_lock_bh(&hslot->lock);
1395 		if (sk_nulls_del_node_init_rcu(sk)) {
1396 			hslot->count--;
1397 			inet_sk(sk)->inet_num = 0;
1398 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1399 
1400 			spin_lock(&hslot2->lock);
1401 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1402 			hslot2->count--;
1403 			spin_unlock(&hslot2->lock);
1404 		}
1405 		spin_unlock_bh(&hslot->lock);
1406 	}
1407 }
1408 EXPORT_SYMBOL(udp_lib_unhash);
1409 
1410 /*
1411  * inet_rcv_saddr was changed, we must rehash secondary hash
1412  */
1413 void udp_lib_rehash(struct sock *sk, u16 newhash)
1414 {
1415 	if (sk_hashed(sk)) {
1416 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1417 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1418 
1419 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1420 		nhslot2 = udp_hashslot2(udptable, newhash);
1421 		udp_sk(sk)->udp_portaddr_hash = newhash;
1422 		if (hslot2 != nhslot2) {
1423 			hslot = udp_hashslot(udptable, sock_net(sk),
1424 					     udp_sk(sk)->udp_port_hash);
1425 			/* we must lock primary chain too */
1426 			spin_lock_bh(&hslot->lock);
1427 
1428 			spin_lock(&hslot2->lock);
1429 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1430 			hslot2->count--;
1431 			spin_unlock(&hslot2->lock);
1432 
1433 			spin_lock(&nhslot2->lock);
1434 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1435 						 &nhslot2->head);
1436 			nhslot2->count++;
1437 			spin_unlock(&nhslot2->lock);
1438 
1439 			spin_unlock_bh(&hslot->lock);
1440 		}
1441 	}
1442 }
1443 EXPORT_SYMBOL(udp_lib_rehash);
1444 
1445 static void udp_v4_rehash(struct sock *sk)
1446 {
1447 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1448 					  inet_sk(sk)->inet_rcv_saddr,
1449 					  inet_sk(sk)->inet_num);
1450 	udp_lib_rehash(sk, new_hash);
1451 }
1452 
1453 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1454 {
1455 	int rc;
1456 
1457 	if (inet_sk(sk)->inet_daddr) {
1458 		sock_rps_save_rxhash(sk, skb);
1459 		sk_mark_napi_id(sk, skb);
1460 		sk_incoming_cpu_update(sk);
1461 	}
1462 
1463 	rc = sock_queue_rcv_skb(sk, skb);
1464 	if (rc < 0) {
1465 		int is_udplite = IS_UDPLITE(sk);
1466 
1467 		/* Note that an ENOMEM error is charged twice */
1468 		if (rc == -ENOMEM)
1469 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1470 					 is_udplite);
1471 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1472 		kfree_skb(skb);
1473 		trace_udp_fail_queue_rcv_skb(rc, sk);
1474 		return -1;
1475 	}
1476 
1477 	return 0;
1478 
1479 }
1480 
1481 static struct static_key udp_encap_needed __read_mostly;
1482 void udp_encap_enable(void)
1483 {
1484 	if (!static_key_enabled(&udp_encap_needed))
1485 		static_key_slow_inc(&udp_encap_needed);
1486 }
1487 EXPORT_SYMBOL(udp_encap_enable);
1488 
1489 /* returns:
1490  *  -1: error
1491  *   0: success
1492  *  >0: "udp encap" protocol resubmission
1493  *
1494  * Note that in the success and error cases, the skb is assumed to
1495  * have either been requeued or freed.
1496  */
1497 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1498 {
1499 	struct udp_sock *up = udp_sk(sk);
1500 	int rc;
1501 	int is_udplite = IS_UDPLITE(sk);
1502 
1503 	/*
1504 	 *	Charge it to the socket, dropping if the queue is full.
1505 	 */
1506 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1507 		goto drop;
1508 	nf_reset(skb);
1509 
1510 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1511 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1512 
1513 		/*
1514 		 * This is an encapsulation socket so pass the skb to
1515 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1516 		 * fall through and pass this up the UDP socket.
1517 		 * up->encap_rcv() returns the following value:
1518 		 * =0 if skb was successfully passed to the encap
1519 		 *    handler or was discarded by it.
1520 		 * >0 if skb should be passed on to UDP.
