xref: /openbmc/linux/net/ipv4/udp.c (revision c0e297dc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2),
142 			       unsigned int log)
143 {
144 	struct sock *sk2;
145 	struct hlist_nulls_node *node;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_nulls_for_each(sk2, node, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     !uid_eq(uid, sock_i_uid(sk2))) &&
157 		    saddr_comp(sk, sk2)) {
158 			if (!bitmap)
159 				return 1;
160 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk,
173 				int (*saddr_comp)(const struct sock *sk1,
174 						  const struct sock *sk2))
175 {
176 	struct sock *sk2;
177 	struct hlist_nulls_node *node;
178 	kuid_t uid = sock_i_uid(sk);
179 	int res = 0;
180 
181 	spin_lock(&hslot2->lock);
182 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 		if (net_eq(sock_net(sk2), net) &&
184 		    sk2 != sk &&
185 		    (udp_sk(sk2)->udp_port_hash == num) &&
186 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 		     !uid_eq(uid, sock_i_uid(sk2))) &&
191 		    saddr_comp(sk, sk2)) {
192 			res = 1;
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
200 /**
201  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
202  *
203  *  @sk:          socket struct in question
204  *  @snum:        port number to look up
205  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
206  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207  *                   with NULL address
208  */
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 		     int (*saddr_comp)(const struct sock *sk1,
211 				       const struct sock *sk2),
212 		     unsigned int hash2_nulladdr)
213 {
214 	struct udp_hslot *hslot, *hslot2;
215 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 	int    error = 1;
217 	struct net *net = sock_net(sk);
218 
219 	if (!snum) {
220 		int low, high, remaining;
221 		unsigned int rand;
222 		unsigned short first, last;
223 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224 
225 		inet_get_local_port_range(net, &low, &high);
226 		remaining = (high - low) + 1;
227 
228 		rand = prandom_u32();
229 		first = reciprocal_scale(rand, remaining) + low;
230 		/*
231 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 		 */
233 		rand = (rand | 1) * (udptable->mask + 1);
234 		last = first + udptable->mask + 1;
235 		do {
236 			hslot = udp_hashslot(udptable, net, first);
237 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 			spin_lock_bh(&hslot->lock);
239 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 					    saddr_comp, udptable->log);
241 
242 			snum = first;
243 			/*
244 			 * Iterate on all possible values of snum for this hash.
245 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 			 * give us randomization and full range coverage.
247 			 */
248 			do {
249 				if (low <= snum && snum <= high &&
250 				    !test_bit(snum >> udptable->log, bitmap) &&
251 				    !inet_is_local_reserved_port(net, snum))
252 					goto found;
253 				snum += rand;
254 			} while (snum != first);
255 			spin_unlock_bh(&hslot->lock);
256 		} while (++first != last);
257 		goto fail;
258 	} else {
259 		hslot = udp_hashslot(udptable, net, snum);
260 		spin_lock_bh(&hslot->lock);
261 		if (hslot->count > 10) {
262 			int exist;
263 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264 
265 			slot2          &= udptable->mask;
266 			hash2_nulladdr &= udptable->mask;
267 
268 			hslot2 = udp_hashslot2(udptable, slot2);
269 			if (hslot->count < hslot2->count)
270 				goto scan_primary_hash;
271 
272 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 						     sk, saddr_comp);
274 			if (!exist && (hash2_nulladdr != slot2)) {
275 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 							     sk, saddr_comp);
278 			}
279 			if (exist)
280 				goto fail_unlock;
281 			else
282 				goto found;
283 		}
284 scan_primary_hash:
285 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 					saddr_comp, 0))
287 			goto fail_unlock;
288 	}
289 found:
290 	inet_sk(sk)->inet_num = snum;
291 	udp_sk(sk)->udp_port_hash = snum;
292 	udp_sk(sk)->udp_portaddr_hash ^= snum;
293 	if (sk_unhashed(sk)) {
294 		sk_nulls_add_node_rcu(sk, &hslot->head);
295 		hslot->count++;
296 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297 
298 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 		spin_lock(&hslot2->lock);
300 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 					 &hslot2->head);
302 		hslot2->count++;
303 		spin_unlock(&hslot2->lock);
304 	}
305 	error = 0;
306 fail_unlock:
307 	spin_unlock_bh(&hslot->lock);
308 fail:
309 	return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312 
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316 
317 	return 	(!ipv6_only_sock(sk2)  &&
318 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321 
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 			      unsigned int port)
324 {
325 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327 
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 	unsigned int hash2_nulladdr =
331 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 	unsigned int hash2_partial =
333 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334 
335 	/* precompute partial secondary hash */
336 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339 
340 static inline int compute_score(struct sock *sk, struct net *net,
341 				__be32 saddr, unsigned short hnum, __be16 sport,
342 				__be32 daddr, __be16 dport, int dif)
343 {
344 	int score;
345 	struct inet_sock *inet;
346 
347 	if (!net_eq(sock_net(sk), net) ||
348 	    udp_sk(sk)->udp_port_hash != hnum ||
349 	    ipv6_only_sock(sk))
350 		return -1;
351 
352 	score = (sk->sk_family == PF_INET) ? 2 : 1;
353 	inet = inet_sk(sk);
354 
355 	if (inet->inet_rcv_saddr) {
356 		if (inet->inet_rcv_saddr != daddr)
357 			return -1;
358 		score += 4;
359 	}
360 
361 	if (inet->inet_daddr) {
362 		if (inet->inet_daddr != saddr)
363 			return -1;
364 		score += 4;
365 	}
366 
367 	if (inet->inet_dport) {
368 		if (inet->inet_dport != sport)
369 			return -1;
370 		score += 4;
371 	}
372 
373 	if (sk->sk_bound_dev_if) {
374 		if (sk->sk_bound_dev_if != dif)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	return score;
380 }
381 
382 /*
383  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384  */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 				 __be32 saddr, __be16 sport,
387 				 __be32 daddr, unsigned int hnum, int dif)
388 {
389 	int score;
390 	struct inet_sock *inet;
391 
392 	if (!net_eq(sock_net(sk), net) ||
393 	    ipv6_only_sock(sk))
394 		return -1;
395 
396 	inet = inet_sk(sk);
397 
398 	if (inet->inet_rcv_saddr != daddr ||
399 	    inet->inet_num != hnum)
400 		return -1;
401 
402 	score = (sk->sk_family == PF_INET) ? 2 : 1;
403 
404 	if (inet->inet_daddr) {
405 		if (inet->inet_daddr != saddr)
406 			return -1;
407 		score += 4;
408 	}
409 
410 	if (inet->inet_dport) {
411 		if (inet->inet_dport != sport)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (sk->sk_bound_dev_if) {
417 		if (sk->sk_bound_dev_if != dif)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	return score;
423 }
424 
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif,
441 		struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 	struct sock *sk, *result;
444 	struct hlist_nulls_node *node;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 begin:
449 	result = NULL;
450 	badness = 0;
451 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 		score = compute_score2(sk, net, saddr, sport,
453 				      daddr, hnum, dif);
454 		if (score > badness) {
455 			result = sk;
456 			badness = score;
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				matches = 1;
462 			}
463 		} else if (score == badness && reuseport) {
464 			matches++;
465 			if (reciprocal_scale(hash, matches) == 0)
466 				result = sk;
467 			hash = next_pseudo_random32(hash);
468 		}
469 	}
470 	/*
471 	 * if the nulls value we got at the end of this lookup is
472 	 * not the expected one, we must restart lookup.
473 	 * We probably met an item that was moved to another chain.
474 	 */
475 	if (get_nulls_value(node) != slot2)
476 		goto begin;
477 	if (result) {
478 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 			result = NULL;
480 		else if (unlikely(compute_score2(result, net, saddr, sport,
481 				  daddr, hnum, dif) < badness)) {
482 			sock_put(result);
483 			goto begin;
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable)
495 {
496 	struct sock *sk, *result;
497 	struct hlist_nulls_node *node;
498 	unsigned short hnum = ntohs(dport);
499 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 	int score, badness, matches = 0, reuseport = 0;
502 	u32 hash = 0;
503 
504 	rcu_read_lock();
505 	if (hslot->count > 10) {
506 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 		slot2 = hash2 & udptable->mask;
508 		hslot2 = &udptable->hash2[slot2];
509 		if (hslot->count < hslot2->count)
510 			goto begin;
511 
512 		result = udp4_lib_lookup2(net, saddr, sport,
513 					  daddr, hnum, dif,
514 					  hslot2, slot2);
515 		if (!result) {
516 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 			slot2 = hash2 & udptable->mask;
518 			hslot2 = &udptable->hash2[slot2];
519 			if (hslot->count < hslot2->count)
520 				goto begin;
521 
522 			result = udp4_lib_lookup2(net, saddr, sport,
523 						  htonl(INADDR_ANY), hnum, dif,
524 						  hslot2, slot2);
525 		}
526 		rcu_read_unlock();
527 		return result;
528 	}
529 begin:
530 	result = NULL;
531 	badness = 0;
532 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 		score = compute_score(sk, net, saddr, hnum, sport,
534 				      daddr, dport, dif);
535 		if (score > badness) {
536 			result = sk;
537 			badness = score;
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				matches = 1;
543 			}
544 		} else if (score == badness && reuseport) {
545 			matches++;
546 			if (reciprocal_scale(hash, matches) == 0)
547 				result = sk;
548 			hash = next_pseudo_random32(hash);
549 		}
550 	}
551 	/*
552 	 * if the nulls value we got at the end of this lookup is
553 	 * not the expected one, we must restart lookup.
