xref: /openbmc/linux/net/ipv4/udp.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk, unsigned int log)
138 {
139 	struct sock *sk2;
140 	kuid_t uid = sock_i_uid(sk);
141 
142 	sk_for_each(sk2, &hslot->head) {
143 		if (net_eq(sock_net(sk2), net) &&
144 		    sk2 != sk &&
145 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
146 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
147 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
148 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
149 		    inet_rcv_saddr_equal(sk, sk2, true)) {
150 			if (sk2->sk_reuseport && sk->sk_reuseport &&
151 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
152 			    uid_eq(uid, sock_i_uid(sk2))) {
153 				if (!bitmap)
154 					return 0;
155 			} else {
156 				if (!bitmap)
157 					return 1;
158 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 					  bitmap);
160 			}
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk)
173 {
174 	struct sock *sk2;
175 	kuid_t uid = sock_i_uid(sk);
176 	int res = 0;
177 
178 	spin_lock(&hslot2->lock);
179 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
180 		if (net_eq(sock_net(sk2), net) &&
181 		    sk2 != sk &&
182 		    (udp_sk(sk2)->udp_port_hash == num) &&
183 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
184 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 		    inet_rcv_saddr_equal(sk, sk2, true)) {
187 			if (sk2->sk_reuseport && sk->sk_reuseport &&
188 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
189 			    uid_eq(uid, sock_i_uid(sk2))) {
190 				res = 0;
191 			} else {
192 				res = 1;
193 			}
194 			break;
195 		}
196 	}
197 	spin_unlock(&hslot2->lock);
198 	return res;
199 }
200 
201 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
202 {
203 	struct net *net = sock_net(sk);
204 	kuid_t uid = sock_i_uid(sk);
205 	struct sock *sk2;
206 
207 	sk_for_each(sk2, &hslot->head) {
208 		if (net_eq(sock_net(sk2), net) &&
209 		    sk2 != sk &&
210 		    sk2->sk_family == sk->sk_family &&
211 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
212 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
213 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
214 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
215 		    inet_rcv_saddr_equal(sk, sk2, false)) {
216 			return reuseport_add_sock(sk, sk2,
217 						  inet_rcv_saddr_any(sk));
218 		}
219 	}
220 
221 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
222 }
223 
224 /**
225  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
226  *
227  *  @sk:          socket struct in question
228  *  @snum:        port number to look up
229  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
230  *                   with NULL address
231  */
232 int udp_lib_get_port(struct sock *sk, unsigned short snum,
233 		     unsigned int hash2_nulladdr)
234 {
235 	struct udp_hslot *hslot, *hslot2;
236 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
237 	int    error = 1;
238 	struct net *net = sock_net(sk);
239 
240 	if (!snum) {
241 		int low, high, remaining;
242 		unsigned int rand;
243 		unsigned short first, last;
244 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
245 
246 		inet_get_local_port_range(net, &low, &high);
247 		remaining = (high - low) + 1;
248 
249 		rand = get_random_u32();
250 		first = reciprocal_scale(rand, remaining) + low;
251 		/*
252 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
253 		 */
254 		rand = (rand | 1) * (udptable->mask + 1);
255 		last = first + udptable->mask + 1;
256 		do {
257 			hslot = udp_hashslot(udptable, net, first);
258 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
259 			spin_lock_bh(&hslot->lock);
260 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
261 					    udptable->log);
262 
263 			snum = first;
264 			/*
265 			 * Iterate on all possible values of snum for this hash.
266 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
267 			 * give us randomization and full range coverage.
268 			 */
269 			do {
270 				if (low <= snum && snum <= high &&
271 				    !test_bit(snum >> udptable->log, bitmap) &&
272 				    !inet_is_local_reserved_port(net, snum))
273 					goto found;
274 				snum += rand;
275 			} while (snum != first);
276 			spin_unlock_bh(&hslot->lock);
277 			cond_resched();
278 		} while (++first != last);
279 		goto fail;
280 	} else {
281 		hslot = udp_hashslot(udptable, net, snum);
282 		spin_lock_bh(&hslot->lock);
283 		if (hslot->count > 10) {
284 			int exist;
285 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
286 
287 			slot2          &= udptable->mask;
288 			hash2_nulladdr &= udptable->mask;
289 
290 			hslot2 = udp_hashslot2(udptable, slot2);
291 			if (hslot->count < hslot2->count)
292 				goto scan_primary_hash;
293 
294 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
295 			if (!exist && (hash2_nulladdr != slot2)) {
296 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
297 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
298 							     sk);
299 			}
300 			if (exist)
301 				goto fail_unlock;
302 			else
303 				goto found;
304 		}
305 scan_primary_hash:
306 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
307 			goto fail_unlock;
308 	}
309 found:
310 	inet_sk(sk)->inet_num = snum;
311 	udp_sk(sk)->udp_port_hash = snum;
312 	udp_sk(sk)->udp_portaddr_hash ^= snum;
313 	if (sk_unhashed(sk)) {
314 		if (sk->sk_reuseport &&
315 		    udp_reuseport_add_sock(sk, hslot)) {
316 			inet_sk(sk)->inet_num = 0;
317 			udp_sk(sk)->udp_port_hash = 0;
318 			udp_sk(sk)->udp_portaddr_hash ^= snum;
319 			goto fail_unlock;
320 		}
321 
322 		sk_add_node_rcu(sk, &hslot->head);
323 		hslot->count++;
324 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325 
326 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 		spin_lock(&hslot2->lock);
328 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 		    sk->sk_family == AF_INET6)
330 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		else
333 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 					   &hslot2->head);
335 		hslot2->count++;
336 		spin_unlock(&hslot2->lock);
337 	}
338 	sock_set_flag(sk, SOCK_RCU_FREE);
339 	error = 0;
340 fail_unlock:
341 	spin_unlock_bh(&hslot->lock);
342 fail:
343 	return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346 
347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 	unsigned int hash2_nulladdr =
350 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 	unsigned int hash2_partial =
352 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353 
354 	/* precompute partial secondary hash */
355 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358 
359 static int compute_score(struct sock *sk, struct net *net,
360 			 __be32 saddr, __be16 sport,
361 			 __be32 daddr, unsigned short hnum,
362 			 int dif, int sdif)
363 {
364 	int score;
365 	struct inet_sock *inet;
366 	bool dev_match;
367 
368 	if (!net_eq(sock_net(sk), net) ||
369 	    udp_sk(sk)->udp_port_hash != hnum ||
370 	    ipv6_only_sock(sk))
371 		return -1;
372 
373 	if (sk->sk_rcv_saddr != daddr)
374 		return -1;
375 
376 	score = (sk->sk_family == PF_INET) ? 2 : 1;
377 
378 	inet = inet_sk(sk);
379 	if (inet->inet_daddr) {
380 		if (inet->inet_daddr != saddr)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	if (inet->inet_dport) {
386 		if (inet->inet_dport != sport)
387 			return -1;
388 		score += 4;
389 	}
390 
391 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 					dif, sdif);
393 	if (!dev_match)
394 		return -1;
395 	if (sk->sk_bound_dev_if)
396 		score += 4;
397 
398 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 		score++;
400 	return score;
401 }
402 
403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 		       const __u16 lport, const __be32 faddr,
405 		       const __be16 fport)
406 {
407 	static u32 udp_ehash_secret __read_mostly;
408 
409 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410 
411 	return __inet_ehashfn(laddr, lport, faddr, fport,
412 			      udp_ehash_secret + net_hash_mix(net));
413 }
414 
415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 				     struct sk_buff *skb,
417 				     __be32 saddr, __be16 sport,
418 				     __be32 daddr, unsigned short hnum)
419 {
420 	struct sock *reuse_sk = NULL;
421 	u32 hash;
422 
423 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 		reuse_sk = reuseport_select_sock(sk, hash, skb,
426 						 sizeof(struct udphdr));
427 	}
428 	return reuse_sk;
429 }
430 
431 /* called with rcu_read_lock() */
432 static struct sock *udp4_lib_lookup2(struct net *net,
433 				     __be32 saddr, __be16 sport,
434 				     __be32 daddr, unsigned int hnum,
435 				     int dif, int sdif,
436 				     struct udp_hslot *hslot2,
437 				     struct sk_buff *skb)
438 {
439 	struct sock *sk, *result;
440 	int score, badness;
441 
442 	result = NULL;
443 	badness = 0;
444 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445 		score = compute_score(sk, net, saddr, sport,
446 				      daddr, hnum, dif, sdif);
447 		if (score > badness) {
448 			result = lookup_reuseport(net, sk, skb,
449 						  saddr, sport, daddr, hnum);
450 			/* Fall back to scoring if group has connections */
451 			if (result && !reuseport_has_conns(sk, false))
452 				return result;
453 
454 			result = result ? : sk;
455 			badness = score;
456 		}
457 	}
458 	return result;
459 }
460 
461 static struct sock *udp4_lookup_run_bpf(struct net *net,
462 					struct udp_table *udptable,
463 					struct sk_buff *skb,
464 					__be32 saddr, __be16 sport,
465 					__be32 daddr, u16 hnum, const int dif)
466 {
467 	struct sock *sk, *reuse_sk;
468 	bool no_reuseport;
469 
470 	if (udptable != &udp_table)
471 		return NULL; /* only UDP is supported */
472 
473 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
474 					    daddr, hnum, dif, &sk);
475 	if (no_reuseport || IS_ERR_OR_NULL(sk))
476 		return sk;
477 
478 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
479 	if (reuse_sk)
480 		sk = reuse_sk;
481 	return sk;
482 }
483 
484 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
485  * harder than this. -DaveM
486  */
487 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
488 		__be16 sport, __be32 daddr, __be16 dport, int dif,
489 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
490 {
491 	unsigned short hnum = ntohs(dport);
492 	unsigned int hash2, slot2;
493 	struct udp_hslot *hslot2;
494 	struct sock *result, *sk;
495 
496 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
497 	slot2 = hash2 & udptable->mask;
498 	hslot2 = &udptable->hash2[slot2];
499 
500 	/* Lookup connected or non-wildcard socket */
501 	result = udp4_lib_lookup2(net, saddr, sport,
502 				  daddr, hnum, dif, sdif,
503 				  hslot2, skb);
504 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
505 		goto done;
506 
507 	/* Lookup redirect from BPF */
508 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
509 		sk = udp4_lookup_run_bpf(net, udptable, skb,
510 					 saddr, sport, daddr, hnum, dif);
511 		if (sk) {
512 			result = sk;
513 			goto done;
514 		}
515 	}
516 
517 	/* Got non-wildcard socket or error on first lookup */
518 	if (result)
519 		goto done;
520 
521 	/* Lookup wildcard sockets */
522 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
523 	slot2 = hash2 & udptable->mask;
524 	hslot2 = &udptable->hash2[slot2];
525 
526 	result = udp4_lib_lookup2(net, saddr, sport,
527 				  htonl(INADDR_ANY), hnum, dif, sdif,
528 				  hslot2, skb);
529 done:
530 	if (IS_ERR(result))
531 		return NULL;
532 	return result;
533 }
534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
535 
536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
537 						 __be16 sport, __be16 dport,
538 						 struct udp_table *udptable)
539 {
540 	const struct iphdr *iph = ip_hdr(skb);
541 
542 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
543 				 iph->daddr, dport, inet_iif(skb),
544 				 inet_sdif(skb), udptable, skb);
545 }
546 
547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
548 				 __be16 sport, __be16 dport)
549 {
550 	const struct iphdr *iph = ip_hdr(skb);
551 
552 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 				 iph->daddr, dport, inet_iif(skb),
554 				 inet_sdif(skb), &udp_table, NULL);
555 }
556 
557 /* Must be called under rcu_read_lock().
558  * Does increment socket refcount.