1521 		 * <0 if skb should be resubmitted as proto -N
1522 		 */
1523 
1524 		/* if we're overly short, let UDP handle it */
1525 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1526 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1527 			int ret;
1528 
1529 			/* Verify checksum before giving to encap */
1530 			if (udp_lib_checksum_complete(skb))
1531 				goto csum_error;
1532 
1533 			ret = encap_rcv(sk, skb);
1534 			if (ret <= 0) {
1535 				UDP_INC_STATS_BH(sock_net(sk),
1536 						 UDP_MIB_INDATAGRAMS,
1537 						 is_udplite);
1538 				return -ret;
1539 			}
1540 		}
1541 
1542 		/* FALLTHROUGH -- it's a UDP Packet */
1543 	}
1544 
1545 	/*
1546 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1547 	 */
1548 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1549 
1550 		/*
1551 		 * MIB statistics other than incrementing the error count are
1552 		 * disabled for the following two types of errors: these depend
1553 		 * on the application settings, not on the functioning of the
1554 		 * protocol stack as such.
1555 		 *
1556 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1557 		 * way ... to ... at least let the receiving application block
1558 		 * delivery of packets with coverage values less than a value
1559 		 * provided by the application."
1560 		 */
1561 		if (up->pcrlen == 0) {          /* full coverage was set  */
1562 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1563 					    UDP_SKB_CB(skb)->cscov, skb->len);
1564 			goto drop;
1565 		}
1566 		/* The next case involves violating the min. coverage requested
1567 		 * by the receiver. This is subtle: if receiver wants x and x is
1568 		 * greater than the buffersize/MTU then receiver will complain
1569 		 * that it wants x while sender emits packets of smaller size y.
1570 		 * Therefore the above ...()->partial_cov statement is essential.
1571 		 */
1572 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1573 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1574 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1575 			goto drop;
1576 		}
1577 	}
1578 
1579 	if (rcu_access_pointer(sk->sk_filter) &&
1580 	    udp_lib_checksum_complete(skb))
1581 		goto csum_error;
1582 
1583 
1584 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1585 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1586 				 is_udplite);
1587 		goto drop;
1588 	}
1589 
1590 	rc = 0;
1591 
1592 	ipv4_pktinfo_prepare(sk, skb);
1593 	bh_lock_sock(sk);
1594 	if (!sock_owned_by_user(sk))
1595 		rc = __udp_queue_rcv_skb(sk, skb);
1596 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1597 		bh_unlock_sock(sk);
1598 		goto drop;
1599 	}
1600 	bh_unlock_sock(sk);
1601 
1602 	return rc;
1603 
1604 csum_error:
1605 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1606 drop:
1607 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1608 	atomic_inc(&sk->sk_drops);
1609 	kfree_skb(skb);
1610 	return -1;
1611 }
1612 
1613 
1614 static void flush_stack(struct sock **stack, unsigned int count,
1615 			struct sk_buff *skb, unsigned int final)
1616 {
1617 	unsigned int i;
1618 	struct sk_buff *skb1 = NULL;
1619 	struct sock *sk;
1620 
1621 	for (i = 0; i < count; i++) {
1622 		sk = stack[i];
1623 		if (likely(skb1 == NULL))
1624 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1625 
1626 		if (!skb1) {
1627 			atomic_inc(&sk->sk_drops);
1628 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1629 					 IS_UDPLITE(sk));
1630 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1631 					 IS_UDPLITE(sk));
1632 		}
1633 
1634 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1635 			skb1 = NULL;
1636 
1637 		sock_put(sk);
1638 	}
1639 	if (unlikely(skb1))
1640 		kfree_skb(skb1);
1641 }
1642 
1643 /* For TCP sockets, sk_rx_dst is protected by socket lock
1644  * For UDP, we use xchg() to guard against concurrent changes.
1645  */
1646 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1647 {
1648 	struct dst_entry *old;
1649 
1650 	dst_hold(dst);
1651 	old = xchg(&sk->sk_rx_dst, dst);
1652 	dst_release(old);
1653 }
1654 
1655 /*
1656  *	Multicasts and broadcasts go to each listener.
1657  *
1658  *	Note: called only from the BH handler context.