554 	 * We probably met an item that was moved to another chain.
555 	 */
556 	if (get_nulls_value(node) != slot)
557 		goto begin;
558 
559 	if (result) {
560 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 			result = NULL;
562 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 				  daddr, dport, dif) < badness)) {
564 			sock_put(result);
565 			goto begin;
566 		}
567 	}
568 	rcu_read_unlock();
569 	return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572 
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 						 __be16 sport, __be16 dport,
575 						 struct udp_table *udptable)
576 {
577 	const struct iphdr *iph = ip_hdr(skb);
578 
579 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 				 iph->daddr, dport, inet_iif(skb),
581 				 udptable);
582 }
583 
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 			     __be32 daddr, __be16 dport, int dif)
586 {
587 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590 
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 				       __be16 loc_port, __be32 loc_addr,
593 				       __be16 rmt_port, __be32 rmt_addr,
594 				       int dif, unsigned short hnum)
595 {
596 	struct inet_sock *inet = inet_sk(sk);
597 
598 	if (!net_eq(sock_net(sk), net) ||
599 	    udp_sk(sk)->udp_port_hash != hnum ||
600 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 	    ipv6_only_sock(sk) ||
604 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 	if (!sk) {
637 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 		return;	/* No socket for error */
639 	}
640 
641 	err = 0;
642 	harderr = 0;
643 	inet = inet_sk(sk);
644 
645 	switch (type) {
646 	default:
647 	case ICMP_TIME_EXCEEDED:
648 		err = EHOSTUNREACH;
649 		break;
650 	case ICMP_SOURCE_QUENCH:
651 		goto out;
652 	case ICMP_PARAMETERPROB:
653 		err = EPROTO;
654 		harderr = 1;
655 		break;
656 	case ICMP_DEST_UNREACH:
657 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 			ipv4_sk_update_pmtu(skb, sk, info);
659 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 				err = EMSGSIZE;
661 				harderr = 1;
662 				break;
663 			}
664 			goto out;
665 		}
666 		err = EHOSTUNREACH;
667 		if (code <= NR_ICMP_UNREACH) {
668 			harderr = icmp_err_convert[code].fatal;
669 			err = icmp_err_convert[code].errno;
670 		}
671 		break;
672 	case ICMP_REDIRECT:
673 		ipv4_sk_redirect(skb, sk);
674 		goto out;
675 	}
676 
677 	/*
678 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
679 	 *	4.1.3.3.
680 	 */
681 	if (!inet->recverr) {
682 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 			goto out;
684 	} else
685 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686 
687 	sk->sk_err = err;
688 	sk->sk_error_report(sk);
689 out:
690 	sock_put(sk);
691 }
692 
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 	__udp4_lib_err(skb, info, &udp_table);
696 }
697 
698 /*
699  * Throw away all pending data and cancel the corking. Socket is locked.
700  */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 	struct udp_sock *up = udp_sk(sk);
704 
705 	if (up->pending) {
706 		up->len = 0;
707 		up->pending = 0;
708 		ip_flush_pending_frames(sk);
709 	}
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712 
713 /**
714  * 	udp4_hwcsum  -  handle outgoing HW checksumming
715  * 	@skb: 	sk_buff containing the filled-in UDP header
716  * 	        (checksum field must be zeroed out)
717  *	@src:	source IP address
718  *	@dst:	destination IP address
719  */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 	struct udphdr *uh = udp_hdr(skb);
723 	int offset = skb_transport_offset(skb);
724 	int len = skb->len - offset;
725 	int hlen = len;
726 	__wsum csum = 0;
727 
728 	if (!skb_has_frag_list(skb)) {
729 		/*
730 		 * Only one fragment on the socket.
731 		 */
732 		skb->csum_start = skb_transport_header(skb) - skb->head;
733 		skb->csum_offset = offsetof(struct udphdr, check);
734 		uh->check = ~csum_tcpudp_magic(src, dst, len,
735 					       IPPROTO_UDP, 0);
736 	} else {
737 		struct sk_buff *frags;
738 
739 		/*
740 		 * HW-checksum won't work as there are two or more
741 		 * fragments on the socket so that all csums of sk_buffs
742 		 * should be together
743 		 */
744 		skb_walk_frags(skb, frags) {
745 			csum = csum_add(csum, frags->csum);
746 			hlen -= frags->len;
747 		}
748 
749 		csum = skb_checksum(skb, offset, hlen, csum);
750 		skb->ip_summed = CHECKSUM_NONE;
751 
752 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 		if (uh->check == 0)
754 			uh->check = CSUM_MANGLED_0;
755 	}
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758 
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760  * for the simple case like when setting the checksum for a UDP tunnel.
761  */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 		  __be32 saddr, __be32 daddr, int len)
764 {
765 	struct udphdr *uh = udp_hdr(skb);
766 
767 	if (nocheck)
768 		uh->check = 0;
769 	else if (skb_is_gso(skb))
770 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773 
774 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775 
776 		skb->ip_summed = CHECKSUM_PARTIAL;
777 		skb->csum_start = skb_transport_header(skb) - skb->head;
778 		skb->csum_offset = offsetof(struct udphdr, check);
779 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 	} else {
781 		__wsum csum;
782 
783 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784 
785 		uh->check = 0;
786 		csum = skb_checksum(skb, 0, len, 0);
787 		uh->check = udp_v4_check(len, saddr, daddr, csum);
788 		if (uh->check == 0)
789 			uh->check = CSUM_MANGLED_0;
790 
791 		skb->ip_summed = CHECKSUM_UNNECESSARY;
792 	}
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795 
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 	struct sock *sk = skb->sk;
799 	struct inet_sock *inet = inet_sk(sk);
800 	struct udphdr *uh;
801 	int err = 0;
802 	int is_udplite = IS_UDPLITE(sk);
803 	int offset = skb_transport_offset(skb);
804 	int len = skb->len - offset;
805 	__wsum csum = 0;
806 
807 	/*
808 	 * Create a UDP header
809 	 */
810 	uh = udp_hdr(skb);
811 	uh->source = inet->inet_sport;
812 	uh->dest = fl4->fl4_dport;
813 	uh->len = htons(len);
814 	uh->check = 0;
815 
816 	if (is_udplite)  				 /*     UDP-Lite      */
817 		csum = udplite_csum(skb);
818 
819 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
820 
821 		skb->ip_summed = CHECKSUM_NONE;
822 		goto send;
823 
824 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825 
826 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 		goto send;
828 
829 	} else
830 		csum = udp_csum(skb);
831 
832 	/* add protocol-dependent pseudo-header */
833 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 				      sk->sk_protocol, csum);
835 	if (uh->check == 0)
836 		uh->check = CSUM_MANGLED_0;
837 
838 send:
839 	err = ip_send_skb(sock_net(sk), skb);
840 	if (err) {
841 		if (err == -ENOBUFS && !inet->recverr) {
842 			UDP_INC_STATS_USER(sock_net(sk),
843 					   UDP_MIB_SNDBUFERRORS, is_udplite);
844 			err = 0;
845 		}
846 	} else
847 		UDP_INC_STATS_USER(sock_net(sk),
848 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
849 	return err;
850 }
851 
852 /*
853  * Push out all pending data as one UDP datagram. Socket is locked.
854  */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 	struct udp_sock  *up = udp_sk(sk);
858 	struct inet_sock *inet = inet_sk(sk);
859 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 	struct sk_buff *skb;
861 	int err = 0;
862 
863 	skb = ip_finish_skb(sk, fl4);
864 	if (!skb)
865 		goto out;
866 
867 	err = udp_send_skb(skb, fl4);
868 
869 out:
870 	up->len = 0;
871 	up->pending = 0;
872 	return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875 
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 	struct inet_sock *inet = inet_sk(sk);
879 	struct udp_sock *up = udp_sk(sk);
880 	struct flowi4 fl4_stack;
881 	struct flowi4 *fl4;
882 	int ulen = len;
883 	struct ipcm_cookie ipc;
884 	struct rtable *rt = NULL;
885 	int free = 0;
886 	int connected = 0;
887 	__be32 daddr, faddr, saddr;
888 	__be16 dport;
889 	u8  tos;
890 	int err, is_udplite = IS_UDPLITE(sk);
891 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 	struct sk_buff *skb;
894 	struct ip_options_data opt_copy;
895 
896 	if (len > 0xFFFF)
897 		return -EMSGSIZE;
898 
899 	/*
900 	 *	Check the flags.
