xref: /openbmc/linux/net/ipv4/udp.c (revision bc5aa3a0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2,
142 						 bool match_wildcard),
143 			       unsigned int log)
144 {
145 	struct sock *sk2;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_for_each(sk2, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
157 		     !uid_eq(uid, sock_i_uid(sk2))) &&
158 		    saddr_comp(sk, sk2, true)) {
159 			if (!bitmap)
160 				return 1;
161 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
162 		}
163 	}
164 	return 0;
165 }
166 
167 /*
168  * Note: we still hold spinlock of primary hash chain, so no other writer
169  * can insert/delete a socket with local_port == num
170  */
171 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
172 				struct udp_hslot *hslot2,
173 				struct sock *sk,
174 				int (*saddr_comp)(const struct sock *sk1,
175 						  const struct sock *sk2,
176 						  bool match_wildcard))
177 {
178 	struct sock *sk2;
179 	kuid_t uid = sock_i_uid(sk);
180 	int res = 0;
181 
182 	spin_lock(&hslot2->lock);
183 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
184 		if (net_eq(sock_net(sk2), net) &&
185 		    sk2 != sk &&
186 		    (udp_sk(sk2)->udp_port_hash == num) &&
187 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
188 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
189 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
190 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
191 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
192 		     !uid_eq(uid, sock_i_uid(sk2))) &&
193 		    saddr_comp(sk, sk2, true)) {
194 			res = 1;
195 			break;
196 		}
197 	}
198 	spin_unlock(&hslot2->lock);
199 	return res;
200 }
201 
202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
203 				  int (*saddr_same)(const struct sock *sk1,
204 						    const struct sock *sk2,
205 						    bool match_wildcard))
206 {
207 	struct net *net = sock_net(sk);
208 	kuid_t uid = sock_i_uid(sk);
209 	struct sock *sk2;
210 
211 	sk_for_each(sk2, &hslot->head) {
212 		if (net_eq(sock_net(sk2), net) &&
213 		    sk2 != sk &&
214 		    sk2->sk_family == sk->sk_family &&
215 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
216 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
217 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
218 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
219 		    (*saddr_same)(sk, sk2, false)) {
220 			return reuseport_add_sock(sk, sk2);
221 		}
222 	}
223 
224 	/* Initial allocation may have already happened via setsockopt */
225 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
226 		return reuseport_alloc(sk);
227 	return 0;
228 }
229 
230 /**
231  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
232  *
233  *  @sk:          socket struct in question
234  *  @snum:        port number to look up
235  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     int (*saddr_comp)(const struct sock *sk1,
241 				       const struct sock *sk2,
242 				       bool match_wildcard),
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    saddr_comp, udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 		} while (++first != last);
288 		goto fail;
289 	} else {
290 		hslot = udp_hashslot(udptable, net, snum);
291 		spin_lock_bh(&hslot->lock);
292 		if (hslot->count > 10) {
293 			int exist;
294 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295 
296 			slot2          &= udptable->mask;
297 			hash2_nulladdr &= udptable->mask;
298 
299 			hslot2 = udp_hashslot2(udptable, slot2);
300 			if (hslot->count < hslot2->count)
301 				goto scan_primary_hash;
302 
303 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 						     sk, saddr_comp);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk, saddr_comp);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
317 					saddr_comp, 0))
318 			goto fail_unlock;
319 	}
320 found:
321 	inet_sk(sk)->inet_num = snum;
322 	udp_sk(sk)->udp_port_hash = snum;
323 	udp_sk(sk)->udp_portaddr_hash ^= snum;
324 	if (sk_unhashed(sk)) {
325 		if (sk->sk_reuseport &&
326 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
327 			inet_sk(sk)->inet_num = 0;
328 			udp_sk(sk)->udp_port_hash = 0;
329 			udp_sk(sk)->udp_portaddr_hash ^= snum;
330 			goto fail_unlock;
331 		}
332 
333 		sk_add_node_rcu(sk, &hslot->head);
334 		hslot->count++;
335 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336 
337 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 		spin_lock(&hslot2->lock);
339 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 		    sk->sk_family == AF_INET6)
341 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		else
344 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 					   &hslot2->head);
346 		hslot2->count++;
347 		spin_unlock(&hslot2->lock);
348 	}
349 	sock_set_flag(sk, SOCK_RCU_FREE);
350 	error = 0;
351 fail_unlock:
352 	spin_unlock_bh(&hslot->lock);
353 fail:
354 	return error;
355 }
356 EXPORT_SYMBOL(udp_lib_get_port);
357 
358 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
359  * match_wildcard == false: addresses must be exactly the same, i.e.