1659  */
1660 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1661 				    struct udphdr  *uh,
1662 				    __be32 saddr, __be32 daddr,
1663 				    struct udp_table *udptable,
1664 				    int proto)
1665 {
1666 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1667 	struct hlist_nulls_node *node;
1668 	unsigned short hnum = ntohs(uh->dest);
1669 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1670 	int dif = skb->dev->ifindex;
1671 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1672 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1673 	bool inner_flushed = false;
1674 
1675 	if (use_hash2) {
1676 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1677 			    udp_table.mask;
1678 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1679 start_lookup:
1680 		hslot = &udp_table.hash2[hash2];
1681 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1682 	}
1683 
1684 	spin_lock(&hslot->lock);
1685 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1686 		if (__udp_is_mcast_sock(net, sk,
1687 					uh->dest, daddr,
1688 					uh->source, saddr,
1689 					dif, hnum)) {
1690 			if (unlikely(count == ARRAY_SIZE(stack))) {
1691 				flush_stack(stack, count, skb, ~0);
1692 				inner_flushed = true;
1693 				count = 0;
1694 			}
1695 			stack[count++] = sk;
1696 			sock_hold(sk);
1697 		}
1698 	}
1699 
1700 	spin_unlock(&hslot->lock);
1701 
1702 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1703 	if (use_hash2 && hash2 != hash2_any) {
1704 		hash2 = hash2_any;
1705 		goto start_lookup;
1706 	}
1707 
1708 	/*
1709 	 * do the slow work with no lock held
1710 	 */
1711 	if (count) {
1712 		flush_stack(stack, count, skb, count - 1);
1713 	} else {
1714 		if (!inner_flushed)
1715 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1716 					 proto == IPPROTO_UDPLITE);
1717 		consume_skb(skb);
1718 	}
1719 	return 0;
1720 }
1721 
1722 /* Initialize UDP checksum. If exited with zero value (success),
1723  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1724  * Otherwise, csum completion requires chacksumming packet body,
1725  * including udp header and folding it to skb->csum.
1726  */
1727 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1728 				 int proto)
1729 {
1730 	int err;
1731 
1732 	UDP_SKB_CB(skb)->partial_cov = 0;
1733 	UDP_SKB_CB(skb)->cscov = skb->len;
1734 
1735 	if (proto == IPPROTO_UDPLITE) {
1736 		err = udplite_checksum_init(skb, uh);
1737 		if (err)
1738 			return err;
1739 	}
1740 
1741 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1742 					    inet_compute_pseudo);
1743 }
1744 
1745 /*
1746  *	All we need to do is get the socket, and then do a checksum.
1747  */
1748 
1749 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1750 		   int proto)
1751 {
1752 	struct sock *sk;
1753 	struct udphdr *uh;
1754 	unsigned short ulen;
1755 	struct rtable *rt = skb_rtable(skb);
1756 	__be32 saddr, daddr;
1757 	struct net *net = dev_net(skb->dev);
1758 
1759 	/*
1760 	 *  Validate the packet.
1761 	 */
1762 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1763 		goto drop;		/* No space for header. */
1764 
1765 	uh   = udp_hdr(skb);
1766 	ulen = ntohs(uh->len);
1767 	saddr = ip_hdr(skb)->saddr;
1768 	daddr = ip_hdr(skb)->daddr;
1769 
1770 	if (ulen > skb->len)
1771 		goto short_packet;
1772 
1773 	if (proto == IPPROTO_UDP) {
1774 		/* UDP validates ulen. */
1775 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1776 			goto short_packet;
1777 		uh = udp_hdr(skb);
1778 	}
1779 
1780 	if (udp4_csum_init(skb, uh, proto))
1781 		goto csum_error;
1782 
1783 	sk = skb_steal_sock(skb);
1784 	if (sk) {
1785 		struct dst_entry *dst = skb_dst(skb);
1786 		int ret;
1787 
1788 		if (unlikely(sk->sk_rx_dst != dst))
1789 			udp_sk_rx_dst_set(sk, dst);
1790 
1791 		ret = udp_queue_rcv_skb(sk, skb);
1792 		sock_put(sk);
1793 		/* a return value > 0 means to resubmit the input, but
1794 		 * it wants the return to be -protocol, or 0
1795 		 */
1796 		if (ret > 0)
1797 			return -ret;
1798 		return 0;
1799 	}
1800 
1801 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1802 		return __udp4_lib_mcast_deliver(net, skb, uh,
1803 						saddr, daddr, udptable, proto);
1804 
1805 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1806 	if (sk != NULL) {
1807 		int ret;
1808 
1809 		if (udp_sk(sk)->convert_csum && uh->check && !IS_UDPLITE(sk))
1810 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1811 						 inet_compute_pseudo);
1812 
1813 		ret = udp_queue_rcv_skb(sk, skb);
1814 		sock_put(sk);
1815 
1816 		/* a return value > 0 means to resubmit the input, but
1817 		 * it wants the return to be -protocol, or 0
1818 		 */
1819 		if (ret > 0)
1820 			return -ret;
1821 		return 0;
1822 	}
1823 
1824 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1825 		goto drop;
1826 	nf_reset(skb);
1827 
1828 	/* No socket. Drop packet silently, if checksum is wrong */
1829 	if (udp_lib_checksum_complete(skb))
1830 		goto csum_error;
1831 
1832 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1833 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1834 
1835 	/*
1836 	 * Hmm.  We got an UDP packet to a port to which we
1837 	 * don't wanna listen.  Ignore it.