901 	 */
902 
903 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 		return -EOPNOTSUPP;
905 
906 	ipc.opt = NULL;
907 	ipc.tx_flags = 0;
908 	ipc.ttl = 0;
909 	ipc.tos = -1;
910 
911 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912 
913 	fl4 = &inet->cork.fl.u.ip4;
914 	if (up->pending) {
915 		/*
916 		 * There are pending frames.
917 		 * The socket lock must be held while it's corked.
918 		 */
919 		lock_sock(sk);
920 		if (likely(up->pending)) {
921 			if (unlikely(up->pending != AF_INET)) {
922 				release_sock(sk);
923 				return -EINVAL;
924 			}
925 			goto do_append_data;
926 		}
927 		release_sock(sk);
928 	}
929 	ulen += sizeof(struct udphdr);
930 
931 	/*
932 	 *	Get and verify the address.
933 	 */
934 	if (msg->msg_name) {
935 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 		if (msg->msg_namelen < sizeof(*usin))
937 			return -EINVAL;
938 		if (usin->sin_family != AF_INET) {
939 			if (usin->sin_family != AF_UNSPEC)
940 				return -EAFNOSUPPORT;
941 		}
942 
943 		daddr = usin->sin_addr.s_addr;
944 		dport = usin->sin_port;
945 		if (dport == 0)
946 			return -EINVAL;
947 	} else {
948 		if (sk->sk_state != TCP_ESTABLISHED)
949 			return -EDESTADDRREQ;
950 		daddr = inet->inet_daddr;
951 		dport = inet->inet_dport;
952 		/* Open fast path for connected socket.
953 		   Route will not be used, if at least one option is set.
954 		 */
955 		connected = 1;
956 	}
957 	ipc.addr = inet->inet_saddr;
958 
959 	ipc.oif = sk->sk_bound_dev_if;
960 
961 	sock_tx_timestamp(sk, &ipc.tx_flags);
962 
963 	if (msg->msg_controllen) {
964 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 				   sk->sk_family == AF_INET6);
966 		if (err)
967 			return err;
968 		if (ipc.opt)
969 			free = 1;
970 		connected = 0;
971 	}
972 	if (!ipc.opt) {
973 		struct ip_options_rcu *inet_opt;
974 
975 		rcu_read_lock();
976 		inet_opt = rcu_dereference(inet->inet_opt);
977 		if (inet_opt) {
978 			memcpy(&opt_copy, inet_opt,
979 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
980 			ipc.opt = &opt_copy.opt;
981 		}
982 		rcu_read_unlock();
983 	}
984 
985 	saddr = ipc.addr;
986 	ipc.addr = faddr = daddr;
987 
988 	if (ipc.opt && ipc.opt->opt.srr) {
989 		if (!daddr)
990 			return -EINVAL;
991 		faddr = ipc.opt->opt.faddr;
992 		connected = 0;
993 	}
994 	tos = get_rttos(&ipc, inet);
995 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 	    (msg->msg_flags & MSG_DONTROUTE) ||
997 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 		tos |= RTO_ONLINK;
999 		connected = 0;
1000 	}
1001 
1002 	if (ipv4_is_multicast(daddr)) {
1003 		if (!ipc.oif)
1004 			ipc.oif = inet->mc_index;
1005 		if (!saddr)
1006 			saddr = inet->mc_addr;
1007 		connected = 0;
1008 	} else if (!ipc.oif)
1009 		ipc.oif = inet->uc_index;
1010 
1011 	if (connected)
1012 		rt = (struct rtable *)sk_dst_check(sk, 0);
1013 
1014 	if (!rt) {
1015 		struct net *net = sock_net(sk);
1016 
1017 		fl4 = &fl4_stack;
1018 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1019 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1020 				   inet_sk_flowi_flags(sk),
1021 				   faddr, saddr, dport, inet->inet_sport);
1022 
1023 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1024 		rt = ip_route_output_flow(net, fl4, sk);
1025 		if (IS_ERR(rt)) {
1026 			err = PTR_ERR(rt);
1027 			rt = NULL;
1028 			if (err == -ENETUNREACH)
1029 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1030 			goto out;
1031 		}
1032 
1033 		err = -EACCES;
1034 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1035 		    !sock_flag(sk, SOCK_BROADCAST))
1036 			goto out;
1037 		if (connected)
1038 			sk_dst_set(sk, dst_clone(&rt->dst));
1039 	}
1040 
1041 	if (msg->msg_flags&MSG_CONFIRM)
1042 		goto do_confirm;
1043 back_from_confirm:
1044 
1045 	saddr = fl4->saddr;
1046 	if (!ipc.addr)
1047 		daddr = ipc.addr = fl4->daddr;
1048 
1049 	/* Lockless fast path for the non-corking case. */
1050 	if (!corkreq) {
1051 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1052 				  sizeof(struct udphdr), &ipc, &rt,
1053 				  msg->msg_flags);
1054 		err = PTR_ERR(skb);
1055 		if (!IS_ERR_OR_NULL(skb))
1056 			err = udp_send_skb(skb, fl4);
1057 		goto out;
1058 	}
1059 
1060 	lock_sock(sk);
1061 	if (unlikely(up->pending)) {
1062 		/* The socket is already corked while preparing it. */
1063 		/* ... which is an evident application bug. --ANK */
1064 		release_sock(sk);
1065 
1066 		net_dbg_ratelimited("cork app bug 2\n");
1067 		err = -EINVAL;
1068 		goto out;
1069 	}
1070 	/*
1071 	 *	Now cork the socket to pend data.
1072 	 */
1073 	fl4 = &inet->cork.fl.u.ip4;
1074 	fl4->daddr = daddr;
1075 	fl4->saddr = saddr;
1076 	fl4->fl4_dport = dport;
1077 	fl4->fl4_sport = inet->inet_sport;
1078 	up->pending = AF_INET;
1079 
1080 do_append_data:
1081 	up->len += ulen;
1082 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1083 			     sizeof(struct udphdr), &ipc, &rt,
1084 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1085 	if (err)
1086 		udp_flush_pending_frames(sk);
1087 	else if (!corkreq)
1088 		err = udp_push_pending_frames(sk);
1089 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1090 		up->pending = 0;
1091 	release_sock(sk);
1092 
1093 out:
1094 	ip_rt_put(rt);
1095 	if (free)
1096 		kfree(ipc.opt);
1097 	if (!err)
1098 		return len;
1099 	/*
1100 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1101 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1102 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1103 	 * things).  We could add another new stat but at least for now that
1104 	 * seems like overkill.
1105 	 */
1106 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1107 		UDP_INC_STATS_USER(sock_net(sk),
1108 				UDP_MIB_SNDBUFERRORS, is_udplite);
1109 	}
1110 	return err;
1111 
1112 do_confirm:
1113 	dst_confirm(&rt->dst);
1114 	if (!(msg->msg_flags&MSG_PROBE) || len)
1115 		goto back_from_confirm;
1116 	err = 0;
1117 	goto out;
1118 }
1119 EXPORT_SYMBOL(udp_sendmsg);
1120 
1121 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1122 		 size_t size, int flags)
1123 {
1124 	struct inet_sock *inet = inet_sk(sk);
1125 	struct udp_sock *up = udp_sk(sk);
1126 	int ret;
1127 
1128 	if (flags & MSG_SENDPAGE_NOTLAST)
1129 		flags |= MSG_MORE;
1130 
1131 	if (!up->pending) {
1132 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1133 
1134 		/* Call udp_sendmsg to specify destination address which
1135 		 * sendpage interface can't pass.
1136 		 * This will succeed only when the socket is connected.