360  *                          0.0.0.0 only equals to 0.0.0.0
361  */
362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
363 			 bool match_wildcard)
364 {
365 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
366 
367 	if (!ipv6_only_sock(sk2)) {
368 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
369 			return 1;
370 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
371 			return match_wildcard;
372 	}
373 	return 0;
374 }
375 
376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
377 			      unsigned int port)
378 {
379 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
380 }
381 
382 int udp_v4_get_port(struct sock *sk, unsigned short snum)
383 {
384 	unsigned int hash2_nulladdr =
385 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
386 	unsigned int hash2_partial =
387 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
388 
389 	/* precompute partial secondary hash */
390 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
391 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
392 }
393 
394 static int compute_score(struct sock *sk, struct net *net,
395 			 __be32 saddr, __be16 sport,
396 			 __be32 daddr, unsigned short hnum, int dif)
397 {
398 	int score;
399 	struct inet_sock *inet;
400 
401 	if (!net_eq(sock_net(sk), net) ||
402 	    udp_sk(sk)->udp_port_hash != hnum ||
403 	    ipv6_only_sock(sk))
404 		return -1;
405 
406 	score = (sk->sk_family == PF_INET) ? 2 : 1;
407 	inet = inet_sk(sk);
408 
409 	if (inet->inet_rcv_saddr) {
410 		if (inet->inet_rcv_saddr != daddr)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (inet->inet_daddr) {
416 		if (inet->inet_daddr != saddr)
417 			return -1;
418 		score += 4;
419 	}
420 
421 	if (inet->inet_dport) {
422 		if (inet->inet_dport != sport)
423 			return -1;
424 		score += 4;
425 	}
426 
427 	if (sk->sk_bound_dev_if) {
428 		if (sk->sk_bound_dev_if != dif)
429 			return -1;
430 		score += 4;
431 	}
432 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
433 		score++;
434 	return score;
435 }
436 
437 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
438 		       const __u16 lport, const __be32 faddr,
439 		       const __be16 fport)
440 {
441 	static u32 udp_ehash_secret __read_mostly;
442 
443 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
444 
445 	return __inet_ehashfn(laddr, lport, faddr, fport,
446 			      udp_ehash_secret + net_hash_mix(net));
447 }
448 
449 /* called with rcu_read_lock() */
450 static struct sock *udp4_lib_lookup2(struct net *net,
451 		__be32 saddr, __be16 sport,
452 		__be32 daddr, unsigned int hnum, int dif,
453 		struct udp_hslot *hslot2,
454 		struct sk_buff *skb)
455 {
456 	struct sock *sk, *result;
457 	int score, badness, matches = 0, reuseport = 0;
458 	u32 hash = 0;
459 
460 	result = NULL;
461 	badness = 0;
462 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
463 		score = compute_score(sk, net, saddr, sport,
464 				      daddr, hnum, dif);
465 		if (score > badness) {
466 			reuseport = sk->sk_reuseport;
467 			if (reuseport) {
468 				hash = udp_ehashfn(net, daddr, hnum,
469 						   saddr, sport);
470 				result = reuseport_select_sock(sk, hash, skb,
471 							sizeof(struct udphdr));
472 				if (result)
473 					return result;
474 				matches = 1;
475 			}
476 			badness = score;
477 			result = sk;
478 		} else if (score == badness && reuseport) {
479 			matches++;
480 			if (reciprocal_scale(hash, matches) == 0)
481 				result = sk;
482 			hash = next_pseudo_random32(hash);
483 		}
484 	}
485 	return result;
486 }
487 
488 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
489  * harder than this. -DaveM
490  */
491 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
492 		__be16 sport, __be32 daddr, __be16 dport,
493 		int dif, struct udp_table *udptable, struct sk_buff *skb)
494 {
495 	struct sock *sk, *result;
496 	unsigned short hnum = ntohs(dport);
497 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
498 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
499 	int score, badness, matches = 0, reuseport = 0;