1838 	 */
1839 	kfree_skb(skb);
1840 	return 0;
1841 
1842 short_packet:
1843 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1844 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1845 			    &saddr, ntohs(uh->source),
1846 			    ulen, skb->len,
1847 			    &daddr, ntohs(uh->dest));
1848 	goto drop;
1849 
1850 csum_error:
1851 	/*
1852 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1853 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1854 	 */
1855 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1856 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1857 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1858 			    ulen);
1859 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1860 drop:
1861 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1862 	kfree_skb(skb);
1863 	return 0;
1864 }
1865 
1866 /* We can only early demux multicast if there is a single matching socket.
1867  * If more than one socket found returns NULL
1868  */
1869 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1870 						  __be16 loc_port, __be32 loc_addr,
1871 						  __be16 rmt_port, __be32 rmt_addr,
1872 						  int dif)
1873 {
1874 	struct sock *sk, *result;
1875 	struct hlist_nulls_node *node;
1876 	unsigned short hnum = ntohs(loc_port);
1877 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1878 	struct udp_hslot *hslot = &udp_table.hash[slot];
1879 
1880 	/* Do not bother scanning a too big list */
1881 	if (hslot->count > 10)
1882 		return NULL;
1883 
1884 	rcu_read_lock();
1885 begin:
1886 	count = 0;
1887 	result = NULL;
1888 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1889 		if (__udp_is_mcast_sock(net, sk,
1890 					loc_port, loc_addr,
1891 					rmt_port, rmt_addr,
1892 					dif, hnum)) {
1893 			result = sk;
1894 			++count;
1895 		}
1896 	}
1897 	/*
1898 	 * if the nulls value we got at the end of this lookup is
1899 	 * not the expected one, we must restart lookup.
1900 	 * We probably met an item that was moved to another chain.
1901 	 */
1902 	if (get_nulls_value(node) != slot)
1903 		goto begin;
1904 
1905 	if (result) {
1906 		if (count != 1 ||
1907 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1908 			result = NULL;
1909 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1910 						       loc_port, loc_addr,
1911 						       rmt_port, rmt_addr,
1912 						       dif, hnum))) {
1913 			sock_put(result);
1914 			result = NULL;
1915 		}
1916 	}
1917 	rcu_read_unlock();
1918 	return result;
1919 }
1920 
1921 /* For unicast we should only early demux connected sockets or we can
1922  * break forwarding setups.  The chains here can be long so only check
1923  * if the first socket is an exact match and if not move on.
1924  */
1925 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1926 					    __be16 loc_port, __be32 loc_addr,
1927 					    __be16 rmt_port, __be32 rmt_addr,
1928 					    int dif)
1929 {
1930 	struct sock *sk, *result;
1931 	struct hlist_nulls_node *node;
1932 	unsigned short hnum = ntohs(loc_port);
1933 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1934 	unsigned int slot2 = hash2 & udp_table.mask;
1935 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1936 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1937 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1938 
1939 	rcu_read_lock();
1940 	result = NULL;
1941 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1942 		if (INET_MATCH(sk, net, acookie,
1943 			       rmt_addr, loc_addr, ports, dif))
1944 			result = sk;
1945 		/* Only check first socket in chain */
1946 		break;
1947 	}
1948 
1949 	if (result) {
1950 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1951 			result = NULL;
1952 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1953 					      rmt_addr, loc_addr,
1954 					      ports, dif))) {
1955 			sock_put(result);
1956 			result = NULL;
1957 		}
1958 	}
1959 	rcu_read_unlock();
1960 	return result;
1961 }
1962 
1963 void udp_v4_early_demux(struct sk_buff *skb)
1964 {
1965 	struct net *net = dev_net(skb->dev);
1966 	const struct iphdr *iph;
1967 	const struct udphdr *uh;
1968 	struct sock *sk;
1969 	struct dst_entry *dst;
1970 	int dif = skb->dev->ifindex;