1137 		 */
1138 		ret = udp_sendmsg(sk, &msg, 0);
1139 		if (ret < 0)
1140 			return ret;
1141 	}
1142 
1143 	lock_sock(sk);
1144 
1145 	if (unlikely(!up->pending)) {
1146 		release_sock(sk);
1147 
1148 		net_dbg_ratelimited("udp cork app bug 3\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1153 			     page, offset, size, flags);
1154 	if (ret == -EOPNOTSUPP) {
1155 		release_sock(sk);
1156 		return sock_no_sendpage(sk->sk_socket, page, offset,
1157 					size, flags);
1158 	}
1159 	if (ret < 0) {
1160 		udp_flush_pending_frames(sk);
1161 		goto out;
1162 	}
1163 
1164 	up->len += size;
1165 	if (!(up->corkflag || (flags&MSG_MORE)))
1166 		ret = udp_push_pending_frames(sk);
1167 	if (!ret)
1168 		ret = size;
1169 out:
1170 	release_sock(sk);
1171 	return ret;
1172 }
1173 
1174 /**
1175  *	first_packet_length	- return length of first packet in receive queue
1176  *	@sk: socket
1177  *
1178  *	Drops all bad checksum frames, until a valid one is found.
1179  *	Returns the length of found skb, or 0 if none is found.
1180  */
1181 static unsigned int first_packet_length(struct sock *sk)
1182 {
1183 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1184 	struct sk_buff *skb;
1185 	unsigned int res;
1186 
1187 	__skb_queue_head_init(&list_kill);
1188 
1189 	spin_lock_bh(&rcvq->lock);
1190 	while ((skb = skb_peek(rcvq)) != NULL &&
1191 		udp_lib_checksum_complete(skb)) {
1192 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1193 				 IS_UDPLITE(sk));
1194 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1195 				 IS_UDPLITE(sk));
1196 		atomic_inc(&sk->sk_drops);
1197 		__skb_unlink(skb, rcvq);
1198 		__skb_queue_tail(&list_kill, skb);
1199 	}
1200 	res = skb ? skb->len : 0;
1201 	spin_unlock_bh(&rcvq->lock);
1202 
1203 	if (!skb_queue_empty(&list_kill)) {
1204 		bool slow = lock_sock_fast(sk);
1205 
1206 		__skb_queue_purge(&list_kill);
1207 		sk_mem_reclaim_partial(sk);
1208 		unlock_sock_fast(sk, slow);
1209 	}
1210 	return res;
1211 }
1212 
1213 /*
1214  *	IOCTL requests applicable to the UDP protocol
1215  */
1216 
1217 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1218 {
1219 	switch (cmd) {
1220 	case SIOCOUTQ:
1221 	{
1222 		int amount = sk_wmem_alloc_get(sk);
1223 
1224 		return put_user(amount, (int __user *)arg);
1225 	}
1226 
1227 	case SIOCINQ:
1228 	{
1229 		unsigned int amount = first_packet_length(sk);
1230 
1231 		if (amount)
1232 			/*
1233 			 * We will only return the amount
1234 			 * of this packet since that is all
1235 			 * that will be read.
1236 			 */
1237 			amount -= sizeof(struct udphdr);
1238 
1239 		return put_user(amount, (int __user *)arg);
1240 	}
1241 
1242 	default:
1243 		return -ENOIOCTLCMD;
1244 	}
1245 
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL(udp_ioctl);
1249 
1250 /*
1251  * 	This should be easy, if there is something there we
1252  * 	return it, otherwise we block.
1253  */
1254 
1255 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1256 		int flags, int *addr_len)
1257 {
1258 	struct inet_sock *inet = inet_sk(sk);
1259 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1260 	struct sk_buff *skb;
1261 	unsigned int ulen, copied;
1262 	int peeked, off = 0;
1263 	int err;
1264 	int is_udplite = IS_UDPLITE(sk);
1265 	bool slow;
1266 
1267 	if (flags & MSG_ERRQUEUE)
1268 		return ip_recv_error(sk, msg, len, addr_len);
1269 
1270 try_again:
1271 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1272 				  &peeked, &off, &err);
1273 	if (!skb)
1274 		goto out;
1275 
1276 	ulen = skb->len - sizeof(struct udphdr);
1277 	copied = len;
1278 	if (copied > ulen)
1279 		copied = ulen;
1280 	else if (copied < ulen)
1281 		msg->msg_flags |= MSG_TRUNC;
1282 
1283 	/*
1284 	 * If checksum is needed at all, try to do it while copying the
1285 	 * data.  If the data is truncated, or if we only want a partial
1286 	 * coverage checksum (UDP-Lite), do it before the copy.
1287 	 */
1288 
1289 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1290 		if (udp_lib_checksum_complete(skb))
1291 			goto csum_copy_err;
1292 	}
1293 
1294 	if (skb_csum_unnecessary(skb))
1295 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1296 					    msg, copied);
1297 	else {
1298 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1299 						     msg);
1300 
1301 		if (err == -EINVAL)
1302 			goto csum_copy_err;
1303 	}
1304 
1305 	if (unlikely(err)) {
1306 		trace_kfree_skb(skb, udp_recvmsg);
1307 		if (!peeked) {
1308 			atomic_inc(&sk->sk_drops);
1309 			UDP_INC_STATS_USER(sock_net(sk),
1310 					   UDP_MIB_INERRORS, is_udplite);
1311 		}
1312 		goto out_free;
1313 	}
1314 
1315 	if (!peeked)
1316 		UDP_INC_STATS_USER(sock_net(sk),
1317 				UDP_MIB_INDATAGRAMS, is_udplite);
1318 
1319 	sock_recv_ts_and_drops(msg, sk, skb);
1320 
1321 	/* Copy the address. */
1322 	if (sin) {
1323 		sin->sin_family = AF_INET;
1324 		sin->sin_port = udp_hdr(skb)->source;
1325 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1326 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1327 		*addr_len = sizeof(*sin);
1328 	}
1329 	if (inet->cmsg_flags)
1330 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1331 
1332 	err = copied;
1333 	if (flags & MSG_TRUNC)
1334 		err = ulen;
1335 
1336 out_free:
1337 	skb_free_datagram_locked(sk, skb);
1338 out:
1339 	return err;
1340 
1341 csum_copy_err:
1342 	slow = lock_sock_fast(sk);
1343 	if (!skb_kill_datagram(sk, skb, flags)) {
1344 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1345 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1346 	}
1347 	unlock_sock_fast(sk, slow);
1348 
1349 	/* starting over for a new packet, but check if we need to yield */
1350 	cond_resched();
1351 	msg->msg_flags &= ~MSG_TRUNC;
1352 	goto try_again;
1353 }
1354 
1355 int udp_disconnect(struct sock *sk, int flags)
1356 {
1357 	struct inet_sock *inet = inet_sk(sk);
1358 	/*
1359 	 *	1003.1g - break association.
1360 	 */
1361 
1362 	sk->sk_state = TCP_CLOSE;
1363 	inet->inet_daddr = 0;
1364 	inet->inet_dport = 0;
1365 	sock_rps_reset_rxhash(sk);
1366 	sk->sk_bound_dev_if = 0;
1367 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1368 		inet_reset_saddr(sk);
1369 
1370 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1371 		sk->sk_prot->unhash(sk);
1372 		inet->inet_sport = 0;
1373 	}
1374 	sk_dst_reset(sk);
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL(udp_disconnect);
1378 
1379 void udp_lib_unhash(struct sock *sk)
1380 {
1381 	if (sk_hashed(sk)) {
1382 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1383 		struct udp_hslot *hslot, *hslot2;
1384 
1385 		hslot  = udp_hashslot(udptable, sock_net(sk),
1386 				      udp_sk(sk)->udp_port_hash);
1387 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1388 
1389 		spin_lock_bh(&hslot->lock);
1390 		if (sk_nulls_del_node_init_rcu(sk)) {
1391 			hslot->count--;
1392 			inet_sk(sk)->inet_num = 0;
1393 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1394 
1395 			spin_lock(&hslot2->lock);
1396 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1397 			hslot2->count--;
1398 			spin_unlock(&hslot2->lock);
1399 		}
1400 		spin_unlock_bh(&hslot->lock);
1401 	}
1402 }
1403 EXPORT_SYMBOL(udp_lib_unhash);
1404 
1405 /*
1406  * inet_rcv_saddr was changed, we must rehash secondary hash
1407  */
1408 void udp_lib_rehash(struct sock *sk, u16 newhash)
1409 {
1410 	if (sk_hashed(sk)) {
1411 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1412 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1413 
1414 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1415 		nhslot2 = udp_hashslot2(udptable, newhash);
1416 		udp_sk(sk)->udp_portaddr_hash = newhash;
1417 		if (hslot2 != nhslot2) {
1418 			hslot = udp_hashslot(udptable, sock_net(sk),
1419 					     udp_sk(sk)->udp_port_hash);
1420 			/* we must lock primary chain too */
1421 			spin_lock_bh(&hslot->lock);
1422 
1423 			spin_lock(&hslot2->lock);
1424 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1425 			hslot2->count--;
1426 			spin_unlock(&hslot2->lock);
1427 
1428 			spin_lock(&nhslot2->lock);
1429 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1430 						 &nhslot2->head);
1431 			nhslot2->count++;
1432 			spin_unlock(&nhslot2->lock);
1433 
1434 			spin_unlock_bh(&hslot->lock);
1435 		}
1436 	}
1437 }
1438 EXPORT_SYMBOL(udp_lib_rehash);
1439 
1440 static void udp_v4_rehash(struct sock *sk)
1441 {
1442 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1443 					  inet_sk(sk)->inet_rcv_saddr,
1444 					  inet_sk(sk)->inet_num);
1445 	udp_lib_rehash(sk, new_hash);
1446 }
1447 
1448 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1449 {
1450 	int rc;
1451 
1452 	if (inet_sk(sk)->inet_daddr) {
1453 		sock_rps_save_rxhash(sk, skb);
1454 		sk_mark_napi_id(sk, skb);
1455 		sk_incoming_cpu_update(sk);
1456 	}
1457 
1458 	rc = sock_queue_rcv_skb(sk, skb);
1459 	if (rc < 0) {
1460 		int is_udplite = IS_UDPLITE(sk);
1461 
1462 		/* Note that an ENOMEM error is charged twice */
1463 		if (rc == -ENOMEM)
1464 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1465 					 is_udplite);
1466 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1467 		kfree_skb(skb);
1468 		trace_udp_fail_queue_rcv_skb(rc, sk);
1469 		return -1;
1470 	}
1471 
1472 	return 0;
1473 
1474 }
1475 
1476 static struct static_key udp_encap_needed __read_mostly;
1477 void udp_encap_enable(void)
1478 {
1479 	if (!static_key_enabled(&udp_encap_needed))
1480 		static_key_slow_inc(&udp_encap_needed);
1481 }
1482 EXPORT_SYMBOL(udp_encap_enable);
1483 
1484 /* returns:
1485  *  -1: error
1486  *   0: success
1487  *  >0: "udp encap" protocol resubmission
1488  *
1489  * Note that in the success and error cases, the skb is assumed to
1490  * have either been requeued or freed.