559  */
560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
562 			     __be32 daddr, __be16 dport, int dif)
563 {
564 	struct sock *sk;
565 
566 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
567 			       dif, 0, &udp_table, NULL);
568 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
569 		sk = NULL;
570 	return sk;
571 }
572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
573 #endif
574 
575 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
576 				       __be16 loc_port, __be32 loc_addr,
577 				       __be16 rmt_port, __be32 rmt_addr,
578 				       int dif, int sdif, unsigned short hnum)
579 {
580 	struct inet_sock *inet = inet_sk(sk);
581 
582 	if (!net_eq(sock_net(sk), net) ||
583 	    udp_sk(sk)->udp_port_hash != hnum ||
584 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
585 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
586 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
587 	    ipv6_only_sock(sk) ||
588 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
589 		return false;
590 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
591 		return false;
592 	return true;
593 }
594 
595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
596 void udp_encap_enable(void)
597 {
598 	static_branch_inc(&udp_encap_needed_key);
599 }
600 EXPORT_SYMBOL(udp_encap_enable);
601 
602 void udp_encap_disable(void)
603 {
604 	static_branch_dec(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_disable);
607 
608 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
609  * through error handlers in encapsulations looking for a match.
610  */
611 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
612 {
613 	int i;
614 
615 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
616 		int (*handler)(struct sk_buff *skb, u32 info);
617 		const struct ip_tunnel_encap_ops *encap;
618 
619 		encap = rcu_dereference(iptun_encaps[i]);
620 		if (!encap)
621 			continue;
622 		handler = encap->err_handler;
623 		if (handler && !handler(skb, info))
624 			return 0;
625 	}
626 
627 	return -ENOENT;
628 }
629 
630 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
631  * reversing source and destination port: this will match tunnels that force the
632  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
633  * lwtunnels might actually break this assumption by being configured with
634  * different destination ports on endpoints, in this case we won't be able to
635  * trace ICMP messages back to them.
636  *
637  * If this doesn't match any socket, probe tunnels with arbitrary destination
638  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
639  * we've sent packets to won't necessarily match the local destination port.
640  *
641  * Then ask the tunnel implementation to match the error against a valid
642  * association.
643  *
644  * Return an error if we can't find a match, the socket if we need further
645  * processing, zero otherwise.
646  */
647 static struct sock *__udp4_lib_err_encap(struct net *net,
648 					 const struct iphdr *iph,
649 					 struct udphdr *uh,
650 					 struct udp_table *udptable,
651 					 struct sock *sk,
652 					 struct sk_buff *skb, u32 info)
653 {
654 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
655 	int network_offset, transport_offset;
656 	struct udp_sock *up;
657 
658 	network_offset = skb_network_offset(skb);
659 	transport_offset = skb_transport_offset(skb);
660 
661 	/* Network header needs to point to the outer IPv4 header inside ICMP */
662 	skb_reset_network_header(skb);
663 
664 	/* Transport header needs to point to the UDP header */
665 	skb_set_transport_header(skb, iph->ihl << 2);
666 
667 	if (sk) {
668 		up = udp_sk(sk);
669 
670 		lookup = READ_ONCE(up->encap_err_lookup);
671 		if (lookup && lookup(sk, skb))
672 			sk = NULL;
673 
674 		goto out;
675 	}
676 
677 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
678 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
679 			       udptable, NULL);
680 	if (sk) {
681 		up = udp_sk(sk);
682 
683 		lookup = READ_ONCE(up->encap_err_lookup);
684 		if (!lookup || lookup(sk, skb))
685 			sk = NULL;
686 	}
687 
688 out:
689 	if (!sk)
690 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
691 
692 	skb_set_transport_header(skb, transport_offset);
693 	skb_set_network_header(skb, network_offset);
694 
695 	return sk;
696 }
697 
698 /*
699  * This routine is called by the ICMP module when it gets some
700  * sort of error condition.  If err < 0 then the socket should
701  * be closed and the error returned to the user.  If err > 0
702  * it's just the icmp type << 8 | icmp code.
703  * Header points to the ip header of the error packet. We move
704  * on past this. Then (as it used to claim before adjustment)
705  * header points to the first 8 bytes of the udp header.  We need
706  * to find the appropriate port.
707  */
708 
709 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
710 {
711 	struct inet_sock *inet;
712 	const struct iphdr *iph = (const struct iphdr *)skb->data;
713 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
714 	const int type = icmp_hdr(skb)->type;
715 	const int code = icmp_hdr(skb)->code;
716 	bool tunnel = false;
717 	struct sock *sk;
718 	int harderr;
719 	int err;
720 	struct net *net = dev_net(skb->dev);
721 
722 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
723 			       iph->saddr, uh->source, skb->dev->ifindex,
724 			       inet_sdif(skb), udptable, NULL);
725 
726 	if (!sk || udp_sk(sk)->encap_type) {
727 		/* No socket for error: try tunnels before discarding */
728 		if (static_branch_unlikely(&udp_encap_needed_key)) {
729 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
730 						  info);
731 			if (!sk)
732 				return 0;
733 		} else
734 			sk = ERR_PTR(-ENOENT);
735 
736 		if (IS_ERR(sk)) {
737 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
738 			return PTR_ERR(sk);
739 		}
740 
741 		tunnel = true;
742 	}
743 
744 	err = 0;
745 	harderr = 0;
746 	inet = inet_sk(sk);
747 
748 	switch (type) {
749 	default:
750 	case ICMP_TIME_EXCEEDED:
751 		err = EHOSTUNREACH;
752 		break;
753 	case ICMP_SOURCE_QUENCH:
754 		goto out;
755 	case ICMP_PARAMETERPROB:
756 		err = EPROTO;
757 		harderr = 1;
758 		break;
759 	case ICMP_DEST_UNREACH:
760 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
761 			ipv4_sk_update_pmtu(skb, sk, info);
762 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
763 				err = EMSGSIZE;
764 				harderr = 1;
765 				break;
766 			}
767 			goto out;
768 		}
769 		err = EHOSTUNREACH;
770 		if (code <= NR_ICMP_UNREACH) {
771 			harderr = icmp_err_convert[code].fatal;
772 			err = icmp_err_convert[code].errno;
773 		}
774 		break;
775 	case ICMP_REDIRECT:
776 		ipv4_sk_redirect(skb, sk);
777 		goto out;
778 	}
779 
780 	/*
781 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
782 	 *	4.1.3.3.
783 	 */
784 	if (tunnel) {
785 		/* ...not for tunnels though: we don't have a sending socket */
786 		if (udp_sk(sk)->encap_err_rcv)
787 			udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
788 		goto out;
789 	}
790 	if (!inet->recverr) {
791 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
792 			goto out;
793 	} else
794 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
795 
796 	sk->sk_err = err;
797 	sk_error_report(sk);
798 out:
799 	return 0;
800 }
801 
802 int udp_err(struct sk_buff *skb, u32 info)
803 {
804 	return __udp4_lib_err(skb, info, &udp_table);
805 }
806 
807 /*
808  * Throw away all pending data and cancel the corking. Socket is locked.
809  */
810 void udp_flush_pending_frames(struct sock *sk)
811 {
812 	struct udp_sock *up = udp_sk(sk);
813 
814 	if (up->pending) {
815 		up->len = 0;
816 		up->pending = 0;
817 		ip_flush_pending_frames(sk);
818 	}
819 }
820 EXPORT_SYMBOL(udp_flush_pending_frames);
821 
822 /**
823  * 	udp4_hwcsum  -  handle outgoing HW checksumming
824  * 	@skb: 	sk_buff containing the filled-in UDP header
825  * 	        (checksum field must be zeroed out)
826  *	@src:	source IP address
827  *	@dst:	destination IP address
828  */
829 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
830 {
831 	struct udphdr *uh = udp_hdr(skb);
832 	int offset = skb_transport_offset(skb);
833 	int len = skb->len - offset;
834 	int hlen = len;
835 	__wsum csum = 0;
836 
837 	if (!skb_has_frag_list(skb)) {
838 		/*
839 		 * Only one fragment on the socket.
840 		 */
841 		skb->csum_start = skb_transport_header(skb) - skb->head;
842 		skb->csum_offset = offsetof(struct udphdr, check);
843 		uh->check = ~csum_tcpudp_magic(src, dst, len,
844 					       IPPROTO_UDP, 0);
845 	} else {
846 		struct sk_buff *frags;
847 
848 		/*
849 		 * HW-checksum won't work as there are two or more
850 		 * fragments on the socket so that all csums of sk_buffs
851 		 * should be together
852 		 */
853 		skb_walk_frags(skb, frags) {
854 			csum = csum_add(csum, frags->csum);
855 			hlen -= frags->len;
856 		}
857 
858 		csum = skb_checksum(skb, offset, hlen, csum);
859 		skb->ip_summed = CHECKSUM_NONE;
860 
861 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
862 		if (uh->check == 0)
863 			uh->check = CSUM_MANGLED_0;
864 	}
865 }
866 EXPORT_SYMBOL_GPL(udp4_hwcsum);
867 
868 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
869  * for the simple case like when setting the checksum for a UDP tunnel.
870  */
871 void udp_set_csum(bool nocheck, struct sk_buff *skb,
872 		  __be32 saddr, __be32 daddr, int len)
873 {
874 	struct udphdr *uh = udp_hdr(skb);
875 
876 	if (nocheck) {
877 		uh->check = 0;
878 	} else if (skb_is_gso(skb)) {
879 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
880 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
881 		uh->check = 0;
882 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
883 		if (uh->check == 0)
884 			uh->check = CSUM_MANGLED_0;
885 	} else {
886 		skb->ip_summed = CHECKSUM_PARTIAL;
887 		skb->csum_start = skb_transport_header(skb) - skb->head;
888 		skb->csum_offset = offsetof(struct udphdr, check);
889 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
890 	}
891 }
892 EXPORT_SYMBOL(udp_set_csum);
893 
894 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
895 			struct inet_cork *cork)
896 {
897 	struct sock *sk = skb->sk;
898 	struct inet_sock *inet = inet_sk(sk);
899 	struct udphdr *uh;
900 	int err;
901 	int is_udplite = IS_UDPLITE(sk);
902 	int offset = skb_transport_offset(skb);
903 	int len = skb->len - offset;
904 	int datalen = len - sizeof(*uh);
905 	__wsum csum = 0;
906 
907 	/*
908 	 * Create a UDP header
909 	 */
910 	uh = udp_hdr(skb);
911 	uh->source = inet->inet_sport;
912 	uh->dest = fl4->fl4_dport;
913 	uh->len = htons(len);
914 	uh->check = 0;
915 
916 	if (cork->gso_size) {
917 		const int hlen = skb_network_header_len(skb) +
918 				 sizeof(struct udphdr);
919 
920 		if (hlen + cork->gso_size > cork->fragsize) {
921 			kfree_skb(skb);
922 			return -EINVAL;
923 		}
924 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
925 			kfree_skb(skb);
926 			return -EINVAL;
927 		}
928 		if (sk->sk_no_check_tx) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
933 		    dst_xfrm(skb_dst(skb))) {
934 			kfree_skb(skb);
935 			return -EIO;
936 		}
937 
938 		if (datalen > cork->gso_size) {
939 			skb_shinfo(skb)->gso_size = cork->gso_size;
940 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
941 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
942 								 cork->gso_size);
943 		}
944 		goto csum_partial;
945 	}
946 
947 	if (is_udplite)  				 /*     UDP-Lite      */
948 		csum = udplite_csum(skb);
949 
950 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
951 
952 		skb->ip_summed = CHECKSUM_NONE;
953 		goto send;
954 
955 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
956 csum_partial:
957 
958 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
959 		goto send;
960 
961 	} else
962 		csum = udp_csum(skb);
963 
964 	/* add protocol-dependent pseudo-header */
965 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
966 				      sk->sk_protocol, csum);
967 	if (uh->check == 0)
968 		uh->check = CSUM_MANGLED_0;
969 
970 send:
971 	err = ip_send_skb(sock_net(sk), skb);
972 	if (err) {
973 		if (err == -ENOBUFS && !inet->recverr) {
974 			UDP_INC_STATS(sock_net(sk),
975 				      UDP_MIB_SNDBUFERRORS, is_udplite);
976 			err = 0;
977 		}
978 	} else
979 		UDP_INC_STATS(sock_net(sk),
980 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
981 	return err;
982 }
983 
984 /*
985  * Push out all pending data as one UDP datagram. Socket is locked.