1971 
1972 	/* validate the packet */
1973 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1974 		return;
1975 
1976 	iph = ip_hdr(skb);
1977 	uh = udp_hdr(skb);
1978 
1979 	if (skb->pkt_type == PACKET_BROADCAST ||
1980 	    skb->pkt_type == PACKET_MULTICAST)
1981 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1982 						   uh->source, iph->saddr, dif);
1983 	else if (skb->pkt_type == PACKET_HOST)
1984 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1985 					     uh->source, iph->saddr, dif);
1986 	else
1987 		return;
1988 
1989 	if (!sk)
1990 		return;
1991 
1992 	skb->sk = sk;
1993 	skb->destructor = sock_efree;
1994 	dst = sk->sk_rx_dst;
1995 
1996 	if (dst)
1997 		dst = dst_check(dst, 0);
1998 	if (dst)
1999 		skb_dst_set_noref(skb, dst);
2000 }
2001 
2002 int udp_rcv(struct sk_buff *skb)
2003 {
2004 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2005 }
2006 
2007 void udp_destroy_sock(struct sock *sk)
2008 {
2009 	struct udp_sock *up = udp_sk(sk);
2010 	bool slow = lock_sock_fast(sk);
2011 	udp_flush_pending_frames(sk);
2012 	unlock_sock_fast(sk, slow);
2013 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2014 		void (*encap_destroy)(struct sock *sk);
2015 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2016 		if (encap_destroy)
2017 			encap_destroy(sk);
2018 	}
2019 }
2020 
2021 /*
2022  *	Socket option code for UDP
2023  */
2024 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2025 		       char __user *optval, unsigned int optlen,
2026 		       int (*push_pending_frames)(struct sock *))
2027 {
2028 	struct udp_sock *up = udp_sk(sk);
2029 	int val, valbool;
2030 	int err = 0;
2031 	int is_udplite = IS_UDPLITE(sk);
2032 
2033 	if (optlen < sizeof(int))
2034 		return -EINVAL;
2035 
2036 	if (get_user(val, (int __user *)optval))
2037 		return -EFAULT;
2038 
2039 	valbool = val ? 1 : 0;
2040 
2041 	switch (optname) {
2042 	case UDP_CORK:
2043 		if (val != 0) {
2044 			up->corkflag = 1;
2045 		} else {
2046 			up->corkflag = 0;
2047 			lock_sock(sk);
2048 			push_pending_frames(sk);
2049 			release_sock(sk);
2050 		}
2051 		break;
2052 
2053 	case UDP_ENCAP:
2054 		switch (val) {
2055 		case 0:
2056 		case UDP_ENCAP_ESPINUDP:
2057 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2058 			up->encap_rcv = xfrm4_udp_encap_rcv;
2059 			/* FALLTHROUGH */
2060 		case UDP_ENCAP_L2TPINUDP:
2061 			up->encap_type = val;
2062 			udp_encap_enable();
2063 			break;
2064 		default:
2065 			err = -ENOPROTOOPT;
2066 			break;
2067 		}
2068 		break;
2069 
2070 	case UDP_NO_CHECK6_TX:
2071 		up->no_check6_tx = valbool;
2072 		break;
2073 
2074 	case UDP_NO_CHECK6_RX:
2075 		up->no_check6_rx = valbool;
2076 		break;
2077 
2078 	/*
2079 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2080 	 */
2081 	/* The sender sets actual checksum coverage length via this option.
2082 	 * The case coverage > packet length is handled by send module. */
2083 	case UDPLITE_SEND_CSCOV:
2084 		if (!is_udplite)         /* Disable the option on UDP sockets */
2085 			return -ENOPROTOOPT;
2086 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2087 			val = 8;
2088 		else if (val > USHRT_MAX)
2089 			val = USHRT_MAX;
2090 		up->pcslen = val;
2091 		up->pcflag |= UDPLITE_SEND_CC;
2092 		break;
2093 
2094 	/* The receiver specifies a minimum checksum coverage value. To make
2095 	 * sense, this should be set to at least 8 (as done below). If zero is
2096 	 * used, this again means full checksum coverage.                     */
2097 	case UDPLITE_RECV_CSCOV:
2098 		if (!is_udplite)         /* Disable the option on UDP sockets */
2099 			return -ENOPROTOOPT;
2100 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2101 			val = 8;
2102 		else if (val > USHRT_MAX)
2103 			val = USHRT_MAX;
2104 		up->pcrlen = val;
2105 		up->pcflag |= UDPLITE_RECV_CC;
2106 		break;
2107 
2108 	default:
2109 		err = -ENOPROTOOPT;
2110 		break;
2111 	}
2112 
2113 	return err;
2114 }
2115 EXPORT_SYMBOL(udp_lib_setsockopt);
2116 
2117 int udp_setsockopt(struct sock *sk, int level, int optname,
2118 		   char __user *optval, unsigned int optlen)
2119 {