500 	u32 hash = 0;
501 
502 	if (hslot->count > 10) {
503 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
504 		slot2 = hash2 & udptable->mask;
505 		hslot2 = &udptable->hash2[slot2];
506 		if (hslot->count < hslot2->count)
507 			goto begin;
508 
509 		result = udp4_lib_lookup2(net, saddr, sport,
510 					  daddr, hnum, dif,
511 					  hslot2, skb);
512 		if (!result) {
513 			unsigned int old_slot2 = slot2;
514 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
515 			slot2 = hash2 & udptable->mask;
516 			/* avoid searching the same slot again. */
517 			if (unlikely(slot2 == old_slot2))
518 				return result;
519 
520 			hslot2 = &udptable->hash2[slot2];
521 			if (hslot->count < hslot2->count)
522 				goto begin;
523 
524 			result = udp4_lib_lookup2(net, saddr, sport,
525 						  daddr, hnum, dif,
526 						  hslot2, skb);
527 		}
528 		return result;
529 	}
530 begin:
531 	result = NULL;
532 	badness = 0;
533 	sk_for_each_rcu(sk, &hslot->head) {
534 		score = compute_score(sk, net, saddr, sport,
535 				      daddr, hnum, dif);
536 		if (score > badness) {
537 			reuseport = sk->sk_reuseport;
538 			if (reuseport) {
539 				hash = udp_ehashfn(net, daddr, hnum,
540 						   saddr, sport);
541 				result = reuseport_select_sock(sk, hash, skb,
542 							sizeof(struct udphdr));
543 				if (result)
544 					return result;
545 				matches = 1;
546 			}
547 			result = sk;
548 			badness = score;
549 		} else if (score == badness && reuseport) {
550 			matches++;
551 			if (reciprocal_scale(hash, matches) == 0)
552 				result = sk;
553 			hash = next_pseudo_random32(hash);
554 		}
555 	}
556 	return result;
557 }
558 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
559 
560 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
561 						 __be16 sport, __be16 dport,
562 						 struct udp_table *udptable)
563 {
564 	const struct iphdr *iph = ip_hdr(skb);
565 
566 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
567 				 iph->daddr, dport, inet_iif(skb),
568 				 udptable, skb);
569 }
570 
571 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
572 				 __be16 sport, __be16 dport)
573 {
574 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
577 
578 /* Must be called under rcu_read_lock().
579  * Does increment socket refcount.
580  */
581 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
582     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
583 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
584 			     __be32 daddr, __be16 dport, int dif)
585 {
586 	struct sock *sk;
587 
588 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
589 			       dif, &udp_table, NULL);
590 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
591 		sk = NULL;
592 	return sk;
593 }
594 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
595 #endif
596 
597 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
598 				       __be16 loc_port, __be32 loc_addr,
599 				       __be16 rmt_port, __be32 rmt_addr,
600 				       int dif, unsigned short hnum)
601 {
602 	struct inet_sock *inet = inet_sk(sk);
603 
604 	if (!net_eq(sock_net(sk), net) ||
605 	    udp_sk(sk)->udp_port_hash != hnum ||
606 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
607 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
608 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
609 	    ipv6_only_sock(sk) ||
610 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
611 		return false;
612 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
613 		return false;
614 	return true;
615 }
616 
617 /*
618  * This routine is called by the ICMP module when it gets some
619  * sort of error condition.  If err < 0 then the socket should
620  * be closed and the error returned to the user.  If err > 0
621  * it's just the icmp type << 8 | icmp code.
622  * Header points to the ip header of the error packet. We move
623  * on past this. Then (as it used to claim before adjustment)
624  * header points to the first 8 bytes of the udp header.  We need
625  * to find the appropriate port.