986  */
987 int udp_push_pending_frames(struct sock *sk)
988 {
989 	struct udp_sock  *up = udp_sk(sk);
990 	struct inet_sock *inet = inet_sk(sk);
991 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
992 	struct sk_buff *skb;
993 	int err = 0;
994 
995 	skb = ip_finish_skb(sk, fl4);
996 	if (!skb)
997 		goto out;
998 
999 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1000 
1001 out:
1002 	up->len = 0;
1003 	up->pending = 0;
1004 	return err;
1005 }
1006 EXPORT_SYMBOL(udp_push_pending_frames);
1007 
1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1009 {
1010 	switch (cmsg->cmsg_type) {
1011 	case UDP_SEGMENT:
1012 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1013 			return -EINVAL;
1014 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1015 		return 0;
1016 	default:
1017 		return -EINVAL;
1018 	}
1019 }
1020 
1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1022 {
1023 	struct cmsghdr *cmsg;
1024 	bool need_ip = false;
1025 	int err;
1026 
1027 	for_each_cmsghdr(cmsg, msg) {
1028 		if (!CMSG_OK(msg, cmsg))
1029 			return -EINVAL;
1030 
1031 		if (cmsg->cmsg_level != SOL_UDP) {
1032 			need_ip = true;
1033 			continue;
1034 		}
1035 
1036 		err = __udp_cmsg_send(cmsg, gso_size);
1037 		if (err)
1038 			return err;
1039 	}
1040 
1041 	return need_ip;
1042 }
1043 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1044 
1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct udp_sock *up = udp_sk(sk);
1049 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1050 	struct flowi4 fl4_stack;
1051 	struct flowi4 *fl4;
1052 	int ulen = len;
1053 	struct ipcm_cookie ipc;
1054 	struct rtable *rt = NULL;
1055 	int free = 0;
1056 	int connected = 0;
1057 	__be32 daddr, faddr, saddr;
1058 	__be16 dport;
1059 	u8  tos;
1060 	int err, is_udplite = IS_UDPLITE(sk);
1061 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1062 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1063 	struct sk_buff *skb;
1064 	struct ip_options_data opt_copy;
1065 
1066 	if (len > 0xFFFF)
1067 		return -EMSGSIZE;
1068 
1069 	/*
1070 	 *	Check the flags.
1071 	 */
1072 
1073 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074 		return -EOPNOTSUPP;
1075 
1076 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078 	fl4 = &inet->cork.fl.u.ip4;
1079 	if (up->pending) {
1080 		/*
1081 		 * There are pending frames.
1082 		 * The socket lock must be held while it's corked.
1083 		 */
1084 		lock_sock(sk);
1085 		if (likely(up->pending)) {
1086 			if (unlikely(up->pending != AF_INET)) {
1087 				release_sock(sk);
1088 				return -EINVAL;
1089 			}
1090 			goto do_append_data;
1091 		}
1092 		release_sock(sk);
1093 	}
1094 	ulen += sizeof(struct udphdr);
1095 
1096 	/*
1097 	 *	Get and verify the address.
1098 	 */
1099 	if (usin) {
1100 		if (msg->msg_namelen < sizeof(*usin))
1101 			return -EINVAL;
1102 		if (usin->sin_family != AF_INET) {
1103 			if (usin->sin_family != AF_UNSPEC)
1104 				return -EAFNOSUPPORT;
1105 		}
1106 
1107 		daddr = usin->sin_addr.s_addr;
1108 		dport = usin->sin_port;
1109 		if (dport == 0)
1110 			return -EINVAL;
1111 	} else {
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			return -EDESTADDRREQ;
1114 		daddr = inet->inet_daddr;
1115 		dport = inet->inet_dport;
1116 		/* Open fast path for connected socket.
1117 		   Route will not be used, if at least one option is set.
1118 		 */
1119 		connected = 1;
1120 	}
1121 
1122 	ipcm_init_sk(&ipc, inet);
1123 	ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125 	if (msg->msg_controllen) {
1126 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127 		if (err > 0)
1128 			err = ip_cmsg_send(sk, msg, &ipc,
1129 					   sk->sk_family == AF_INET6);
1130 		if (unlikely(err < 0)) {
1131 			kfree(ipc.opt);
1132 			return err;
1133 		}
1134 		if (ipc.opt)
1135 			free = 1;
1136 		connected = 0;
1137 	}
1138 	if (!ipc.opt) {
1139 		struct ip_options_rcu *inet_opt;
1140 
1141 		rcu_read_lock();
1142 		inet_opt = rcu_dereference(inet->inet_opt);
1143 		if (inet_opt) {
1144 			memcpy(&opt_copy, inet_opt,
1145 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1146 			ipc.opt = &opt_copy.opt;
1147 		}
1148 		rcu_read_unlock();
1149 	}
1150 
1151 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1152 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1153 					    (struct sockaddr *)usin, &ipc.addr);
1154 		if (err)
1155 			goto out_free;
1156 		if (usin) {
1157 			if (usin->sin_port == 0) {
1158 				/* BPF program set invalid port. Reject it. */
1159 				err = -EINVAL;
1160 				goto out_free;
1161 			}
1162 			daddr = usin->sin_addr.s_addr;
1163 			dport = usin->sin_port;
1164 		}
1165 	}
1166 
1167 	saddr = ipc.addr;
1168 	ipc.addr = faddr = daddr;
1169 
1170 	if (ipc.opt && ipc.opt->opt.srr) {
1171 		if (!daddr) {
1172 			err = -EINVAL;
1173 			goto out_free;
1174 		}
1175 		faddr = ipc.opt->opt.faddr;
1176 		connected = 0;
1177 	}
1178 	tos = get_rttos(&ipc, inet);
1179 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1180 	    (msg->msg_flags & MSG_DONTROUTE) ||
1181 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1182 		tos |= RTO_ONLINK;
1183 		connected = 0;
1184 	}
1185 
1186 	if (ipv4_is_multicast(daddr)) {
1187 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1188 			ipc.oif = inet->mc_index;
1189 		if (!saddr)
1190 			saddr = inet->mc_addr;
1191 		connected = 0;
1192 	} else if (!ipc.oif) {
1193 		ipc.oif = inet->uc_index;
1194 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1195 		/* oif is set, packet is to local broadcast and
1196 		 * uc_index is set. oif is most likely set
1197 		 * by sk_bound_dev_if. If uc_index != oif check if the
1198 		 * oif is an L3 master and uc_index is an L3 slave.
1199 		 * If so, we want to allow the send using the uc_index.
1200 		 */
1201 		if (ipc.oif != inet->uc_index &&
1202 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1203 							      inet->uc_index)) {
1204 			ipc.oif = inet->uc_index;
1205 		}
1206 	}
1207 
1208 	if (connected)
1209 		rt = (struct rtable *)sk_dst_check(sk, 0);
1210 
1211 	if (!rt) {
1212 		struct net *net = sock_net(sk);
1213 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1214 
1215 		fl4 = &fl4_stack;
1216 
1217 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1218 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1219 				   flow_flags,
1220 				   faddr, saddr, dport, inet->inet_sport,
1221 				   sk->sk_uid);
1222 
1223 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1224 		rt = ip_route_output_flow(net, fl4, sk);
1225 		if (IS_ERR(rt)) {
1226 			err = PTR_ERR(rt);
1227 			rt = NULL;
1228 			if (err == -ENETUNREACH)
1229 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1230 			goto out;
1231 		}
1232 
1233 		err = -EACCES;
1234 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1235 		    !sock_flag(sk, SOCK_BROADCAST))
1236 			goto out;
1237 		if (connected)
1238 			sk_dst_set(sk, dst_clone(&rt->dst));
1239 	}
1240 
1241 	if (msg->msg_flags&MSG_CONFIRM)
1242 		goto do_confirm;
1243 back_from_confirm:
1244 
1245 	saddr = fl4->saddr;
1246 	if (!ipc.addr)
1247 		daddr = ipc.addr = fl4->daddr;
1248 
1249 	/* Lockless fast path for the non-corking case. */
1250 	if (!corkreq) {
1251 		struct inet_cork cork;
1252 
1253 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1254 				  sizeof(struct udphdr), &ipc, &rt,
1255 				  &cork, msg->msg_flags);
1256 		err = PTR_ERR(skb);
1257 		if (!IS_ERR_OR_NULL(skb))
1258 			err = udp_send_skb(skb, fl4, &cork);
1259 		goto out;
1260 	}
1261 
1262 	lock_sock(sk);
1263 	if (unlikely(up->pending)) {
1264 		/* The socket is already corked while preparing it. */
1265 		/* ... which is an evident application bug. --ANK */
1266 		release_sock(sk);
1267 
1268 		net_dbg_ratelimited("socket already corked\n");
1269 		err = -EINVAL;
1270 		goto out;
1271 	}
1272 	/*
1273 	 *	Now cork the socket to pend data.
1274 	 */
1275 	fl4 = &inet->cork.fl.u.ip4;
1276 	fl4->daddr = daddr;
1277 	fl4->saddr = saddr;
1278 	fl4->fl4_dport = dport;
1279 	fl4->fl4_sport = inet->inet_sport;
1280 	up->pending = AF_INET;
1281 
1282 do_append_data:
1283 	up->len += ulen;
1284 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1285 			     sizeof(struct udphdr), &ipc, &rt,
1286 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1287 	if (err)
1288 		udp_flush_pending_frames(sk);
1289 	else if (!corkreq)
1290 		err = udp_push_pending_frames(sk);
1291 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1292 		up->pending = 0;
1293 	release_sock(sk);
1294 
1295 out:
1296 	ip_rt_put(rt);
1297 out_free:
1298 	if (free)
1299 		kfree(ipc.opt);
1300 	if (!err)
1301 		return len;
1302 	/*
1303 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1304 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1305 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1306 	 * things).  We could add another new stat but at least for now that
1307 	 * seems like overkill.
1308 	 */
1309 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1310 		UDP_INC_STATS(sock_net(sk),
1311 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1312 	}
1313 	return err;
1314 
1315 do_confirm:
1316 	if (msg->msg_flags & MSG_PROBE)
1317 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1318 	if (!(msg->msg_flags&MSG_PROBE) || len)
1319 		goto back_from_confirm;
1320 	err = 0;
1321 	goto out;
1322 }
1323 EXPORT_SYMBOL(udp_sendmsg);
1324 
1325 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1326 		 size_t size, int flags)
1327 {
1328 	struct inet_sock *inet = inet_sk(sk);
1329 	struct udp_sock *up = udp_sk(sk);
1330 	int ret;
1331 
1332 	if (flags & MSG_SENDPAGE_NOTLAST)
1333 		flags |= MSG_MORE;
1334 
1335 	if (!up->pending) {
1336 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1337 
1338 		/* Call udp_sendmsg to specify destination address which
1339 		 * sendpage interface can't pass.
1340 		 * This will succeed only when the socket is connected.
1341 		 */
1342 		ret = udp_sendmsg(sk, &msg, 0);
1343 		if (ret < 0)
1344 			return ret;
1345 	}
1346 
1347 	lock_sock(sk);
1348 
1349 	if (unlikely(!up->pending)) {
1350 		release_sock(sk);
1351 
1352 		net_dbg_ratelimited("cork failed\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1357 			     page, offset, size, flags);
1358 	if (ret == -EOPNOTSUPP) {
1359 		release_sock(sk);
1360 		return sock_no_sendpage(sk->sk_socket, page, offset,
1361 					size, flags);
1362 	}
1363 	if (ret < 0) {
1364 		udp_flush_pending_frames(sk);
1365 		goto out;
1366 	}
1367 
1368 	up->len += size;
1369 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1370 		ret = udp_push_pending_frames(sk);
1371 	if (!ret)
1372 		ret = size;
1373 out:
1374 	release_sock(sk);
1375 	return ret;
1376 }
1377 
1378 #define UDP_SKB_IS_STATELESS 0x80000000
1379 
1380 /* all head states (dst, sk, nf conntrack) except skb extensions are
1381  * cleared by udp_rcv().
1382  *
1383  * We need to preserve secpath, if present, to eventually process
1384  * IP_CMSG_PASSSEC at recvmsg() time.
1385  *
1386  * Other extensions can be cleared.