1491  */
1492 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	struct udp_sock *up = udp_sk(sk);
1495 	int rc;
1496 	int is_udplite = IS_UDPLITE(sk);
1497 
1498 	/*
1499 	 *	Charge it to the socket, dropping if the queue is full.
1500 	 */
1501 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1502 		goto drop;
1503 	nf_reset(skb);
1504 
1505 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1506 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1507 
1508 		/*
1509 		 * This is an encapsulation socket so pass the skb to
1510 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1511 		 * fall through and pass this up the UDP socket.
1512 		 * up->encap_rcv() returns the following value:
1513 		 * =0 if skb was successfully passed to the encap
1514 		 *    handler or was discarded by it.
1515 		 * >0 if skb should be passed on to UDP.
1516 		 * <0 if skb should be resubmitted as proto -N
1517 		 */
1518 
1519 		/* if we're overly short, let UDP handle it */
1520 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1521 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1522 			int ret;
1523 
1524 			/* Verify checksum before giving to encap */
1525 			if (udp_lib_checksum_complete(skb))
1526 				goto csum_error;
1527 
1528 			ret = encap_rcv(sk, skb);
1529 			if (ret <= 0) {
1530 				UDP_INC_STATS_BH(sock_net(sk),
1531 						 UDP_MIB_INDATAGRAMS,
1532 						 is_udplite);
1533 				return -ret;
1534 			}
1535 		}
1536 
1537 		/* FALLTHROUGH -- it's a UDP Packet */
1538 	}
1539 
1540 	/*
1541 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1542 	 */
1543 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1544 
1545 		/*
1546 		 * MIB statistics other than incrementing the error count are
1547 		 * disabled for the following two types of errors: these depend
1548 		 * on the application settings, not on the functioning of the
1549 		 * protocol stack as such.
1550 		 *
1551 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1552 		 * way ... to ... at least let the receiving application block
1553 		 * delivery of packets with coverage values less than a value
1554 		 * provided by the application."
1555 		 */
1556 		if (up->pcrlen == 0) {          /* full coverage was set  */
1557 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1558 					    UDP_SKB_CB(skb)->cscov, skb->len);
1559 			goto drop;
1560 		}
1561 		/* The next case involves violating the min. coverage requested
1562 		 * by the receiver. This is subtle: if receiver wants x and x is
1563 		 * greater than the buffersize/MTU then receiver will complain
1564 		 * that it wants x while sender emits packets of smaller size y.
1565 		 * Therefore the above ...()->partial_cov statement is essential.
1566 		 */
1567 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1568 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1569 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1570 			goto drop;
1571 		}
1572 	}
1573 
1574 	if (rcu_access_pointer(sk->sk_filter) &&
1575 	    udp_lib_checksum_complete(skb))
1576 		goto csum_error;
1577 
1578 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1579 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1580 				 is_udplite);
1581 		goto drop;
1582 	}
1583 
1584 	rc = 0;
1585 
1586 	ipv4_pktinfo_prepare(sk, skb);
1587 	bh_lock_sock(sk);
1588 	if (!sock_owned_by_user(sk))
1589 		rc = __udp_queue_rcv_skb(sk, skb);
1590 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1591 		bh_unlock_sock(sk);
1592 		goto drop;
1593 	}
1594 	bh_unlock_sock(sk);
1595 
1596 	return rc;
1597 
1598 csum_error:
1599 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1600 drop:
1601 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1602 	atomic_inc(&sk->sk_drops);
1603 	kfree_skb(skb);
1604 	return -1;
1605 }
1606 
1607 static void flush_stack(struct sock **stack, unsigned int count,
1608 			struct sk_buff *skb, unsigned int final)
1609 {
1610 	unsigned int i;
1611 	struct sk_buff *skb1 = NULL;
1612 	struct sock *sk;
1613 
1614 	for (i = 0; i < count; i++) {
1615 		sk = stack[i];
1616 		if (likely(!skb1))
1617 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1618 
1619 		if (!skb1) {
1620 			atomic_inc(&sk->sk_drops);
1621 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1622 					 IS_UDPLITE(sk));
1623 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1624 					 IS_UDPLITE(sk));
1625 		}
1626 
1627 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1628 			skb1 = NULL;
1629 
1630 		sock_put(sk);
1631 	}
1632 	if (unlikely(skb1))
1633 		kfree_skb(skb1);
1634 }
1635 
1636 /* For TCP sockets, sk_rx_dst is protected by socket lock
1637  * For UDP, we use xchg() to guard against concurrent changes.
1638  */
1639 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1640 {
1641 	struct dst_entry *old;
1642 
1643 	dst_hold(dst);
1644 	old = xchg(&sk->sk_rx_dst, dst);
1645 	dst_release(old);
1646 }
1647 
1648 /*
1649  *	Multicasts and broadcasts go to each listener.
1650  *
1651  *	Note: called only from the BH handler context.
1652  */
1653 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1654 				    struct udphdr  *uh,
1655 				    __be32 saddr, __be32 daddr,
1656 				    struct udp_table *udptable,
1657 				    int proto)
1658 {
1659 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1660 	struct hlist_nulls_node *node;
1661 	unsigned short hnum = ntohs(uh->dest);
1662 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1663 	int dif = skb->dev->ifindex;
1664 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1665 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1666 	bool inner_flushed = false;
1667 
1668 	if (use_hash2) {
1669 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1670 			    udp_table.mask;
1671 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1672 start_lookup:
1673 		hslot = &udp_table.hash2[hash2];
1674 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1675 	}
1676 
1677 	spin_lock(&hslot->lock);
1678 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1679 		if (__udp_is_mcast_sock(net, sk,
1680 					uh->dest, daddr,
1681 					uh->source, saddr,
1682 					dif, hnum)) {
1683 			if (unlikely(count == ARRAY_SIZE(stack))) {
1684 				flush_stack(stack, count, skb, ~0);
1685 				inner_flushed = true;
1686 				count = 0;
1687 			}
1688 			stack[count++] = sk;
1689 			sock_hold(sk);
1690 		}
1691 	}
1692 
1693 	spin_unlock(&hslot->lock);
1694 
1695 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1696 	if (use_hash2 && hash2 != hash2_any) {
1697 		hash2 = hash2_any;
1698 		goto start_lookup;
1699 	}
1700 
1701 	/*
1702 	 * do the slow work with no lock held
1703 	 */
1704 	if (count) {
1705 		flush_stack(stack, count, skb, count - 1);
1706 	} else {
1707 		if (!inner_flushed)
1708 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1709 					 proto == IPPROTO_UDPLITE);
1710 		consume_skb(skb);
1711 	}
1712 	return 0;
1713 }
1714 
1715 /* Initialize UDP checksum. If exited with zero value (success),
1716  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1717  * Otherwise, csum completion requires chacksumming packet body,
1718  * including udp header and folding it to skb->csum.
