1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 118 struct udp_table udp_table __read_mostly; 119 EXPORT_SYMBOL(udp_table); 120 121 long sysctl_udp_mem[3] __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_mem); 123 124 int sysctl_udp_rmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_rmem_min); 126 127 int sysctl_udp_wmem_min __read_mostly; 128 EXPORT_SYMBOL(sysctl_udp_wmem_min); 129 130 atomic_long_t udp_memory_allocated; 131 EXPORT_SYMBOL(udp_memory_allocated); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 135 136 static int udp_lib_lport_inuse(struct net *net, __u16 num, 137 const struct udp_hslot *hslot, 138 unsigned long *bitmap, 139 struct sock *sk, 140 int (*saddr_comp)(const struct sock *sk1, 141 const struct sock *sk2, 142 bool match_wildcard), 143 unsigned int log) 144 { 145 struct sock *sk2; 146 kuid_t uid = sock_i_uid(sk); 147 148 sk_for_each(sk2, &hslot->head) { 149 if (net_eq(sock_net(sk2), net) && 150 sk2 != sk && 151 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 152 (!sk2->sk_reuse || !sk->sk_reuse) && 153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 155 (!sk2->sk_reuseport || !sk->sk_reuseport || 156 rcu_access_pointer(sk->sk_reuseport_cb) || 157 !uid_eq(uid, sock_i_uid(sk2))) && 158 saddr_comp(sk, sk2, true)) { 159 if (!bitmap) 160 return 1; 161 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 162 } 163 } 164 return 0; 165 } 166 167 /* 168 * Note: we still hold spinlock of primary hash chain, so no other writer 169 * can insert/delete a socket with local_port == num 170 */ 171 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 172 struct udp_hslot *hslot2, 173 struct sock *sk, 174 int (*saddr_comp)(const struct sock *sk1, 175 const struct sock *sk2, 176 bool match_wildcard)) 177 { 178 struct sock *sk2; 179 kuid_t uid = sock_i_uid(sk); 180 int res = 0; 181 182 spin_lock(&hslot2->lock); 183 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 184 if (net_eq(sock_net(sk2), net) && 185 sk2 != sk && 186 (udp_sk(sk2)->udp_port_hash == num) && 187 (!sk2->sk_reuse || !sk->sk_reuse) && 188 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 189 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 190 (!sk2->sk_reuseport || !sk->sk_reuseport || 191 rcu_access_pointer(sk->sk_reuseport_cb) || 192 !uid_eq(uid, sock_i_uid(sk2))) && 193 saddr_comp(sk, sk2, true)) { 194 res = 1; 195 break; 196 } 197 } 198 spin_unlock(&hslot2->lock); 199 return res; 200 } 201 202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot, 203 int (*saddr_same)(const struct sock *sk1, 204 const struct sock *sk2, 205 bool match_wildcard)) 206 { 207 struct net *net = sock_net(sk); 208 kuid_t uid = sock_i_uid(sk); 209 struct sock *sk2; 210 211 sk_for_each(sk2, &hslot->head) { 212 if (net_eq(sock_net(sk2), net) && 213 sk2 != sk && 214 sk2->sk_family == sk->sk_family && 215 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 216 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 217 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 218 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 219 (*saddr_same)(sk, sk2, false)) { 220 return reuseport_add_sock(sk, sk2); 221 } 222 } 223 224 /* Initial allocation may have already happened via setsockopt */ 225 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 226 return reuseport_alloc(sk); 227 return 0; 228 } 229 230 /** 231 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 232 * 233 * @sk: socket struct in question 234 * @snum: port number to look up 235 * @saddr_comp: AF-dependent comparison of bound local IP addresses 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 int (*saddr_comp)(const struct sock *sk1, 241 const struct sock *sk2, 242 bool match_wildcard), 243 unsigned int hash2_nulladdr) 244 { 245 struct udp_hslot *hslot, *hslot2; 246 struct udp_table *udptable = sk->sk_prot->h.udp_table; 247 int error = 1; 248 struct net *net = sock_net(sk); 249 250 if (!snum) { 251 int low, high, remaining; 252 unsigned int rand; 253 unsigned short first, last; 254 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 255 256 inet_get_local_port_range(net, &low, &high); 257 remaining = (high - low) + 1; 258 259 rand = prandom_u32(); 260 first = reciprocal_scale(rand, remaining) + low; 261 /* 262 * force rand to be an odd multiple of UDP_HTABLE_SIZE 263 */ 264 rand = (rand | 1) * (udptable->mask + 1); 265 last = first + udptable->mask + 1; 266 do { 267 hslot = udp_hashslot(udptable, net, first); 268 bitmap_zero(bitmap, PORTS_PER_CHAIN); 269 spin_lock_bh(&hslot->lock); 270 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 271 saddr_comp, udptable->log); 272 273 snum = first; 274 /* 275 * Iterate on all possible values of snum for this hash. 276 * Using steps of an odd multiple of UDP_HTABLE_SIZE 277 * give us randomization and full range coverage. 278 */ 279 do { 280 if (low <= snum && snum <= high && 281 !test_bit(snum >> udptable->log, bitmap) && 282 !inet_is_local_reserved_port(net, snum)) 283 goto found; 284 snum += rand; 285 } while (snum != first); 286 spin_unlock_bh(&hslot->lock); 287 } while (++first != last); 288 goto fail; 289 } else { 290 hslot = udp_hashslot(udptable, net, snum); 291 spin_lock_bh(&hslot->lock); 292 if (hslot->count > 10) { 293 int exist; 294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 295 296 slot2 &= udptable->mask; 297 hash2_nulladdr &= udptable->mask; 298 299 hslot2 = udp_hashslot2(udptable, slot2); 300 if (hslot->count < hslot2->count) 301 goto scan_primary_hash; 302 303 exist = udp_lib_lport_inuse2(net, snum, hslot2, 304 sk, saddr_comp); 305 if (!exist && (hash2_nulladdr != slot2)) { 306 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 307 exist = udp_lib_lport_inuse2(net, snum, hslot2, 308 sk, saddr_comp); 309 } 310 if (exist) 311 goto fail_unlock; 312 else 313 goto found; 314 } 315 scan_primary_hash: 316 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 317 saddr_comp, 0)) 318 goto fail_unlock; 319 } 320 found: 321 inet_sk(sk)->inet_num = snum; 322 udp_sk(sk)->udp_port_hash = snum; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 if (sk_unhashed(sk)) { 325 if (sk->sk_reuseport && 326 udp_reuseport_add_sock(sk, hslot, saddr_comp)) { 327 inet_sk(sk)->inet_num = 0; 328 udp_sk(sk)->udp_port_hash = 0; 329 udp_sk(sk)->udp_portaddr_hash ^= snum; 330 goto fail_unlock; 331 } 332 333 sk_add_node_rcu(sk, &hslot->head); 334 hslot->count++; 335 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 336 337 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 338 spin_lock(&hslot2->lock); 339 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 340 sk->sk_family == AF_INET6) 341 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 else 344 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 345 &hslot2->head); 346 hslot2->count++; 347 spin_unlock(&hslot2->lock); 348 } 349 sock_set_flag(sk, SOCK_RCU_FREE); 350 error = 0; 351 fail_unlock: 352 spin_unlock_bh(&hslot->lock); 353 fail: 354 return error; 355 } 356 EXPORT_SYMBOL(udp_lib_get_port); 357 358 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 359 * match_wildcard == false: addresses must be exactly the same, i.e. 360 * 0.0.0.0 only equals to 0.0.0.0 361 */ 362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2, 363 bool match_wildcard) 364 { 365 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 366 367 if (!ipv6_only_sock(sk2)) { 368 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr) 369 return 1; 370 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr) 371 return match_wildcard; 372 } 373 return 0; 374 } 375 376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 377 unsigned int port) 378 { 379 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 380 } 381 382 int udp_v4_get_port(struct sock *sk, unsigned short snum) 383 { 384 unsigned int hash2_nulladdr = 385 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 386 unsigned int hash2_partial = 387 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 388 389 /* precompute partial secondary hash */ 390 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 391 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 392 } 393 394 static int compute_score(struct sock *sk, struct net *net, 395 __be32 saddr, __be16 sport, 396 __be32 daddr, unsigned short hnum, int dif) 397 { 398 int score; 399 struct inet_sock *inet; 400 401 if (!net_eq(sock_net(sk), net) || 402 udp_sk(sk)->udp_port_hash != hnum || 403 ipv6_only_sock(sk)) 404 return -1; 405 406 score = (sk->sk_family == PF_INET) ? 