2120 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2121 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2122 					  udp_push_pending_frames);
2123 	return ip_setsockopt(sk, level, optname, optval, optlen);
2124 }
2125 
2126 #ifdef CONFIG_COMPAT
2127 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2128 			  char __user *optval, unsigned int optlen)
2129 {
2130 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2131 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2132 					  udp_push_pending_frames);
2133 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2134 }
2135 #endif
2136 
2137 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2138 		       char __user *optval, int __user *optlen)
2139 {
2140 	struct udp_sock *up = udp_sk(sk);
2141 	int val, len;
2142 
2143 	if (get_user(len, optlen))
2144 		return -EFAULT;
2145 
2146 	len = min_t(unsigned int, len, sizeof(int));
2147 
2148 	if (len < 0)
2149 		return -EINVAL;
2150 
2151 	switch (optname) {
2152 	case UDP_CORK:
2153 		val = up->corkflag;
2154 		break;
2155 
2156 	case UDP_ENCAP:
2157 		val = up->encap_type;
2158 		break;
2159 
2160 	case UDP_NO_CHECK6_TX:
2161 		val = up->no_check6_tx;
2162 		break;
2163 
2164 	case UDP_NO_CHECK6_RX:
2165 		val = up->no_check6_rx;
2166 		break;
2167 
2168 	/* The following two cannot be changed on UDP sockets, the return is
2169 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2170 	case UDPLITE_SEND_CSCOV:
2171 		val = up->pcslen;
2172 		break;
2173 
2174 	case UDPLITE_RECV_CSCOV:
2175 		val = up->pcrlen;
2176 		break;
2177 
2178 	default:
2179 		return -ENOPROTOOPT;
2180 	}
2181 
2182 	if (put_user(len, optlen))
2183 		return -EFAULT;
2184 	if (copy_to_user(optval, &val, len))
2185 		return -EFAULT;
2186 	return 0;
2187 }
2188 EXPORT_SYMBOL(udp_lib_getsockopt);
2189 
2190 int udp_getsockopt(struct sock *sk, int level, int optname,
2191 		   char __user *optval, int __user *optlen)
2192 {
2193 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2194 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2195 	return ip_getsockopt(sk, level, optname, optval, optlen);
2196 }
2197 
2198 #ifdef CONFIG_COMPAT
2199 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2200 				 char __user *optval, int __user *optlen)
2201 {
2202 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2203 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2204 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2205 }
2206 #endif
2207 /**
2208  * 	udp_poll - wait for a UDP event.
2209  *	@file - file struct
2210  *	@sock - socket
2211  *	@wait - poll table
2212  *
2213  *	This is same as datagram poll, except for the special case of
2214  *	blocking sockets. If application is using a blocking fd
2215  *	and a packet with checksum error is in the queue;
2216  *	then it could get return from select indicating data available
2217  *	but then block when reading it. Add special case code
2218  *	to work around these arguably broken applications.
2219  */
2220 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2221 {
2222 	unsigned int mask = datagram_poll(file, sock, wait);
2223 	struct sock *sk = sock->sk;
2224 
2225 	sock_rps_record_flow(sk);
2226 
2227 	/* Check for false positives due to checksum errors */
2228 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2229 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2230 		mask &= ~(POLLIN | POLLRDNORM);
2231 
2232 	return mask;
2233 
2234 }
2235 EXPORT_SYMBOL(udp_poll);
2236 
2237 struct proto udp_prot = {
2238 	.name		   = "UDP",
2239 	.owner		   = THIS_MODULE,
2240 	.close		   = udp_lib_close,
2241 	.connect	   = ip4_datagram_connect,
2242 	.disconnect	   = udp_disconnect,
2243 	.ioctl		   = udp_ioctl,
2244 	.destroy	   = udp_destroy_sock,
2245 	.setsockopt	   = udp_setsockopt,
2246 	.getsockopt	   = udp_getsockopt,
2247 	.sendmsg	   = udp_sendmsg,
2248 	.recvmsg	   = udp_recvmsg,
2249 	.sendpage	   = udp_sendpage,
2250 	.backlog_rcv	   = __udp_queue_rcv_skb,
2251 	.release_cb	   = ip4_datagram_release_cb,
2252 	.hash		   = udp_lib_hash,
2253 	.unhash		   = udp_lib_unhash,
2254 	.rehash		   = udp_v4_rehash,
2255 	.get_port	   = udp_v4_get_port,
2256 	.memory_allocated  = &udp_memory_allocated,
2257 	.sysctl_mem	   = sysctl_udp_mem,
