xref: /openbmc/linux/net/ipv4/udp.c (revision be122522)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk, unsigned int log)
132 {
133 	struct sock *sk2;
134 	kuid_t uid = sock_i_uid(sk);
135 
136 	sk_for_each(sk2, &hslot->head) {
137 		if (net_eq(sock_net(sk2), net) &&
138 		    sk2 != sk &&
139 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
140 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
142 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    inet_rcv_saddr_equal(sk, sk2, true)) {
144 			if (sk2->sk_reuseport && sk->sk_reuseport &&
145 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
146 			    uid_eq(uid, sock_i_uid(sk2))) {
147 				if (!bitmap)
148 					return 0;
149 			} else {
150 				if (!bitmap)
151 					return 1;
152 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 					  bitmap);
154 			}
155 		}
156 	}
157 	return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 				struct udp_hslot *hslot2,
166 				struct sock *sk)
167 {
168 	struct sock *sk2;
169 	kuid_t uid = sock_i_uid(sk);
170 	int res = 0;
171 
172 	spin_lock(&hslot2->lock);
173 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
174 		if (net_eq(sock_net(sk2), net) &&
175 		    sk2 != sk &&
176 		    (udp_sk(sk2)->udp_port_hash == num) &&
177 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
178 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 		    inet_rcv_saddr_equal(sk, sk2, true)) {
181 			if (sk2->sk_reuseport && sk->sk_reuseport &&
182 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
183 			    uid_eq(uid, sock_i_uid(sk2))) {
184 				res = 0;
185 			} else {
186 				res = 1;
187 			}
188 			break;
189 		}
190 	}
191 	spin_unlock(&hslot2->lock);
192 	return res;
193 }
194 
195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
196 {
197 	struct net *net = sock_net(sk);
198 	kuid_t uid = sock_i_uid(sk);
199 	struct sock *sk2;
200 
201 	sk_for_each(sk2, &hslot->head) {
202 		if (net_eq(sock_net(sk2), net) &&
203 		    sk2 != sk &&
204 		    sk2->sk_family == sk->sk_family &&
205 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
206 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
207 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
209 		    inet_rcv_saddr_equal(sk, sk2, false)) {
210 			return reuseport_add_sock(sk, sk2,
211 						  inet_rcv_saddr_any(sk));
212 		}
213 	}
214 
215 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
216 }
217 
218 /**
219  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
220  *
221  *  @sk:          socket struct in question
222  *  @snum:        port number to look up
223  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
224  *                   with NULL address
225  */
226 int udp_lib_get_port(struct sock *sk, unsigned short snum,
227 		     unsigned int hash2_nulladdr)
228 {
229 	struct udp_hslot *hslot, *hslot2;
230 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
231 	int    error = 1;
232 	struct net *net = sock_net(sk);
233 
234 	if (!snum) {
235 		int low, high, remaining;
236 		unsigned int rand;
237 		unsigned short first, last;
238 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
239 
240 		inet_get_local_port_range(net, &low, &high);
241 		remaining = (high - low) + 1;
242 
243 		rand = prandom_u32();
244 		first = reciprocal_scale(rand, remaining) + low;
245 		/*
246 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
247 		 */
248 		rand = (rand | 1) * (udptable->mask + 1);
249 		last = first + udptable->mask + 1;
250 		do {
251 			hslot = udp_hashslot(udptable, net, first);
252 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
253 			spin_lock_bh(&hslot->lock);
254 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
255 					    udptable->log);
256 
257 			snum = first;
258 			/*
259 			 * Iterate on all possible values of snum for this hash.
260 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 			 * give us randomization and full range coverage.
262 			 */
263 			do {
264 				if (low <= snum && snum <= high &&
265 				    !test_bit(snum >> udptable->log, bitmap) &&
266 				    !inet_is_local_reserved_port(net, snum))
267 					goto found;
268 				snum += rand;
269 			} while (snum != first);
270 			spin_unlock_bh(&hslot->lock);
271 			cond_resched();
272 		} while (++first != last);
273 		goto fail;
274 	} else {
275 		hslot = udp_hashslot(udptable, net, snum);
276 		spin_lock_bh(&hslot->lock);
277 		if (hslot->count > 10) {
278 			int exist;
279 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
280 
281 			slot2          &= udptable->mask;
282 			hash2_nulladdr &= udptable->mask;
283 
284 			hslot2 = udp_hashslot2(udptable, slot2);
285 			if (hslot->count < hslot2->count)
286 				goto scan_primary_hash;
287 
288 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
289 			if (!exist && (hash2_nulladdr != slot2)) {
290 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
291 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
292 							     sk);
293 			}
294 			if (exist)
295 				goto fail_unlock;
296 			else
297 				goto found;
298 		}
299 scan_primary_hash:
300 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
301 			goto fail_unlock;
302 	}
303 found:
304 	inet_sk(sk)->inet_num = snum;
305 	udp_sk(sk)->udp_port_hash = snum;
306 	udp_sk(sk)->udp_portaddr_hash ^= snum;
307 	if (sk_unhashed(sk)) {
308 		if (sk->sk_reuseport &&
309 		    udp_reuseport_add_sock(sk, hslot)) {
310 			inet_sk(sk)->inet_num = 0;
311 			udp_sk(sk)->udp_port_hash = 0;
312 			udp_sk(sk)->udp_portaddr_hash ^= snum;
313 			goto fail_unlock;
314 		}
315 
316 		sk_add_node_rcu(sk, &hslot->head);
317 		hslot->count++;
318 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
319 
320 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
321 		spin_lock(&hslot2->lock);
322 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
323 		    sk->sk_family == AF_INET6)
324 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
325 					   &hslot2->head);
326 		else
327 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		hslot2->count++;
330 		spin_unlock(&hslot2->lock);
331 	}
332 	sock_set_flag(sk, SOCK_RCU_FREE);
333 	error = 0;
334 fail_unlock:
335 	spin_unlock_bh(&hslot->lock);
336 fail:
337 	return error;
338 }
339 EXPORT_SYMBOL(udp_lib_get_port);
340 
341 int udp_v4_get_port(struct sock *sk, unsigned short snum)
342 {
343 	unsigned int hash2_nulladdr =
344 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
345 	unsigned int hash2_partial =
346 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
347 
348 	/* precompute partial secondary hash */
349 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
350 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
351 }
352 
353 static int compute_score(struct sock *sk, struct net *net,
354 			 __be32 saddr, __be16 sport,
355 			 __be32 daddr, unsigned short hnum,
356 			 int dif, int sdif)
357 {
358 	int score;
359 	struct inet_sock *inet;
360 	bool dev_match;
361 
362 	if (!net_eq(sock_net(sk), net) ||
363 	    udp_sk(sk)->udp_port_hash != hnum ||
364 	    ipv6_only_sock(sk))
365 		return -1;
366 
367 	if (sk->sk_rcv_saddr != daddr)
368 		return -1;
369 
370 	score = (sk->sk_family == PF_INET) ? 2 : 1;
371 
372 	inet = inet_sk(sk);
373 	if (inet->inet_daddr) {
374 		if (inet->inet_daddr != saddr)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	if (inet->inet_dport) {
380 		if (inet->inet_dport != sport)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
386 					dif, sdif);
387 	if (!dev_match)
388 		return -1;
389 	score += 4;
390 
391 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
392 		score++;
393 	return score;
394 }
395 
396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
397 		       const __u16 lport, const __be32 faddr,
398 		       const __be16 fport)
399 {
400 	static u32 udp_ehash_secret __read_mostly;
401 
402 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
403 
404 	return __inet_ehashfn(laddr, lport, faddr, fport,
405 			      udp_ehash_secret + net_hash_mix(net));
406 }
407 
408 /* called with rcu_read_lock() */
409 static struct sock *udp4_lib_lookup2(struct net *net,
410 				     __be32 saddr, __be16 sport,
411 				     __be32 daddr, unsigned int hnum,
412 				     int dif, int sdif,
413 				     struct udp_hslot *hslot2,
414 				     struct sk_buff *skb)
415 {
416 	struct sock *sk, *result;
417 	int score, badness;
418 	u32 hash = 0;
419 
420 	result = NULL;
421 	badness = 0;
422 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
423 		score = compute_score(sk, net, saddr, sport,
424 				      daddr, hnum, dif, sdif);
425 		if (score > badness) {
426 			if (sk->sk_reuseport &&
427 			    sk->sk_state != TCP_ESTABLISHED) {
428 				hash = udp_ehashfn(net, daddr, hnum,
429 						   saddr, sport);
430 				result = reuseport_select_sock(sk, hash, skb,
431 							sizeof(struct udphdr));
432 				if (result && !reuseport_has_conns(sk, false))
433 					return result;
434 			}
435 			badness = score;
436 			result = sk;
437 		}
438 	}
439 	return result;
440 }
441 
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443  * harder than this. -DaveM
444  */
445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 		__be16 sport, __be32 daddr, __be16 dport, int dif,
447 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
448 {
449 	struct sock *result;
450 	unsigned short hnum = ntohs(dport);
451 	unsigned int hash2, slot2;
452 	struct udp_hslot *hslot2;
453 
454 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
455 	slot2 = hash2 & udptable->mask;
456 	hslot2 = &udptable->hash2[slot2];
457 
458 	result = udp4_lib_lookup2(net, saddr, sport,
459 				  daddr, hnum, dif, sdif,
460 				  hslot2, skb);
461 	if (!result) {
462 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
463 		slot2 = hash2 & udptable->mask;
464 		hslot2 = &udptable->hash2[slot2];
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  htonl(INADDR_ANY), hnum, dif, sdif,
468 					  hslot2, skb);
469 	}
470 	if (IS_ERR(result))
471 		return NULL;
472 	return result;
473 }
474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
475 
476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
477 						 __be16 sport, __be16 dport,
478 						 struct udp_table *udptable)
479 {
480 	const struct iphdr *iph = ip_hdr(skb);
481 
482 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
483 				 iph->daddr, dport, inet_iif(skb),
484 				 inet_sdif(skb), udptable, skb);
485 }
486 
487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
488 				 __be16 sport, __be16 dport)
489 {
490 	const struct iphdr *iph = ip_hdr(skb);
491 
492 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
493 				 iph->daddr, dport, inet_iif(skb),
494 				 inet_sdif(skb), &udp_table, NULL);
495 }
496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
497 
498 /* Must be called under rcu_read_lock().
499  * Does increment socket refcount.
500  */
501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
503 			     __be32 daddr, __be16 dport, int dif)
504 {
505 	struct sock *sk;
506 
507 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
508 			       dif, 0, &udp_table, NULL);
509 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
510 		sk = NULL;
511 	return sk;
512 }
513 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
514 #endif
515 
516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
517 				       __be16 loc_port, __be32 loc_addr,
518 				       __be16 rmt_port, __be32 rmt_addr,
519 				       int dif, int sdif, unsigned short hnum)
520 {
521 	struct inet_sock *inet = inet_sk(sk);
522 
523 	if (!net_eq(sock_net(sk), net) ||
524 	    udp_sk(sk)->udp_port_hash != hnum ||
525 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
526 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
527 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
528 	    ipv6_only_sock(sk) ||
529 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
530 		return false;
531 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
532 		return false;
533 	return true;
534 }
535 
536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
537 void udp_encap_enable(void)
538 {
539 	static_branch_inc(&udp_encap_needed_key);
540 }
541 EXPORT_SYMBOL(udp_encap_enable);
542 
543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
544  * through error handlers in encapsulations looking for a match.