2 : 1; 407 inet = inet_sk(sk); 408 409 if (inet->inet_rcv_saddr) { 410 if (inet->inet_rcv_saddr != daddr) 411 return -1; 412 score += 4; 413 } 414 415 if (inet->inet_daddr) { 416 if (inet->inet_daddr != saddr) 417 return -1; 418 score += 4; 419 } 420 421 if (inet->inet_dport) { 422 if (inet->inet_dport != sport) 423 return -1; 424 score += 4; 425 } 426 427 if (sk->sk_bound_dev_if) { 428 if (sk->sk_bound_dev_if != dif) 429 return -1; 430 score += 4; 431 } 432 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 433 score++; 434 return score; 435 } 436 437 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 438 const __u16 lport, const __be32 faddr, 439 const __be16 fport) 440 { 441 static u32 udp_ehash_secret __read_mostly; 442 443 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 444 445 return __inet_ehashfn(laddr, lport, faddr, fport, 446 udp_ehash_secret + net_hash_mix(net)); 447 } 448 449 /* called with rcu_read_lock() */ 450 static struct sock *udp4_lib_lookup2(struct net *net, 451 __be32 saddr, __be16 sport, 452 __be32 daddr, unsigned int hnum, int dif, 453 struct udp_hslot *hslot2, 454 struct sk_buff *skb) 455 { 456 struct sock *sk, *result; 457 int score, badness, matches = 0, reuseport = 0; 458 u32 hash = 0; 459 460 result = NULL; 461 badness = 0; 462 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 463 score = compute_score(sk, net, saddr, sport, 464 daddr, hnum, dif); 465 if (score > badness) { 466 reuseport = sk->sk_reuseport; 467 if (reuseport) { 468 hash = udp_ehashfn(net, daddr, hnum, 469 saddr, sport); 470 result = reuseport_select_sock(sk, hash, skb, 471 sizeof(struct udphdr)); 472 if (result) 473 return result; 474 matches = 1; 475 } 476 badness = score; 477 result = sk; 478 } else if (score == badness && reuseport) { 479 matches++; 480 if (reciprocal_scale(hash, matches) == 0) 481 result = sk; 482 hash = next_pseudo_random32(hash); 483 } 484 } 485 return result; 486 } 487 488 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 489 * harder than this. -DaveM 490 */ 491 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 492 __be16 sport, __be32 daddr, __be16 dport, 493 int dif, struct udp_table *udptable, struct sk_buff *skb) 494 { 495 struct sock *sk, *result; 496 unsigned short hnum = ntohs(dport); 497 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 498 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 499 int score, badness, matches = 0, reuseport = 0; 500 u32 hash = 0; 501 502 if (hslot->count > 10) { 503 hash2 = udp4_portaddr_hash(net, daddr, hnum); 504 slot2 = hash2 & udptable->mask; 505 hslot2 = &udptable->hash2[slot2]; 506 if (hslot->count < hslot2->count) 507 goto begin; 508 509 result = udp4_lib_lookup2(net, saddr, sport, 510 daddr, hnum, dif, 511 hslot2, skb); 512 if (!result) { 513 unsigned int old_slot2 = slot2; 514 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 515 slot2 = hash2 & udptable->mask; 516 /* avoid searching the same slot again. */ 517 if (unlikely(slot2 == old_slot2)) 518 return result; 519 520 hslot2 = &udptable->hash2[slot2]; 521 if (hslot->count < hslot2->count) 522 goto begin; 523 524 result = udp4_lib_lookup2(net, saddr, sport, 525 daddr, hnum, dif, 526 hslot2, skb); 527 } 528 return result; 529 } 530 begin: 531 result = NULL; 532 badness = 0; 533 sk_for_each_rcu(sk, &hslot->head) { 534 score = compute_score(sk, net, saddr, sport, 535 daddr, hnum, dif); 536 if (score > badness) { 537 reuseport = sk->sk_reuseport; 538 if (reuseport) { 539 hash = udp_ehashfn(net, daddr, hnum, 540 saddr, sport); 541 result = reuseport_select_sock(sk, hash, skb, 542 sizeof(struct udphdr)); 543 if (result) 544 return result; 545 matches = 1; 546 } 547 result = sk; 548 badness = score; 549 } else if (score == badness && reuseport) { 550 matches++; 551 if (reciprocal_scale(hash, matches) == 0) 552 result = sk; 553 hash = next_pseudo_random32(hash); 554 } 555 } 556 return result; 557 } 558 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 559 560 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 561 __be16 sport, __be16 dport, 562 struct udp_table *udptable) 563 { 564 const struct iphdr *iph = ip_hdr(skb); 565 566 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 567 iph->daddr, dport, inet_iif(skb), 568 udptable, skb); 569 } 570 571 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 572 __be16 sport, __be16 dport) 573 { 574 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 575 } 576 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 577 578 /* Must be called under rcu_read_lock(). 579 * Does increment socket refcount. 580 */ 581 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 582 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) 583 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 584 __be32 daddr, __be16 dport, int dif) 585 { 586 struct sock *sk; 587 588 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 589 dif, &udp_table, NULL); 590 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt)) 591 sk = NULL; 592 return sk; 593 } 594 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 595 #endif 596 597 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 598 __be16 loc_port, __be32 loc_addr, 599 __be16 rmt_port, __be32 rmt_addr, 600 int dif, unsigned short hnum) 601 { 602 struct inet_sock *inet = inet_sk(sk); 603 604 if (!net_eq(sock_net(sk), net) || 605 udp_sk(sk)->udp_port_hash != hnum || 606 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 607 (inet->inet_dport != rmt_port && inet->inet_dport) || 608 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 609 ipv6_only_sock(sk) || 610 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 611 return false; 612 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 613 return false; 614 return true; 615 } 616 617 /* 618 * This routine is called by the ICMP module when it gets some 619 * sort of error condition. If err < 0 then the socket should 620 * be closed and the error returned to the user. If err > 0 621 * it's just the icmp type << 8 | icmp code. 622 * Header points to the ip header of the error packet. We move 623 * on past this. Then (as it used to claim before adjustment) 624 * header points to the first 8 bytes of the udp header. We need 625 * to find the appropriate port. 626 */ 627 628 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 629 { 630 struct inet_sock *inet; 631 const struct iphdr *iph = (const struct iphdr *)skb->data; 632 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 633 const int type = icmp_hdr(skb)->type; 634 const int code = icmp_hdr(skb)->code; 635 struct sock *sk; 636 int harderr; 637 int err; 638 struct net *net = dev_net(skb->dev); 639 640 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 641 iph->saddr, uh->source, skb->dev->ifindex, udptable, 642 NULL); 643 if (!sk) { 644 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 645 return; /* No socket for error */ 646 } 647 648 err = 0; 649 harderr = 0; 650 inet = inet_sk(sk); 651 652 switch (type) { 653 default: 654 case ICMP_TIME_EXCEEDED: 655 err = EHOSTUNREACH; 656 break; 657 case ICMP_SOURCE_QUENCH: 658 goto out; 659 case ICMP_PARAMETERPROB: 660 err = EPROTO; 661 harderr = 1; 662 break; 663 case ICMP_DEST_UNREACH: 664 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 665 ipv4_sk_update_pmtu(skb, sk, info); 666 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 667 err = EMSGSIZE; 668 harderr = 1; 669 break; 670 } 671 goto out; 672 } 673 err = EHOSTUNREACH; 674 if (code <= NR_ICMP_UNREACH) { 675 harderr = icmp_err_convert[code].fatal; 676 err = icmp_err_convert[code].errno; 677 } 678 break; 679 case ICMP_REDIRECT: 680 ipv4_sk_redirect(skb, sk); 681 goto out; 682 } 683 684 /* 685 * RFC1122: OK. Passes ICMP errors back to application, as per 686 * 4.1.3.3. 687 */ 688 if (!inet->recverr) { 689 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 690 goto out; 691 } else 692 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 693 694 sk->sk_err = err; 695 sk->sk_error_report(sk); 696 out: 697 return; 698 } 699 700 void udp_err(struct sk_buff *skb, u32 info) 701 { 702 __udp4_lib_err(skb, info, &udp_table); 703 } 704 705 /* 706 * Throw away all pending data and cancel the corking. Socket is locked. 