1387  */
1388 static bool udp_try_make_stateless(struct sk_buff *skb)
1389 {
1390 	if (!skb_has_extensions(skb))
1391 		return true;
1392 
1393 	if (!secpath_exists(skb)) {
1394 		skb_ext_reset(skb);
1395 		return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 static void udp_set_dev_scratch(struct sk_buff *skb)
1402 {
1403 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1404 
1405 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1406 	scratch->_tsize_state = skb->truesize;
1407 #if BITS_PER_LONG == 64
1408 	scratch->len = skb->len;
1409 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1410 	scratch->is_linear = !skb_is_nonlinear(skb);
1411 #endif
1412 	if (udp_try_make_stateless(skb))
1413 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1414 }
1415 
1416 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1417 {
1418 	/* We come here after udp_lib_checksum_complete() returned 0.
1419 	 * This means that __skb_checksum_complete() might have
1420 	 * set skb->csum_valid to 1.
1421 	 * On 64bit platforms, we can set csum_unnecessary
1422 	 * to true, but only if the skb is not shared.
1423 	 */
1424 #if BITS_PER_LONG == 64
1425 	if (!skb_shared(skb))
1426 		udp_skb_scratch(skb)->csum_unnecessary = true;
1427 #endif
1428 }
1429 
1430 static int udp_skb_truesize(struct sk_buff *skb)
1431 {
1432 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1433 }
1434 
1435 static bool udp_skb_has_head_state(struct sk_buff *skb)
1436 {
1437 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1438 }
1439 
1440 /* fully reclaim rmem/fwd memory allocated for skb */
1441 static void udp_rmem_release(struct sock *sk, int size, int partial,
1442 			     bool rx_queue_lock_held)
1443 {
1444 	struct udp_sock *up = udp_sk(sk);
1445 	struct sk_buff_head *sk_queue;
1446 	int amt;
1447 
1448 	if (likely(partial)) {
1449 		up->forward_deficit += size;
1450 		size = up->forward_deficit;
1451 		if (size < (sk->sk_rcvbuf >> 2) &&
1452 		    !skb_queue_empty(&up->reader_queue))
1453 			return;
1454 	} else {
1455 		size += up->forward_deficit;
1456 	}
1457 	up->forward_deficit = 0;
1458 
1459 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1460 	 * if the called don't held it already
1461 	 */
1462 	sk_queue = &sk->sk_receive_queue;
1463 	if (!rx_queue_lock_held)
1464 		spin_lock(&sk_queue->lock);
1465 
1466 
1467 	sk->sk_forward_alloc += size;
1468 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1469 	sk->sk_forward_alloc -= amt;
1470 
1471 	if (amt)
1472 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1473 
1474 	atomic_sub(size, &sk->sk_rmem_alloc);
1475 
1476 	/* this can save us from acquiring the rx queue lock on next receive */
1477 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1478 
1479 	if (!rx_queue_lock_held)
1480 		spin_unlock(&sk_queue->lock);
1481 }
1482 
1483 /* Note: called with reader_queue.lock held.
1484  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1485  * This avoids a cache line miss while receive_queue lock is held.
1486  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1487  */
1488 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1489 {
1490 	prefetch(&skb->data);
1491 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1492 }
1493 EXPORT_SYMBOL(udp_skb_destructor);
1494 
1495 /* as above, but the caller held the rx queue lock, too */
1496 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1497 {
1498 	prefetch(&skb->data);
1499 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1500 }
1501 
1502 /* Idea of busylocks is to let producers grab an extra spinlock
1503  * to relieve pressure on the receive_queue spinlock shared by consumer.
1504  * Under flood, this means that only one producer can be in line
1505  * trying to acquire the receive_queue spinlock.
1506  * These busylock can be allocated on a per cpu manner, instead of a
1507  * per socket one (that would consume a cache line per socket)
1508  */
1509 static int udp_busylocks_log __read_mostly;
1510 static spinlock_t *udp_busylocks __read_mostly;
1511 
1512 static spinlock_t *busylock_acquire(void *ptr)
1513 {
1514 	spinlock_t *busy;
1515 
1516 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1517 	spin_lock(busy);
1518 	return busy;
1519 }
1520 
1521 static void busylock_release(spinlock_t *busy)
1522 {
1523 	if (busy)
1524 		spin_unlock(busy);
1525 }
1526 
1527 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1528 {
1529 	struct sk_buff_head *list = &sk->sk_receive_queue;
1530 	int rmem, delta, amt, err = -ENOMEM;
1531 	spinlock_t *busy = NULL;
1532 	int size;
1533 
1534 	/* try to avoid the costly atomic add/sub pair when the receive
1535 	 * queue is full; always allow at least a packet
1536 	 */
1537 	rmem = atomic_read(&sk->sk_rmem_alloc);
1538 	if (rmem > sk->sk_rcvbuf)
1539 		goto drop;
1540 
1541 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1542 	 * having linear skbs :
1543 	 * - Reduce memory overhead and thus increase receive queue capacity
1544 	 * - Less cache line misses at copyout() time
1545 	 * - Less work at consume_skb() (less alien page frag freeing)
1546 	 */
1547 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1548 		skb_condense(skb);
1549 
1550 		busy = busylock_acquire(sk);
1551 	}
1552 	size = skb->truesize;
1553 	udp_set_dev_scratch(skb);
1554 
1555 	/* we drop only if the receive buf is full and the receive
1556 	 * queue contains some other skb
1557 	 */
1558 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1559 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1560 		goto uncharge_drop;
1561 
1562 	spin_lock(&list->lock);
1563 	if (size >= sk->sk_forward_alloc) {
1564 		amt = sk_mem_pages(size);
1565 		delta = amt << PAGE_SHIFT;
1566 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1567 			err = -ENOBUFS;
1568 			spin_unlock(&list->lock);
1569 			goto uncharge_drop;
1570 		}
1571 
1572 		sk->sk_forward_alloc += delta;
1573 	}
1574 
1575 	sk->sk_forward_alloc -= size;
1576 
1577 	/* no need to setup a destructor, we will explicitly release the
1578 	 * forward allocated memory on dequeue
1579 	 */
1580 	sock_skb_set_dropcount(sk, skb);
1581 
1582 	__skb_queue_tail(list, skb);
1583 	spin_unlock(&list->lock);
1584 
1585 	if (!sock_flag(sk, SOCK_DEAD))
1586 		sk->sk_data_ready(sk);
1587 
1588 	busylock_release(busy);
1589 	return 0;
1590 
1591 uncharge_drop:
1592 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1593 
1594 drop:
1595 	atomic_inc(&sk->sk_drops);
1596 	busylock_release(busy);
1597 	return err;
1598 }
1599 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1600 
1601 void udp_destruct_common(struct sock *sk)
1602 {
1603 	/* reclaim completely the forward allocated memory */
1604 	struct udp_sock *up = udp_sk(sk);
1605 	unsigned int total = 0;
1606 	struct sk_buff *skb;
1607 
1608 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1609 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1610 		total += skb->truesize;
1611 		kfree_skb(skb);
1612 	}
1613 	udp_rmem_release(sk, total, 0, true);
1614 }
1615 EXPORT_SYMBOL_GPL(udp_destruct_common);
1616 
1617 static void udp_destruct_sock(struct sock *sk)
1618 {
1619 	udp_destruct_common(sk);
1620 	inet_sock_destruct(sk);
1621 }
1622 
1623 int udp_init_sock(struct sock *sk)
1624 {
1625 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1626 	sk->sk_destruct = udp_destruct_sock;
1627 	return 0;
1628 }
1629 
1630 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1631 {
1632 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1633 		bool slow = lock_sock_fast(sk);
1634 
1635 		sk_peek_offset_bwd(sk, len);
1636 		unlock_sock_fast(sk, slow);
1637 	}
1638 
1639 	if (!skb_unref(skb))
1640 		return;
1641 
1642 	/* In the more common cases we cleared the head states previously,
1643 	 * see __udp_queue_rcv_skb().
1644 	 */
1645 	if (unlikely(udp_skb_has_head_state(skb)))
1646 		skb_release_head_state(skb);
1647 	__consume_stateless_skb(skb);
1648 }
1649 EXPORT_SYMBOL_GPL(skb_consume_udp);
1650 
1651 static struct sk_buff *__first_packet_length(struct sock *sk,
1652 					     struct sk_buff_head *rcvq,
1653 					     int *total)
1654 {
1655 	struct sk_buff *skb;
1656 
1657 	while ((skb = skb_peek(rcvq)) != NULL) {
1658 		if (udp_lib_checksum_complete(skb)) {
1659 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1660 					IS_UDPLITE(sk));
1661 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1662 					IS_UDPLITE(sk));
1663 			atomic_inc(&sk->sk_drops);
1664 			__skb_unlink(skb, rcvq);
1665 			*total += skb->truesize;
1666 			kfree_skb(skb);
1667 		} else {
1668 			udp_skb_csum_unnecessary_set(skb);
1669 			break;
1670 		}
1671 	}
1672 	return skb;
1673 }
1674 
1675 /**
1676  *	first_packet_length	- return length of first packet in receive queue
1677  *	@sk: socket
1678  *
1679  *	Drops all bad checksum frames, until a valid one is found.
1680  *	Returns the length of found skb, or -1 if none is found.
1681  */
1682 static int first_packet_length(struct sock *sk)
1683 {
1684 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1685 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1686 	struct sk_buff *skb;
1687 	int total = 0;
1688 	int res;
1689 
1690 	spin_lock_bh(&rcvq->lock);
1691 	skb = __first_packet_length(sk, rcvq, &total);
1692 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1693 		spin_lock(&sk_queue->lock);
1694 		skb_queue_splice_tail_init(sk_queue, rcvq);
1695 		spin_unlock(&sk_queue->lock);
1696 
1697 		skb = __first_packet_length(sk, rcvq, &total);
1698 	}
1699 	res = skb ? skb->len : -1;
1700 	if (total)
1701 		udp_rmem_release(sk, total, 1, false);
1702 	spin_unlock_bh(&rcvq->lock);
1703 	return res;
1704 }
1705 
1706 /*
1707  *	IOCTL requests applicable to the UDP protocol
1708  */
1709 
1710 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1711 {
1712 	switch (cmd) {
1713 	case SIOCOUTQ:
1714 	{
1715 		int amount = sk_wmem_alloc_get(sk);
1716 
1717 		return put_user(amount, (int __user *)arg);
1718 	}
1719 
1720 	case SIOCINQ:
1721 	{
1722 		int amount = max_t(int, 0, first_packet_length(sk));
1723 
1724 		return put_user(amount, (int __user *)arg);
1725 	}
1726 
1727 	default:
1728 		return -ENOIOCTLCMD;
1729 	}
1730 
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(udp_ioctl);
1734 
1735 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1736 			       int *off, int *err)
1737 {
1738 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1739 	struct sk_buff_head *queue;
1740 	struct sk_buff *last;
1741 	long timeo;
1742 	int error;
1743 
1744 	queue = &udp_sk(sk)->reader_queue;
1745 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1746 	do {
1747 		struct sk_buff *skb;
1748 
1749 		error = sock_error(sk);
1750 		if (error)
1751 			break;
1752 
1753 		error = -EAGAIN;
1754 		do {
1755 			spin_lock_bh(&queue->lock);
1756 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1757 							err, &last);
1758 			if (skb) {
1759 				if (!(flags & MSG_PEEK))
1760 					udp_skb_destructor(sk, skb);
1761 				spin_unlock_bh(&queue->lock);
1762 				return skb;
1763 			}
1764 
1765 			if (skb_queue_empty_lockless(sk_queue)) {
1766 				spin_unlock_bh(&queue->lock);
1767 				goto busy_check;
1768 			}
1769 
1770 			/* refill the reader queue and walk it again
1771 			 * keep both queues locked to avoid re-acquiring
1772 			 * the sk_receive_queue lock if fwd memory scheduling
1773 			 * is needed.