545  */
546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
547 {
548 	int i;
549 
550 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
551 		int (*handler)(struct sk_buff *skb, u32 info);
552 		const struct ip_tunnel_encap_ops *encap;
553 
554 		encap = rcu_dereference(iptun_encaps[i]);
555 		if (!encap)
556 			continue;
557 		handler = encap->err_handler;
558 		if (handler && !handler(skb, info))
559 			return 0;
560 	}
561 
562 	return -ENOENT;
563 }
564 
565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
566  * reversing source and destination port: this will match tunnels that force the
567  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
568  * lwtunnels might actually break this assumption by being configured with
569  * different destination ports on endpoints, in this case we won't be able to
570  * trace ICMP messages back to them.
571  *
572  * If this doesn't match any socket, probe tunnels with arbitrary destination
573  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
574  * we've sent packets to won't necessarily match the local destination port.
575  *
576  * Then ask the tunnel implementation to match the error against a valid
577  * association.
578  *
579  * Return an error if we can't find a match, the socket if we need further
580  * processing, zero otherwise.
581  */
582 static struct sock *__udp4_lib_err_encap(struct net *net,
583 					 const struct iphdr *iph,
584 					 struct udphdr *uh,
585 					 struct udp_table *udptable,
586 					 struct sk_buff *skb, u32 info)
587 {
588 	int network_offset, transport_offset;
589 	struct sock *sk;
590 
591 	network_offset = skb_network_offset(skb);
592 	transport_offset = skb_transport_offset(skb);
593 
594 	/* Network header needs to point to the outer IPv4 header inside ICMP */
595 	skb_reset_network_header(skb);
596 
597 	/* Transport header needs to point to the UDP header */
598 	skb_set_transport_header(skb, iph->ihl << 2);
599 
600 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
601 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
602 			       udptable, NULL);
603 	if (sk) {
604 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
605 		struct udp_sock *up = udp_sk(sk);
606 
607 		lookup = READ_ONCE(up->encap_err_lookup);
608 		if (!lookup || lookup(sk, skb))
609 			sk = NULL;
610 	}
611 
612 	if (!sk)
613 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
614 
615 	skb_set_transport_header(skb, transport_offset);
616 	skb_set_network_header(skb, network_offset);
617 
618 	return sk;
619 }
620 
621 /*
622  * This routine is called by the ICMP module when it gets some
623  * sort of error condition.  If err < 0 then the socket should
624  * be closed and the error returned to the user.  If err > 0
625  * it's just the icmp type << 8 | icmp code.
626  * Header points to the ip header of the error packet. We move
627  * on past this. Then (as it used to claim before adjustment)
628  * header points to the first 8 bytes of the udp header.  We need
629  * to find the appropriate port.
630  */
631 
632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
633 {
634 	struct inet_sock *inet;
635 	const struct iphdr *iph = (const struct iphdr *)skb->data;
636 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
637 	const int type = icmp_hdr(skb)->type;
638 	const int code = icmp_hdr(skb)->code;
639 	bool tunnel = false;
640 	struct sock *sk;
641 	int harderr;
642 	int err;
643 	struct net *net = dev_net(skb->dev);
644 
645 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 			       iph->saddr, uh->source, skb->dev->ifindex,
647 			       inet_sdif(skb), udptable, NULL);
648 	if (!sk) {
649 		/* No socket for error: try tunnels before discarding */
650 		sk = ERR_PTR(-ENOENT);
651 		if (static_branch_unlikely(&udp_encap_needed_key)) {
652 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
653 						  info);
654 			if (!sk)
655 				return 0;
656 		}
657 
658 		if (IS_ERR(sk)) {
659 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
660 			return PTR_ERR(sk);
661 		}
662 
663 		tunnel = true;
664 	}
665 
666 	err = 0;
667 	harderr = 0;
668 	inet = inet_sk(sk);
669 
670 	switch (type) {
671 	default:
672 	case ICMP_TIME_EXCEEDED:
673 		err = EHOSTUNREACH;
674 		break;
675 	case ICMP_SOURCE_QUENCH:
676 		goto out;
677 	case ICMP_PARAMETERPROB:
678 		err = EPROTO;
679 		harderr = 1;
680 		break;
681 	case ICMP_DEST_UNREACH:
682 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
683 			ipv4_sk_update_pmtu(skb, sk, info);
684 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
685 				err = EMSGSIZE;
686 				harderr = 1;
687 				break;
688 			}
689 			goto out;
690 		}
691 		err = EHOSTUNREACH;
692 		if (code <= NR_ICMP_UNREACH) {
693 			harderr = icmp_err_convert[code].fatal;
694 			err = icmp_err_convert[code].errno;
695 		}
696 		break;
697 	case ICMP_REDIRECT:
698 		ipv4_sk_redirect(skb, sk);
699 		goto out;
700 	}
701 
702 	/*
703 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
704 	 *	4.1.3.3.
705 	 */
706 	if (tunnel) {
707 		/* ...not for tunnels though: we don't have a sending socket */
708 		goto out;
709 	}
710 	if (!inet->recverr) {
711 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
712 			goto out;
713 	} else
714 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
715 
716 	sk->sk_err = err;
717 	sk->sk_error_report(sk);
718 out:
719 	return 0;
720 }
721 
722 int udp_err(struct sk_buff *skb, u32 info)
723 {
724 	return __udp4_lib_err(skb, info, &udp_table);
725 }
726 
727 /*
728  * Throw away all pending data and cancel the corking. Socket is locked.
729  */
730 void udp_flush_pending_frames(struct sock *sk)
731 {
732 	struct udp_sock *up = udp_sk(sk);
733 
734 	if (up->pending) {
735 		up->len = 0;
736 		up->pending = 0;
737 		ip_flush_pending_frames(sk);
738 	}
739 }
740 EXPORT_SYMBOL(udp_flush_pending_frames);
741 
742 /**
743  * 	udp4_hwcsum  -  handle outgoing HW checksumming
744  * 	@skb: 	sk_buff containing the filled-in UDP header
745  * 	        (checksum field must be zeroed out)
746  *	@src:	source IP address
747  *	@dst:	destination IP address
748  */
749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
750 {
751 	struct udphdr *uh = udp_hdr(skb);
752 	int offset = skb_transport_offset(skb);
753 	int len = skb->len - offset;
754 	int hlen = len;
755 	__wsum csum = 0;
756 
757 	if (!skb_has_frag_list(skb)) {
758 		/*
759 		 * Only one fragment on the socket.
760 		 */
761 		skb->csum_start = skb_transport_header(skb) - skb->head;
762 		skb->csum_offset = offsetof(struct udphdr, check);
763 		uh->check = ~csum_tcpudp_magic(src, dst, len,
764 					       IPPROTO_UDP, 0);
765 	} else {
766 		struct sk_buff *frags;
767 
768 		/*
769 		 * HW-checksum won't work as there are two or more
770 		 * fragments on the socket so that all csums of sk_buffs
771 		 * should be together
772 		 */
773 		skb_walk_frags(skb, frags) {
774 			csum = csum_add(csum, frags->csum);
775 			hlen -= frags->len;
776 		}
777 
778 		csum = skb_checksum(skb, offset, hlen, csum);
779 		skb->ip_summed = CHECKSUM_NONE;
780 
781 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
782 		if (uh->check == 0)
783 			uh->check = CSUM_MANGLED_0;
784 	}
785 }
786 EXPORT_SYMBOL_GPL(udp4_hwcsum);
787 
788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
789  * for the simple case like when setting the checksum for a UDP tunnel.
790  */
791 void udp_set_csum(bool nocheck, struct sk_buff *skb,
792 		  __be32 saddr, __be32 daddr, int len)
793 {
794 	struct udphdr *uh = udp_hdr(skb);
795 
796 	if (nocheck) {
797 		uh->check = 0;
798 	} else if (skb_is_gso(skb)) {
799 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
800 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 		uh->check = 0;
802 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
803 		if (uh->check == 0)
804 			uh->check = CSUM_MANGLED_0;
805 	} else {
806 		skb->ip_summed = CHECKSUM_PARTIAL;
807 		skb->csum_start = skb_transport_header(skb) - skb->head;
808 		skb->csum_offset = offsetof(struct udphdr, check);
809 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
810 	}
811 }
812 EXPORT_SYMBOL(udp_set_csum);
813 
814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
815 			struct inet_cork *cork)
816 {
817 	struct sock *sk = skb->sk;
818 	struct inet_sock *inet = inet_sk(sk);
819 	struct udphdr *uh;
820 	int err = 0;
821 	int is_udplite = IS_UDPLITE(sk);
822 	int offset = skb_transport_offset(skb);
823 	int len = skb->len - offset;
824 	int datalen = len - sizeof(*uh);
825 	__wsum csum = 0;
826 
827 	/*
828 	 * Create a UDP header
829 	 */
830 	uh = udp_hdr(skb);
831 	uh->source = inet->inet_sport;
832 	uh->dest = fl4->fl4_dport;
833 	uh->len = htons(len);
834 	uh->check = 0;
835 
836 	if (cork->gso_size) {
837 		const int hlen = skb_network_header_len(skb) +
838 				 sizeof(struct udphdr);
839 
840 		if (hlen + cork->gso_size > cork->fragsize) {
841 			kfree_skb(skb);
842 			return -EINVAL;
843 		}
844 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
845 			kfree_skb(skb);
846 			return -EINVAL;
847 		}
848 		if (sk->sk_no_check_tx) {
849 			kfree_skb(skb);
850 			return -EINVAL;
851 		}
852 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
853 		    dst_xfrm(skb_dst(skb))) {
854 			kfree_skb(skb);
855 			return -EIO;
856 		}
857 
858 		if (datalen > cork->gso_size) {
859 			skb_shinfo(skb)->gso_size = cork->gso_size;
860 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
861 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
862 								 cork->gso_size);
863 		}
864 		goto csum_partial;
865 	}
866 
867 	if (is_udplite)  				 /*     UDP-Lite      */
868 		csum = udplite_csum(skb);
869 
870 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
871 
872 		skb->ip_summed = CHECKSUM_NONE;
873 		goto send;
874 
875 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
876 csum_partial:
877 
878 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
879 		goto send;
880 
881 	} else
882 		csum = udp_csum(skb);
883 
884 	/* add protocol-dependent pseudo-header */
885 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
886 				      sk->sk_protocol, csum);
887 	if (uh->check == 0)
888 		uh->check = CSUM_MANGLED_0;
889 
890 send:
891 	err = ip_send_skb(sock_net(sk), skb);
892 	if (err) {
893 		if (err == -ENOBUFS && !inet->recverr) {
894 			UDP_INC_STATS(sock_net(sk),
895 				      UDP_MIB_SNDBUFERRORS, is_udplite);
896 			err = 0;
897 		}
898 	} else
899 		UDP_INC_STATS(sock_net(sk),
900 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
901 	return err;
902 }
903 
904 /*
905  * Push out all pending data as one UDP datagram. Socket is locked.