707 */ 708 void udp_flush_pending_frames(struct sock *sk) 709 { 710 struct udp_sock *up = udp_sk(sk); 711 712 if (up->pending) { 713 up->len = 0; 714 up->pending = 0; 715 ip_flush_pending_frames(sk); 716 } 717 } 718 EXPORT_SYMBOL(udp_flush_pending_frames); 719 720 /** 721 * udp4_hwcsum - handle outgoing HW checksumming 722 * @skb: sk_buff containing the filled-in UDP header 723 * (checksum field must be zeroed out) 724 * @src: source IP address 725 * @dst: destination IP address 726 */ 727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 728 { 729 struct udphdr *uh = udp_hdr(skb); 730 int offset = skb_transport_offset(skb); 731 int len = skb->len - offset; 732 int hlen = len; 733 __wsum csum = 0; 734 735 if (!skb_has_frag_list(skb)) { 736 /* 737 * Only one fragment on the socket. 738 */ 739 skb->csum_start = skb_transport_header(skb) - skb->head; 740 skb->csum_offset = offsetof(struct udphdr, check); 741 uh->check = ~csum_tcpudp_magic(src, dst, len, 742 IPPROTO_UDP, 0); 743 } else { 744 struct sk_buff *frags; 745 746 /* 747 * HW-checksum won't work as there are two or more 748 * fragments on the socket so that all csums of sk_buffs 749 * should be together 750 */ 751 skb_walk_frags(skb, frags) { 752 csum = csum_add(csum, frags->csum); 753 hlen -= frags->len; 754 } 755 756 csum = skb_checksum(skb, offset, hlen, csum); 757 skb->ip_summed = CHECKSUM_NONE; 758 759 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 760 if (uh->check == 0) 761 uh->check = CSUM_MANGLED_0; 762 } 763 } 764 EXPORT_SYMBOL_GPL(udp4_hwcsum); 765 766 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 767 * for the simple case like when setting the checksum for a UDP tunnel. 768 */ 769 void udp_set_csum(bool nocheck, struct sk_buff *skb, 770 __be32 saddr, __be32 daddr, int len) 771 { 772 struct udphdr *uh = udp_hdr(skb); 773 774 if (nocheck) { 775 uh->check = 0; 776 } else if (skb_is_gso(skb)) { 777 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 778 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 779 uh->check = 0; 780 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 781 if (uh->check == 0) 782 uh->check = CSUM_MANGLED_0; 783 } else { 784 skb->ip_summed = CHECKSUM_PARTIAL; 785 skb->csum_start = skb_transport_header(skb) - skb->head; 786 skb->csum_offset = offsetof(struct udphdr, check); 787 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 788 } 789 } 790 EXPORT_SYMBOL(udp_set_csum); 791 792 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 793 { 794 struct sock *sk = skb->sk; 795 struct inet_sock *inet = inet_sk(sk); 796 struct udphdr *uh; 797 int err = 0; 798 int is_udplite = IS_UDPLITE(sk); 799 int offset = skb_transport_offset(skb); 800 int len = skb->len - offset; 801 __wsum csum = 0; 802 803 /* 804 * Create a UDP header 805 */ 806 uh = udp_hdr(skb); 807 uh->source = inet->inet_sport; 808 uh->dest = fl4->fl4_dport; 809 uh->len = htons(len); 810 uh->check = 0; 811 812 if (is_udplite) /* UDP-Lite */ 813 csum = udplite_csum(skb); 814 815 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 816 817 skb->ip_summed = CHECKSUM_NONE; 818 goto send; 819 820 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 821 822 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 823 goto send; 824 825 } else 826 csum = udp_csum(skb); 827 828 /* add protocol-dependent pseudo-header */ 829 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 830 sk->sk_protocol, csum); 831 if (uh->check == 0) 832 uh->check = CSUM_MANGLED_0; 833 834 send: 835 err = ip_send_skb(sock_net(sk), skb); 836 if (err) { 837 if (err == -ENOBUFS && !inet->recverr) { 838 UDP_INC_STATS(sock_net(sk), 839 UDP_MIB_SNDBUFERRORS, is_udplite); 840 err = 0; 841 } 842 } else 843 UDP_INC_STATS(sock_net(sk), 844 UDP_MIB_OUTDATAGRAMS, is_udplite); 845 return err; 846 } 847 848 /* 849 * Push out all pending data as one UDP datagram. Socket is locked. 850 */ 851 int udp_push_pending_frames(struct sock *sk) 852 { 853 struct udp_sock *up = udp_sk(sk); 854 struct inet_sock *inet = inet_sk(sk); 855 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 856 struct sk_buff *skb; 857 int err = 0; 858 859 skb = ip_finish_skb(sk, fl4); 860 if (!skb) 861 goto out; 862 863 err = udp_send_skb(skb, fl4); 864 865 out: 866 up->len = 0; 867 up->pending = 0; 868 return err; 869 } 870 EXPORT_SYMBOL(udp_push_pending_frames); 871 872 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 873 { 874 struct inet_sock *inet = inet_sk(sk); 875 struct udp_sock *up = udp_sk(sk); 876 struct flowi4 fl4_stack; 877 struct flowi4 *fl4; 878 int ulen = len; 879 struct ipcm_cookie ipc; 880 struct rtable *rt = NULL; 881 int free = 0; 882 int connected = 0; 883 __be32 daddr, faddr, saddr; 884 __be16 dport; 885 u8 tos; 886 int err, is_udplite = IS_UDPLITE(sk); 887 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 888 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 889 struct sk_buff *skb; 890 struct ip_options_data opt_copy; 891 892 if (len > 0xFFFF) 893 return -EMSGSIZE; 894 895 /* 896 * Check the flags. 897 */ 898 899 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 900 return -EOPNOTSUPP; 901 902 ipc.opt = NULL; 903 ipc.tx_flags = 0; 904 ipc.ttl = 0; 905 ipc.tos = -1; 906 907 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 908 909 fl4 = &inet->cork.fl.u.ip4; 910 if (up->pending) { 911 /* 912 * There are pending frames. 913 * The socket lock must be held while it's corked. 914 */ 915 lock_sock(sk); 916 if (likely(up->pending)) { 917 if (unlikely(up->pending != AF_INET)) { 918 release_sock(sk); 919 return -EINVAL; 920 } 921 goto do_append_data; 922 } 923 release_sock(sk); 924 } 925 ulen += sizeof(struct udphdr); 926 927 /* 928 * Get and verify the address. 929 */ 930 if (msg->msg_name) { 931 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 932 if (msg->msg_namelen < sizeof(*usin)) 933 return -EINVAL; 934 if (usin->sin_family != AF_INET) { 935 if (usin->sin_family != AF_UNSPEC) 936 return -EAFNOSUPPORT; 937 } 938 939 daddr = usin->sin_addr.s_addr; 940 dport = usin->sin_port; 941 if (dport == 0) 942 return -EINVAL; 943 } else { 944 if (sk->sk_state != TCP_ESTABLISHED) 945 return -EDESTADDRREQ; 946 daddr = inet->inet_daddr; 947 dport = inet->inet_dport; 948 /* Open fast path for connected socket. 949 Route will not be used, if at least one option is set. 950 */ 951 connected = 1; 952 } 953 954 ipc.sockc.tsflags = sk->sk_tsflags; 955 ipc.addr = inet->inet_saddr; 956 ipc.oif = sk->sk_bound_dev_if; 957 958 if (msg->msg_controllen) { 959 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 960 if (unlikely(err)) { 961 kfree(ipc.opt); 962 return err; 963 } 964 if (ipc.opt) 965 free = 1; 966 connected = 0; 967 } 968 if (!ipc.opt) { 969 struct ip_options_rcu *inet_opt; 970 971 rcu_read_lock(); 972 inet_opt = rcu_dereference(inet->inet_opt); 973 if (inet_opt) { 974 memcpy(&opt_copy, inet_opt, 975 sizeof(*inet_opt) + inet_opt->opt.optlen); 976 ipc.opt = &opt_copy.opt; 977 } 978 rcu_read_unlock(); 979 } 980 981 saddr = ipc.addr; 982 ipc.addr = faddr = daddr; 983 984 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 985 986 if (ipc.opt && ipc.opt->opt.srr) { 987 if (!daddr) 988 return -EINVAL; 989 faddr = ipc.opt->opt.faddr; 990 connected = 0; 991 } 992 tos = get_rttos(&ipc, inet); 993 if (sock_flag(sk, SOCK_LOCALROUTE) || 994 (msg->msg_flags & MSG_DONTROUTE) || 995 (ipc.opt && ipc.opt->opt.is_strictroute)) { 996 tos |= RTO_ONLINK; 997 connected = 0; 998 } 999 1000 if (ipv4_is_multicast(daddr)) { 1001 if (!ipc.oif) 1002 ipc.oif = inet->mc_index; 1003 if (!saddr) 1004 saddr = inet->mc_addr; 1005 connected = 0; 1006 } else if (!ipc.oif) 1007 ipc.oif = inet->uc_index; 1008 1009 if (connected) 1010 rt = (struct rtable *)sk_dst_check(sk, 0); 1011 1012 if (!rt) { 1013 struct net *net = sock_net(sk); 1014 __u8 flow_flags = inet_sk_flowi_flags(sk); 1015 1016 fl4 = &fl4_stack; 1017 1018 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1019 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1020 flow_flags, 1021 faddr, saddr, dport, inet->inet_sport); 