1774 			 */
1775 			spin_lock(&sk_queue->lock);
1776 			skb_queue_splice_tail_init(sk_queue, queue);
1777 
1778 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1779 							err, &last);
1780 			if (skb && !(flags & MSG_PEEK))
1781 				udp_skb_dtor_locked(sk, skb);
1782 			spin_unlock(&sk_queue->lock);
1783 			spin_unlock_bh(&queue->lock);
1784 			if (skb)
1785 				return skb;
1786 
1787 busy_check:
1788 			if (!sk_can_busy_loop(sk))
1789 				break;
1790 
1791 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1792 		} while (!skb_queue_empty_lockless(sk_queue));
1793 
1794 		/* sk_queue is empty, reader_queue may contain peeked packets */
1795 	} while (timeo &&
1796 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1797 					      &error, &timeo,
1798 					      (struct sk_buff *)sk_queue));
1799 
1800 	*err = error;
1801 	return NULL;
1802 }
1803 EXPORT_SYMBOL(__skb_recv_udp);
1804 
1805 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1806 {
1807 	struct sk_buff *skb;
1808 	int err, copied;
1809 
1810 try_again:
1811 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1812 	if (!skb)
1813 		return err;
1814 
1815 	if (udp_lib_checksum_complete(skb)) {
1816 		int is_udplite = IS_UDPLITE(sk);
1817 		struct net *net = sock_net(sk);
1818 
1819 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1820 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1821 		atomic_inc(&sk->sk_drops);
1822 		kfree_skb(skb);
1823 		goto try_again;
1824 	}
1825 
1826 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1827 	copied = recv_actor(sk, skb);
1828 	kfree_skb(skb);
1829 
1830 	return copied;
1831 }
1832 EXPORT_SYMBOL(udp_read_skb);
1833 
1834 /*
1835  * 	This should be easy, if there is something there we
1836  * 	return it, otherwise we block.
1837  */
1838 
1839 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1840 		int *addr_len)
1841 {
1842 	struct inet_sock *inet = inet_sk(sk);
1843 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1844 	struct sk_buff *skb;
1845 	unsigned int ulen, copied;
1846 	int off, err, peeking = flags & MSG_PEEK;
1847 	int is_udplite = IS_UDPLITE(sk);
1848 	bool checksum_valid = false;
1849 
1850 	if (flags & MSG_ERRQUEUE)
1851 		return ip_recv_error(sk, msg, len, addr_len);
1852 
1853 try_again:
1854 	off = sk_peek_offset(sk, flags);
1855 	skb = __skb_recv_udp(sk, flags, &off, &err);
1856 	if (!skb)
1857 		return err;
1858 
1859 	ulen = udp_skb_len(skb);
1860 	copied = len;
1861 	if (copied > ulen - off)
1862 		copied = ulen - off;
1863 	else if (copied < ulen)
1864 		msg->msg_flags |= MSG_TRUNC;
1865 
1866 	/*
1867 	 * If checksum is needed at all, try to do it while copying the
1868 	 * data.  If the data is truncated, or if we only want a partial
1869 	 * coverage checksum (UDP-Lite), do it before the copy.
1870 	 */
1871 
1872 	if (copied < ulen || peeking ||
1873 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1874 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1875 				!__udp_lib_checksum_complete(skb);
1876 		if (!checksum_valid)
1877 			goto csum_copy_err;
1878 	}
1879 
1880 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1881 		if (udp_skb_is_linear(skb))
1882 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1883 		else
1884 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1885 	} else {
1886 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1887 
1888 		if (err == -EINVAL)
1889 			goto csum_copy_err;
1890 	}
1891 
1892 	if (unlikely(err)) {
1893 		if (!peeking) {
1894 			atomic_inc(&sk->sk_drops);
1895 			UDP_INC_STATS(sock_net(sk),
1896 				      UDP_MIB_INERRORS, is_udplite);
1897 		}
1898 		kfree_skb(skb);
1899 		return err;
1900 	}
1901 
1902 	if (!peeking)
1903 		UDP_INC_STATS(sock_net(sk),
1904 			      UDP_MIB_INDATAGRAMS, is_udplite);
1905 
1906 	sock_recv_cmsgs(msg, sk, skb);
1907 
1908 	/* Copy the address. */
1909 	if (sin) {
1910 		sin->sin_family = AF_INET;
1911 		sin->sin_port = udp_hdr(skb)->source;
1912 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1913 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1914 		*addr_len = sizeof(*sin);
1915 
1916 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1917 						      (struct sockaddr *)sin);
1918 	}
1919 
1920 	if (udp_sk(sk)->gro_enabled)
1921 		udp_cmsg_recv(msg, sk, skb);
1922 
1923 	if (inet->cmsg_flags)
1924 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1925 
1926 	err = copied;
1927 	if (flags & MSG_TRUNC)
1928 		err = ulen;
1929 
1930 	skb_consume_udp(sk, skb, peeking ? -err : err);
1931 	return err;
1932 
1933 csum_copy_err:
1934 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1935 				 udp_skb_destructor)) {
1936 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1937 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1938 	}
1939 	kfree_skb(skb);
1940 
1941 	/* starting over for a new packet, but check if we need to yield */
1942 	cond_resched();
1943 	msg->msg_flags &= ~MSG_TRUNC;
1944 	goto try_again;
1945 }
1946 
1947 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1948 {
1949 	/* This check is replicated from __ip4_datagram_connect() and
1950 	 * intended to prevent BPF program called below from accessing bytes
1951 	 * that are out of the bound specified by user in addr_len.
1952 	 */
1953 	if (addr_len < sizeof(struct sockaddr_in))
1954 		return -EINVAL;
1955 
1956 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1957 }
1958 EXPORT_SYMBOL(udp_pre_connect);
1959 
1960 int __udp_disconnect(struct sock *sk, int flags)
1961 {
1962 	struct inet_sock *inet = inet_sk(sk);
1963 	/*
1964 	 *	1003.1g - break association.
1965 	 */
1966 
1967 	sk->sk_state = TCP_CLOSE;
1968 	inet->inet_daddr = 0;
1969 	inet->inet_dport = 0;
1970 	sock_rps_reset_rxhash(sk);
1971 	sk->sk_bound_dev_if = 0;
1972 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1973 		inet_reset_saddr(sk);
1974 		if (sk->sk_prot->rehash &&
1975 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1976 			sk->sk_prot->rehash(sk);
1977 	}
1978 
1979 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1980 		sk->sk_prot->unhash(sk);
1981 		inet->inet_sport = 0;
1982 	}
1983 	sk_dst_reset(sk);
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL(__udp_disconnect);
1987 
1988 int udp_disconnect(struct sock *sk, int flags)
1989 {
1990 	lock_sock(sk);
1991 	__udp_disconnect(sk, flags);
1992 	release_sock(sk);
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL(udp_disconnect);
1996 
1997 void udp_lib_unhash(struct sock *sk)
1998 {
1999 	if (sk_hashed(sk)) {
2000 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2001 		struct udp_hslot *hslot, *hslot2;
2002 
2003 		hslot  = udp_hashslot(udptable, sock_net(sk),
2004 				      udp_sk(sk)->udp_port_hash);
2005 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2006 
2007 		spin_lock_bh(&hslot->lock);
2008 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2009 			reuseport_detach_sock(sk);
2010 		if (sk_del_node_init_rcu(sk)) {
2011 			hslot->count--;
2012 			inet_sk(sk)->inet_num = 0;
2013 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2014 
2015 			spin_lock(&hslot2->lock);
2016 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2017 			hslot2->count--;
2018 			spin_unlock(&hslot2->lock);
2019 		}
2020 		spin_unlock_bh(&hslot->lock);
2021 	}
2022 }
2023 EXPORT_SYMBOL(udp_lib_unhash);
2024 
2025 /*
2026  * inet_rcv_saddr was changed, we must rehash secondary hash
2027  */
2028 void udp_lib_rehash(struct sock *sk, u16 newhash)
2029 {
2030 	if (sk_hashed(sk)) {
2031 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2032 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2033 
2034 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2035 		nhslot2 = udp_hashslot2(udptable, newhash);
2036 		udp_sk(sk)->udp_portaddr_hash = newhash;
2037 
2038 		if (hslot2 != nhslot2 ||
2039 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2040 			hslot = udp_hashslot(udptable, sock_net(sk),
2041 					     udp_sk(sk)->udp_port_hash);
2042 			/* we must lock primary chain too */
2043 			spin_lock_bh(&hslot->lock);
2044 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2045 				reuseport_detach_sock(sk);
2046 
2047 			if (hslot2 != nhslot2) {
2048 				spin_lock(&hslot2->lock);
2049 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2050 				hslot2->count--;
2051 				spin_unlock(&hslot2->lock);
2052 
2053 				spin_lock(&nhslot2->lock);
2054 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2055 							 &nhslot2->head);
2056 				nhslot2->count++;
2057 				spin_unlock(&nhslot2->lock);
2058 			}
2059 
2060 			spin_unlock_bh(&hslot->lock);
2061 		}
2062 	}
2063 }
2064 EXPORT_SYMBOL(udp_lib_rehash);
2065 
2066 void udp_v4_rehash(struct sock *sk)
2067 {
2068 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2069 					  inet_sk(sk)->inet_rcv_saddr,
2070 					  inet_sk(sk)->inet_num);
2071 	udp_lib_rehash(sk, new_hash);
2072 }
2073 
2074 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2075 {
2076 	int rc;
2077 
2078 	if (inet_sk(sk)->inet_daddr) {
2079 		sock_rps_save_rxhash(sk, skb);
2080 		sk_mark_napi_id(sk, skb);
2081 		sk_incoming_cpu_update(sk);
2082 	} else {
2083 		sk_mark_napi_id_once(sk, skb);
2084 	}
2085 
2086 	rc = __udp_enqueue_schedule_skb(sk, skb);
2087 	if (rc < 0) {
2088 		int is_udplite = IS_UDPLITE(sk);
2089 		int drop_reason;
2090 
2091 		/* Note that an ENOMEM error is charged twice */
2092 		if (rc == -ENOMEM) {
2093 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2094 					is_udplite);
2095 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2096 		} else {
2097 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2098 				      is_udplite);
2099 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2100 		}
2101 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2102 		kfree_skb_reason(skb, drop_reason);
2103 		trace_udp_fail_queue_rcv_skb(rc, sk);
2104 		return -1;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 /* returns:
2111  *  -1: error
2112  *   0: success
2113  *  >0: "udp encap" protocol resubmission
2114  *
2115  * Note that in the success and error cases, the skb is assumed to
2116  * have either been requeued or freed.
2117  */
2118 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2119 {
2120 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2121 	struct udp_sock *up = udp_sk(sk);
2122 	int is_udplite = IS_UDPLITE(sk);
2123 
2124 	/*
2125 	 *	Charge it to the socket, dropping if the queue is full.
2126 	 */
2127 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2128 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2129 		goto drop;
2130 	}
2131 	nf_reset_ct(skb);
2132 
2133 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2134 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2135 
2136 		/*
2137 		 * This is an encapsulation socket so pass the skb to
2138 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2139 		 * fall through and pass this up the UDP socket.
2140 		 * up->encap_rcv() returns the following value:
2141 		 * =0 if skb was successfully passed to the encap
2142 		 *    handler or was discarded by it.
2143 		 * >0 if skb should be passed on to UDP.
2144 		 * <0 if skb should be resubmitted as proto -N
2145 		 */
2146 
2147 		/* if we're overly short, let UDP handle it */
2148 		encap_rcv = READ_ONCE(up->encap_rcv);
2149 		if (encap_rcv) {
2150 			int ret;
2151 
2152 			/* Verify checksum before giving to encap */
2153 			if (udp_lib_checksum_complete(skb))
2154 				goto csum_error;
2155 
2156 			ret = encap_rcv(sk, skb);
2157 			if (ret <= 0) {
2158 				__UDP_INC_STATS(sock_net(sk),
2159 						UDP_MIB_INDATAGRAMS,
2160 						is_udplite);
2161 				return -ret;
2162 			}
2163 		}
2164 
2165 		/* FALLTHROUGH -- it's a UDP Packet */
2166 	}
2167 
2168 	/*
2169 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2170 	 */
2171 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2172 
2173 		/*
2174 		 * MIB statistics other than incrementing the error count are
2175 		 * disabled for the following two types of errors: these depend
2176 		 * on the application settings, not on the functioning of the
2177 		 * protocol stack as such.
2178 		 *
2179 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2180 		 * way ... to ... at least let the receiving application block
2181 		 * delivery of packets with coverage values less than a value
2182 		 * provided by the application."