906  */
907 int udp_push_pending_frames(struct sock *sk)
908 {
909 	struct udp_sock  *up = udp_sk(sk);
910 	struct inet_sock *inet = inet_sk(sk);
911 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
912 	struct sk_buff *skb;
913 	int err = 0;
914 
915 	skb = ip_finish_skb(sk, fl4);
916 	if (!skb)
917 		goto out;
918 
919 	err = udp_send_skb(skb, fl4, &inet->cork.base);
920 
921 out:
922 	up->len = 0;
923 	up->pending = 0;
924 	return err;
925 }
926 EXPORT_SYMBOL(udp_push_pending_frames);
927 
928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
929 {
930 	switch (cmsg->cmsg_type) {
931 	case UDP_SEGMENT:
932 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
933 			return -EINVAL;
934 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
935 		return 0;
936 	default:
937 		return -EINVAL;
938 	}
939 }
940 
941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
942 {
943 	struct cmsghdr *cmsg;
944 	bool need_ip = false;
945 	int err;
946 
947 	for_each_cmsghdr(cmsg, msg) {
948 		if (!CMSG_OK(msg, cmsg))
949 			return -EINVAL;
950 
951 		if (cmsg->cmsg_level != SOL_UDP) {
952 			need_ip = true;
953 			continue;
954 		}
955 
956 		err = __udp_cmsg_send(cmsg, gso_size);
957 		if (err)
958 			return err;
959 	}
960 
961 	return need_ip;
962 }
963 EXPORT_SYMBOL_GPL(udp_cmsg_send);
964 
965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
966 {
967 	struct inet_sock *inet = inet_sk(sk);
968 	struct udp_sock *up = udp_sk(sk);
969 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
970 	struct flowi4 fl4_stack;
971 	struct flowi4 *fl4;
972 	int ulen = len;
973 	struct ipcm_cookie ipc;
974 	struct rtable *rt = NULL;
975 	int free = 0;
976 	int connected = 0;
977 	__be32 daddr, faddr, saddr;
978 	__be16 dport;
979 	u8  tos;
980 	int err, is_udplite = IS_UDPLITE(sk);
981 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
982 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
983 	struct sk_buff *skb;
984 	struct ip_options_data opt_copy;
985 
986 	if (len > 0xFFFF)
987 		return -EMSGSIZE;
988 
989 	/*
990 	 *	Check the flags.
991 	 */
992 
993 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
994 		return -EOPNOTSUPP;
995 
996 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
997 
998 	fl4 = &inet->cork.fl.u.ip4;
999 	if (up->pending) {
1000 		/*
1001 		 * There are pending frames.
1002 		 * The socket lock must be held while it's corked.
1003 		 */
1004 		lock_sock(sk);
1005 		if (likely(up->pending)) {
1006 			if (unlikely(up->pending != AF_INET)) {
1007 				release_sock(sk);
1008 				return -EINVAL;
1009 			}
1010 			goto do_append_data;
1011 		}
1012 		release_sock(sk);
1013 	}
1014 	ulen += sizeof(struct udphdr);
1015 
1016 	/*
1017 	 *	Get and verify the address.
1018 	 */
1019 	if (usin) {
1020 		if (msg->msg_namelen < sizeof(*usin))
1021 			return -EINVAL;
1022 		if (usin->sin_family != AF_INET) {
1023 			if (usin->sin_family != AF_UNSPEC)
1024 				return -EAFNOSUPPORT;
1025 		}
1026 
1027 		daddr = usin->sin_addr.s_addr;
1028 		dport = usin->sin_port;
1029 		if (dport == 0)
1030 			return -EINVAL;
1031 	} else {
1032 		if (sk->sk_state != TCP_ESTABLISHED)
1033 			return -EDESTADDRREQ;
1034 		daddr = inet->inet_daddr;
1035 		dport = inet->inet_dport;
1036 		/* Open fast path for connected socket.
1037 		   Route will not be used, if at least one option is set.
1038 		 */
1039 		connected = 1;
1040 	}
1041 
1042 	ipcm_init_sk(&ipc, inet);
1043 	ipc.gso_size = up->gso_size;
1044 
1045 	if (msg->msg_controllen) {
1046 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1047 		if (err > 0)
1048 			err = ip_cmsg_send(sk, msg, &ipc,
1049 					   sk->sk_family == AF_INET6);
1050 		if (unlikely(err < 0)) {
1051 			kfree(ipc.opt);
1052 			return err;
1053 		}
1054 		if (ipc.opt)
1055 			free = 1;
1056 		connected = 0;
1057 	}
1058 	if (!ipc.opt) {
1059 		struct ip_options_rcu *inet_opt;
1060 
1061 		rcu_read_lock();
1062 		inet_opt = rcu_dereference(inet->inet_opt);
1063 		if (inet_opt) {
1064 			memcpy(&opt_copy, inet_opt,
1065 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1066 			ipc.opt = &opt_copy.opt;
1067 		}
1068 		rcu_read_unlock();
1069 	}
1070 
1071 	if (cgroup_bpf_enabled && !connected) {
1072 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1073 					    (struct sockaddr *)usin, &ipc.addr);
1074 		if (err)
1075 			goto out_free;
1076 		if (usin) {
1077 			if (usin->sin_port == 0) {
1078 				/* BPF program set invalid port. Reject it. */
1079 				err = -EINVAL;
1080 				goto out_free;
1081 			}
1082 			daddr = usin->sin_addr.s_addr;
1083 			dport = usin->sin_port;
1084 		}
1085 	}
1086 
1087 	saddr = ipc.addr;
1088 	ipc.addr = faddr = daddr;
1089 
1090 	if (ipc.opt && ipc.opt->opt.srr) {
1091 		if (!daddr) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 		faddr = ipc.opt->opt.faddr;
1096 		connected = 0;
1097 	}
1098 	tos = get_rttos(&ipc, inet);
1099 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1100 	    (msg->msg_flags & MSG_DONTROUTE) ||
1101 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1102 		tos |= RTO_ONLINK;
1103 		connected = 0;
1104 	}
1105 
1106 	if (ipv4_is_multicast(daddr)) {
1107 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1108 			ipc.oif = inet->mc_index;
1109 		if (!saddr)
1110 			saddr = inet->mc_addr;
1111 		connected = 0;
1112 	} else if (!ipc.oif) {
1113 		ipc.oif = inet->uc_index;
1114 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1115 		/* oif is set, packet is to local broadcast and
1116 		 * and uc_index is set. oif is most likely set
1117 		 * by sk_bound_dev_if. If uc_index != oif check if the
1118 		 * oif is an L3 master and uc_index is an L3 slave.
1119 		 * If so, we want to allow the send using the uc_index.
1120 		 */
1121 		if (ipc.oif != inet->uc_index &&
1122 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1123 							      inet->uc_index)) {
1124 			ipc.oif = inet->uc_index;
1125 		}
1126 	}
1127 
1128 	if (connected)
1129 		rt = (struct rtable *)sk_dst_check(sk, 0);
1130 
1131 	if (!rt) {
1132 		struct net *net = sock_net(sk);
1133 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1134 
1135 		fl4 = &fl4_stack;
1136 
1137 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1138 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1139 				   flow_flags,
1140 				   faddr, saddr, dport, inet->inet_sport,
1141 				   sk->sk_uid);
1142 
1143 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1144 		rt = ip_route_output_flow(net, fl4, sk);
1145 		if (IS_ERR(rt)) {
1146 			err = PTR_ERR(rt);
1147 			rt = NULL;
1148 			if (err == -ENETUNREACH)
1149 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1150 			goto out;
1151 		}
1152 
1153 		err = -EACCES;
1154 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1155 		    !sock_flag(sk, SOCK_BROADCAST))
1156 			goto out;
1157 		if (connected)
1158 			sk_dst_set(sk, dst_clone(&rt->dst));
1159 	}
1160 
1161 	if (msg->msg_flags&MSG_CONFIRM)
1162 		goto do_confirm;
1163 back_from_confirm:
1164 
1165 	saddr = fl4->saddr;
1166 	if (!ipc.addr)
1167 		daddr = ipc.addr = fl4->daddr;
1168 
1169 	/* Lockless fast path for the non-corking case. */
1170 	if (!corkreq) {
1171 		struct inet_cork cork;
1172 
1173 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1174 				  sizeof(struct udphdr), &ipc, &rt,
1175 				  &cork, msg->msg_flags);
1176 		err = PTR_ERR(skb);
1177 		if (!IS_ERR_OR_NULL(skb))
1178 			err = udp_send_skb(skb, fl4, &cork);
1179 		goto out;
1180 	}
1181 
1182 	lock_sock(sk);
1183 	if (unlikely(up->pending)) {
1184 		/* The socket is already corked while preparing it. */
1185 		/* ... which is an evident application bug. --ANK */
1186 		release_sock(sk);
1187 
1188 		net_dbg_ratelimited("socket already corked\n");
1189 		err = -EINVAL;
1190 		goto out;
1191 	}
1192 	/*
1193 	 *	Now cork the socket to pend data.
1194 	 */
1195 	fl4 = &inet->cork.fl.u.ip4;
1196 	fl4->daddr = daddr;
1197 	fl4->saddr = saddr;
1198 	fl4->fl4_dport = dport;
1199 	fl4->fl4_sport = inet->inet_sport;
1200 	up->pending = AF_INET;
1201 
1202 do_append_data:
1203 	up->len += ulen;
1204 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1205 			     sizeof(struct udphdr), &ipc, &rt,
1206 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1207 	if (err)
1208 		udp_flush_pending_frames(sk);
1209 	else if (!corkreq)
1210 		err = udp_push_pending_frames(sk);
1211 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1212 		up->pending = 0;
1213 	release_sock(sk);
1214 
1215 out:
1216 	ip_rt_put(rt);
1217 out_free:
1218 	if (free)
1219 		kfree(ipc.opt);
1220 	if (!err)
1221 		return len;
1222 	/*
1223 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1224 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1225 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1226 	 * things).  We could add another new stat but at least for now that
1227 	 * seems like overkill.
1228 	 */
1229 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1230 		UDP_INC_STATS(sock_net(sk),
1231 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1232 	}
1233 	return err;
1234 
1235 do_confirm:
1236 	if (msg->msg_flags & MSG_PROBE)
1237 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1238 	if (!(msg->msg_flags&MSG_PROBE) || len)
1239 		goto back_from_confirm;
1240 	err = 0;
1241 	goto out;
1242 }
1243 EXPORT_SYMBOL(udp_sendmsg);
1244 
1245 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1246 		 size_t size, int flags)
1247 {
1248 	struct inet_sock *inet = inet_sk(sk);
1249 	struct udp_sock *up = udp_sk(sk);
1250 	int ret;
1251 
1252 	if (flags & MSG_SENDPAGE_NOTLAST)
1253 		flags |= MSG_MORE;
1254 
1255 	if (!up->pending) {
1256 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1257 
1258 		/* Call udp_sendmsg to specify destination address which
1259 		 * sendpage interface can't pass.
1260 		 * This will succeed only when the socket is connected.