1022 1023 if (!saddr && ipc.oif) { 1024 err = l3mdev_get_saddr(net, ipc.oif, fl4); 1025 if (err < 0) 1026 goto out; 1027 } 1028 1029 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1030 rt = ip_route_output_flow(net, fl4, sk); 1031 if (IS_ERR(rt)) { 1032 err = PTR_ERR(rt); 1033 rt = NULL; 1034 if (err == -ENETUNREACH) 1035 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1036 goto out; 1037 } 1038 1039 err = -EACCES; 1040 if ((rt->rt_flags & RTCF_BROADCAST) && 1041 !sock_flag(sk, SOCK_BROADCAST)) 1042 goto out; 1043 if (connected) 1044 sk_dst_set(sk, dst_clone(&rt->dst)); 1045 } 1046 1047 if (msg->msg_flags&MSG_CONFIRM) 1048 goto do_confirm; 1049 back_from_confirm: 1050 1051 saddr = fl4->saddr; 1052 if (!ipc.addr) 1053 daddr = ipc.addr = fl4->daddr; 1054 1055 /* Lockless fast path for the non-corking case. */ 1056 if (!corkreq) { 1057 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1058 sizeof(struct udphdr), &ipc, &rt, 1059 msg->msg_flags); 1060 err = PTR_ERR(skb); 1061 if (!IS_ERR_OR_NULL(skb)) 1062 err = udp_send_skb(skb, fl4); 1063 goto out; 1064 } 1065 1066 lock_sock(sk); 1067 if (unlikely(up->pending)) { 1068 /* The socket is already corked while preparing it. */ 1069 /* ... which is an evident application bug. --ANK */ 1070 release_sock(sk); 1071 1072 net_dbg_ratelimited("cork app bug 2\n"); 1073 err = -EINVAL; 1074 goto out; 1075 } 1076 /* 1077 * Now cork the socket to pend data. 1078 */ 1079 fl4 = &inet->cork.fl.u.ip4; 1080 fl4->daddr = daddr; 1081 fl4->saddr = saddr; 1082 fl4->fl4_dport = dport; 1083 fl4->fl4_sport = inet->inet_sport; 1084 up->pending = AF_INET; 1085 1086 do_append_data: 1087 up->len += ulen; 1088 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1089 sizeof(struct udphdr), &ipc, &rt, 1090 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1091 if (err) 1092 udp_flush_pending_frames(sk); 1093 else if (!corkreq) 1094 err = udp_push_pending_frames(sk); 1095 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1096 up->pending = 0; 1097 release_sock(sk); 1098 1099 out: 1100 ip_rt_put(rt); 1101 if (free) 1102 kfree(ipc.opt); 1103 if (!err) 1104 return len; 1105 /* 1106 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1107 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1108 * we don't have a good statistic (IpOutDiscards but it can be too many 1109 * things). We could add another new stat but at least for now that 1110 * seems like overkill. 1111 */ 1112 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1113 UDP_INC_STATS(sock_net(sk), 1114 UDP_MIB_SNDBUFERRORS, is_udplite); 1115 } 1116 return err; 1117 1118 do_confirm: 1119 dst_confirm(&rt->dst); 1120 if (!(msg->msg_flags&MSG_PROBE) || len) 1121 goto back_from_confirm; 1122 err = 0; 1123 goto out; 1124 } 1125 EXPORT_SYMBOL(udp_sendmsg); 1126 1127 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1128 size_t size, int flags) 1129 { 1130 struct inet_sock *inet = inet_sk(sk); 1131 struct udp_sock *up = udp_sk(sk); 1132 int ret; 1133 1134 if (flags & MSG_SENDPAGE_NOTLAST) 1135 flags |= MSG_MORE; 1136 1137 if (!up->pending) { 1138 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1139 1140 /* Call udp_sendmsg to specify destination address which 1141 * sendpage interface can't pass. 1142 * This will succeed only when the socket is connected. 1143 */ 1144 ret = udp_sendmsg(sk, &msg, 0); 1145 if (ret < 0) 1146 return ret; 1147 } 1148 1149 lock_sock(sk); 1150 1151 if (unlikely(!up->pending)) { 1152 release_sock(sk); 1153 1154 net_dbg_ratelimited("udp cork app bug 3\n"); 1155 return -EINVAL; 1156 } 1157 1158 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1159 page, offset, size, flags); 1160 if (ret == -EOPNOTSUPP) { 1161 release_sock(sk); 1162 return sock_no_sendpage(sk->sk_socket, page, offset, 1163 size, flags); 1164 } 1165 if (ret < 0) { 1166 udp_flush_pending_frames(sk); 1167 goto out; 1168 } 1169 1170 up->len += size; 1171 if (!(up->corkflag || (flags&MSG_MORE))) 1172 ret = udp_push_pending_frames(sk); 1173 if (!ret) 1174 ret = size; 1175 out: 1176 release_sock(sk); 1177 return ret; 1178 } 1179 1180 /** 1181 * first_packet_length - return length of first packet in receive queue 1182 * @sk: socket 1183 * 1184 * Drops all bad checksum frames, until a valid one is found. 1185 * Returns the length of found skb, or -1 if none is found. 1186 */ 1187 static int first_packet_length(struct sock *sk) 1188 { 1189 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1190 struct sk_buff *skb; 1191 int res; 1192 1193 __skb_queue_head_init(&list_kill); 1194 1195 spin_lock_bh(&rcvq->lock); 1196 while ((skb = skb_peek(rcvq)) != NULL && 1197 udp_lib_checksum_complete(skb)) { 1198 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1199 IS_UDPLITE(sk)); 1200 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1201 IS_UDPLITE(sk)); 1202 atomic_inc(&sk->sk_drops); 1203 __skb_unlink(skb, rcvq); 1204 __skb_queue_tail(&list_kill, skb); 1205 } 1206 res = skb ? skb->len : -1; 1207 spin_unlock_bh(&rcvq->lock); 1208 1209 if (!skb_queue_empty(&list_kill)) { 1210 bool slow = lock_sock_fast(sk); 1211 1212 __skb_queue_purge(&list_kill); 1213 sk_mem_reclaim_partial(sk); 1214 unlock_sock_fast(sk, slow); 1215 } 1216 return res; 1217 } 1218 1219 /* 1220 * IOCTL requests applicable to the UDP protocol 1221 */ 1222 1223 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1224 { 1225 switch (cmd) { 1226 case SIOCOUTQ: 1227 { 1228 int amount = sk_wmem_alloc_get(sk); 1229 1230 return put_user(amount, (int __user *)arg); 1231 } 1232 1233 case SIOCINQ: 1234 { 1235 int amount = max_t(int, 0, first_packet_length(sk)); 1236 1237 return put_user(amount, (int __user *)arg); 1238 } 1239 1240 default: 1241 return -ENOIOCTLCMD; 1242 } 1243 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(udp_ioctl); 1247 1248 /* 1249 * This should be easy, if there is something there we 1250 * return it, otherwise we block. 1251 */ 1252 1253 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1254 int flags, int *addr_len) 1255 { 1256 struct inet_sock *inet = inet_sk(sk); 1257 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1258 struct sk_buff *skb; 1259 unsigned int ulen, copied; 1260 int peeked, peeking, off; 1261 int err; 1262 int is_udplite = IS_UDPLITE(sk); 1263 bool checksum_valid = false; 1264 bool slow; 1265 1266 if (flags & MSG_ERRQUEUE) 1267 return ip_recv_error(sk, msg, len, addr_len); 1268 1269 try_again: 1270 peeking = off = sk_peek_offset(sk, flags); 1271 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1272 &peeked, &off, &err); 1273 if (!skb) 1274 return err; 1275 1276 ulen = skb->len; 1277 copied = len; 1278 if (copied > ulen - off) 1279 copied = ulen - off; 1280 else if (copied < ulen) 1281 msg->msg_flags |= MSG_TRUNC; 1282 1283 /* 1284 * If checksum is needed at all, try to do it while copying the 1285 * data. If the data is truncated, or if we only want a partial 1286 * coverage checksum (UDP-Lite), do it before the copy. 1287 */ 1288 1289 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) { 1290 checksum_valid = !udp_lib_checksum_complete(skb); 1291 if (!checksum_valid) 1292 goto csum_copy_err; 1293 } 1294 1295 if (checksum_valid || skb_csum_unnecessary(skb)) 1296 err = skb_copy_datagram_msg(skb, off, msg, copied); 1297 else { 1298 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1299 1300 if (err == -EINVAL) 1301 goto csum_copy_err; 1302 } 1303 1304 if (unlikely(err)) { 1305 trace_kfree_skb(skb, udp_recvmsg); 1306 if (!peeked) { 1307 atomic_inc(&sk->sk_drops); 1308 UDP_INC_STATS(sock_net(sk), 1309 UDP_MIB_INERRORS, is_udplite); 1310 } 1311 skb_free_datagram_locked(sk, skb); 1312 return err; 1313 } 1314 1315 if (!peeked) 1316 UDP_INC_STATS(sock_net(sk), 1317 UDP_MIB_INDATAGRAMS, is_udplite); 1318 1319 sock_recv_ts_and_drops(msg, sk, skb); 1320 1321 /* Copy the address. */ 1322 if (sin) { 1323 sin->sin_family = AF_INET; 1324 sin->sin_port = udp_hdr(skb)->source; 1325 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1326 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1327 *addr_len = sizeof(*sin); 1328 } 1329 if (inet->cmsg_flags) 1330 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off); 1331 1332 err = copied; 1333 if (flags & MSG_TRUNC) 1334 err = ulen; 1335 1336 __skb_free_datagram_locked(sk, skb, peeking ? -err : err); 1337 return err; 1338 1339 csum_copy_err: 1340 slow = lock_sock_fast(sk); 1341 if (!skb_kill_datagram(sk, skb, flags)) { 1342 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1343 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1344 } 1345 unlock_sock_fast(sk, slow); 1346 1347 /* starting over for a new packet, but check if we need to yield */ 1348 cond_resched(); 1349 msg->msg_flags &= ~MSG_TRUNC; 1350 goto try_again; 1351 } 1352 1353 int udp_disconnect(struct sock *sk, int flags) 1354 { 1355 struct inet_sock *inet = inet_sk(sk); 1356 /* 1357 * 1003.1g - break association. 