626  */
627 
628 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
629 {
630 	struct inet_sock *inet;
631 	const struct iphdr *iph = (const struct iphdr *)skb->data;
632 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
633 	const int type = icmp_hdr(skb)->type;
634 	const int code = icmp_hdr(skb)->code;
635 	struct sock *sk;
636 	int harderr;
637 	int err;
638 	struct net *net = dev_net(skb->dev);
639 
640 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
641 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
642 			NULL);
643 	if (!sk) {
644 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
645 		return;	/* No socket for error */
646 	}
647 
648 	err = 0;
649 	harderr = 0;
650 	inet = inet_sk(sk);
651 
652 	switch (type) {
653 	default:
654 	case ICMP_TIME_EXCEEDED:
655 		err = EHOSTUNREACH;
656 		break;
657 	case ICMP_SOURCE_QUENCH:
658 		goto out;
659 	case ICMP_PARAMETERPROB:
660 		err = EPROTO;
661 		harderr = 1;
662 		break;
663 	case ICMP_DEST_UNREACH:
664 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 			ipv4_sk_update_pmtu(skb, sk, info);
666 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 				err = EMSGSIZE;
668 				harderr = 1;
669 				break;
670 			}
671 			goto out;
672 		}
673 		err = EHOSTUNREACH;
674 		if (code <= NR_ICMP_UNREACH) {
675 			harderr = icmp_err_convert[code].fatal;
676 			err = icmp_err_convert[code].errno;
677 		}
678 		break;
679 	case ICMP_REDIRECT:
680 		ipv4_sk_redirect(skb, sk);
681 		goto out;
682 	}
683 
684 	/*
685 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
686 	 *	4.1.3.3.
687 	 */
688 	if (!inet->recverr) {
689 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 			goto out;
691 	} else
692 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693 
694 	sk->sk_err = err;
695 	sk->sk_error_report(sk);
696 out:
697 	return;
698 }
699 
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 	__udp4_lib_err(skb, info, &udp_table);
703 }
704 
705 /*
706  * Throw away all pending data and cancel the corking. Socket is locked.
707  */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 	struct udp_sock *up = udp_sk(sk);
711 
712 	if (up->pending) {
713 		up->len = 0;
714 		up->pending = 0;
715 		ip_flush_pending_frames(sk);
716 	}
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719 
720 /**
721  * 	udp4_hwcsum  -  handle outgoing HW checksumming
722  * 	@skb: 	sk_buff containing the filled-in UDP header
723  * 	        (checksum field must be zeroed out)
724  *	@src:	source IP address
725  *	@dst:	destination IP address
726  */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 	struct udphdr *uh = udp_hdr(skb);
730 	int offset = skb_transport_offset(skb);
731 	int len = skb->len - offset;
732 	int hlen = len;
733 	__wsum csum = 0;
734 
735 	if (!skb_has_frag_list(skb)) {
736 		/*
737 		 * Only one fragment on the socket.
738 		 */
739 		skb->csum_start = skb_transport_header(skb) - skb->head;
740 		skb->csum_offset = offsetof(struct udphdr, check);
741 		uh->check = ~csum_tcpudp_magic(src, dst, len,
742 					       IPPROTO_UDP, 0);
743 	} else {
744 		struct sk_buff *frags;
745 
746 		/*
747 		 * HW-checksum won't work as there are two or more
748 		 * fragments on the socket so that all csums of sk_buffs
749 		 * should be together
750 		 */
751 		skb_walk_frags(skb, frags) {
752 			csum = csum_add(csum, frags->csum);
753 			hlen -= frags->len;
754 		}
755 
756 		csum = skb_checksum(skb, offset, hlen, csum);
757 		skb->ip_summed = CHECKSUM_NONE;
758 
759 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
760 		if (uh->check == 0)
761 			uh->check = CSUM_MANGLED_0;
762 	}
763 }
764 EXPORT_SYMBOL_GPL(udp4_hwcsum);
765 
766 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
767  * for the simple case like when setting the checksum for a UDP tunnel.