1261 		 */
1262 		ret = udp_sendmsg(sk, &msg, 0);
1263 		if (ret < 0)
1264 			return ret;
1265 	}
1266 
1267 	lock_sock(sk);
1268 
1269 	if (unlikely(!up->pending)) {
1270 		release_sock(sk);
1271 
1272 		net_dbg_ratelimited("cork failed\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1277 			     page, offset, size, flags);
1278 	if (ret == -EOPNOTSUPP) {
1279 		release_sock(sk);
1280 		return sock_no_sendpage(sk->sk_socket, page, offset,
1281 					size, flags);
1282 	}
1283 	if (ret < 0) {
1284 		udp_flush_pending_frames(sk);
1285 		goto out;
1286 	}
1287 
1288 	up->len += size;
1289 	if (!(up->corkflag || (flags&MSG_MORE)))
1290 		ret = udp_push_pending_frames(sk);
1291 	if (!ret)
1292 		ret = size;
1293 out:
1294 	release_sock(sk);
1295 	return ret;
1296 }
1297 
1298 #define UDP_SKB_IS_STATELESS 0x80000000
1299 
1300 /* all head states (dst, sk, nf conntrack) except skb extensions are
1301  * cleared by udp_rcv().
1302  *
1303  * We need to preserve secpath, if present, to eventually process
1304  * IP_CMSG_PASSSEC at recvmsg() time.
1305  *
1306  * Other extensions can be cleared.
1307  */
1308 static bool udp_try_make_stateless(struct sk_buff *skb)
1309 {
1310 	if (!skb_has_extensions(skb))
1311 		return true;
1312 
1313 	if (!secpath_exists(skb)) {
1314 		skb_ext_reset(skb);
1315 		return true;
1316 	}
1317 
1318 	return false;
1319 }
1320 
1321 static void udp_set_dev_scratch(struct sk_buff *skb)
1322 {
1323 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1324 
1325 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1326 	scratch->_tsize_state = skb->truesize;
1327 #if BITS_PER_LONG == 64
1328 	scratch->len = skb->len;
1329 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1330 	scratch->is_linear = !skb_is_nonlinear(skb);
1331 #endif
1332 	if (udp_try_make_stateless(skb))
1333 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1334 }
1335 
1336 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1337 {
1338 	/* We come here after udp_lib_checksum_complete() returned 0.
1339 	 * This means that __skb_checksum_complete() might have
1340 	 * set skb->csum_valid to 1.
1341 	 * On 64bit platforms, we can set csum_unnecessary
1342 	 * to true, but only if the skb is not shared.
1343 	 */
1344 #if BITS_PER_LONG == 64
1345 	if (!skb_shared(skb))
1346 		udp_skb_scratch(skb)->csum_unnecessary = true;
1347 #endif
1348 }
1349 
1350 static int udp_skb_truesize(struct sk_buff *skb)
1351 {
1352 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1353 }
1354 
1355 static bool udp_skb_has_head_state(struct sk_buff *skb)
1356 {
1357 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1358 }
1359 
1360 /* fully reclaim rmem/fwd memory allocated for skb */
1361 static void udp_rmem_release(struct sock *sk, int size, int partial,
1362 			     bool rx_queue_lock_held)
1363 {
1364 	struct udp_sock *up = udp_sk(sk);
1365 	struct sk_buff_head *sk_queue;
1366 	int amt;
1367 
1368 	if (likely(partial)) {
1369 		up->forward_deficit += size;
1370 		size = up->forward_deficit;
1371 		if (size < (sk->sk_rcvbuf >> 2))
1372 			return;
1373 	} else {
1374 		size += up->forward_deficit;
1375 	}
1376 	up->forward_deficit = 0;
1377 
1378 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1379 	 * if the called don't held it already
1380 	 */
1381 	sk_queue = &sk->sk_receive_queue;
1382 	if (!rx_queue_lock_held)
1383 		spin_lock(&sk_queue->lock);
1384 
1385 
1386 	sk->sk_forward_alloc += size;
1387 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1388 	sk->sk_forward_alloc -= amt;
1389 
1390 	if (amt)
1391 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1392 
1393 	atomic_sub(size, &sk->sk_rmem_alloc);
1394 
1395 	/* this can save us from acquiring the rx queue lock on next receive */
1396 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1397 
1398 	if (!rx_queue_lock_held)
1399 		spin_unlock(&sk_queue->lock);
1400 }
1401 
1402 /* Note: called with reader_queue.lock held.
1403  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1404  * This avoids a cache line miss while receive_queue lock is held.
1405  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1406  */
1407 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1408 {
1409 	prefetch(&skb->data);
1410 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1411 }
1412 EXPORT_SYMBOL(udp_skb_destructor);
1413 
1414 /* as above, but the caller held the rx queue lock, too */
1415 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1416 {
1417 	prefetch(&skb->data);
1418 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1419 }
1420 
1421 /* Idea of busylocks is to let producers grab an extra spinlock
1422  * to relieve pressure on the receive_queue spinlock shared by consumer.
1423  * Under flood, this means that only one producer can be in line
1424  * trying to acquire the receive_queue spinlock.
1425  * These busylock can be allocated on a per cpu manner, instead of a
1426  * per socket one (that would consume a cache line per socket)
1427  */
1428 static int udp_busylocks_log __read_mostly;
1429 static spinlock_t *udp_busylocks __read_mostly;
1430 
1431 static spinlock_t *busylock_acquire(void *ptr)
1432 {
1433 	spinlock_t *busy;
1434 
1435 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1436 	spin_lock(busy);
1437 	return busy;
1438 }
1439 
1440 static void busylock_release(spinlock_t *busy)
1441 {
1442 	if (busy)
1443 		spin_unlock(busy);
1444 }
1445 
1446 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1447 {
1448 	struct sk_buff_head *list = &sk->sk_receive_queue;
1449 	int rmem, delta, amt, err = -ENOMEM;
1450 	spinlock_t *busy = NULL;
1451 	int size;
1452 
1453 	/* try to avoid the costly atomic add/sub pair when the receive
1454 	 * queue is full; always allow at least a packet
1455 	 */
1456 	rmem = atomic_read(&sk->sk_rmem_alloc);
1457 	if (rmem > sk->sk_rcvbuf)
1458 		goto drop;
1459 
1460 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1461 	 * having linear skbs :
1462 	 * - Reduce memory overhead and thus increase receive queue capacity
1463 	 * - Less cache line misses at copyout() time
1464 	 * - Less work at consume_skb() (less alien page frag freeing)
1465 	 */
1466 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1467 		skb_condense(skb);
1468 
1469 		busy = busylock_acquire(sk);
1470 	}
1471 	size = skb->truesize;
1472 	udp_set_dev_scratch(skb);
1473 
1474 	/* we drop only if the receive buf is full and the receive
1475 	 * queue contains some other skb
1476 	 */
1477 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1478 	if (rmem > (size + sk->sk_rcvbuf))
1479 		goto uncharge_drop;
1480 
1481 	spin_lock(&list->lock);
1482 	if (size >= sk->sk_forward_alloc) {
1483 		amt = sk_mem_pages(size);
1484 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1485 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1486 			err = -ENOBUFS;
1487 			spin_unlock(&list->lock);
1488 			goto uncharge_drop;
1489 		}
1490 
1491 		sk->sk_forward_alloc += delta;
1492 	}
1493 
1494 	sk->sk_forward_alloc -= size;
1495 
1496 	/* no need to setup a destructor, we will explicitly release the
1497 	 * forward allocated memory on dequeue
1498 	 */
1499 	sock_skb_set_dropcount(sk, skb);
1500 
1501 	__skb_queue_tail(list, skb);
1502 	spin_unlock(&list->lock);
1503 
1504 	if (!sock_flag(sk, SOCK_DEAD))
1505 		sk->sk_data_ready(sk);
1506 
1507 	busylock_release(busy);
1508 	return 0;
1509 
1510 uncharge_drop:
1511 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1512 
1513 drop:
1514 	atomic_inc(&sk->sk_drops);
1515 	busylock_release(busy);
1516 	return err;
1517 }
1518 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1519 
1520 void udp_destruct_sock(struct sock *sk)
1521 {
1522 	/* reclaim completely the forward allocated memory */
1523 	struct udp_sock *up = udp_sk(sk);
1524 	unsigned int total = 0;
1525 	struct sk_buff *skb;
1526 
1527 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1528 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1529 		total += skb->truesize;
1530 		kfree_skb(skb);
1531 	}
1532 	udp_rmem_release(sk, total, 0, true);
1533 
1534 	inet_sock_destruct(sk);
1535 }
1536 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1537 
1538 int udp_init_sock(struct sock *sk)
1539 {
1540 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1541 	sk->sk_destruct = udp_destruct_sock;
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(udp_init_sock);
1545 
1546 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1547 {
1548 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1549 		bool slow = lock_sock_fast(sk);
1550 
1551 		sk_peek_offset_bwd(sk, len);
1552 		unlock_sock_fast(sk, slow);
1553 	}
1554 
1555 	if (!skb_unref(skb))
1556 		return;
1557 
1558 	/* In the more common cases we cleared the head states previously,
1559 	 * see __udp_queue_rcv_skb().
1560 	 */
1561 	if (unlikely(udp_skb_has_head_state(skb)))
1562 		skb_release_head_state(skb);
1563 	__consume_stateless_skb(skb);
1564 }
1565 EXPORT_SYMBOL_GPL(skb_consume_udp);
1566 
1567 static struct sk_buff *__first_packet_length(struct sock *sk,
1568 					     struct sk_buff_head *rcvq,
1569 					     int *total)
1570 {
1571 	struct sk_buff *skb;
1572 
1573 	while ((skb = skb_peek(rcvq)) != NULL) {
1574 		if (udp_lib_checksum_complete(skb)) {
1575 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1576 					IS_UDPLITE(sk));
1577 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1578 					IS_UDPLITE(sk));
1579 			atomic_inc(&sk->sk_drops);
1580 			__skb_unlink(skb, rcvq);
1581 			*total += skb->truesize;
1582 			kfree_skb(skb);
1583 		} else {
1584 			udp_skb_csum_unnecessary_set(skb);
1585 			break;
1586 		}
1587 	}
1588 	return skb;
1589 }
1590 
1591 /**
1592  *	first_packet_length	- return length of first packet in receive queue
1593  *	@sk: socket
1594  *
1595  *	Drops all bad checksum frames, until a valid one is found.
1596  *	Returns the length of found skb, or -1 if none is found.