1358 */ 1359 1360 sk->sk_state = TCP_CLOSE; 1361 inet->inet_daddr = 0; 1362 inet->inet_dport = 0; 1363 sock_rps_reset_rxhash(sk); 1364 sk->sk_bound_dev_if = 0; 1365 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1366 inet_reset_saddr(sk); 1367 1368 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1369 sk->sk_prot->unhash(sk); 1370 inet->inet_sport = 0; 1371 } 1372 sk_dst_reset(sk); 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(udp_disconnect); 1376 1377 void udp_lib_unhash(struct sock *sk) 1378 { 1379 if (sk_hashed(sk)) { 1380 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1381 struct udp_hslot *hslot, *hslot2; 1382 1383 hslot = udp_hashslot(udptable, sock_net(sk), 1384 udp_sk(sk)->udp_port_hash); 1385 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1386 1387 spin_lock_bh(&hslot->lock); 1388 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1389 reuseport_detach_sock(sk); 1390 if (sk_del_node_init_rcu(sk)) { 1391 hslot->count--; 1392 inet_sk(sk)->inet_num = 0; 1393 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1394 1395 spin_lock(&hslot2->lock); 1396 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1397 hslot2->count--; 1398 spin_unlock(&hslot2->lock); 1399 } 1400 spin_unlock_bh(&hslot->lock); 1401 } 1402 } 1403 EXPORT_SYMBOL(udp_lib_unhash); 1404 1405 /* 1406 * inet_rcv_saddr was changed, we must rehash secondary hash 1407 */ 1408 void udp_lib_rehash(struct sock *sk, u16 newhash) 1409 { 1410 if (sk_hashed(sk)) { 1411 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1412 struct udp_hslot *hslot, *hslot2, *nhslot2; 1413 1414 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1415 nhslot2 = udp_hashslot2(udptable, newhash); 1416 udp_sk(sk)->udp_portaddr_hash = newhash; 1417 1418 if (hslot2 != nhslot2 || 1419 rcu_access_pointer(sk->sk_reuseport_cb)) { 1420 hslot = udp_hashslot(udptable, sock_net(sk), 1421 udp_sk(sk)->udp_port_hash); 1422 /* we must lock primary chain too */ 1423 spin_lock_bh(&hslot->lock); 1424 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1425 reuseport_detach_sock(sk); 1426 1427 if (hslot2 != nhslot2) { 1428 spin_lock(&hslot2->lock); 1429 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1430 hslot2->count--; 1431 spin_unlock(&hslot2->lock); 1432 1433 spin_lock(&nhslot2->lock); 1434 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1435 &nhslot2->head); 1436 nhslot2->count++; 1437 spin_unlock(&nhslot2->lock); 1438 } 1439 1440 spin_unlock_bh(&hslot->lock); 1441 } 1442 } 1443 } 1444 EXPORT_SYMBOL(udp_lib_rehash); 1445 1446 static void udp_v4_rehash(struct sock *sk) 1447 { 1448 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1449 inet_sk(sk)->inet_rcv_saddr, 1450 inet_sk(sk)->inet_num); 1451 udp_lib_rehash(sk, new_hash); 1452 } 1453 1454 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1455 { 1456 int rc; 1457 1458 if (inet_sk(sk)->inet_daddr) { 1459 sock_rps_save_rxhash(sk, skb); 1460 sk_mark_napi_id(sk, skb); 1461 sk_incoming_cpu_update(sk); 1462 } 1463 1464 rc = __sock_queue_rcv_skb(sk, skb); 1465 if (rc < 0) { 1466 int is_udplite = IS_UDPLITE(sk); 1467 1468 /* Note that an ENOMEM error is charged twice */ 1469 if (rc == -ENOMEM) 1470 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1471 is_udplite); 1472 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1473 kfree_skb(skb); 1474 trace_udp_fail_queue_rcv_skb(rc, sk); 1475 return -1; 1476 } 1477 1478 return 0; 1479 1480 } 1481 1482 static struct static_key udp_encap_needed __read_mostly; 1483 void udp_encap_enable(void) 1484 { 1485 if (!static_key_enabled(&udp_encap_needed)) 1486 static_key_slow_inc(&udp_encap_needed); 1487 } 1488 EXPORT_SYMBOL(udp_encap_enable); 1489 1490 /* returns: 1491 * -1: error 1492 * 0: success 1493 * >0: "udp encap" protocol resubmission 1494 * 1495 * Note that in the success and error cases, the skb is assumed to 1496 * have either been requeued or freed. 1497 */ 1498 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1499 { 1500 struct udp_sock *up = udp_sk(sk); 1501 int rc; 1502 int is_udplite = IS_UDPLITE(sk); 1503 1504 /* 1505 * Charge it to the socket, dropping if the queue is full. 1506 */ 1507 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1508 goto drop; 1509 nf_reset(skb); 1510 1511 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1512 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1513 1514 /* 1515 * This is an encapsulation socket so pass the skb to 1516 * the socket's udp_encap_rcv() hook. Otherwise, just 1517 * fall through and pass this up the UDP socket. 1518 * up->encap_rcv() returns the following value: 1519 * =0 if skb was successfully passed to the encap 1520 * handler or was discarded by it. 1521 * >0 if skb should be passed on to UDP. 1522 * <0 if skb should be resubmitted as proto -N 1523 */ 1524 1525 /* if we're overly short, let UDP handle it */ 1526 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1527 if (encap_rcv) { 1528 int ret; 1529 1530 /* Verify checksum before giving to encap */ 1531 if (udp_lib_checksum_complete(skb)) 1532 goto csum_error; 1533 1534 ret = encap_rcv(sk, skb); 1535 if (ret <= 0) { 1536 __UDP_INC_STATS(sock_net(sk), 1537 UDP_MIB_INDATAGRAMS, 1538 is_udplite); 1539 return -ret; 1540 } 1541 } 1542 1543 /* FALLTHROUGH -- it's a UDP Packet */ 1544 } 1545 1546 /* 1547 * UDP-Lite specific tests, ignored on UDP sockets 1548 */ 1549 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1550 1551 /* 1552 * MIB statistics other than incrementing the error count are 1553 * disabled for the following two types of errors: these depend 1554 * on the application settings, not on the functioning of the 1555 * protocol stack as such. 1556 * 1557 * RFC 3828 here recommends (sec 3.3): "There should also be a 1558 * way ... to ... at least let the receiving application block 1559 * delivery of packets with coverage values less than a value 1560 * provided by the application." 1561 */ 1562 if (up->pcrlen == 0) { /* full coverage was set */ 1563 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1564 UDP_SKB_CB(skb)->cscov, skb->len); 1565 goto drop; 1566 } 1567 /* The next case involves violating the min. coverage requested 1568 * by the receiver. This is subtle: if receiver wants x and x is 1569 * greater than the buffersize/MTU then receiver will complain 1570 * that it wants x while sender emits packets of smaller size y. 1571 * Therefore the above ...()->partial_cov statement is essential. 1572 */ 1573 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1574 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1575 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1576 goto drop; 1577 } 1578 } 1579 1580 if (rcu_access_pointer(sk->sk_filter) && 1581 udp_lib_checksum_complete(skb)) 1582 goto csum_error; 1583 1584 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1585 goto drop; 1586 1587 udp_csum_pull_header(skb); 1588 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1589 __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1590 is_udplite); 1591 goto drop; 1592 } 1593 1594 rc = 0; 1595 1596 ipv4_pktinfo_prepare(sk, skb); 1597 bh_lock_sock(sk); 1598 if (!sock_owned_by_user(sk)) 1599 rc = __udp_queue_rcv_skb(sk, skb); 1600 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1601 bh_unlock_sock(sk); 1602 goto drop; 1603 } 1604 bh_unlock_sock(sk); 1605 1606 return rc; 1607 1608 csum_error: 1609 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1610 drop: 1611 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1612 atomic_inc(&sk->sk_drops); 1613 kfree_skb(skb); 1614 return -1; 1615 } 1616 1617 /* For TCP sockets, sk_rx_dst is protected by socket lock 1618 * For UDP, we use xchg() to guard against concurrent changes. 