2183 		 */
2184 		if (up->pcrlen == 0) {          /* full coverage was set  */
2185 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2186 					    UDP_SKB_CB(skb)->cscov, skb->len);
2187 			goto drop;
2188 		}
2189 		/* The next case involves violating the min. coverage requested
2190 		 * by the receiver. This is subtle: if receiver wants x and x is
2191 		 * greater than the buffersize/MTU then receiver will complain
2192 		 * that it wants x while sender emits packets of smaller size y.
2193 		 * Therefore the above ...()->partial_cov statement is essential.
2194 		 */
2195 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2196 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2197 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2198 			goto drop;
2199 		}
2200 	}
2201 
2202 	prefetch(&sk->sk_rmem_alloc);
2203 	if (rcu_access_pointer(sk->sk_filter) &&
2204 	    udp_lib_checksum_complete(skb))
2205 			goto csum_error;
2206 
2207 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2208 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2209 		goto drop;
2210 	}
2211 
2212 	udp_csum_pull_header(skb);
2213 
2214 	ipv4_pktinfo_prepare(sk, skb);
2215 	return __udp_queue_rcv_skb(sk, skb);
2216 
2217 csum_error:
2218 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2219 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2220 drop:
2221 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2222 	atomic_inc(&sk->sk_drops);
2223 	kfree_skb_reason(skb, drop_reason);
2224 	return -1;
2225 }
2226 
2227 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2228 {
2229 	struct sk_buff *next, *segs;
2230 	int ret;
2231 
2232 	if (likely(!udp_unexpected_gso(sk, skb)))
2233 		return udp_queue_rcv_one_skb(sk, skb);
2234 
2235 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2236 	__skb_push(skb, -skb_mac_offset(skb));
2237 	segs = udp_rcv_segment(sk, skb, true);
2238 	skb_list_walk_safe(segs, skb, next) {
2239 		__skb_pull(skb, skb_transport_offset(skb));
2240 
2241 		udp_post_segment_fix_csum(skb);
2242 		ret = udp_queue_rcv_one_skb(sk, skb);
2243 		if (ret > 0)
2244 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2245 	}
2246 	return 0;
2247 }
2248 
2249 /* For TCP sockets, sk_rx_dst is protected by socket lock
2250  * For UDP, we use xchg() to guard against concurrent changes.
2251  */
2252 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2253 {
2254 	struct dst_entry *old;
2255 
2256 	if (dst_hold_safe(dst)) {
2257 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2258 		dst_release(old);
2259 		return old != dst;
2260 	}
2261 	return false;
2262 }
2263 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2264 
2265 /*
2266  *	Multicasts and broadcasts go to each listener.
2267  *
2268  *	Note: called only from the BH handler context.
2269  */
2270 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2271 				    struct udphdr  *uh,
2272 				    __be32 saddr, __be32 daddr,
2273 				    struct udp_table *udptable,
2274 				    int proto)
2275 {
2276 	struct sock *sk, *first = NULL;
2277 	unsigned short hnum = ntohs(uh->dest);
2278 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2279 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2280 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2281 	int dif = skb->dev->ifindex;
2282 	int sdif = inet_sdif(skb);
2283 	struct hlist_node *node;
2284 	struct sk_buff *nskb;
2285 
2286 	if (use_hash2) {
2287 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2288 			    udptable->mask;
2289 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2290 start_lookup:
2291 		hslot = &udptable->hash2[hash2];
2292 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2293 	}
2294 
2295 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2296 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2297 					 uh->source, saddr, dif, sdif, hnum))
2298 			continue;
2299 
2300 		if (!first) {
2301 			first = sk;
2302 			continue;
2303 		}
2304 		nskb = skb_clone(skb, GFP_ATOMIC);
2305 
2306 		if (unlikely(!nskb)) {
2307 			atomic_inc(&sk->sk_drops);
2308 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2309 					IS_UDPLITE(sk));
2310 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2311 					IS_UDPLITE(sk));
2312 			continue;
2313 		}
2314 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2315 			consume_skb(nskb);
2316 	}
2317 
2318 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2319 	if (use_hash2 && hash2 != hash2_any) {
2320 		hash2 = hash2_any;
2321 		goto start_lookup;
2322 	}
2323 
2324 	if (first) {
2325 		if (udp_queue_rcv_skb(first, skb) > 0)
2326 			consume_skb(skb);
2327 	} else {
2328 		kfree_skb(skb);
2329 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2330 				proto == IPPROTO_UDPLITE);
2331 	}
2332 	return 0;
2333 }
2334 
2335 /* Initialize UDP checksum. If exited with zero value (success),
2336  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2337  * Otherwise, csum completion requires checksumming packet body,
2338  * including udp header and folding it to skb->csum.
2339  */
2340 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2341 				 int proto)
2342 {
2343 	int err;
2344 
2345 	UDP_SKB_CB(skb)->partial_cov = 0;
2346 	UDP_SKB_CB(skb)->cscov = skb->len;
2347 
2348 	if (proto == IPPROTO_UDPLITE) {
2349 		err = udplite_checksum_init(skb, uh);
2350 		if (err)
2351 			return err;
2352 
2353 		if (UDP_SKB_CB(skb)->partial_cov) {
2354 			skb->csum = inet_compute_pseudo(skb, proto);
2355 			return 0;
2356 		}
2357 	}
2358 
2359 	/* Note, we are only interested in != 0 or == 0, thus the
2360 	 * force to int.
2361 	 */
2362 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2363 							inet_compute_pseudo);
2364 	if (err)
2365 		return err;
2366 
2367 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2368 		/* If SW calculated the value, we know it's bad */
2369 		if (skb->csum_complete_sw)
2370 			return 1;
2371 
2372 		/* HW says the value is bad. Let's validate that.
2373 		 * skb->csum is no longer the full packet checksum,
2374 		 * so don't treat it as such.
2375 		 */
2376 		skb_checksum_complete_unset(skb);
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2383  * return code conversion for ip layer consumption
2384  */
2385 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2386 			       struct udphdr *uh)
2387 {
2388 	int ret;
2389 
2390 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2391 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2392 
2393 	ret = udp_queue_rcv_skb(sk, skb);
2394 
2395 	/* a return value > 0 means to resubmit the input, but
2396 	 * it wants the return to be -protocol, or 0
2397 	 */
2398 	if (ret > 0)
2399 		return -ret;
2400 	return 0;
2401 }
2402 
2403 /*
2404  *	All we need to do is get the socket, and then do a checksum.
2405  */
2406 
2407 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2408 		   int proto)
2409 {
2410 	struct sock *sk;
2411 	struct udphdr *uh;
2412 	unsigned short ulen;
2413 	struct rtable *rt = skb_rtable(skb);
2414 	__be32 saddr, daddr;
2415 	struct net *net = dev_net(skb->dev);
2416 	bool refcounted;
2417 	int drop_reason;
2418 
2419 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2420 
2421 	/*
2422 	 *  Validate the packet.
2423 	 */
2424 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2425 		goto drop;		/* No space for header. */
2426 
2427 	uh   = udp_hdr(skb);
2428 	ulen = ntohs(uh->len);
2429 	saddr = ip_hdr(skb)->saddr;
2430 	daddr = ip_hdr(skb)->daddr;
2431 
2432 	if (ulen > skb->len)
2433 		goto short_packet;
2434 
2435 	if (proto == IPPROTO_UDP) {
2436 		/* UDP validates ulen. */
2437 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2438 			goto short_packet;
2439 		uh = udp_hdr(skb);
2440 	}
2441 
2442 	if (udp4_csum_init(skb, uh, proto))
2443 		goto csum_error;
2444 
2445 	sk = skb_steal_sock(skb, &refcounted);
2446 	if (sk) {
2447 		struct dst_entry *dst = skb_dst(skb);
2448 		int ret;
2449 
2450 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2451 			udp_sk_rx_dst_set(sk, dst);
2452 
2453 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2454 		if (refcounted)
2455 			sock_put(sk);
2456 		return ret;
2457 	}
2458 
2459 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2460 		return __udp4_lib_mcast_deliver(net, skb, uh,
2461 						saddr, daddr, udptable, proto);
2462 
2463 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2464 	if (sk)
2465 		return udp_unicast_rcv_skb(sk, skb, uh);
2466 
2467 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2468 		goto drop;
2469 	nf_reset_ct(skb);
2470 
2471 	/* No socket. Drop packet silently, if checksum is wrong */
2472 	if (udp_lib_checksum_complete(skb))
2473 		goto csum_error;
2474 
2475 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2476 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2477 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2478 
2479 	/*
2480 	 * Hmm.  We got an UDP packet to a port to which we
2481 	 * don't wanna listen.  Ignore it.
2482 	 */
2483 	kfree_skb_reason(skb, drop_reason);
2484 	return 0;
2485 
2486 short_packet:
2487 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2488 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2489 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2490 			    &saddr, ntohs(uh->source),
2491 			    ulen, skb->len,
2492 			    &daddr, ntohs(uh->dest));
2493 	goto drop;
2494 
2495 csum_error:
2496 	/*
2497 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2498 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2499 	 */
2500 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2501 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2502 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2503 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2504 			    ulen);
2505 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2506 drop:
2507 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2508 	kfree_skb_reason(skb, drop_reason);
2509 	return 0;
2510 }
2511 
2512 /* We can only early demux multicast if there is a single matching socket.
2513  * If more than one socket found returns NULL
2514  */
2515 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2516 						  __be16 loc_port, __be32 loc_addr,
2517 						  __be16 rmt_port, __be32 rmt_addr,
2518 						  int dif, int sdif)
2519 {
2520 	struct sock *sk, *result;
2521 	unsigned short hnum = ntohs(loc_port);
2522 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2523 	struct udp_hslot *hslot = &udp_table.hash[slot];
2524 
2525 	/* Do not bother scanning a too big list */
2526 	if (hslot->count > 10)
2527 		return NULL;
2528 
2529 	result = NULL;
2530 	sk_for_each_rcu(sk, &hslot->head) {
2531 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2532 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2533 			if (result)
2534 				return NULL;
2535 			result = sk;
2536 		}
2537 	}
2538 
2539 	return result;
2540 }
2541 
2542 /* For unicast we should only early demux connected sockets or we can
2543  * break forwarding setups.  The chains here can be long so only check
2544  * if the first socket is an exact match and if not move on.
2545  */
2546 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2547 					    __be16 loc_port, __be32 loc_addr,
2548 					    __be16 rmt_port, __be32 rmt_addr,
2549 					    int dif, int sdif)
2550 {
2551 	unsigned short hnum = ntohs(loc_port);
2552 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2553 	unsigned int slot2 = hash2 & udp_table.mask;
2554 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2555 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2556 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2557 	struct sock *sk;
2558 
2559 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2560 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2561 			return sk;
2562 		/* Only check first socket in chain */
2563 		break;
2564 	}
2565 	return NULL;
2566 }
2567 
2568 int udp_v4_early_demux(struct sk_buff *skb)
2569 {
2570 	struct net *net = dev_net(skb->dev);
2571 	struct in_device *in_dev = NULL;
2572 	const struct iphdr *iph;
2573 	const struct udphdr *uh;
2574 	struct sock *sk = NULL;
2575 	struct dst_entry *dst;
2576 	int dif = skb->dev->ifindex;
2577 	int sdif = inet_sdif(skb);
2578 	int ours;
2579 
2580 	/* validate the packet */
2581 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2582 		return 0;
2583 
2584 	iph = ip_hdr(skb);
2585 	uh = udp_hdr(skb);
2586 
2587 	if (skb->pkt_type == PACKET_MULTICAST) {
2588 		in_dev = __in_dev_get_rcu(skb->dev);
2589 
2590 		if (!in_dev)
2591 			return 0;
2592 
2593 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2594 				       iph->protocol);
2595 		if (!ours)
2596 			return 0;
2597 
2598 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2599 						   uh->source, iph->saddr,
2600 						   dif, sdif);
2601 	} else if (skb->pkt_type == PACKET_HOST) {
2602 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2603 					     uh->source, iph->saddr, dif, sdif);
2604 	}
2605 
2606 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2607 		return 0;
2608 
2609 	skb->sk = sk;
2610 	skb->destructor = sock_efree;
2611 	dst = rcu_dereference(sk->sk_rx_dst);
2612 
2613 	if (dst)
2614 		dst = dst_check(dst, 0);
2615 	if (dst) {
2616 		u32 itag = 0;
2617 
2618 		/* set noref for now.