768  */
769 void udp_set_csum(bool nocheck, struct sk_buff *skb,
770 		  __be32 saddr, __be32 daddr, int len)
771 {
772 	struct udphdr *uh = udp_hdr(skb);
773 
774 	if (nocheck) {
775 		uh->check = 0;
776 	} else if (skb_is_gso(skb)) {
777 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
779 		uh->check = 0;
780 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
781 		if (uh->check == 0)
782 			uh->check = CSUM_MANGLED_0;
783 	} else {
784 		skb->ip_summed = CHECKSUM_PARTIAL;
785 		skb->csum_start = skb_transport_header(skb) - skb->head;
786 		skb->csum_offset = offsetof(struct udphdr, check);
787 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
788 	}
789 }
790 EXPORT_SYMBOL(udp_set_csum);
791 
792 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
793 {
794 	struct sock *sk = skb->sk;
795 	struct inet_sock *inet = inet_sk(sk);
796 	struct udphdr *uh;
797 	int err = 0;
798 	int is_udplite = IS_UDPLITE(sk);
799 	int offset = skb_transport_offset(skb);
800 	int len = skb->len - offset;
801 	__wsum csum = 0;
802 
803 	/*
804 	 * Create a UDP header
805 	 */
806 	uh = udp_hdr(skb);
807 	uh->source = inet->inet_sport;
808 	uh->dest = fl4->fl4_dport;
809 	uh->len = htons(len);
810 	uh->check = 0;
811 
812 	if (is_udplite)  				 /*     UDP-Lite      */
813 		csum = udplite_csum(skb);
814 
815 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
816 
817 		skb->ip_summed = CHECKSUM_NONE;
818 		goto send;
819 
820 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
821 
822 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
823 		goto send;
824 
825 	} else
826 		csum = udp_csum(skb);
827 
828 	/* add protocol-dependent pseudo-header */
829 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
830 				      sk->sk_protocol, csum);
831 	if (uh->check == 0)
832 		uh->check = CSUM_MANGLED_0;
833 
834 send:
835 	err = ip_send_skb(sock_net(sk), skb);
836 	if (err) {
837 		if (err == -ENOBUFS && !inet->recverr) {
838 			UDP_INC_STATS(sock_net(sk),
839 				      UDP_MIB_SNDBUFERRORS, is_udplite);
840 			err = 0;
841 		}
842 	} else
843 		UDP_INC_STATS(sock_net(sk),
844 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
845 	return err;
846 }
847 
848 /*
849  * Push out all pending data as one UDP datagram. Socket is locked.
850  */
851 int udp_push_pending_frames(struct sock *sk)
852 {
853 	struct udp_sock  *up = udp_sk(sk);
854 	struct inet_sock *inet = inet_sk(sk);
855 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
856 	struct sk_buff *skb;
857 	int err = 0;
858 
859 	skb = ip_finish_skb(sk, fl4);
860 	if (!skb)
861 		goto out;
862 
863 	err = udp_send_skb(skb, fl4);
864 
865 out:
866 	up->len = 0;
867 	up->pending = 0;
868 	return err;
869 }
870 EXPORT_SYMBOL(udp_push_pending_frames);
871 
872 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
873 {
874 	struct inet_sock *inet = inet_sk(sk);
875 	struct udp_sock *up = udp_sk(sk);
876 	struct flowi4 fl4_stack;
877 	struct flowi4 *fl4;
878 	int ulen = len;
879 	struct ipcm_cookie ipc;
880 	struct rtable *rt = NULL;
881 	int free = 0;
882 	int connected = 0;
883 	__be32 daddr, faddr, saddr;
884 	__be16 dport;
885 	u8  tos;
886 	int err, is_udplite = IS_UDPLITE(sk);
887 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
888 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
889 	struct sk_buff *skb;
890 	struct ip_options_data opt_copy;
891 
892 	if (len > 0xFFFF)
893 		return -EMSGSIZE;
894 
895 	/*
896 	 *	Check the flags.
897 	 */
898 
899 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
900 		return -EOPNOTSUPP;
901 
902 	ipc.opt = NULL;
903 	ipc.tx_flags = 0;
904 	ipc.ttl = 0;
905 	ipc.tos = -1;
906 
907 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
908 
909 	fl4 = &inet->cork.fl.u.ip4;
910 	if (up->pending) {
911 		/*
912 		 * There are pending frames.
913 		 * The socket lock must be held while it's corked.
914 		 */
915 		lock_sock(sk);
916 		if (likely(up->pending)) {
917 			if (unlikely(up->pending != AF_INET)) {
918 				release_sock(sk);
919 				return -EINVAL;
920 			}
921 			goto do_append_data;
922 		}
923 		release_sock(sk);
924 	}
925 	ulen += sizeof(struct udphdr);
926 
927 	/*
928 	 *	Get and verify the address.