1619 */ 1620 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1621 { 1622 struct dst_entry *old; 1623 1624 dst_hold(dst); 1625 old = xchg(&sk->sk_rx_dst, dst); 1626 dst_release(old); 1627 } 1628 1629 /* 1630 * Multicasts and broadcasts go to each listener. 1631 * 1632 * Note: called only from the BH handler context. 1633 */ 1634 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1635 struct udphdr *uh, 1636 __be32 saddr, __be32 daddr, 1637 struct udp_table *udptable, 1638 int proto) 1639 { 1640 struct sock *sk, *first = NULL; 1641 unsigned short hnum = ntohs(uh->dest); 1642 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1643 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1644 unsigned int offset = offsetof(typeof(*sk), sk_node); 1645 int dif = skb->dev->ifindex; 1646 struct hlist_node *node; 1647 struct sk_buff *nskb; 1648 1649 if (use_hash2) { 1650 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1651 udp_table.mask; 1652 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1653 start_lookup: 1654 hslot = &udp_table.hash2[hash2]; 1655 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1656 } 1657 1658 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1659 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1660 uh->source, saddr, dif, hnum)) 1661 continue; 1662 1663 if (!first) { 1664 first = sk; 1665 continue; 1666 } 1667 nskb = skb_clone(skb, GFP_ATOMIC); 1668 1669 if (unlikely(!nskb)) { 1670 atomic_inc(&sk->sk_drops); 1671 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1672 IS_UDPLITE(sk)); 1673 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1674 IS_UDPLITE(sk)); 1675 continue; 1676 } 1677 if (udp_queue_rcv_skb(sk, nskb) > 0) 1678 consume_skb(nskb); 1679 } 1680 1681 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1682 if (use_hash2 && hash2 != hash2_any) { 1683 hash2 = hash2_any; 1684 goto start_lookup; 1685 } 1686 1687 if (first) { 1688 if (udp_queue_rcv_skb(first, skb) > 0) 1689 consume_skb(skb); 1690 } else { 1691 kfree_skb(skb); 1692 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 1693 proto == IPPROTO_UDPLITE); 1694 } 1695 return 0; 1696 } 1697 1698 /* Initialize UDP checksum. If exited with zero value (success), 1699 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1700 * Otherwise, csum completion requires chacksumming packet body, 1701 * including udp header and folding it to skb->csum. 1702 */ 1703 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1704 int proto) 1705 { 1706 int err; 1707 1708 UDP_SKB_CB(skb)->partial_cov = 0; 1709 UDP_SKB_CB(skb)->cscov = skb->len; 1710 1711 if (proto == IPPROTO_UDPLITE) { 1712 err = udplite_checksum_init(skb, uh); 1713 if (err) 1714 return err; 1715 } 1716 1717 /* Note, we are only interested in != 0 or == 0, thus the 1718 * force to int. 1719 */ 1720 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 1721 inet_compute_pseudo); 1722 } 1723 1724 /* 1725 * All we need to do is get the socket, and then do a checksum. 1726 */ 1727 1728 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1729 int proto) 1730 { 1731 struct sock *sk; 1732 struct udphdr *uh; 1733 unsigned short ulen; 1734 struct rtable *rt = skb_rtable(skb); 1735 __be32 saddr, daddr; 1736 struct net *net = dev_net(skb->dev); 1737 1738 /* 1739 * Validate the packet. 1740 */ 1741 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1742 goto drop; /* No space for header. */ 1743 1744 uh = udp_hdr(skb); 1745 ulen = ntohs(uh->len); 1746 saddr = ip_hdr(skb)->saddr; 1747 daddr = ip_hdr(skb)->daddr; 1748 1749 if (ulen > skb->len) 1750 goto short_packet; 1751 1752 if (proto == IPPROTO_UDP) { 1753 /* UDP validates ulen. */ 1754 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1755 goto short_packet; 1756 uh = udp_hdr(skb); 1757 } 1758 1759 if (udp4_csum_init(skb, uh, proto)) 1760 goto csum_error; 1761 1762 sk = skb_steal_sock(skb); 1763 if (sk) { 1764 struct dst_entry *dst = skb_dst(skb); 1765 int ret; 1766 1767 if (unlikely(sk->sk_rx_dst != dst)) 1768 udp_sk_rx_dst_set(sk, dst); 1769 1770 ret = udp_queue_rcv_skb(sk, skb); 1771 sock_put(sk); 1772 /* a return value > 0 means to resubmit the input, but 1773 * it wants the return to be -protocol, or 0 1774 */ 1775 if (ret > 0) 1776 return -ret; 1777 return 0; 1778 } 1779 1780 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1781 return __udp4_lib_mcast_deliver(net, skb, uh, 1782 saddr, daddr, udptable, proto); 1783 1784 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1785 if (sk) { 1786 int ret; 1787 1788 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1789 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1790 inet_compute_pseudo); 1791 1792 ret = udp_queue_rcv_skb(sk, skb); 1793 1794 /* a return value > 0 means to resubmit the input, but 1795 * it wants the return to be -protocol, or 0 1796 */ 1797 if (ret > 0) 1798 return -ret; 1799 return 0; 1800 } 1801 1802 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1803 goto drop; 1804 nf_reset(skb); 1805 1806 /* No socket. Drop packet silently, if checksum is wrong */ 1807 if (udp_lib_checksum_complete(skb)) 1808 goto csum_error; 1809 1810 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1811 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1812 1813 /* 1814 * Hmm. We got an UDP packet to a port to which we 1815 * don't wanna listen. Ignore it. 1816 */ 1817 kfree_skb(skb); 1818 return 0; 1819 1820 short_packet: 1821 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1822 proto == IPPROTO_UDPLITE ? "Lite" : "", 1823 &saddr, ntohs(uh->source), 1824 ulen, skb->len, 1825 &daddr, ntohs(uh->dest)); 1826 goto drop; 1827 1828 csum_error: 1829 /* 1830 * RFC1122: OK. Discards the bad packet silently (as far as 1831 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1832 */ 1833 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1834 proto == IPPROTO_UDPLITE ? "Lite" : "", 1835 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1836 ulen); 1837 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1838 drop: 1839 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1840 kfree_skb(skb); 1841 return 0; 1842 } 1843 1844 /* We can only early demux multicast if there is a single matching socket. 1845 * If more than one socket found returns NULL 1846 */ 1847 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1848 __be16 loc_port, __be32 loc_addr, 1849 __be16 rmt_port, __be32 rmt_addr, 1850 int dif) 1851 { 1852 struct sock *sk, *result; 1853 unsigned short hnum = ntohs(loc_port); 1854 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 1855 struct udp_hslot *hslot = &udp_table.hash[slot]; 1856 1857 /* Do not bother scanning a too big list */ 1858 if (hslot->count > 10) 1859 return NULL; 1860 1861 result = NULL; 1862 sk_for_each_rcu(sk, &hslot->head) { 1863 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 1864 rmt_port, rmt_addr, dif, hnum)) { 1865 if (result) 1866 return NULL; 1867 result = sk; 1868 } 1869 } 1870 1871 return result; 1872 } 1873 1874 /* For unicast we should only early demux connected sockets or we can 1875 * break forwarding setups. The chains here can be long so only check 1876 * if the first socket is an exact match and if not move on. 1877 */ 1878 static struct sock *__udp4_lib_demux_lookup(struct net *net, 1879 __be16 loc_port, __be32 loc_addr, 1880 __be16 rmt_port, __be32 rmt_addr, 1881 int dif) 1882 { 1883 unsigned short hnum = ntohs(loc_port); 1884 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 1885 unsigned int slot2 = hash2 & udp_table.mask; 1886 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 1887 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 1888 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 1889 struct sock *sk; 1890 1891 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 1892 if (INET_MATCH(sk, net, acookie, rmt_addr, 1893 loc_addr, ports, dif)) 1894 return sk; 1895 /* Only check first socket in chain */ 1896 break; 1897 } 1898 return NULL; 1899 } 1900 1901 void udp_v4_early_demux(struct sk_buff *skb) 1902 { 1903 struct net *net = dev_net(skb->dev); 1904 const struct iphdr *iph; 1905 const struct udphdr *uh; 1906 struct sock *sk = NULL; 1907 struct dst_entry *dst; 1908 int dif = skb->dev->ifindex; 1909 int ours; 1910 1911 /* validate the packet */ 1912 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 1913 return; 1914 1915 iph = ip_hdr(skb); 1916 uh = udp_hdr(skb); 1917 1918 if (skb->pkt_type == PACKET_BROADCAST || 1919 skb->pkt_type == PACKET_MULTICAST) { 1920 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 1921 1922 if (!in_dev) 1923 return; 1924 1925 /* we are supposed to accept bcast packets */ 1926 if (skb->pkt_type == PACKET_MULTICAST) { 1927 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 1928 iph->protocol); 1929 if (!ours) 1930 return; 1931 } 1932 1933 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 1934 uh->source, iph->saddr, dif); 1935 } else if (skb->pkt_type == PACKET_HOST) { 1936 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 1937 uh->source, iph->saddr, dif); 1938 } 1939 1940 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2)) 1941 return; 1942 1943 skb->sk = sk; 1944 skb->destructor = sock_efree; 1945 dst = READ_ONCE(sk->sk_rx_dst); 1946 1947 if (dst) 1948 dst = dst_check(dst, 0); 1949 if (dst) { 1950 /* DST_NOCACHE can not be used without taking a reference */ 1951 if (dst->flags & DST_NOCACHE) { 1952 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 1953 skb_dst_set(skb, dst); 1954 } else { 1955 skb_dst_set_noref(skb, dst); 1956 } 1957 } 1958 } 1959 1960 int udp_rcv(struct sk_buff *skb) 1961 { 1962 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1963 } 1964 1965 void udp_destroy_sock(struct sock *sk) 1966 { 1967 struct udp_sock *up = udp_sk(sk); 1968 bool slow = lock_sock_fast(sk); 1969 udp_flush_pending_frames(sk); 1970 unlock_sock_fast(sk, slow); 1971 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1972 void (*encap_destroy)(struct sock *sk); 1973 encap_destroy = ACCESS_ONCE(up->encap_destroy); 1974 if (encap_destroy) 1975 encap_destroy(sk); 1976 } 1977 } 1978 1979 /* 1980 * Socket option code for UDP 1981 */ 1982 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1983 char __user *optval, unsigned int optlen, 1984 int (*push_pending_frames)(struct sock *)) 1985 { 1986 struct udp_sock *up = udp_sk(sk); 1987 int val, valbool; 1988 int err = 0; 1989 int is_udplite = IS_UDPLITE(sk); 1990 1991 if (optlen < sizeof(int)) 1992 return -EINVAL; 1993 1994 if (get_user(val, (int __user *)optval)) 1995 return -EFAULT; 1996 1997 valbool = val ? 1 : 0; 1998 1999 switch (optname) { 2000 case UDP_CORK: 2001 if (val != 0) { 2002 up->corkflag = 1; 2003 } else { 2004 up->corkflag = 0; 2005 lock_sock(sk); 2006 push_pending_frames(sk); 2007 release_sock(sk); 2008 } 2009 break; 2010 2011 case UDP_ENCAP: 2012 switch (val) { 2013 case 0: 2014 case UDP_ENCAP_ESPINUDP: 2015 case UDP_ENCAP_ESPINUDP_NON_IKE: 2016 up->encap_rcv = xfrm4_udp_encap_rcv; 2017 /* FALLTHROUGH */ 2018 case UDP_ENCAP_L2TPINUDP: 2019 up->encap_type = val; 2020 udp_encap_enable(); 2021 break; 2022 default: 2023 err = -ENOPROTOOPT; 2024 break; 2025 } 2026 break; 2027 2028 case UDP_NO_CHECK6_TX: 2029 up->no_check6_tx = valbool; 2030 break; 2031 2032 case UDP_NO_CHECK6_RX: 2033 up->no_check6_rx = valbool; 2034 break; 2035 2036 /* 2037 * UDP-Lite's partial checksum coverage (RFC 3828). 2038 */ 2039 /* The sender sets actual checksum coverage length via this option. 2040 * The case coverage > packet length is handled by send module. */ 2041 case UDPLITE_SEND_CSCOV: 2042 if (!is_udplite) /* Disable the option on UDP sockets */ 2043 return -ENOPROTOOPT; 2044 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2045 val = 8; 2046 else if (val > USHRT_MAX) 2047 val = USHRT_MAX; 2048 up->pcslen = val; 2049 up->pcflag |= UDPLITE_SEND_CC; 2050 break; 2051 2052 /* The receiver specifies a minimum checksum coverage value. To make 2053 * sense, this should be set to at least 8 (as done below). If zero is 2054 * used, this again means full checksum coverage. */ 2055 case UDPLITE_RECV_CSCOV: 2056 if (!is_udplite) /* Disable the option on UDP sockets */ 2057 return -ENOPROTOOPT; 2058 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2059 val = 8; 2060 else if (val > USHRT_MAX) 2061 val = USHRT_MAX; 2062 up->pcrlen = val; 2063 up->pcflag |= UDPLITE_RECV_CC; 2064 break; 2065 2066 default: 2067 err = -ENOPROTOOPT; 2068 break; 2069 } 2070 2071 return err; 2072 } 2073 EXPORT_SYMBOL(udp_lib_setsockopt); 2074 2075 int udp_setsockopt(struct sock *sk, int level, int optname, 2076 char __user *optval, unsigned int optlen) 2077 { 2078 if (level == SOL_UDP || level == SOL_UDPLITE) 2079 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2080 udp_push_pending_frames); 2081 return ip_setsockopt(sk, level, optname, optval, optlen); 2082 } 2083 2084 #ifdef CONFIG_COMPAT 2085 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2086 char __user *optval, unsigned int optlen) 2087 { 2088 if (level == SOL_UDP || level == SOL_UDPLITE) 2089 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2090 udp_push_pending_frames); 2091 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2092 } 2093 #endif 2094 2095 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2096 char __user *optval, int __user *optlen) 2097 { 2098 struct udp_sock *up = udp_sk(sk); 2099 int val, len; 2100 2101 if (get_user(len, optlen)) 2102 return -EFAULT; 2103 2104 len = min_t(unsigned int, len, sizeof(int)); 2105 2106 if (len < 0) 2107 return -EINVAL; 2108 2109 switch (optname) { 2110 case UDP_CORK: 2111 val = up->corkflag; 2112 break; 2113 2114 case UDP_ENCAP: 2115 val = up->encap_type; 2116 break; 2117 2118 case UDP_NO_CHECK6_TX: 2119 val = up->no_check6_tx; 2120 break; 2121 2122 case UDP_NO_CHECK6_RX: 2123 val = up->no_check6_rx; 2124 break; 2125 2126 /* The following two cannot be changed on UDP sockets, the return is 2127 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2128 case UDPLITE_SEND_CSCOV: 2129 val = up->pcslen; 2130 break; 2131 2132 case UDPLITE_RECV_CSCOV: 2133 val = up->pcrlen; 2134 break; 2135 2136 default: 2137 return -ENOPROTOOPT; 2138 } 2139 2140 if (put_user(len, optlen)) 2141 return -EFAULT; 2142 if (copy_to_user(optval, &val, len)) 2143 return -EFAULT; 2144 return 0; 2145 } 2146 EXPORT_SYMBOL(udp_lib_getsockopt); 2147 2148 int udp_getsockopt(struct sock *sk, int level, int optname, 2149 char __user *optval, int __user *optlen) 2150 { 2151 if (level == SOL_UDP || level == SOL_UDPLITE) 2152 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2153 return ip_getsockopt(sk, level, optname, optval, optlen); 2154 } 2155 2156 #ifdef CONFIG_COMPAT 2157 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2158 char __user *optval, int __user *optlen) 2159 { 2160 if (level == SOL_UDP || level == SOL_UDPLITE) 2161 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2162 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2163 } 2164 #endif 2165 /** 2166 * udp_poll - wait for a UDP event. 2167 * @file - file struct 2168 * @sock - socket 2169 * @wait - poll table 2170 * 2171 * This is same as datagram poll, except for the special case of 2172 * blocking sockets. If application is using a blocking fd 2173 * and a packet with checksum error is in the queue; 2174 * then it could get return from select indicating data available 2175 * but then block when reading it. Add special case code 2176 * to work around these arguably broken applications. 