1597  */
1598 static int first_packet_length(struct sock *sk)
1599 {
1600 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1601 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1602 	struct sk_buff *skb;
1603 	int total = 0;
1604 	int res;
1605 
1606 	spin_lock_bh(&rcvq->lock);
1607 	skb = __first_packet_length(sk, rcvq, &total);
1608 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1609 		spin_lock(&sk_queue->lock);
1610 		skb_queue_splice_tail_init(sk_queue, rcvq);
1611 		spin_unlock(&sk_queue->lock);
1612 
1613 		skb = __first_packet_length(sk, rcvq, &total);
1614 	}
1615 	res = skb ? skb->len : -1;
1616 	if (total)
1617 		udp_rmem_release(sk, total, 1, false);
1618 	spin_unlock_bh(&rcvq->lock);
1619 	return res;
1620 }
1621 
1622 /*
1623  *	IOCTL requests applicable to the UDP protocol
1624  */
1625 
1626 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1627 {
1628 	switch (cmd) {
1629 	case SIOCOUTQ:
1630 	{
1631 		int amount = sk_wmem_alloc_get(sk);
1632 
1633 		return put_user(amount, (int __user *)arg);
1634 	}
1635 
1636 	case SIOCINQ:
1637 	{
1638 		int amount = max_t(int, 0, first_packet_length(sk));
1639 
1640 		return put_user(amount, (int __user *)arg);
1641 	}
1642 
1643 	default:
1644 		return -ENOIOCTLCMD;
1645 	}
1646 
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL(udp_ioctl);
1650 
1651 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1652 			       int noblock, int *off, int *err)
1653 {
1654 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1655 	struct sk_buff_head *queue;
1656 	struct sk_buff *last;
1657 	long timeo;
1658 	int error;
1659 
1660 	queue = &udp_sk(sk)->reader_queue;
1661 	flags |= noblock ? MSG_DONTWAIT : 0;
1662 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1663 	do {
1664 		struct sk_buff *skb;
1665 
1666 		error = sock_error(sk);
1667 		if (error)
1668 			break;
1669 
1670 		error = -EAGAIN;
1671 		do {
1672 			spin_lock_bh(&queue->lock);
1673 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1674 							udp_skb_destructor,
1675 							off, err, &last);
1676 			if (skb) {
1677 				spin_unlock_bh(&queue->lock);
1678 				return skb;
1679 			}
1680 
1681 			if (skb_queue_empty_lockless(sk_queue)) {
1682 				spin_unlock_bh(&queue->lock);
1683 				goto busy_check;
1684 			}
1685 
1686 			/* refill the reader queue and walk it again
1687 			 * keep both queues locked to avoid re-acquiring
1688 			 * the sk_receive_queue lock if fwd memory scheduling
1689 			 * is needed.
1690 			 */
1691 			spin_lock(&sk_queue->lock);
1692 			skb_queue_splice_tail_init(sk_queue, queue);
1693 
1694 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1695 							udp_skb_dtor_locked,
1696 							off, err, &last);
1697 			spin_unlock(&sk_queue->lock);
1698 			spin_unlock_bh(&queue->lock);
1699 			if (skb)
1700 				return skb;
1701 
1702 busy_check:
1703 			if (!sk_can_busy_loop(sk))
1704 				break;
1705 
1706 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1707 		} while (!skb_queue_empty_lockless(sk_queue));
1708 
1709 		/* sk_queue is empty, reader_queue may contain peeked packets */
1710 	} while (timeo &&
1711 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1712 					      (struct sk_buff *)sk_queue));
1713 
1714 	*err = error;
1715 	return NULL;
1716 }
1717 EXPORT_SYMBOL(__skb_recv_udp);
1718 
1719 /*
1720  * 	This should be easy, if there is something there we
1721  * 	return it, otherwise we block.
1722  */
1723 
1724 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1725 		int flags, int *addr_len)
1726 {
1727 	struct inet_sock *inet = inet_sk(sk);
1728 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1729 	struct sk_buff *skb;
1730 	unsigned int ulen, copied;
1731 	int off, err, peeking = flags & MSG_PEEK;
1732 	int is_udplite = IS_UDPLITE(sk);
1733 	bool checksum_valid = false;
1734 
1735 	if (flags & MSG_ERRQUEUE)
1736 		return ip_recv_error(sk, msg, len, addr_len);
1737 
1738 try_again:
1739 	off = sk_peek_offset(sk, flags);
1740 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1741 	if (!skb)
1742 		return err;
1743 
1744 	ulen = udp_skb_len(skb);
1745 	copied = len;
1746 	if (copied > ulen - off)
1747 		copied = ulen - off;
1748 	else if (copied < ulen)
1749 		msg->msg_flags |= MSG_TRUNC;
1750 
1751 	/*
1752 	 * If checksum is needed at all, try to do it while copying the
1753 	 * data.  If the data is truncated, or if we only want a partial
1754 	 * coverage checksum (UDP-Lite), do it before the copy.
1755 	 */
1756 
1757 	if (copied < ulen || peeking ||
1758 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1759 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1760 				!__udp_lib_checksum_complete(skb);
1761 		if (!checksum_valid)
1762 			goto csum_copy_err;
1763 	}
1764 
1765 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1766 		if (udp_skb_is_linear(skb))
1767 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1768 		else
1769 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1770 	} else {
1771 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1772 
1773 		if (err == -EINVAL)
1774 			goto csum_copy_err;
1775 	}
1776 
1777 	if (unlikely(err)) {
1778 		if (!peeking) {
1779 			atomic_inc(&sk->sk_drops);
1780 			UDP_INC_STATS(sock_net(sk),
1781 				      UDP_MIB_INERRORS, is_udplite);
1782 		}
1783 		kfree_skb(skb);
1784 		return err;
1785 	}
1786 
1787 	if (!peeking)
1788 		UDP_INC_STATS(sock_net(sk),
1789 			      UDP_MIB_INDATAGRAMS, is_udplite);
1790 
1791 	sock_recv_ts_and_drops(msg, sk, skb);
1792 
1793 	/* Copy the address. */
1794 	if (sin) {
1795 		sin->sin_family = AF_INET;
1796 		sin->sin_port = udp_hdr(skb)->source;
1797 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1798 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1799 		*addr_len = sizeof(*sin);
1800 
1801 		if (cgroup_bpf_enabled)
1802 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1803 							(struct sockaddr *)sin);
1804 	}
1805 
1806 	if (udp_sk(sk)->gro_enabled)
1807 		udp_cmsg_recv(msg, sk, skb);
1808 
1809 	if (inet->cmsg_flags)
1810 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1811 
1812 	err = copied;
1813 	if (flags & MSG_TRUNC)
1814 		err = ulen;
1815 
1816 	skb_consume_udp(sk, skb, peeking ? -err : err);
1817 	return err;
1818 
1819 csum_copy_err:
1820 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1821 				 udp_skb_destructor)) {
1822 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1823 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1824 	}
1825 	kfree_skb(skb);
1826 
1827 	/* starting over for a new packet, but check if we need to yield */
1828 	cond_resched();
1829 	msg->msg_flags &= ~MSG_TRUNC;
1830 	goto try_again;
1831 }
1832 
1833 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1834 {
1835 	/* This check is replicated from __ip4_datagram_connect() and
1836 	 * intended to prevent BPF program called below from accessing bytes
1837 	 * that are out of the bound specified by user in addr_len.
1838 	 */
1839 	if (addr_len < sizeof(struct sockaddr_in))
1840 		return -EINVAL;
1841 
1842 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1843 }
1844 EXPORT_SYMBOL(udp_pre_connect);
1845 
1846 int __udp_disconnect(struct sock *sk, int flags)
1847 {
1848 	struct inet_sock *inet = inet_sk(sk);
1849 	/*
1850 	 *	1003.1g - break association.
1851 	 */
1852 
1853 	sk->sk_state = TCP_CLOSE;
1854 	inet->inet_daddr = 0;
1855 	inet->inet_dport = 0;
1856 	sock_rps_reset_rxhash(sk);
1857 	sk->sk_bound_dev_if = 0;
1858 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1859 		inet_reset_saddr(sk);
1860 
1861 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1862 		sk->sk_prot->unhash(sk);
1863 		inet->inet_sport = 0;
1864 	}
1865 	sk_dst_reset(sk);
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(__udp_disconnect);
1869 
1870 int udp_disconnect(struct sock *sk, int flags)
1871 {
1872 	lock_sock(sk);
1873 	__udp_disconnect(sk, flags);
1874 	release_sock(sk);
1875 	return 0;
1876 }
1877 EXPORT_SYMBOL(udp_disconnect);
1878 
1879 void udp_lib_unhash(struct sock *sk)
1880 {
1881 	if (sk_hashed(sk)) {
1882 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1883 		struct udp_hslot *hslot, *hslot2;
1884 
1885 		hslot  = udp_hashslot(udptable, sock_net(sk),
1886 				      udp_sk(sk)->udp_port_hash);
1887 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1888 
1889 		spin_lock_bh(&hslot->lock);
1890 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1891 			reuseport_detach_sock(sk);
1892 		if (sk_del_node_init_rcu(sk)) {
1893 			hslot->count--;
1894 			inet_sk(sk)->inet_num = 0;
1895 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1896 
1897 			spin_lock(&hslot2->lock);
1898 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1899 			hslot2->count--;
1900 			spin_unlock(&hslot2->lock);
1901 		}
1902 		spin_unlock_bh(&hslot->lock);
1903 	}
1904 }
1905 EXPORT_SYMBOL(udp_lib_unhash);
1906 
1907 /*
1908  * inet_rcv_saddr was changed, we must rehash secondary hash
1909  */
1910 void udp_lib_rehash(struct sock *sk, u16 newhash)
1911 {
1912 	if (sk_hashed(sk)) {
1913 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1914 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1915 
1916 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1917 		nhslot2 = udp_hashslot2(udptable, newhash);
1918 		udp_sk(sk)->udp_portaddr_hash = newhash;
1919 
1920 		if (hslot2 != nhslot2 ||
1921 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1922 			hslot = udp_hashslot(udptable, sock_net(sk),
1923 					     udp_sk(sk)->udp_port_hash);
1924 			/* we must lock primary chain too */
1925 			spin_lock_bh(&hslot->lock);
1926 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1927 				reuseport_detach_sock(sk);
1928 
1929 			if (hslot2 != nhslot2) {
1930 				spin_lock(&hslot2->lock);
1931 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1932 				hslot2->count--;
1933 				spin_unlock(&hslot2->lock);
1934 
1935 				spin_lock(&nhslot2->lock);
1936 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1937 							 &nhslot2->head);
1938 				nhslot2->count++;
1939 				spin_unlock(&nhslot2->lock);
1940 			}
1941 
1942 			spin_unlock_bh(&hslot->lock);
1943 		}
1944 	}
1945 }
1946 EXPORT_SYMBOL(udp_lib_rehash);
1947 
1948 void udp_v4_rehash(struct sock *sk)
1949 {
1950 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1951 					  inet_sk(sk)->inet_rcv_saddr,
1952 					  inet_sk(sk)->inet_num);
1953 	udp_lib_rehash(sk, new_hash);
1954 }
1955 
1956 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1957 {
1958 	int rc;
1959 
1960 	if (inet_sk(sk)->inet_daddr) {
1961 		sock_rps_save_rxhash(sk, skb);
1962 		sk_mark_napi_id(sk, skb);
1963 		sk_incoming_cpu_update(sk);
1964 	} else {
1965 		sk_mark_napi_id_once(sk, skb);
1966 	}
1967 
1968 	rc = __udp_enqueue_schedule_skb(sk, skb);
1969 	if (rc < 0) {
1970 		int is_udplite = IS_UDPLITE(sk);
1971 
1972 		/* Note that an ENOMEM error is charged twice */
1973 		if (rc == -ENOMEM)
1974 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1975 					is_udplite);
1976 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1977 		kfree_skb(skb);
1978 		trace_udp_fail_queue_rcv_skb(rc, sk);
1979 		return -1;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 /* returns:
1986  *  -1: error
1987  *   0: success
1988  *  >0: "udp encap" protocol resubmission
1989  *
1990  * Note that in the success and error cases, the skb is assumed to
1991  * have either been requeued or freed.