2619 		 * any place which wants to hold dst has to call
2620 		 * dst_hold_safe()
2621 		 */
2622 		skb_dst_set_noref(skb, dst);
2623 
2624 		/* for unconnected multicast sockets we need to validate
2625 		 * the source on each packet
2626 		 */
2627 		if (!inet_sk(sk)->inet_daddr && in_dev)
2628 			return ip_mc_validate_source(skb, iph->daddr,
2629 						     iph->saddr,
2630 						     iph->tos & IPTOS_RT_MASK,
2631 						     skb->dev, in_dev, &itag);
2632 	}
2633 	return 0;
2634 }
2635 
2636 int udp_rcv(struct sk_buff *skb)
2637 {
2638 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2639 }
2640 
2641 void udp_destroy_sock(struct sock *sk)
2642 {
2643 	struct udp_sock *up = udp_sk(sk);
2644 	bool slow = lock_sock_fast(sk);
2645 
2646 	/* protects from races with udp_abort() */
2647 	sock_set_flag(sk, SOCK_DEAD);
2648 	udp_flush_pending_frames(sk);
2649 	unlock_sock_fast(sk, slow);
2650 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2651 		if (up->encap_type) {
2652 			void (*encap_destroy)(struct sock *sk);
2653 			encap_destroy = READ_ONCE(up->encap_destroy);
2654 			if (encap_destroy)
2655 				encap_destroy(sk);
2656 		}
2657 		if (up->encap_enabled)
2658 			static_branch_dec(&udp_encap_needed_key);
2659 	}
2660 }
2661 
2662 /*
2663  *	Socket option code for UDP
2664  */
2665 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2666 		       sockptr_t optval, unsigned int optlen,
2667 		       int (*push_pending_frames)(struct sock *))
2668 {
2669 	struct udp_sock *up = udp_sk(sk);
2670 	int val, valbool;
2671 	int err = 0;
2672 	int is_udplite = IS_UDPLITE(sk);
2673 
2674 	if (optlen < sizeof(int))
2675 		return -EINVAL;
2676 
2677 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2678 		return -EFAULT;
2679 
2680 	valbool = val ? 1 : 0;
2681 
2682 	switch (optname) {
2683 	case UDP_CORK:
2684 		if (val != 0) {
2685 			WRITE_ONCE(up->corkflag, 1);
2686 		} else {
2687 			WRITE_ONCE(up->corkflag, 0);
2688 			lock_sock(sk);
2689 			push_pending_frames(sk);
2690 			release_sock(sk);
2691 		}
2692 		break;
2693 
2694 	case UDP_ENCAP:
2695 		switch (val) {
2696 		case 0:
2697 #ifdef CONFIG_XFRM
2698 		case UDP_ENCAP_ESPINUDP:
2699 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2700 #if IS_ENABLED(CONFIG_IPV6)
2701 			if (sk->sk_family == AF_INET6)
2702 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2703 			else
2704 #endif
2705 				up->encap_rcv = xfrm4_udp_encap_rcv;
2706 #endif
2707 			fallthrough;
2708 		case UDP_ENCAP_L2TPINUDP:
2709 			up->encap_type = val;
2710 			lock_sock(sk);
2711 			udp_tunnel_encap_enable(sk->sk_socket);
2712 			release_sock(sk);
2713 			break;
2714 		default:
2715 			err = -ENOPROTOOPT;
2716 			break;
2717 		}
2718 		break;
2719 
2720 	case UDP_NO_CHECK6_TX:
2721 		up->no_check6_tx = valbool;
2722 		break;
2723 
2724 	case UDP_NO_CHECK6_RX:
2725 		up->no_check6_rx = valbool;
2726 		break;
2727 
2728 	case UDP_SEGMENT:
2729 		if (val < 0 || val > USHRT_MAX)
2730 			return -EINVAL;
2731 		WRITE_ONCE(up->gso_size, val);
2732 		break;
2733 
2734 	case UDP_GRO:
2735 		lock_sock(sk);
2736 
2737 		/* when enabling GRO, accept the related GSO packet type */
2738 		if (valbool)
2739 			udp_tunnel_encap_enable(sk->sk_socket);
2740 		up->gro_enabled = valbool;
2741 		up->accept_udp_l4 = valbool;
2742 		release_sock(sk);
2743 		break;
2744 
2745 	/*
2746 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2747 	 */
2748 	/* The sender sets actual checksum coverage length via this option.
2749 	 * The case coverage > packet length is handled by send module. */
2750 	case UDPLITE_SEND_CSCOV:
2751 		if (!is_udplite)         /* Disable the option on UDP sockets */
2752 			return -ENOPROTOOPT;
2753 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2754 			val = 8;
2755 		else if (val > USHRT_MAX)
2756 			val = USHRT_MAX;
2757 		up->pcslen = val;
2758 		up->pcflag |= UDPLITE_SEND_CC;
2759 		break;
2760 
2761 	/* The receiver specifies a minimum checksum coverage value. To make
2762 	 * sense, this should be set to at least 8 (as done below). If zero is
2763 	 * used, this again means full checksum coverage.                     */
2764 	case UDPLITE_RECV_CSCOV:
2765 		if (!is_udplite)         /* Disable the option on UDP sockets */
2766 			return -ENOPROTOOPT;
2767 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2768 			val = 8;
2769 		else if (val > USHRT_MAX)
2770 			val = USHRT_MAX;
2771 		up->pcrlen = val;
2772 		up->pcflag |= UDPLITE_RECV_CC;
2773 		break;
2774 
2775 	default:
2776 		err = -ENOPROTOOPT;
2777 		break;
2778 	}
2779 
2780 	return err;
2781 }
2782 EXPORT_SYMBOL(udp_lib_setsockopt);
2783 
2784 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2785 		   unsigned int optlen)
2786 {
2787 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2788 		return udp_lib_setsockopt(sk, level, optname,
2789 					  optval, optlen,
2790 					  udp_push_pending_frames);
2791 	return ip_setsockopt(sk, level, optname, optval, optlen);
2792 }
2793 
2794 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2795 		       char __user *optval, int __user *optlen)
2796 {
2797 	struct udp_sock *up = udp_sk(sk);
2798 	int val, len;
2799 
2800 	if (get_user(len, optlen))
2801 		return -EFAULT;
2802 
2803 	len = min_t(unsigned int, len, sizeof(int));
2804 
2805 	if (len < 0)
2806 		return -EINVAL;
2807 
2808 	switch (optname) {
2809 	case UDP_CORK:
2810 		val = READ_ONCE(up->corkflag);
2811 		break;
2812 
2813 	case UDP_ENCAP:
2814 		val = up->encap_type;
2815 		break;
2816 
2817 	case UDP_NO_CHECK6_TX:
2818 		val = up->no_check6_tx;
2819 		break;
2820 
2821 	case UDP_NO_CHECK6_RX:
2822 		val = up->no_check6_rx;
2823 		break;
2824 
2825 	case UDP_SEGMENT:
2826 		val = READ_ONCE(up->gso_size);
2827 		break;
2828 
2829 	case UDP_GRO:
2830 		val = up->gro_enabled;
2831 		break;
2832 
2833 	/* The following two cannot be changed on UDP sockets, the return is
2834 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2835 	case UDPLITE_SEND_CSCOV:
2836 		val = up->pcslen;
2837 		break;
2838 
2839 	case UDPLITE_RECV_CSCOV:
2840 		val = up->pcrlen;
2841 		break;
2842 
2843 	default:
2844 		return -ENOPROTOOPT;
2845 	}
2846 
2847 	if (put_user(len, optlen))
2848 		return -EFAULT;
2849 	if (copy_to_user(optval, &val, len))
2850 		return -EFAULT;
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(udp_lib_getsockopt);
2854 
2855 int udp_getsockopt(struct sock *sk, int level, int optname,
2856 		   char __user *optval, int __user *optlen)
2857 {
2858 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2859 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2860 	return ip_getsockopt(sk, level, optname, optval, optlen);
2861 }
2862 
2863 /**
2864  * 	udp_poll - wait for a UDP event.
2865  *	@file: - file struct
2866  *	@sock: - socket
2867  *	@wait: - poll table
2868  *
2869  *	This is same as datagram poll, except for the special case of
2870  *	blocking sockets. If application is using a blocking fd
2871  *	and a packet with checksum error is in the queue;
2872  *	then it could get return from select indicating data available
2873  *	but then block when reading it. Add special case code
2874  *	to work around these arguably broken applications.