2258 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2259 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2260 	.obj_size	   = sizeof(struct udp_sock),
2261 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2262 	.h.udp_table	   = &udp_table,
2263 #ifdef CONFIG_COMPAT
2264 	.compat_setsockopt = compat_udp_setsockopt,
2265 	.compat_getsockopt = compat_udp_getsockopt,
2266 #endif
2267 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2268 };
2269 EXPORT_SYMBOL(udp_prot);
2270 
2271 /* ------------------------------------------------------------------------ */
2272 #ifdef CONFIG_PROC_FS
2273 
2274 static struct sock *udp_get_first(struct seq_file *seq, int start)
2275 {
2276 	struct sock *sk;
2277 	struct udp_iter_state *state = seq->private;
2278 	struct net *net = seq_file_net(seq);
2279 
2280 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2281 	     ++state->bucket) {
2282 		struct hlist_nulls_node *node;
2283 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2284 
2285 		if (hlist_nulls_empty(&hslot->head))
2286 			continue;
2287 
2288 		spin_lock_bh(&hslot->lock);
2289 		sk_nulls_for_each(sk, node, &hslot->head) {
2290 			if (!net_eq(sock_net(sk), net))
2291 				continue;
2292 			if (sk->sk_family == state->family)
2293 				goto found;
2294 		}
2295 		spin_unlock_bh(&hslot->lock);
2296 	}
2297 	sk = NULL;
2298 found:
2299 	return sk;
2300 }
2301 
2302 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2303 {
2304 	struct udp_iter_state *state = seq->private;
2305 	struct net *net = seq_file_net(seq);
2306 
2307 	do {
2308 		sk = sk_nulls_next(sk);
2309 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2310 
2311 	if (!sk) {
2312 		if (state->bucket <= state->udp_table->mask)
2313 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2314 		return udp_get_first(seq, state->bucket + 1);
2315 	}
2316 	return sk;
2317 }
2318 
2319 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2320 {
2321 	struct sock *sk = udp_get_first(seq, 0);
2322 
2323 	if (sk)
2324 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2325 			--pos;
2326 	return pos ? NULL : sk;
2327 }
2328 
2329 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2330 {
2331 	struct udp_iter_state *state = seq->private;
2332 	state->bucket = MAX_UDP_PORTS;
2333 
2334 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2335 }
2336 
2337 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2338 {
2339 	struct sock *sk;
2340 
2341 	if (v == SEQ_START_TOKEN)
2342 		sk = udp_get_idx(seq, 0);
2343 	else
2344 		sk = udp_get_next(seq, v);
2345 
2346 	++*pos;
2347 	return sk;
2348 }
2349 
2350 static void udp_seq_stop(struct seq_file *seq, void *v)
2351 {
2352 	struct udp_iter_state *state = seq->private;
2353 
2354 	if (state->bucket <= state->udp_table->mask)
2355 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2356 }
2357 
2358 int udp_seq_open(struct inode *inode, struct file *file)
2359 {
2360 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2361 	struct udp_iter_state *s;
2362 	int err;
2363 
2364 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2365 			   sizeof(struct udp_iter_state));
2366 	if (err < 0)
2367 		return err;
2368 
2369 	s = ((struct seq_file *)file->private_data)->private;
2370 	s->family		= afinfo->family;
2371 	s->udp_table		= afinfo->udp_table;
2372 	return err;
2373 }
2374 EXPORT_SYMBOL(udp_seq_open);
2375 
2376 /* ------------------------------------------------------------------------ */
2377 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2378 {
2379 	struct proc_dir_entry *p;
2380 	int rc = 0;
2381 
2382 	afinfo->seq_ops.start		= udp_seq_start;
2383 	afinfo->seq_ops.next		= udp_seq_next;
2384 	afinfo->seq_ops.stop		= udp_seq_stop;
2385 
2386 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2387 			     afinfo->seq_fops, afinfo);
2388 	if (!p)
2389 		rc = -ENOMEM;
2390 	return rc;
2391 }
2392 EXPORT_SYMBOL(udp_proc_register);
2393 
2394 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2395 {
2396 	remove_proc_entry(afinfo->name, net->proc_net);
2397 }
2398 EXPORT_SYMBOL(udp_proc_unregister);
2399 
2400 /* ------------------------------------------------------------------------ */