1719  */
1720 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1721 				 int proto)
1722 {
1723 	int err;
1724 
1725 	UDP_SKB_CB(skb)->partial_cov = 0;
1726 	UDP_SKB_CB(skb)->cscov = skb->len;
1727 
1728 	if (proto == IPPROTO_UDPLITE) {
1729 		err = udplite_checksum_init(skb, uh);
1730 		if (err)
1731 			return err;
1732 	}
1733 
1734 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1735 					    inet_compute_pseudo);
1736 }
1737 
1738 /*
1739  *	All we need to do is get the socket, and then do a checksum.
1740  */
1741 
1742 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1743 		   int proto)
1744 {
1745 	struct sock *sk;
1746 	struct udphdr *uh;
1747 	unsigned short ulen;
1748 	struct rtable *rt = skb_rtable(skb);
1749 	__be32 saddr, daddr;
1750 	struct net *net = dev_net(skb->dev);
1751 
1752 	/*
1753 	 *  Validate the packet.
1754 	 */
1755 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1756 		goto drop;		/* No space for header. */
1757 
1758 	uh   = udp_hdr(skb);
1759 	ulen = ntohs(uh->len);
1760 	saddr = ip_hdr(skb)->saddr;
1761 	daddr = ip_hdr(skb)->daddr;
1762 
1763 	if (ulen > skb->len)
1764 		goto short_packet;
1765 
1766 	if (proto == IPPROTO_UDP) {
1767 		/* UDP validates ulen. */
1768 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1769 			goto short_packet;
1770 		uh = udp_hdr(skb);
1771 	}
1772 
1773 	if (udp4_csum_init(skb, uh, proto))
1774 		goto csum_error;
1775 
1776 	sk = skb_steal_sock(skb);
1777 	if (sk) {
1778 		struct dst_entry *dst = skb_dst(skb);
1779 		int ret;
1780 
1781 		if (unlikely(sk->sk_rx_dst != dst))
1782 			udp_sk_rx_dst_set(sk, dst);
1783 
1784 		ret = udp_queue_rcv_skb(sk, skb);
1785 		sock_put(sk);
1786 		/* a return value > 0 means to resubmit the input, but
1787 		 * it wants the return to be -protocol, or 0
1788 		 */
1789 		if (ret > 0)
1790 			return -ret;
1791 		return 0;
1792 	}
1793 
1794 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1795 		return __udp4_lib_mcast_deliver(net, skb, uh,
1796 						saddr, daddr, udptable, proto);
1797 
1798 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1799 	if (sk) {
1800 		int ret;
1801 
1802 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1803 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1804 						 inet_compute_pseudo);
1805 
1806 		ret = udp_queue_rcv_skb(sk, skb);
1807 		sock_put(sk);
1808 
1809 		/* a return value > 0 means to resubmit the input, but
1810 		 * it wants the return to be -protocol, or 0
1811 		 */
1812 		if (ret > 0)
1813 			return -ret;
1814 		return 0;
1815 	}
1816 
1817 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1818 		goto drop;
1819 	nf_reset(skb);
1820 
1821 	/* No socket. Drop packet silently, if checksum is wrong */
1822 	if (udp_lib_checksum_complete(skb))
1823 		goto csum_error;
1824 
1825 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1826 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1827 
1828 	/*
1829 	 * Hmm.  We got an UDP packet to a port to which we
1830 	 * don't wanna listen.  Ignore it.
1831 	 */
1832 	kfree_skb(skb);
1833 	return 0;
1834 
1835 short_packet:
1836 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1837 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1838 			    &saddr, ntohs(uh->source),
1839 			    ulen, skb->len,
1840 			    &daddr, ntohs(uh->dest));
1841 	goto drop;
1842 
1843 csum_error:
1844 	/*
1845 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1846 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1847 	 */
1848 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1849 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1850 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1851 			    ulen);
1852 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1853 drop:
1854 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1855 	kfree_skb(skb);
1856 	return 0;
1857 }
1858 
1859 /* We can only early demux multicast if there is a single matching socket.
1860  * If more than one socket found returns NULL
1861  */
1862 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1863 						  __be16 loc_port, __be32 loc_addr,
1864 						  __be16 rmt_port, __be32 rmt_addr,
1865 						  int dif)
1866 {
1867 	struct sock *sk, *result;
1868 	struct hlist_nulls_node *node;
1869 	unsigned short hnum = ntohs(loc_port);
1870 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1871 	struct udp_hslot *hslot = &udp_table.hash[slot];
1872 
1873 	/* Do not bother scanning a too big list */
1874 	if (hslot->count > 10)
1875 		return NULL;
1876 
1877 	rcu_read_lock();
1878 begin:
1879 	count = 0;
1880 	result = NULL;
1881 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1882 		if (__udp_is_mcast_sock(net, sk,
1883 					loc_port, loc_addr,
1884 					rmt_port, rmt_addr,
1885 					dif, hnum)) {
1886 			result = sk;
1887 			++count;
1888 		}
1889 	}
1890 	/*
1891 	 * if the nulls value we got at the end of this lookup is
1892 	 * not the expected one, we must restart lookup.
1893 	 * We probably met an item that was moved to another chain.
1894 	 */
1895 	if (get_nulls_value(node) != slot)
1896 		goto begin;
1897 
1898 	if (result) {
1899 		if (count != 1 ||
1900 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1901 			result = NULL;
1902 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1903 						       loc_port, loc_addr,
1904 						       rmt_port, rmt_addr,
1905 						       dif, hnum))) {
1906 			sock_put(result);
1907 			result = NULL;
1908 		}
1909 	}
1910 	rcu_read_unlock();
1911 	return result;
1912 }
1913 
1914 /* For unicast we should only early demux connected sockets or we can
1915  * break forwarding setups.  The chains here can be long so only check
1916  * if the first socket is an exact match and if not move on.
1917  */
1918 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1919 					    __be16 loc_port, __be32 loc_addr,
1920 					    __be16 rmt_port, __be32 rmt_addr,
1921 					    int dif)
1922 {
1923 	struct sock *sk, *result;
1924 	struct hlist_nulls_node *node;
1925 	unsigned short hnum = ntohs(loc_port);
1926 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1927 	unsigned int slot2 = hash2 & udp_table.mask;
1928 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1929 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1930 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1931 
1932 	rcu_read_lock();
1933 	result = NULL;
1934 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1935 		if (INET_MATCH(sk, net, acookie,
1936 			       rmt_addr, loc_addr, ports, dif))
1937 			result = sk;
1938 		/* Only check first socket in chain */
1939 		break;
1940 	}
1941 
1942 	if (result) {
1943 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1944 			result = NULL;
1945 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1946 					      rmt_addr, loc_addr,
1947 					      ports, dif))) {
1948 			sock_put(result);
1949 			result = NULL;
1950 		}
1951 	}
1952 	rcu_read_unlock();
1953 	return result;
1954 }
1955 
1956 void udp_v4_early_demux(struct sk_buff *skb)
1957 {
1958 	struct net *net = dev_net(skb->dev);
1959 	const struct iphdr *iph;
1960 	const struct udphdr *uh;
1961 	struct sock *sk;
1962 	struct dst_entry *dst;
1963 	int dif = skb->dev->ifindex;
1964 	int ours;
1965 
1966 	/* validate the packet */
1967 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1968 		return;
1969 
1970 	iph = ip_hdr(skb);
1971 	uh = udp_hdr(skb);
1972 
1973 	if (skb->pkt_type == PACKET_BROADCAST ||
1974 	    skb->pkt_type == PACKET_MULTICAST) {
1975 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1976 
1977 		if (!in_dev)
1978 			return;
1979 
1980 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1981 				       iph->protocol);
1982 		if (!ours)
1983 			return;
1984 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1985 						   uh->source, iph->saddr, dif);
1986 	} else if (skb->pkt_type == PACKET_HOST) {
1987 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1988 					     uh->source, iph->saddr, dif);
1989 	} else {
1990 		return;
1991 	}
1992 
1993 	if (!sk)
1994 		return;
1995 
1996 	skb->sk = sk;
1997 	skb->destructor = sock_efree;
1998 	dst = READ_ONCE(sk->sk_rx_dst);
1999 
2000 	if (dst)
2001 		dst = dst_check(dst, 0);
2002 	if (dst) {
2003 		/* DST_NOCACHE can not be used without taking a reference */
2004 		if (dst->flags & DST_NOCACHE) {
2005 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2006 				skb_dst_set(skb, dst);
2007 		} else {
2008 			skb_dst_set_noref(skb, dst);
2009 		}
2010 	}
2011 }
2012 
2013 int udp_rcv(struct sk_buff *skb)
2014 {
2015 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2016 }
2017 
2018 void udp_destroy_sock(struct sock *sk)
2019 {
2020 	struct udp_sock *up = udp_sk(sk);
2021 	bool slow = lock_sock_fast(sk);
2022 	udp_flush_pending_frames(sk);
2023 	unlock_sock_fast(sk, slow);
2024 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2025 		void (*encap_destroy)(struct sock *sk);
2026 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2027 		if (encap_destroy)
2028 			encap_destroy(sk);
2029 	}
2030 }
2031 
2032 /*
2033  *	Socket option code for UDP
2034  */
2035 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2036 		       char __user *optval, unsigned int optlen,
2037 		       int (*push_pending_frames)(struct sock *))
2038 {
2039 	struct udp_sock *up = udp_sk(sk);
2040 	int val, valbool;
2041 	int err = 0;
2042 	int is_udplite = IS_UDPLITE(sk);
2043 
2044 	if (optlen < sizeof(int))
2045 		return -EINVAL;
2046 
2047 	if (get_user(val, (int __user *)optval))
2048 		return -EFAULT;
2049 
2050 	valbool = val ? 1 : 0;
2051 
2052 	switch (optname) {
2053 	case UDP_CORK:
2054 		if (val != 0) {
2055 			up->corkflag = 1;
2056 		} else {
2057 			up->corkflag = 0;
2058 			lock_sock(sk);
2059 			push_pending_frames(sk);
2060 			release_sock(sk);
2061 		}
2062 		break;
2063 
2064 	case UDP_ENCAP:
2065 		switch (val) {
2066 		case 0:
2067 		case UDP_ENCAP_ESPINUDP:
2068 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2069 			up->encap_rcv = xfrm4_udp_encap_rcv;
2070 			/* FALLTHROUGH */
2071 		case UDP_ENCAP_L2TPINUDP:
2072 			up->encap_type = val;
2073 			udp_encap_enable();
2074 			break;
2075 		default:
2076 			err = -ENOPROTOOPT;
2077 			break;
2078 		}
2079 		break;
2080 
2081 	case UDP_NO_CHECK6_TX:
2082 		up->no_check6_tx = valbool;
2083 		break;
2084 
2085 	case UDP_NO_CHECK6_RX:
2086 		up->no_check6_rx = valbool;
2087 		break;
2088 
2089 	/*
2090 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2091 	 */
2092 	/* The sender sets actual checksum coverage length via this option.