1992  */
1993 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1994 {
1995 	struct udp_sock *up = udp_sk(sk);
1996 	int is_udplite = IS_UDPLITE(sk);
1997 
1998 	/*
1999 	 *	Charge it to the socket, dropping if the queue is full.
2000 	 */
2001 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2002 		goto drop;
2003 	nf_reset_ct(skb);
2004 
2005 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2006 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2007 
2008 		/*
2009 		 * This is an encapsulation socket so pass the skb to
2010 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2011 		 * fall through and pass this up the UDP socket.
2012 		 * up->encap_rcv() returns the following value:
2013 		 * =0 if skb was successfully passed to the encap
2014 		 *    handler or was discarded by it.
2015 		 * >0 if skb should be passed on to UDP.
2016 		 * <0 if skb should be resubmitted as proto -N
2017 		 */
2018 
2019 		/* if we're overly short, let UDP handle it */
2020 		encap_rcv = READ_ONCE(up->encap_rcv);
2021 		if (encap_rcv) {
2022 			int ret;
2023 
2024 			/* Verify checksum before giving to encap */
2025 			if (udp_lib_checksum_complete(skb))
2026 				goto csum_error;
2027 
2028 			ret = encap_rcv(sk, skb);
2029 			if (ret <= 0) {
2030 				__UDP_INC_STATS(sock_net(sk),
2031 						UDP_MIB_INDATAGRAMS,
2032 						is_udplite);
2033 				return -ret;
2034 			}
2035 		}
2036 
2037 		/* FALLTHROUGH -- it's a UDP Packet */
2038 	}
2039 
2040 	/*
2041 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2042 	 */
2043 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2044 
2045 		/*
2046 		 * MIB statistics other than incrementing the error count are
2047 		 * disabled for the following two types of errors: these depend
2048 		 * on the application settings, not on the functioning of the
2049 		 * protocol stack as such.
2050 		 *
2051 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2052 		 * way ... to ... at least let the receiving application block
2053 		 * delivery of packets with coverage values less than a value
2054 		 * provided by the application."
2055 		 */
2056 		if (up->pcrlen == 0) {          /* full coverage was set  */
2057 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2058 					    UDP_SKB_CB(skb)->cscov, skb->len);
2059 			goto drop;
2060 		}
2061 		/* The next case involves violating the min. coverage requested
2062 		 * by the receiver. This is subtle: if receiver wants x and x is
2063 		 * greater than the buffersize/MTU then receiver will complain
2064 		 * that it wants x while sender emits packets of smaller size y.
2065 		 * Therefore the above ...()->partial_cov statement is essential.
2066 		 */
2067 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2068 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2069 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2070 			goto drop;
2071 		}
2072 	}
2073 
2074 	prefetch(&sk->sk_rmem_alloc);
2075 	if (rcu_access_pointer(sk->sk_filter) &&
2076 	    udp_lib_checksum_complete(skb))
2077 			goto csum_error;
2078 
2079 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2080 		goto drop;
2081 
2082 	udp_csum_pull_header(skb);
2083 
2084 	ipv4_pktinfo_prepare(sk, skb);
2085 	return __udp_queue_rcv_skb(sk, skb);
2086 
2087 csum_error:
2088 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2089 drop:
2090 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2091 	atomic_inc(&sk->sk_drops);
2092 	kfree_skb(skb);
2093 	return -1;
2094 }
2095 
2096 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2097 {
2098 	struct sk_buff *next, *segs;
2099 	int ret;
2100 
2101 	if (likely(!udp_unexpected_gso(sk, skb)))
2102 		return udp_queue_rcv_one_skb(sk, skb);
2103 
2104 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2105 	__skb_push(skb, -skb_mac_offset(skb));
2106 	segs = udp_rcv_segment(sk, skb, true);
2107 	for (skb = segs; skb; skb = next) {
2108 		next = skb->next;
2109 		__skb_pull(skb, skb_transport_offset(skb));
2110 		ret = udp_queue_rcv_one_skb(sk, skb);
2111 		if (ret > 0)
2112 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2113 	}
2114 	return 0;
2115 }
2116 
2117 /* For TCP sockets, sk_rx_dst is protected by socket lock
2118  * For UDP, we use xchg() to guard against concurrent changes.
2119  */
2120 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2121 {
2122 	struct dst_entry *old;
2123 
2124 	if (dst_hold_safe(dst)) {
2125 		old = xchg(&sk->sk_rx_dst, dst);
2126 		dst_release(old);
2127 		return old != dst;
2128 	}
2129 	return false;
2130 }
2131 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2132 
2133 /*
2134  *	Multicasts and broadcasts go to each listener.
2135  *
2136  *	Note: called only from the BH handler context.
2137  */
2138 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2139 				    struct udphdr  *uh,
2140 				    __be32 saddr, __be32 daddr,
2141 				    struct udp_table *udptable,
2142 				    int proto)
2143 {
2144 	struct sock *sk, *first = NULL;
2145 	unsigned short hnum = ntohs(uh->dest);
2146 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2147 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2148 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2149 	int dif = skb->dev->ifindex;
2150 	int sdif = inet_sdif(skb);
2151 	struct hlist_node *node;
2152 	struct sk_buff *nskb;
2153 
2154 	if (use_hash2) {
2155 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2156 			    udptable->mask;
2157 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2158 start_lookup:
2159 		hslot = &udptable->hash2[hash2];
2160 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2161 	}
2162 
2163 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2164 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2165 					 uh->source, saddr, dif, sdif, hnum))
2166 			continue;
2167 
2168 		if (!first) {
2169 			first = sk;
2170 			continue;
2171 		}
2172 		nskb = skb_clone(skb, GFP_ATOMIC);
2173 
2174 		if (unlikely(!nskb)) {
2175 			atomic_inc(&sk->sk_drops);
2176 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2177 					IS_UDPLITE(sk));
2178 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2179 					IS_UDPLITE(sk));
2180 			continue;
2181 		}
2182 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2183 			consume_skb(nskb);
2184 	}
2185 
2186 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2187 	if (use_hash2 && hash2 != hash2_any) {
2188 		hash2 = hash2_any;
2189 		goto start_lookup;
2190 	}
2191 
2192 	if (first) {
2193 		if (udp_queue_rcv_skb(first, skb) > 0)
2194 			consume_skb(skb);
2195 	} else {
2196 		kfree_skb(skb);
2197 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2198 				proto == IPPROTO_UDPLITE);
2199 	}
2200 	return 0;
2201 }
2202 
2203 /* Initialize UDP checksum. If exited with zero value (success),
2204  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2205  * Otherwise, csum completion requires checksumming packet body,
2206  * including udp header and folding it to skb->csum.
2207  */
2208 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2209 				 int proto)
2210 {
2211 	int err;
2212 
2213 	UDP_SKB_CB(skb)->partial_cov = 0;
2214 	UDP_SKB_CB(skb)->cscov = skb->len;
2215 
2216 	if (proto == IPPROTO_UDPLITE) {
2217 		err = udplite_checksum_init(skb, uh);
2218 		if (err)
2219 			return err;
2220 
2221 		if (UDP_SKB_CB(skb)->partial_cov) {
2222 			skb->csum = inet_compute_pseudo(skb, proto);
2223 			return 0;
2224 		}
2225 	}
2226 
2227 	/* Note, we are only interested in != 0 or == 0, thus the
2228 	 * force to int.
2229 	 */
2230 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2231 							inet_compute_pseudo);
2232 	if (err)
2233 		return err;
2234 
2235 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2236 		/* If SW calculated the value, we know it's bad */
2237 		if (skb->csum_complete_sw)
2238 			return 1;
2239 
2240 		/* HW says the value is bad. Let's validate that.
2241 		 * skb->csum is no longer the full packet checksum,
2242 		 * so don't treat it as such.
2243 		 */
2244 		skb_checksum_complete_unset(skb);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2251  * return code conversion for ip layer consumption
2252  */
2253 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2254 			       struct udphdr *uh)
2255 {
2256 	int ret;
2257 
2258 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2259 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2260 
2261 	ret = udp_queue_rcv_skb(sk, skb);
2262 
2263 	/* a return value > 0 means to resubmit the input, but
2264 	 * it wants the return to be -protocol, or 0
2265 	 */
2266 	if (ret > 0)
2267 		return -ret;
2268 	return 0;
2269 }
2270 
2271 /*
2272  *	All we need to do is get the socket, and then do a checksum.
2273  */
2274 
2275 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2276 		   int proto)
2277 {
2278 	struct sock *sk;
2279 	struct udphdr *uh;
2280 	unsigned short ulen;
2281 	struct rtable *rt = skb_rtable(skb);
2282 	__be32 saddr, daddr;
2283 	struct net *net = dev_net(skb->dev);
2284 
2285 	/*
2286 	 *  Validate the packet.
2287 	 */
2288 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2289 		goto drop;		/* No space for header. */
2290 
2291 	uh   = udp_hdr(skb);
2292 	ulen = ntohs(uh->len);
2293 	saddr = ip_hdr(skb)->saddr;
2294 	daddr = ip_hdr(skb)->daddr;
2295 
2296 	if (ulen > skb->len)
2297 		goto short_packet;
2298 
2299 	if (proto == IPPROTO_UDP) {
2300 		/* UDP validates ulen. */
2301 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2302 			goto short_packet;
2303 		uh = udp_hdr(skb);
2304 	}
2305 
2306 	if (udp4_csum_init(skb, uh, proto))
2307 		goto csum_error;
2308 
2309 	sk = skb_steal_sock(skb);
2310 	if (sk) {
2311 		struct dst_entry *dst = skb_dst(skb);
2312 		int ret;
2313 
2314 		if (unlikely(sk->sk_rx_dst != dst))
2315 			udp_sk_rx_dst_set(sk, dst);
2316 
2317 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2318 		sock_put(sk);
2319 		return ret;
2320 	}
2321 
2322 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2323 		return __udp4_lib_mcast_deliver(net, skb, uh,
2324 						saddr, daddr, udptable, proto);
2325 
2326 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2327 	if (sk)
2328 		return udp_unicast_rcv_skb(sk, skb, uh);
2329 
2330 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2331 		goto drop;
2332 	nf_reset_ct(skb);
2333 
2334 	/* No socket. Drop packet silently, if checksum is wrong */
2335 	if (udp_lib_checksum_complete(skb))
2336 		goto csum_error;
2337 
2338 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2339 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2340 
2341 	/*
2342 	 * Hmm.  We got an UDP packet to a port to which we
2343 	 * don't wanna listen.  Ignore it.
2344 	 */
2345 	kfree_skb(skb);
2346 	return 0;
2347 
2348 short_packet:
2349 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2350 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2351 			    &saddr, ntohs(uh->source),
2352 			    ulen, skb->len,
2353 			    &daddr, ntohs(uh->dest));
2354 	goto drop;
2355 
2356 csum_error:
2357 	/*
2358 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2359 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2360 	 */
2361 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2362 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2363 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2364 			    ulen);
2365 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2366 drop:
2367 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2368 	kfree_skb(skb);
2369 	return 0;
2370 }
2371 
2372 /* We can only early demux multicast if there is a single matching socket.