2401 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2402 		int bucket)
2403 {
2404 	struct inet_sock *inet = inet_sk(sp);
2405 	__be32 dest = inet->inet_daddr;
2406 	__be32 src  = inet->inet_rcv_saddr;
2407 	__u16 destp	  = ntohs(inet->inet_dport);
2408 	__u16 srcp	  = ntohs(inet->inet_sport);
2409 
2410 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2411 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2412 		bucket, src, srcp, dest, destp, sp->sk_state,
2413 		sk_wmem_alloc_get(sp),
2414 		sk_rmem_alloc_get(sp),
2415 		0, 0L, 0,
2416 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2417 		0, sock_i_ino(sp),
2418 		atomic_read(&sp->sk_refcnt), sp,
2419 		atomic_read(&sp->sk_drops));
2420 }
2421 
2422 int udp4_seq_show(struct seq_file *seq, void *v)
2423 {
2424 	seq_setwidth(seq, 127);
2425 	if (v == SEQ_START_TOKEN)
2426 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2427 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2428 			   "inode ref pointer drops");
2429 	else {
2430 		struct udp_iter_state *state = seq->private;
2431 
2432 		udp4_format_sock(v, seq, state->bucket);
2433 	}
2434 	seq_pad(seq, '\n');
2435 	return 0;
2436 }
2437 
2438 static const struct file_operations udp_afinfo_seq_fops = {
2439 	.owner    = THIS_MODULE,
2440 	.open     = udp_seq_open,
2441 	.read     = seq_read,
2442 	.llseek   = seq_lseek,
2443 	.release  = seq_release_net
2444 };
2445 
2446 /* ------------------------------------------------------------------------ */
2447 static struct udp_seq_afinfo udp4_seq_afinfo = {
2448 	.name		= "udp",
2449 	.family		= AF_INET,
2450 	.udp_table	= &udp_table,
2451 	.seq_fops	= &udp_afinfo_seq_fops,
2452 	.seq_ops	= {
2453 		.show		= udp4_seq_show,
2454 	},
2455 };
2456 
2457 static int __net_init udp4_proc_init_net(struct net *net)
2458 {
2459 	return udp_proc_register(net, &udp4_seq_afinfo);
2460 }
2461 
2462 static void __net_exit udp4_proc_exit_net(struct net *net)
2463 {
2464 	udp_proc_unregister(net, &udp4_seq_afinfo);
2465 }
2466 
2467 static struct pernet_operations udp4_net_ops = {
2468 	.init = udp4_proc_init_net,
2469 	.exit = udp4_proc_exit_net,
2470 };
2471 
2472 int __init udp4_proc_init(void)
2473 {
2474 	return register_pernet_subsys(&udp4_net_ops);
2475 }
2476 
2477 void udp4_proc_exit(void)
2478 {
2479 	unregister_pernet_subsys(&udp4_net_ops);
2480 }
2481 #endif /* CONFIG_PROC_FS */
2482 
2483 static __initdata unsigned long uhash_entries;
2484 static int __init set_uhash_entries(char *str)
2485 {
2486 	ssize_t ret;
2487 
2488 	if (!str)
2489 		return 0;
2490 
2491 	ret = kstrtoul(str, 0, &uhash_entries);
2492 	if (ret)
2493 		return 0;
2494 
2495 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2496 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2497 	return 1;
2498 }
2499 __setup("uhash_entries=", set_uhash_entries);
2500 
2501 void __init udp_table_init(struct udp_table *table, const char *name)
2502 {
2503 	unsigned int i;
2504 
2505 	table->hash = alloc_large_system_hash(name,
2506 					      2 * sizeof(struct udp_hslot),
2507 					      uhash_entries,
2508 					      21, /* one slot per 2 MB */
2509 					      0,
2510 					      &table->log,
2511 					      &table->mask,
2512 					      UDP_HTABLE_SIZE_MIN,
2513 					      64 * 1024);
2514 
2515 	table->hash2 = table->hash + (table->mask + 1);
2516 	for (i = 0; i <= table->mask; i++) {
2517 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2518 		table->hash[i].count = 0;
2519 		spin_lock_init(&table->hash[i].lock);
2520 	}
2521 	for (i = 0; i <= table->mask; i++) {
2522 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2523 		table->hash2[i].count = 0;
2524 		spin_lock_init(&table->hash2[i].lock);
2525 	}
2526 }
2527 
2528 void __init udp_init(void)
2529 {
2530 	unsigned long limit;
2531 
2532 	udp_table_init(&udp_table, "UDP");
2533 	limit = nr_free_buffer_pages() / 8;
2534 	limit = max(limit, 128UL);
2535 	sysctl_udp_mem[0] = limit / 4 * 3;
2536 	sysctl_udp_mem[1] = limit;
2537 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2538 
2539 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2540 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2541 }
2542