2093 	 * The case coverage > packet length is handled by send module. */
2094 	case UDPLITE_SEND_CSCOV:
2095 		if (!is_udplite)         /* Disable the option on UDP sockets */
2096 			return -ENOPROTOOPT;
2097 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2098 			val = 8;
2099 		else if (val > USHRT_MAX)
2100 			val = USHRT_MAX;
2101 		up->pcslen = val;
2102 		up->pcflag |= UDPLITE_SEND_CC;
2103 		break;
2104 
2105 	/* The receiver specifies a minimum checksum coverage value. To make
2106 	 * sense, this should be set to at least 8 (as done below). If zero is
2107 	 * used, this again means full checksum coverage.                     */
2108 	case UDPLITE_RECV_CSCOV:
2109 		if (!is_udplite)         /* Disable the option on UDP sockets */
2110 			return -ENOPROTOOPT;
2111 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2112 			val = 8;
2113 		else if (val > USHRT_MAX)
2114 			val = USHRT_MAX;
2115 		up->pcrlen = val;
2116 		up->pcflag |= UDPLITE_RECV_CC;
2117 		break;
2118 
2119 	default:
2120 		err = -ENOPROTOOPT;
2121 		break;
2122 	}
2123 
2124 	return err;
2125 }
2126 EXPORT_SYMBOL(udp_lib_setsockopt);
2127 
2128 int udp_setsockopt(struct sock *sk, int level, int optname,
2129 		   char __user *optval, unsigned int optlen)
2130 {
2131 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2132 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2133 					  udp_push_pending_frames);
2134 	return ip_setsockopt(sk, level, optname, optval, optlen);
2135 }
2136 
2137 #ifdef CONFIG_COMPAT
2138 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2139 			  char __user *optval, unsigned int optlen)
2140 {
2141 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2142 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2143 					  udp_push_pending_frames);
2144 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2145 }
2146 #endif
2147 
2148 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2149 		       char __user *optval, int __user *optlen)
2150 {
2151 	struct udp_sock *up = udp_sk(sk);
2152 	int val, len;
2153 
2154 	if (get_user(len, optlen))
2155 		return -EFAULT;
2156 
2157 	len = min_t(unsigned int, len, sizeof(int));
2158 
2159 	if (len < 0)
2160 		return -EINVAL;
2161 
2162 	switch (optname) {
2163 	case UDP_CORK:
2164 		val = up->corkflag;
2165 		break;
2166 
2167 	case UDP_ENCAP:
2168 		val = up->encap_type;
2169 		break;
2170 
2171 	case UDP_NO_CHECK6_TX:
2172 		val = up->no_check6_tx;
2173 		break;
2174 
2175 	case UDP_NO_CHECK6_RX:
2176 		val = up->no_check6_rx;
2177 		break;
2178 
2179 	/* The following two cannot be changed on UDP sockets, the return is
2180 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2181 	case UDPLITE_SEND_CSCOV:
2182 		val = up->pcslen;
2183 		break;
2184 
2185 	case UDPLITE_RECV_CSCOV:
2186 		val = up->pcrlen;
2187 		break;
2188 
2189 	default:
2190 		return -ENOPROTOOPT;
2191 	}
2192 
2193 	if (put_user(len, optlen))
2194 		return -EFAULT;
2195 	if (copy_to_user(optval, &val, len))
2196 		return -EFAULT;
2197 	return 0;
2198 }
2199 EXPORT_SYMBOL(udp_lib_getsockopt);
2200 
2201 int udp_getsockopt(struct sock *sk, int level, int optname,
2202 		   char __user *optval, int __user *optlen)
2203 {
2204 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2205 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2206 	return ip_getsockopt(sk, level, optname, optval, optlen);
2207 }
2208 
2209 #ifdef CONFIG_COMPAT
2210 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2211 				 char __user *optval, int __user *optlen)
2212 {
2213 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2214 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2215 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2216 }
2217 #endif
2218 /**
2219  * 	udp_poll - wait for a UDP event.
2220  *	@file - file struct
2221  *	@sock - socket
2222  *	@wait - poll table
2223  *
2224  *	This is same as datagram poll, except for the special case of
2225  *	blocking sockets. If application is using a blocking fd
2226  *	and a packet with checksum error is in the queue;
2227  *	then it could get return from select indicating data available
2228  *	but then block when reading it. Add special case code
2229  *	to work around these arguably broken applications.