2373  * If more than one socket found returns NULL
2374  */
2375 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2376 						  __be16 loc_port, __be32 loc_addr,
2377 						  __be16 rmt_port, __be32 rmt_addr,
2378 						  int dif, int sdif)
2379 {
2380 	struct sock *sk, *result;
2381 	unsigned short hnum = ntohs(loc_port);
2382 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2383 	struct udp_hslot *hslot = &udp_table.hash[slot];
2384 
2385 	/* Do not bother scanning a too big list */
2386 	if (hslot->count > 10)
2387 		return NULL;
2388 
2389 	result = NULL;
2390 	sk_for_each_rcu(sk, &hslot->head) {
2391 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2392 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2393 			if (result)
2394 				return NULL;
2395 			result = sk;
2396 		}
2397 	}
2398 
2399 	return result;
2400 }
2401 
2402 /* For unicast we should only early demux connected sockets or we can
2403  * break forwarding setups.  The chains here can be long so only check
2404  * if the first socket is an exact match and if not move on.
2405  */
2406 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2407 					    __be16 loc_port, __be32 loc_addr,
2408 					    __be16 rmt_port, __be32 rmt_addr,
2409 					    int dif, int sdif)
2410 {
2411 	unsigned short hnum = ntohs(loc_port);
2412 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2413 	unsigned int slot2 = hash2 & udp_table.mask;
2414 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2415 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2416 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2417 	struct sock *sk;
2418 
2419 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2420 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2421 			       loc_addr, ports, dif, sdif))
2422 			return sk;
2423 		/* Only check first socket in chain */
2424 		break;
2425 	}
2426 	return NULL;
2427 }
2428 
2429 int udp_v4_early_demux(struct sk_buff *skb)
2430 {
2431 	struct net *net = dev_net(skb->dev);
2432 	struct in_device *in_dev = NULL;
2433 	const struct iphdr *iph;
2434 	const struct udphdr *uh;
2435 	struct sock *sk = NULL;
2436 	struct dst_entry *dst;
2437 	int dif = skb->dev->ifindex;
2438 	int sdif = inet_sdif(skb);
2439 	int ours;
2440 
2441 	/* validate the packet */
2442 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2443 		return 0;
2444 
2445 	iph = ip_hdr(skb);
2446 	uh = udp_hdr(skb);
2447 
2448 	if (skb->pkt_type == PACKET_MULTICAST) {
2449 		in_dev = __in_dev_get_rcu(skb->dev);
2450 
2451 		if (!in_dev)
2452 			return 0;
2453 
2454 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2455 				       iph->protocol);
2456 		if (!ours)
2457 			return 0;
2458 
2459 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2460 						   uh->source, iph->saddr,
2461 						   dif, sdif);
2462 	} else if (skb->pkt_type == PACKET_HOST) {
2463 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2464 					     uh->source, iph->saddr, dif, sdif);
2465 	}
2466 
2467 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2468 		return 0;
2469 
2470 	skb->sk = sk;
2471 	skb->destructor = sock_efree;
2472 	dst = READ_ONCE(sk->sk_rx_dst);
2473 
2474 	if (dst)
2475 		dst = dst_check(dst, 0);
2476 	if (dst) {
2477 		u32 itag = 0;
2478 
2479 		/* set noref for now.
2480 		 * any place which wants to hold dst has to call
2481 		 * dst_hold_safe()
2482 		 */
2483 		skb_dst_set_noref(skb, dst);
2484 
2485 		/* for unconnected multicast sockets we need to validate
2486 		 * the source on each packet
2487 		 */
2488 		if (!inet_sk(sk)->inet_daddr && in_dev)
2489 			return ip_mc_validate_source(skb, iph->daddr,
2490 						     iph->saddr, iph->tos,
2491 						     skb->dev, in_dev, &itag);
2492 	}
2493 	return 0;
2494 }
2495 
2496 int udp_rcv(struct sk_buff *skb)
2497 {
2498 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2499 }
2500 
2501 void udp_destroy_sock(struct sock *sk)
2502 {
2503 	struct udp_sock *up = udp_sk(sk);
2504 	bool slow = lock_sock_fast(sk);
2505 	udp_flush_pending_frames(sk);
2506 	unlock_sock_fast(sk, slow);
2507 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2508 		if (up->encap_type) {
2509 			void (*encap_destroy)(struct sock *sk);
2510 			encap_destroy = READ_ONCE(up->encap_destroy);
2511 			if (encap_destroy)
2512 				encap_destroy(sk);
2513 		}
2514 		if (up->encap_enabled)
2515 			static_branch_dec(&udp_encap_needed_key);
2516 	}
2517 }
2518 
2519 /*
2520  *	Socket option code for UDP
2521  */
2522 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2523 		       char __user *optval, unsigned int optlen,
2524 		       int (*push_pending_frames)(struct sock *))
2525 {
2526 	struct udp_sock *up = udp_sk(sk);
2527 	int val, valbool;
2528 	int err = 0;
2529 	int is_udplite = IS_UDPLITE(sk);
2530 
2531 	if (optlen < sizeof(int))
2532 		return -EINVAL;
2533 
2534 	if (get_user(val, (int __user *)optval))
2535 		return -EFAULT;
2536 
2537 	valbool = val ? 1 : 0;
2538 
2539 	switch (optname) {
2540 	case UDP_CORK:
2541 		if (val != 0) {
2542 			up->corkflag = 1;
2543 		} else {
2544 			up->corkflag = 0;
2545 			lock_sock(sk);
2546 			push_pending_frames(sk);
2547 			release_sock(sk);
2548 		}
2549 		break;
2550 
2551 	case UDP_ENCAP:
2552 		switch (val) {
2553 		case 0:
2554 #ifdef CONFIG_XFRM
2555 		case UDP_ENCAP_ESPINUDP:
2556 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2557 			up->encap_rcv = xfrm4_udp_encap_rcv;
2558 #endif
2559 			/* FALLTHROUGH */
2560 		case UDP_ENCAP_L2TPINUDP:
2561 			up->encap_type = val;
2562 			lock_sock(sk);
2563 			udp_tunnel_encap_enable(sk->sk_socket);
2564 			release_sock(sk);
2565 			break;
2566 		default:
2567 			err = -ENOPROTOOPT;
2568 			break;
2569 		}
2570 		break;
2571 
2572 	case UDP_NO_CHECK6_TX:
2573 		up->no_check6_tx = valbool;
2574 		break;
2575 
2576 	case UDP_NO_CHECK6_RX:
2577 		up->no_check6_rx = valbool;
2578 		break;
2579 
2580 	case UDP_SEGMENT:
2581 		if (val < 0 || val > USHRT_MAX)
2582 			return -EINVAL;
2583 		up->gso_size = val;
2584 		break;
2585 
2586 	case UDP_GRO:
2587 		lock_sock(sk);
2588 		if (valbool)
2589 			udp_tunnel_encap_enable(sk->sk_socket);
2590 		up->gro_enabled = valbool;
2591 		release_sock(sk);
2592 		break;
2593 
2594 	/*
2595 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2596 	 */
2597 	/* The sender sets actual checksum coverage length via this option.
2598 	 * The case coverage > packet length is handled by send module. */
2599 	case UDPLITE_SEND_CSCOV:
2600 		if (!is_udplite)         /* Disable the option on UDP sockets */
2601 			return -ENOPROTOOPT;
2602 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2603 			val = 8;
2604 		else if (val > USHRT_MAX)
2605 			val = USHRT_MAX;
2606 		up->pcslen = val;
2607 		up->pcflag |= UDPLITE_SEND_CC;
2608 		break;
2609 
2610 	/* The receiver specifies a minimum checksum coverage value. To make
2611 	 * sense, this should be set to at least 8 (as done below). If zero is
2612 	 * used, this again means full checksum coverage.                     */
2613 	case UDPLITE_RECV_CSCOV:
2614 		if (!is_udplite)         /* Disable the option on UDP sockets */
2615 			return -ENOPROTOOPT;
2616 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2617 			val = 8;
2618 		else if (val > USHRT_MAX)
2619 			val = USHRT_MAX;
2620 		up->pcrlen = val;
2621 		up->pcflag |= UDPLITE_RECV_CC;
2622 		break;
2623 
2624 	default:
2625 		err = -ENOPROTOOPT;
2626 		break;
2627 	}
2628 
2629 	return err;
2630 }
2631 EXPORT_SYMBOL(udp_lib_setsockopt);
2632 
2633 int udp_setsockopt(struct sock *sk, int level, int optname,
2634 		   char __user *optval, unsigned int optlen)
2635 {
2636 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2637 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2638 					  udp_push_pending_frames);
2639 	return ip_setsockopt(sk, level, optname, optval, optlen);
2640 }
2641 
2642 #ifdef CONFIG_COMPAT
2643 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2644 			  char __user *optval, unsigned int optlen)
2645 {
2646 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2647 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2648 					  udp_push_pending_frames);
2649 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2650 }
2651 #endif
2652 
2653 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2654 		       char __user *optval, int __user *optlen)
2655 {
2656 	struct udp_sock *up = udp_sk(sk);
2657 	int val, len;
2658 
2659 	if (get_user(len, optlen))
2660 		return -EFAULT;
2661 
2662 	len = min_t(unsigned int, len, sizeof(int));
2663 
2664 	if (len < 0)
2665 		return -EINVAL;
2666 
2667 	switch (optname) {
2668 	case UDP_CORK:
2669 		val = up->corkflag;
2670 		break;
2671 
2672 	case UDP_ENCAP:
2673 		val = up->encap_type;
2674 		break;
2675 
2676 	case UDP_NO_CHECK6_TX:
2677 		val = up->no_check6_tx;
2678 		break;
2679 
2680 	case UDP_NO_CHECK6_RX:
2681 		val = up->no_check6_rx;
2682 		break;
2683 
2684 	case UDP_SEGMENT:
2685 		val = up->gso_size;
2686 		break;
2687 
2688 	/* The following two cannot be changed on UDP sockets, the return is
2689 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2690 	case UDPLITE_SEND_CSCOV:
2691 		val = up->pcslen;
2692 		break;
2693 
2694 	case UDPLITE_RECV_CSCOV:
2695 		val = up->pcrlen;
2696 		break;
2697 
2698 	default:
2699 		return -ENOPROTOOPT;
2700 	}
2701 
2702 	if (put_user(len, optlen))
2703 		return -EFAULT;
2704 	if (copy_to_user(optval, &val, len))
2705 		return -EFAULT;
2706 	return 0;
2707 }
2708 EXPORT_SYMBOL(udp_lib_getsockopt);
2709 
2710 int udp_getsockopt(struct sock *sk, int level, int optname,
2711 		   char __user *optval, int __user *optlen)
2712 {
2713 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2714 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2715 	return ip_getsockopt(sk, level, optname, optval, optlen);
2716 }
2717 
2718 #ifdef CONFIG_COMPAT
2719 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2720 				 char __user *optval, int __user *optlen)
2721 {
2722 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2723 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2724 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2725 }
2726 #endif
2727 /**
2728  * 	udp_poll - wait for a UDP event.