2875  */
2876 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2877 {
2878 	__poll_t mask = datagram_poll(file, sock, wait);
2879 	struct sock *sk = sock->sk;
2880 
2881 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2882 		mask |= EPOLLIN | EPOLLRDNORM;
2883 
2884 	/* Check for false positives due to checksum errors */
2885 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2886 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2887 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2888 
2889 	/* psock ingress_msg queue should not contain any bad checksum frames */
2890 	if (sk_is_readable(sk))
2891 		mask |= EPOLLIN | EPOLLRDNORM;
2892 	return mask;
2893 
2894 }
2895 EXPORT_SYMBOL(udp_poll);
2896 
2897 int udp_abort(struct sock *sk, int err)
2898 {
2899 	lock_sock(sk);
2900 
2901 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2902 	 * with close()
2903 	 */
2904 	if (sock_flag(sk, SOCK_DEAD))
2905 		goto out;
2906 
2907 	sk->sk_err = err;
2908 	sk_error_report(sk);
2909 	__udp_disconnect(sk, 0);
2910 
2911 out:
2912 	release_sock(sk);
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(udp_abort);
2917 
2918 struct proto udp_prot = {
2919 	.name			= "UDP",
2920 	.owner			= THIS_MODULE,
2921 	.close			= udp_lib_close,
2922 	.pre_connect		= udp_pre_connect,
2923 	.connect		= ip4_datagram_connect,
2924 	.disconnect		= udp_disconnect,
2925 	.ioctl			= udp_ioctl,
2926 	.init			= udp_init_sock,
2927 	.destroy		= udp_destroy_sock,
2928 	.setsockopt		= udp_setsockopt,
2929 	.getsockopt		= udp_getsockopt,
2930 	.sendmsg		= udp_sendmsg,
2931 	.recvmsg		= udp_recvmsg,
2932 	.sendpage		= udp_sendpage,
2933 	.release_cb		= ip4_datagram_release_cb,
2934 	.hash			= udp_lib_hash,
2935 	.unhash			= udp_lib_unhash,
2936 	.rehash			= udp_v4_rehash,
2937 	.get_port		= udp_v4_get_port,
2938 	.put_port		= udp_lib_unhash,
2939 #ifdef CONFIG_BPF_SYSCALL
2940 	.psock_update_sk_prot	= udp_bpf_update_proto,
2941 #endif
2942 	.memory_allocated	= &udp_memory_allocated,
2943 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2944 
2945 	.sysctl_mem		= sysctl_udp_mem,
2946 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2947 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2948 	.obj_size		= sizeof(struct udp_sock),
2949 	.h.udp_table		= &udp_table,
2950 	.diag_destroy		= udp_abort,
2951 };
2952 EXPORT_SYMBOL(udp_prot);
2953 
2954 /* ------------------------------------------------------------------------ */
2955 #ifdef CONFIG_PROC_FS
2956 
2957 static struct sock *udp_get_first(struct seq_file *seq, int start)
2958 {
2959 	struct sock *sk;
2960 	struct udp_seq_afinfo *afinfo;
2961 	struct udp_iter_state *state = seq->private;
2962 	struct net *net = seq_file_net(seq);
2963 
2964 	if (state->bpf_seq_afinfo)
2965 		afinfo = state->bpf_seq_afinfo;
2966 	else
2967 		afinfo = pde_data(file_inode(seq->file));
2968 
2969 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2970 	     ++state->bucket) {
2971 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2972 
2973 		if (hlist_empty(&hslot->head))
2974 			continue;
2975 
2976 		spin_lock_bh(&hslot->lock);
2977 		sk_for_each(sk, &hslot->head) {
2978 			if (!net_eq(sock_net(sk), net))
2979 				continue;
2980 			if (afinfo->family == AF_UNSPEC ||
2981 			    sk->sk_family == afinfo->family)
2982 				goto found;
2983 		}
2984 		spin_unlock_bh(&hslot->lock);
2985 	}
2986 	sk = NULL;
2987 found:
2988 	return sk;
2989 }
2990 
2991 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2992 {
2993 	struct udp_seq_afinfo *afinfo;
2994 	struct udp_iter_state *state = seq->private;
2995 	struct net *net = seq_file_net(seq);
2996 
2997 	if (state->bpf_seq_afinfo)
2998 		afinfo = state->bpf_seq_afinfo;
2999 	else
3000 		afinfo = pde_data(file_inode(seq->file));
3001 
3002 	do {
3003 		sk = sk_next(sk);
3004 	} while (sk && (!net_eq(sock_net(sk), net) ||
3005 			(afinfo->family != AF_UNSPEC &&
3006 			 sk->sk_family != afinfo->family)));
3007 
3008 	if (!sk) {
3009 		if (state->bucket <= afinfo->udp_table->mask)
3010 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3011 		return udp_get_first(seq, state->bucket + 1);
3012 	}
3013 	return sk;
3014 }
3015 
3016 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3017 {
3018 	struct sock *sk = udp_get_first(seq, 0);
3019 
3020 	if (sk)
3021 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3022 			--pos;
3023 	return pos ? NULL : sk;
3024 }
3025 
3026 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3027 {
3028 	struct udp_iter_state *state = seq->private;
3029 	state->bucket = MAX_UDP_PORTS;
3030 
3031 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3032 }
3033 EXPORT_SYMBOL(udp_seq_start);
3034 
3035 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3036 {
3037 	struct sock *sk;
3038 
3039 	if (v == SEQ_START_TOKEN)
3040 		sk = udp_get_idx(seq, 0);
3041 	else
3042 		sk = udp_get_next(seq, v);
3043 
3044 	++*pos;
3045 	return sk;
3046 }
3047 EXPORT_SYMBOL(udp_seq_next);
3048 
3049 void udp_seq_stop(struct seq_file *seq, void *v)
3050 {
3051 	struct udp_seq_afinfo *afinfo;
3052 	struct udp_iter_state *state = seq->private;
3053 
3054 	if (state->bpf_seq_afinfo)
3055 		afinfo = state->bpf_seq_afinfo;
3056 	else
3057 		afinfo = pde_data(file_inode(seq->file));
3058 
3059 	if (state->bucket <= afinfo->udp_table->mask)
3060 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3061 }
3062 EXPORT_SYMBOL(udp_seq_stop);
3063 
3064 /* ------------------------------------------------------------------------ */
3065 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3066 		int bucket)
3067 {
3068 	struct inet_sock *inet = inet_sk(sp);
3069 	__be32 dest = inet->inet_daddr;
3070 	__be32 src  = inet->inet_rcv_saddr;
3071 	__u16 destp	  = ntohs(inet->inet_dport);
3072 	__u16 srcp	  = ntohs(inet->inet_sport);
3073 
3074 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3075 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3076 		bucket, src, srcp, dest, destp, sp->sk_state,
3077 		sk_wmem_alloc_get(sp),
3078 		udp_rqueue_get(sp),
3079 		0, 0L, 0,
3080 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3081 		0, sock_i_ino(sp),
3082 		refcount_read(&sp->sk_refcnt), sp,
3083 		atomic_read(&sp->sk_drops));
3084 }
3085 
3086 int udp4_seq_show(struct seq_file *seq, void *v)
3087 {
3088 	seq_setwidth(seq, 127);
3089 	if (v == SEQ_START_TOKEN)
3090 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3091 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3092 			   "inode ref pointer drops");
3093 	else {
3094 		struct udp_iter_state *state = seq->private;
3095 
3096 		udp4_format_sock(v, seq, state->bucket);
3097 	}
3098 	seq_pad(seq, '\n');
3099 	return 0;
3100 }
3101 
3102 #ifdef CONFIG_BPF_SYSCALL
3103 struct bpf_iter__udp {
3104 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3105 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3106 	uid_t uid __aligned(8);
3107 	int bucket __aligned(8);
3108 };
3109 
3110 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3111 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3112 {
3113 	struct bpf_iter__udp ctx;
3114 
3115 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3116 	ctx.meta = meta;
3117 	ctx.udp_sk = udp_sk;
3118 	ctx.uid = uid;
3119 	ctx.bucket = bucket;
3120 	return bpf_iter_run_prog(prog, &ctx);
3121 }
3122 
3123 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3124 {
3125 	struct udp_iter_state *state = seq->private;
3126 	struct bpf_iter_meta meta;
3127 	struct bpf_prog *prog;
3128 	struct sock *sk = v;
3129 	uid_t uid;
3130 
3131 	if (v == SEQ_START_TOKEN)
3132 		return 0;
3133 
3134 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3135 	meta.seq = seq;
3136 	prog = bpf_iter_get_info(&meta, false);
3137 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3138 }
3139 
3140 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3141 {
3142 	struct bpf_iter_meta meta;
3143 	struct bpf_prog *prog;
3144 
3145 	if (!v) {
3146 		meta.seq = seq;
3147 		prog = bpf_iter_get_info(&meta, true);
3148 		if (prog)
3149 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3150 	}
3151 
3152 	udp_seq_stop(seq, v);
3153 }
3154 
3155 static const struct seq_operations bpf_iter_udp_seq_ops = {
3156 	.start		= udp_seq_start,
3157 	.next		= udp_seq_next,
3158 	.stop		= bpf_iter_udp_seq_stop,
3159 	.show		= bpf_iter_udp_seq_show,
3160 };
3161 #endif
3162 
3163 const struct seq_operations udp_seq_ops = {
3164 	.start		= udp_seq_start,
3165 	.next		= udp_seq_next,
3166 	.stop		= udp_seq_stop,
3167 	.show		= udp4_seq_show,
3168 };
3169 EXPORT_SYMBOL(udp_seq_ops);
3170 
3171 static struct udp_seq_afinfo udp4_seq_afinfo = {
3172 	.family		= AF_INET,
3173 	.udp_table	= &udp_table,
3174 };
3175 
3176 static int __net_init udp4_proc_init_net(struct net *net)
3177 {
3178 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3179 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3180 		return -ENOMEM;
3181 	return 0;
3182 }
3183 
3184 static void __net_exit udp4_proc_exit_net(struct net *net)
3185 {
3186 	remove_proc_entry("udp", net->proc_net);
3187 }
3188 
3189 static struct pernet_operations udp4_net_ops = {
3190 	.init = udp4_proc_init_net,
3191 	.exit = udp4_proc_exit_net,
3192 };
3193 
3194 int __init udp4_proc_init(void)
3195 {
3196 	return register_pernet_subsys(&udp4_net_ops);
3197 }
3198 
3199 void udp4_proc_exit(void)
3200 {
3201 	unregister_pernet_subsys(&udp4_net_ops);
3202 }
3203 #endif /* CONFIG_PROC_FS */
3204 
3205 static __initdata unsigned long uhash_entries;
3206 static int __init set_uhash_entries(char *str)
3207 {
3208 	ssize_t ret;
3209 
3210 	if (!str)
3211 		return 0;
3212 
3213 	ret = kstrtoul(str, 0, &uhash_entries);
3214 	if (ret)
3215 		return 0;
3216 
3217 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3218 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3219 	return 1;
3220 }
3221 __setup("uhash_entries=", set_uhash_entries);
3222 
3223 void __init udp_table_init(struct udp_table *table, const char *name)
3224 {
3225 	unsigned int i;
3226 
3227 	table->hash = alloc_large_system_hash(name,
3228 					      2 * sizeof(struct udp_hslot),
3229 					      uhash_entries,
3230 					      21, /* one slot per 2 MB */
3231 					      0,
3232 					      &table->log,
3233 					      &table->mask,
3234 					      UDP_HTABLE_SIZE_MIN,
3235 					      64 * 1024);
3236 
3237 	table->hash2 = table->hash + (table->mask + 1);
3238 	for (i = 0; i <= table->mask; i++) {
3239 		INIT_HLIST_HEAD(&table->hash[i].head);
3240 		table->hash[i].count = 0;
3241 		spin_lock_init(&table->hash[i].lock);
3242 	}
3243 	for (i = 0; i <= table->mask; i++) {
3244 		INIT_HLIST_HEAD(&table->hash2[i].head);
3245 		table->hash2[i].count = 0;
3246 		spin_lock_init(&table->hash2[i].lock);
3247 	}
3248 }
3249 
3250 u32 udp_flow_hashrnd(void)
3251 {
3252 	static u32 hashrnd __read_mostly;
3253 
3254 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3255 
3256 	return hashrnd;
3257 }
3258 EXPORT_SYMBOL(udp_flow_hashrnd);
3259 
3260 static int __net_init udp_sysctl_init(struct net *net)
3261 {
3262 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3263 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3264 
3265 #ifdef CONFIG_NET_L3_MASTER_DEV
3266 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3267 #endif
3268 
3269 	return 0;
3270 }
3271 
3272 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3273 	.init	= udp_sysctl_init,
3274 };
3275 
3276 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3277 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3278 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3279 
3280 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3281 {
3282 	struct udp_iter_state *st = priv_data;
3283 	struct udp_seq_afinfo *afinfo;
3284 	int ret;
3285 
3286 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3287 	if (!afinfo)
3288 		return -ENOMEM;
3289 
3290 	afinfo->family = AF_UNSPEC;
3291 	afinfo->udp_table = &udp_table;
3292 	st->bpf_seq_afinfo = afinfo;
3293 	ret = bpf_iter_init_seq_net(priv_data, aux);
3294 	if (ret)
3295 		kfree(afinfo);
3296 	return ret;
3297 }
3298 
3299 static void bpf_iter_fini_udp(void *priv_data)
3300 {
3301 	struct udp_iter_state *st = priv_data;
3302 
3303 	kfree(st->bpf_seq_afinfo);
3304 	bpf_iter_fini_seq_net(priv_data);
3305 }
3306 
3307 static const struct bpf_iter_seq_info udp_seq_info = {
3308 	.seq_ops		= &bpf_iter_udp_seq_ops,
3309 	.init_seq_private	= bpf_iter_init_udp,
3310 	.fini_seq_private	= bpf_iter_fini_udp,
3311 	.seq_priv_size		= sizeof(struct udp_iter_state),
3312 };
3313 
3314 static struct bpf_iter_reg udp_reg_info = {
3315 	.target			= "udp",
3316 	.ctx_arg_info_size	= 1,
3317 	.ctx_arg_info		= {
3318 		{ offsetof(struct bpf_iter__udp, udp_sk),
3319 		  PTR_TO_BTF_ID_OR_NULL },
3320 	},
3321 	.seq_info		= &udp_seq_info,
3322 };
3323 
3324 static void __init bpf_iter_register(void)
3325 {
3326 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3327 	if (bpf_iter_reg_target(&udp_reg_info))
3328 		pr_warn("Warning: could not register bpf iterator udp\n");
3329 }
3330 #endif
3331 
3332 void __init udp_init(void)
3333 {
3334 	unsigned long limit;
3335 	unsigned int i;
3336 
3337 	udp_table_init(&udp_table, "UDP");
3338 	limit = nr_free_buffer_pages() / 8;
3339 	limit = max(limit, 128UL);
3340 	sysctl_udp_mem[0] = limit / 4 * 3;
3341 	sysctl_udp_mem[1] = limit;
3342 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3343 
3344 	/* 16 spinlocks per cpu */
3345 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3346 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3347 				GFP_KERNEL);
3348 	if (!udp_busylocks)
3349 		panic("UDP: failed to alloc udp_busylocks\n");
3350 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3351 		spin_lock_init(udp_busylocks + i);
3352 
3353 	if (register_pernet_subsys(&udp_sysctl_ops))
3354 		panic("UDP: failed to init sysctl parameters.\n");
3355 
3356 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3357 	bpf_iter_register();
3358 #endif
3359 }
3360