2230  */
2231 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2232 {
2233 	unsigned int mask = datagram_poll(file, sock, wait);
2234 	struct sock *sk = sock->sk;
2235 
2236 	sock_rps_record_flow(sk);
2237 
2238 	/* Check for false positives due to checksum errors */
2239 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2240 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2241 		mask &= ~(POLLIN | POLLRDNORM);
2242 
2243 	return mask;
2244 
2245 }
2246 EXPORT_SYMBOL(udp_poll);
2247 
2248 struct proto udp_prot = {
2249 	.name		   = "UDP",
2250 	.owner		   = THIS_MODULE,
2251 	.close		   = udp_lib_close,
2252 	.connect	   = ip4_datagram_connect,
2253 	.disconnect	   = udp_disconnect,
2254 	.ioctl		   = udp_ioctl,
2255 	.destroy	   = udp_destroy_sock,
2256 	.setsockopt	   = udp_setsockopt,
2257 	.getsockopt	   = udp_getsockopt,
2258 	.sendmsg	   = udp_sendmsg,
2259 	.recvmsg	   = udp_recvmsg,
2260 	.sendpage	   = udp_sendpage,
2261 	.backlog_rcv	   = __udp_queue_rcv_skb,
2262 	.release_cb	   = ip4_datagram_release_cb,
2263 	.hash		   = udp_lib_hash,
2264 	.unhash		   = udp_lib_unhash,
2265 	.rehash		   = udp_v4_rehash,
2266 	.get_port	   = udp_v4_get_port,
2267 	.memory_allocated  = &udp_memory_allocated,
2268 	.sysctl_mem	   = sysctl_udp_mem,
2269 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2270 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2271 	.obj_size	   = sizeof(struct udp_sock),
2272 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2273 	.h.udp_table	   = &udp_table,
2274 #ifdef CONFIG_COMPAT
2275 	.compat_setsockopt = compat_udp_setsockopt,
2276 	.compat_getsockopt = compat_udp_getsockopt,
2277 #endif
2278 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2279 };
2280 EXPORT_SYMBOL(udp_prot);
2281 
2282 /* ------------------------------------------------------------------------ */
2283 #ifdef CONFIG_PROC_FS
2284 
2285 static struct sock *udp_get_first(struct seq_file *seq, int start)
2286 {
2287 	struct sock *sk;
2288 	struct udp_iter_state *state = seq->private;
2289 	struct net *net = seq_file_net(seq);
2290 
2291 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2292 	     ++state->bucket) {
2293 		struct hlist_nulls_node *node;
2294 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2295 
2296 		if (hlist_nulls_empty(&hslot->head))
2297 			continue;
2298 
2299 		spin_lock_bh(&hslot->lock);
2300 		sk_nulls_for_each(sk, node, &hslot->head) {
2301 			if (!net_eq(sock_net(sk), net))
2302 				continue;
2303 			if (sk->sk_family == state->family)
2304 				goto found;
2305 		}
2306 		spin_unlock_bh(&hslot->lock);
2307 	}
2308 	sk = NULL;
2309 found:
2310 	return sk;
2311 }
2312 
2313 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2314 {
2315 	struct udp_iter_state *state = seq->private;
2316 	struct net *net = seq_file_net(seq);
2317 
2318 	do {
2319 		sk = sk_nulls_next(sk);
2320 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2321 
2322 	if (!sk) {
2323 		if (state->bucket <= state->udp_table->mask)
2324 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2325 		return udp_get_first(seq, state->bucket + 1);
2326 	}
2327 	return sk;
2328 }
2329 
2330 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2331 {
2332 	struct sock *sk = udp_get_first(seq, 0);
2333 
2334 	if (sk)
2335 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2336 			--pos;
2337 	return pos ? NULL : sk;
2338 }
2339 
2340 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2341 {
2342 	struct udp_iter_state *state = seq->private;
2343 	state->bucket = MAX_UDP_PORTS;
2344 
2345 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2346 }
2347 
2348 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2349 {
2350 	struct sock *sk;
2351 
2352 	if (v == SEQ_START_TOKEN)
2353 		sk = udp_get_idx(seq, 0);
2354 	else
2355 		sk = udp_get_next(seq, v);
2356 
2357 	++*pos;
2358 	return sk;
2359 }
2360 
2361 static void udp_seq_stop(struct seq_file *seq, void *v)
2362 {
2363 	struct udp_iter_state *state = seq->private;
2364 
2365 	if (state->bucket <= state->udp_table->mask)
2366 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2367 }
2368 
2369 int udp_seq_open(struct inode *inode, struct file *file)
2370 {
2371 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2372 	struct udp_iter_state *s;
2373 	int err;
2374 
2375 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2376 			   sizeof(struct udp_iter_state));
2377 	if (err < 0)
2378 		return err;
2379 
2380 	s = ((struct seq_file *)file->private_data)->private;
2381 	s->family		= afinfo->family;
2382 	s->udp_table		= afinfo->udp_table;
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(udp_seq_open);
2386 
2387 /* ------------------------------------------------------------------------ */
2388 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2389 {
2390 	struct proc_dir_entry *p;
2391 	int rc = 0;
2392 
2393 	afinfo->seq_ops.start		= udp_seq_start;
2394 	afinfo->seq_ops.next		= udp_seq_next;
2395 	afinfo->seq_ops.stop		= udp_seq_stop;
2396 
2397 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2398 			     afinfo->seq_fops, afinfo);
2399 	if (!p)
2400 		rc = -ENOMEM;
2401 	return rc;
2402 }
2403 EXPORT_SYMBOL(udp_proc_register);
2404 
2405 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2406 {
2407 	remove_proc_entry(afinfo->name, net->proc_net);
2408 }
2409 EXPORT_SYMBOL(udp_proc_unregister);
2410 
2411 /* ------------------------------------------------------------------------ */
2412 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2413 		int bucket)
2414 {
2415 	struct inet_sock *inet = inet_sk(sp);
2416 	__be32 dest = inet->inet_daddr;
2417 	__be32 src  = inet->inet_rcv_saddr;
2418 	__u16 destp	  = ntohs(inet->inet_dport);
2419 	__u16 srcp	  = ntohs(inet->inet_sport);
2420 
2421 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2422 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2423 		bucket, src, srcp, dest, destp, sp->sk_state,
2424 		sk_wmem_alloc_get(sp),
2425 		sk_rmem_alloc_get(sp),
2426 		0, 0L, 0,
2427 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2428 		0, sock_i_ino(sp),
2429 		atomic_read(&sp->sk_refcnt), sp,
2430 		atomic_read(&sp->sk_drops));
2431 }
2432 
2433 int udp4_seq_show(struct seq_file *seq, void *v)
2434 {
2435 	seq_setwidth(seq, 127);
2436 	if (v == SEQ_START_TOKEN)
2437 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2438 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2439 			   "inode ref pointer drops");
2440 	else {
2441 		struct udp_iter_state *state = seq->private;
2442 
2443 		udp4_format_sock(v, seq, state->bucket);
2444 	}
2445 	seq_pad(seq, '\n');
2446 	return 0;
2447 }
2448 
2449 static const struct file_operations udp_afinfo_seq_fops = {
2450 	.owner    = THIS_MODULE,
2451 	.open     = udp_seq_open,
2452 	.read     = seq_read,
2453 	.llseek   = seq_lseek,
2454 	.release  = seq_release_net
2455 };
2456 
2457 /* ------------------------------------------------------------------------ */
2458 static struct udp_seq_afinfo udp4_seq_afinfo = {
2459 	.name		= "udp",
2460 	.family		= AF_INET,
2461 	.udp_table	= &udp_table,
2462 	.seq_fops	= &udp_afinfo_seq_fops,
2463 	.seq_ops	= {
2464 		.show		= udp4_seq_show,
2465 	},
2466 };
2467 
2468 static int __net_init udp4_proc_init_net(struct net *net)
2469 {
2470 	return udp_proc_register(net, &udp4_seq_afinfo);
2471 }
2472 
2473 static void __net_exit udp4_proc_exit_net(struct net *net)
2474 {
2475 	udp_proc_unregister(net, &udp4_seq_afinfo);
2476 }
2477 
2478 static struct pernet_operations udp4_net_ops = {
2479 	.init = udp4_proc_init_net,
2480 	.exit = udp4_proc_exit_net,
2481 };
2482 
2483 int __init udp4_proc_init(void)
2484 {
2485 	return register_pernet_subsys(&udp4_net_ops);
2486 }
2487 
2488 void udp4_proc_exit(void)
2489 {
2490 	unregister_pernet_subsys(&udp4_net_ops);
2491 }
2492 #endif /* CONFIG_PROC_FS */
2493 
2494 static __initdata unsigned long uhash_entries;
2495 static int __init set_uhash_entries(char *str)
2496 {
2497 	ssize_t ret;
2498 
2499 	if (!str)
2500 		return 0;
2501 
2502 	ret = kstrtoul(str, 0, &uhash_entries);
2503 	if (ret)
2504 		return 0;
2505 
2506 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2507 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2508 	return 1;
2509 }
2510 __setup("uhash_entries=", set_uhash_entries);
2511 
2512 void __init udp_table_init(struct udp_table *table, const char *name)
2513 {
2514 	unsigned int i;
2515 
2516 	table->hash = alloc_large_system_hash(name,
2517 					      2 * sizeof(struct udp_hslot),
2518 					      uhash_entries,
2519 					      21, /* one slot per 2 MB */
2520 					      0,
2521 					      &table->log,
2522 					      &table->mask,
2523 					      UDP_HTABLE_SIZE_MIN,
2524 					      64 * 1024);
2525 
2526 	table->hash2 = table->hash + (table->mask + 1);
2527 	for (i = 0; i <= table->mask; i++) {
2528 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2529 		table->hash[i].count = 0;
2530 		spin_lock_init(&table->hash[i].lock);
2531 	}
2532 	for (i = 0; i <= table->mask; i++) {
2533 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2534 		table->hash2[i].count = 0;
2535 		spin_lock_init(&table->hash2[i].lock);
2536 	}
2537 }
2538 
2539 u32 udp_flow_hashrnd(void)
2540 {
2541 	static u32 hashrnd __read_mostly;
2542 
2543 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2544 
2545 	return hashrnd;
2546 }
2547 EXPORT_SYMBOL(udp_flow_hashrnd);
2548 
2549 void __init udp_init(void)
2550 {
2551 	unsigned long limit;
2552 
2553 	udp_table_init(&udp_table, "UDP");
2554 	limit = nr_free_buffer_pages() / 8;
2555 	limit = max(limit, 128UL);
2556 	sysctl_udp_mem[0] = limit / 4 * 3;
2557 	sysctl_udp_mem[1] = limit;
2558 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2559 
2560 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2561 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2562 }
2563