2729  *	@file - file struct
2730  *	@sock - socket
2731  *	@wait - poll table
2732  *
2733  *	This is same as datagram poll, except for the special case of
2734  *	blocking sockets. If application is using a blocking fd
2735  *	and a packet with checksum error is in the queue;
2736  *	then it could get return from select indicating data available
2737  *	but then block when reading it. Add special case code
2738  *	to work around these arguably broken applications.
2739  */
2740 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2741 {
2742 	__poll_t mask = datagram_poll(file, sock, wait);
2743 	struct sock *sk = sock->sk;
2744 
2745 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2746 		mask |= EPOLLIN | EPOLLRDNORM;
2747 
2748 	/* Check for false positives due to checksum errors */
2749 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2750 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2751 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2752 
2753 	return mask;
2754 
2755 }
2756 EXPORT_SYMBOL(udp_poll);
2757 
2758 int udp_abort(struct sock *sk, int err)
2759 {
2760 	lock_sock(sk);
2761 
2762 	sk->sk_err = err;
2763 	sk->sk_error_report(sk);
2764 	__udp_disconnect(sk, 0);
2765 
2766 	release_sock(sk);
2767 
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(udp_abort);
2771 
2772 struct proto udp_prot = {
2773 	.name			= "UDP",
2774 	.owner			= THIS_MODULE,
2775 	.close			= udp_lib_close,
2776 	.pre_connect		= udp_pre_connect,
2777 	.connect		= ip4_datagram_connect,
2778 	.disconnect		= udp_disconnect,
2779 	.ioctl			= udp_ioctl,
2780 	.init			= udp_init_sock,
2781 	.destroy		= udp_destroy_sock,
2782 	.setsockopt		= udp_setsockopt,
2783 	.getsockopt		= udp_getsockopt,
2784 	.sendmsg		= udp_sendmsg,
2785 	.recvmsg		= udp_recvmsg,
2786 	.sendpage		= udp_sendpage,
2787 	.release_cb		= ip4_datagram_release_cb,
2788 	.hash			= udp_lib_hash,
2789 	.unhash			= udp_lib_unhash,
2790 	.rehash			= udp_v4_rehash,
2791 	.get_port		= udp_v4_get_port,
2792 	.memory_allocated	= &udp_memory_allocated,
2793 	.sysctl_mem		= sysctl_udp_mem,
2794 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2795 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2796 	.obj_size		= sizeof(struct udp_sock),
2797 	.h.udp_table		= &udp_table,
2798 #ifdef CONFIG_COMPAT
2799 	.compat_setsockopt	= compat_udp_setsockopt,
2800 	.compat_getsockopt	= compat_udp_getsockopt,
2801 #endif
2802 	.diag_destroy		= udp_abort,
2803 };
2804 EXPORT_SYMBOL(udp_prot);
2805 
2806 /* ------------------------------------------------------------------------ */
2807 #ifdef CONFIG_PROC_FS
2808 
2809 static struct sock *udp_get_first(struct seq_file *seq, int start)
2810 {
2811 	struct sock *sk;
2812 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2813 	struct udp_iter_state *state = seq->private;
2814 	struct net *net = seq_file_net(seq);
2815 
2816 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2817 	     ++state->bucket) {
2818 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2819 
2820 		if (hlist_empty(&hslot->head))
2821 			continue;
2822 
2823 		spin_lock_bh(&hslot->lock);
2824 		sk_for_each(sk, &hslot->head) {
2825 			if (!net_eq(sock_net(sk), net))
2826 				continue;
2827 			if (sk->sk_family == afinfo->family)
2828 				goto found;
2829 		}
2830 		spin_unlock_bh(&hslot->lock);
2831 	}
2832 	sk = NULL;
2833 found:
2834 	return sk;
2835 }
2836 
2837 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2838 {
2839 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2840 	struct udp_iter_state *state = seq->private;
2841 	struct net *net = seq_file_net(seq);
2842 
2843 	do {
2844 		sk = sk_next(sk);
2845 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2846 
2847 	if (!sk) {
2848 		if (state->bucket <= afinfo->udp_table->mask)
2849 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2850 		return udp_get_first(seq, state->bucket + 1);
2851 	}
2852 	return sk;
2853 }
2854 
2855 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2856 {
2857 	struct sock *sk = udp_get_first(seq, 0);
2858 
2859 	if (sk)
2860 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2861 			--pos;
2862 	return pos ? NULL : sk;
2863 }
2864 
2865 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2866 {
2867 	struct udp_iter_state *state = seq->private;
2868 	state->bucket = MAX_UDP_PORTS;
2869 
2870 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2871 }
2872 EXPORT_SYMBOL(udp_seq_start);
2873 
2874 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2875 {
2876 	struct sock *sk;
2877 
2878 	if (v == SEQ_START_TOKEN)
2879 		sk = udp_get_idx(seq, 0);
2880 	else
2881 		sk = udp_get_next(seq, v);
2882 
2883 	++*pos;
2884 	return sk;
2885 }
2886 EXPORT_SYMBOL(udp_seq_next);
2887 
2888 void udp_seq_stop(struct seq_file *seq, void *v)
2889 {
2890 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2891 	struct udp_iter_state *state = seq->private;
2892 
2893 	if (state->bucket <= afinfo->udp_table->mask)
2894 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2895 }
2896 EXPORT_SYMBOL(udp_seq_stop);
2897 
2898 /* ------------------------------------------------------------------------ */
2899 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2900 		int bucket)
2901 {
2902 	struct inet_sock *inet = inet_sk(sp);
2903 	__be32 dest = inet->inet_daddr;
2904 	__be32 src  = inet->inet_rcv_saddr;
2905 	__u16 destp	  = ntohs(inet->inet_dport);
2906 	__u16 srcp	  = ntohs(inet->inet_sport);
2907 
2908 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2909 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2910 		bucket, src, srcp, dest, destp, sp->sk_state,
2911 		sk_wmem_alloc_get(sp),
2912 		udp_rqueue_get(sp),
2913 		0, 0L, 0,
2914 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2915 		0, sock_i_ino(sp),
2916 		refcount_read(&sp->sk_refcnt), sp,
2917 		atomic_read(&sp->sk_drops));
2918 }
2919 
2920 int udp4_seq_show(struct seq_file *seq, void *v)
2921 {
2922 	seq_setwidth(seq, 127);
2923 	if (v == SEQ_START_TOKEN)
2924 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2925 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2926 			   "inode ref pointer drops");
2927 	else {
2928 		struct udp_iter_state *state = seq->private;
2929 
2930 		udp4_format_sock(v, seq, state->bucket);
2931 	}
2932 	seq_pad(seq, '\n');
2933 	return 0;
2934 }
2935 
2936 const struct seq_operations udp_seq_ops = {
2937 	.start		= udp_seq_start,
2938 	.next		= udp_seq_next,
2939 	.stop		= udp_seq_stop,
2940 	.show		= udp4_seq_show,
2941 };
2942 EXPORT_SYMBOL(udp_seq_ops);
2943 
2944 static struct udp_seq_afinfo udp4_seq_afinfo = {
2945 	.family		= AF_INET,
2946 	.udp_table	= &udp_table,
2947 };
2948 
2949 static int __net_init udp4_proc_init_net(struct net *net)
2950 {
2951 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2952 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2953 		return -ENOMEM;
2954 	return 0;
2955 }
2956 
2957 static void __net_exit udp4_proc_exit_net(struct net *net)
2958 {
2959 	remove_proc_entry("udp", net->proc_net);
2960 }
2961 
2962 static struct pernet_operations udp4_net_ops = {
2963 	.init = udp4_proc_init_net,
2964 	.exit = udp4_proc_exit_net,
2965 };
2966 
2967 int __init udp4_proc_init(void)
2968 {
2969 	return register_pernet_subsys(&udp4_net_ops);
2970 }
2971 
2972 void udp4_proc_exit(void)
2973 {
2974 	unregister_pernet_subsys(&udp4_net_ops);
2975 }
2976 #endif /* CONFIG_PROC_FS */
2977 
2978 static __initdata unsigned long uhash_entries;
2979 static int __init set_uhash_entries(char *str)
2980 {
2981 	ssize_t ret;
2982 
2983 	if (!str)
2984 		return 0;
2985 
2986 	ret = kstrtoul(str, 0, &uhash_entries);
2987 	if (ret)
2988 		return 0;
2989 
2990 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2991 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2992 	return 1;
2993 }
2994 __setup("uhash_entries=", set_uhash_entries);
2995 
2996 void __init udp_table_init(struct udp_table *table, const char *name)
2997 {
2998 	unsigned int i;
2999 
3000 	table->hash = alloc_large_system_hash(name,
3001 					      2 * sizeof(struct udp_hslot),
3002 					      uhash_entries,
3003 					      21, /* one slot per 2 MB */
3004 					      0,
3005 					      &table->log,
3006 					      &table->mask,
3007 					      UDP_HTABLE_SIZE_MIN,
3008 					      64 * 1024);
3009 
3010 	table->hash2 = table->hash + (table->mask + 1);
3011 	for (i = 0; i <= table->mask; i++) {
3012 		INIT_HLIST_HEAD(&table->hash[i].head);
3013 		table->hash[i].count = 0;
3014 		spin_lock_init(&table->hash[i].lock);
3015 	}
3016 	for (i = 0; i <= table->mask; i++) {
3017 		INIT_HLIST_HEAD(&table->hash2[i].head);
3018 		table->hash2[i].count = 0;
3019 		spin_lock_init(&table->hash2[i].lock);
3020 	}
3021 }
3022 
3023 u32 udp_flow_hashrnd(void)
3024 {
3025 	static u32 hashrnd __read_mostly;
3026 
3027 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3028 
3029 	return hashrnd;
3030 }
3031 EXPORT_SYMBOL(udp_flow_hashrnd);
3032 
3033 static void __udp_sysctl_init(struct net *net)
3034 {
3035 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3036 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3037 
3038 #ifdef CONFIG_NET_L3_MASTER_DEV
3039 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3040 #endif
3041 }
3042 
3043 static int __net_init udp_sysctl_init(struct net *net)
3044 {
3045 	__udp_sysctl_init(net);
3046 	return 0;
3047 }
3048 
3049 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3050 	.init	= udp_sysctl_init,
3051 };
3052 
3053 void __init udp_init(void)
3054 {
3055 	unsigned long limit;
3056 	unsigned int i;
3057 
3058 	udp_table_init(&udp_table, "UDP");
3059 	limit = nr_free_buffer_pages() / 8;
3060 	limit = max(limit, 128UL);
3061 	sysctl_udp_mem[0] = limit / 4 * 3;
3062 	sysctl_udp_mem[1] = limit;
3063 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3064 
3065 	__udp_sysctl_init(&init_net);
3066 
3067 	/* 16 spinlocks per cpu */
3068 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3069 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3070 				GFP_KERNEL);
3071 	if (!udp_busylocks)
3072 		panic("UDP: failed to alloc udp_busylocks\n");
3073 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3074 		spin_lock_init(udp_busylocks + i);
3075 
3076 	if (register_pernet_subsys(&udp_sysctl_ops))
3077 		panic("UDP: failed to init sysctl parameters.\n");
3078 }
3079