2177 */ 2178 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2179 { 2180 unsigned int mask = datagram_poll(file, sock, wait); 2181 struct sock *sk = sock->sk; 2182 2183 sock_rps_record_flow(sk); 2184 2185 /* Check for false positives due to checksum errors */ 2186 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2187 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2188 mask &= ~(POLLIN | POLLRDNORM); 2189 2190 return mask; 2191 2192 } 2193 EXPORT_SYMBOL(udp_poll); 2194 2195 struct proto udp_prot = { 2196 .name = "UDP", 2197 .owner = THIS_MODULE, 2198 .close = udp_lib_close, 2199 .connect = ip4_datagram_connect, 2200 .disconnect = udp_disconnect, 2201 .ioctl = udp_ioctl, 2202 .destroy = udp_destroy_sock, 2203 .setsockopt = udp_setsockopt, 2204 .getsockopt = udp_getsockopt, 2205 .sendmsg = udp_sendmsg, 2206 .recvmsg = udp_recvmsg, 2207 .sendpage = udp_sendpage, 2208 .backlog_rcv = __udp_queue_rcv_skb, 2209 .release_cb = ip4_datagram_release_cb, 2210 .hash = udp_lib_hash, 2211 .unhash = udp_lib_unhash, 2212 .rehash = udp_v4_rehash, 2213 .get_port = udp_v4_get_port, 2214 .memory_allocated = &udp_memory_allocated, 2215 .sysctl_mem = sysctl_udp_mem, 2216 .sysctl_wmem = &sysctl_udp_wmem_min, 2217 .sysctl_rmem = &sysctl_udp_rmem_min, 2218 .obj_size = sizeof(struct udp_sock), 2219 .h.udp_table = &udp_table, 2220 #ifdef CONFIG_COMPAT 2221 .compat_setsockopt = compat_udp_setsockopt, 2222 .compat_getsockopt = compat_udp_getsockopt, 2223 #endif 2224 .clear_sk = sk_prot_clear_portaddr_nulls, 2225 }; 2226 EXPORT_SYMBOL(udp_prot); 2227 2228 /* ------------------------------------------------------------------------ */ 2229 #ifdef CONFIG_PROC_FS 2230 2231 static struct sock *udp_get_first(struct seq_file *seq, int start) 2232 { 2233 struct sock *sk; 2234 struct udp_iter_state *state = seq->private; 2235 struct net *net = seq_file_net(seq); 2236 2237 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2238 ++state->bucket) { 2239 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2240 2241 if (hlist_empty(&hslot->head)) 2242 continue; 2243 2244 spin_lock_bh(&hslot->lock); 2245 sk_for_each(sk, &hslot->head) { 2246 if (!net_eq(sock_net(sk), net)) 2247 continue; 2248 if (sk->sk_family == state->family) 2249 goto found; 2250 } 2251 spin_unlock_bh(&hslot->lock); 2252 } 2253 sk = NULL; 2254 found: 2255 return sk; 2256 } 2257 2258 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2259 { 2260 struct udp_iter_state *state = seq->private; 2261 struct net *net = seq_file_net(seq); 2262 2263 do { 2264 sk = sk_next(sk); 2265 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2266 2267 if (!sk) { 2268 if (state->bucket <= state->udp_table->mask) 2269 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2270 return udp_get_first(seq, state->bucket + 1); 2271 } 2272 return sk; 2273 } 2274 2275 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2276 { 2277 struct sock *sk = udp_get_first(seq, 0); 2278 2279 if (sk) 2280 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2281 --pos; 2282 return pos ? NULL : sk; 2283 } 2284 2285 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2286 { 2287 struct udp_iter_state *state = seq->private; 2288 state->bucket = MAX_UDP_PORTS; 2289 2290 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2291 } 2292 2293 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2294 { 2295 struct sock *sk; 2296 2297 if (v == SEQ_START_TOKEN) 2298 sk = udp_get_idx(seq, 0); 2299 else 2300 sk = udp_get_next(seq, v); 2301 2302 ++*pos; 2303 return sk; 2304 } 2305 2306 static void udp_seq_stop(struct seq_file *seq, void *v) 2307 { 2308 struct udp_iter_state *state = seq->private; 2309 2310 if (state->bucket <= state->udp_table->mask) 2311 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2312 } 2313 2314 int udp_seq_open(struct inode *inode, struct file *file) 2315 { 2316 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2317 struct udp_iter_state *s; 2318 int err; 2319 2320 err = seq_open_net(inode, file, &afinfo->seq_ops, 2321 sizeof(struct udp_iter_state)); 2322 if (err < 0) 2323 return err; 2324 2325 s = ((struct seq_file *)file->private_data)->private; 2326 s->family = afinfo->family; 2327 s->udp_table = afinfo->udp_table; 2328 return err; 2329 } 2330 EXPORT_SYMBOL(udp_seq_open); 2331 2332 /* ------------------------------------------------------------------------ */ 2333 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2334 { 2335 struct proc_dir_entry *p; 2336 int rc = 0; 2337 2338 afinfo->seq_ops.start = udp_seq_start; 2339 afinfo->seq_ops.next = udp_seq_next; 2340 afinfo->seq_ops.stop = udp_seq_stop; 2341 2342 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2343 afinfo->seq_fops, afinfo); 2344 if (!p) 2345 rc = -ENOMEM; 2346 return rc; 2347 } 2348 EXPORT_SYMBOL(udp_proc_register); 2349 2350 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2351 { 2352 remove_proc_entry(afinfo->name, net->proc_net); 2353 } 2354 EXPORT_SYMBOL(udp_proc_unregister); 2355 2356 /* ------------------------------------------------------------------------ */ 2357 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2358 int bucket) 2359 { 2360 struct inet_sock *inet = inet_sk(sp); 2361 __be32 dest = inet->inet_daddr; 2362 __be32 src = inet->inet_rcv_saddr; 2363 __u16 destp = ntohs(inet->inet_dport); 2364 __u16 srcp = ntohs(inet->inet_sport); 2365 2366 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2367 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2368 bucket, src, srcp, dest, destp, sp->sk_state, 2369 sk_wmem_alloc_get(sp), 2370 sk_rmem_alloc_get(sp), 2371 0, 0L, 0, 2372 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2373 0, sock_i_ino(sp), 2374 atomic_read(&sp->sk_refcnt), sp, 2375 atomic_read(&sp->sk_drops)); 2376 } 2377 2378 int udp4_seq_show(struct seq_file *seq, void *v) 2379 { 2380 seq_setwidth(seq, 127); 2381 if (v == SEQ_START_TOKEN) 2382 seq_puts(seq, " sl local_address rem_address st tx_queue " 2383 "rx_queue tr tm->when retrnsmt uid timeout " 2384 "inode ref pointer drops"); 2385 else { 2386 struct udp_iter_state *state = seq->private; 2387 2388 udp4_format_sock(v, seq, state->bucket); 2389 } 2390 seq_pad(seq, '\n'); 2391 return 0; 2392 } 2393 2394 static const struct file_operations udp_afinfo_seq_fops = { 2395 .owner = THIS_MODULE, 2396 .open = udp_seq_open, 2397 .read = seq_read, 2398 .llseek = seq_lseek, 2399 .release = seq_release_net 2400 }; 2401 2402 /* ------------------------------------------------------------------------ */ 2403 static struct udp_seq_afinfo udp4_seq_afinfo = { 2404 .name = "udp", 2405 .family = AF_INET, 2406 .udp_table = &udp_table, 2407 .seq_fops = &udp_afinfo_seq_fops, 2408 .seq_ops = { 2409 .show = udp4_seq_show, 2410 }, 2411 }; 2412 2413 static int __net_init udp4_proc_init_net(struct net *net) 2414 { 2415 return udp_proc_register(net, &udp4_seq_afinfo); 2416 } 2417 2418 static void __net_exit udp4_proc_exit_net(struct net *net) 2419 { 2420 udp_proc_unregister(net, &udp4_seq_afinfo); 2421 } 2422 2423 static struct pernet_operations udp4_net_ops = { 2424 .init = udp4_proc_init_net, 2425 .exit = udp4_proc_exit_net, 2426 }; 2427 2428 int __init udp4_proc_init(void) 2429 { 2430 return register_pernet_subsys(&udp4_net_ops); 2431 } 2432 2433 void udp4_proc_exit(void) 2434 { 2435 unregister_pernet_subsys(&udp4_net_ops); 2436 } 2437 #endif /* CONFIG_PROC_FS */ 2438 2439 static __initdata unsigned long uhash_entries; 2440 static int __init set_uhash_entries(char *str) 2441 { 2442 ssize_t ret; 2443 2444 if (!str) 2445 return 0; 2446 2447 ret = kstrtoul(str, 0, &uhash_entries); 2448 if (ret) 2449 return 0; 2450 2451 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2452 uhash_entries = UDP_HTABLE_SIZE_MIN; 2453 return 1; 2454 } 2455 __setup("uhash_entries=", set_uhash_entries); 2456 2457 void __init udp_table_init(struct udp_table *table, const char *name) 2458 { 2459 unsigned int i; 2460 2461 table->hash = alloc_large_system_hash(name, 2462 2 * sizeof(struct udp_hslot), 2463 uhash_entries, 2464 21, /* one slot per 2 MB */ 2465 0, 2466 &table->log, 2467 &table->mask, 2468 UDP_HTABLE_SIZE_MIN, 2469 64 * 1024); 2470 2471 table->hash2 = table->hash + (table->mask + 1); 2472 for (i = 0; i <= table->mask; i++) { 2473 INIT_HLIST_HEAD(&table->hash[i].head); 2474 table->hash[i].count = 0; 2475 spin_lock_init(&table->hash[i].lock); 2476 } 2477 for (i = 0; i <= table->mask; i++) { 2478 INIT_HLIST_HEAD(&table->hash2[i].head); 2479 table->hash2[i].count = 0; 2480 spin_lock_init(&table->hash2[i].lock); 2481 } 2482 } 2483 2484 u32 udp_flow_hashrnd(void) 2485 { 2486 static u32 hashrnd __read_mostly; 2487 2488 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2489 2490 return hashrnd; 2491 } 2492 EXPORT_SYMBOL(udp_flow_hashrnd); 2493 2494 void __init udp_init(void) 2495 { 2496 unsigned long limit; 2497 2498 udp_table_init(&udp_table, "UDP"); 2499 limit = nr_free_buffer_pages() / 8; 2500 limit = max(limit, 128UL); 2501 sysctl_udp_mem[0] = limit / 4 * 3; 2502 sysctl_udp_mem[1] = limit; 2503 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2504 2505 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2506 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2507 } 2508