929 	 */
930 	if (msg->msg_name) {
931 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
932 		if (msg->msg_namelen < sizeof(*usin))
933 			return -EINVAL;
934 		if (usin->sin_family != AF_INET) {
935 			if (usin->sin_family != AF_UNSPEC)
936 				return -EAFNOSUPPORT;
937 		}
938 
939 		daddr = usin->sin_addr.s_addr;
940 		dport = usin->sin_port;
941 		if (dport == 0)
942 			return -EINVAL;
943 	} else {
944 		if (sk->sk_state != TCP_ESTABLISHED)
945 			return -EDESTADDRREQ;
946 		daddr = inet->inet_daddr;
947 		dport = inet->inet_dport;
948 		/* Open fast path for connected socket.
949 		   Route will not be used, if at least one option is set.
950 		 */
951 		connected = 1;
952 	}
953 
954 	ipc.sockc.tsflags = sk->sk_tsflags;
955 	ipc.addr = inet->inet_saddr;
956 	ipc.oif = sk->sk_bound_dev_if;
957 
958 	if (msg->msg_controllen) {
959 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
960 		if (unlikely(err)) {
961 			kfree(ipc.opt);
962 			return err;
963 		}
964 		if (ipc.opt)
965 			free = 1;
966 		connected = 0;
967 	}
968 	if (!ipc.opt) {
969 		struct ip_options_rcu *inet_opt;
970 
971 		rcu_read_lock();
972 		inet_opt = rcu_dereference(inet->inet_opt);
973 		if (inet_opt) {
974 			memcpy(&opt_copy, inet_opt,
975 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
976 			ipc.opt = &opt_copy.opt;
977 		}
978 		rcu_read_unlock();
979 	}
980 
981 	saddr = ipc.addr;
982 	ipc.addr = faddr = daddr;
983 
984 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
985 
986 	if (ipc.opt && ipc.opt->opt.srr) {
987 		if (!daddr)
988 			return -EINVAL;
989 		faddr = ipc.opt->opt.faddr;
990 		connected = 0;
991 	}
992 	tos = get_rttos(&ipc, inet);
993 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
994 	    (msg->msg_flags & MSG_DONTROUTE) ||
995 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
996 		tos |= RTO_ONLINK;
997 		connected = 0;
998 	}
999 
1000 	if (ipv4_is_multicast(daddr)) {
1001 		if (!ipc.oif)
1002 			ipc.oif = inet->mc_index;
1003 		if (!saddr)
1004 			saddr = inet->mc_addr;
1005 		connected = 0;
1006 	} else if (!ipc.oif)
1007 		ipc.oif = inet->uc_index;
1008 
1009 	if (connected)
1010 		rt = (struct rtable *)sk_dst_check(sk, 0);
1011 
1012 	if (!rt) {
1013 		struct net *net = sock_net(sk);
1014 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1015 
1016 		fl4 = &fl4_stack;
1017 
1018 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1019 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1020 				   flow_flags,
1021 				   faddr, saddr, dport, inet->inet_sport);
1022 
1023 		if (!saddr && ipc.oif) {
1024 			err = l3mdev_get_saddr(net, ipc.oif, fl4);
1025 			if (err < 0)
1026 				goto out;
1027 		}
1028 
1029 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1030 		rt = ip_route_output_flow(net, fl4, sk);
1031 		if (IS_ERR(rt)) {
1032 			err = PTR_ERR(rt);
1033 			rt = NULL;
1034 			if (err == -ENETUNREACH)
1035 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1036 			goto out;
1037 		}
1038 
1039 		err = -EACCES;
1040 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1041 		    !sock_flag(sk, SOCK_BROADCAST))
1042 			goto out;
1043 		if (connected)
1044 			sk_dst_set(sk, dst_clone(&rt->dst));
1045 	}
1046 
1047 	if (msg->msg_flags&MSG_CONFIRM)
1048 		goto do_confirm;
1049 back_from_confirm:
1050 
1051 	saddr = fl4->saddr;
1052 	if (!ipc.addr)
1053 		daddr = ipc.addr = fl4->daddr;
1054 
1055 	/* Lockless fast path for the non-corking case. */
1056 	if (!corkreq) {
1057 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1058 				  sizeof(struct udphdr), &ipc, &rt,
1059 				  msg->msg_flags);
1060 		err = PTR_ERR(skb);
1061 		if (!IS_ERR_OR_NULL(skb))
1062 			err = udp_send_skb(skb, fl4);
1063 		goto out;
1064 	}
1065 
1066 	lock_sock(sk);
1067 	if (unlikely(up->pending)) {
1068 		/* The socket is already corked while preparing it. */
1069 		/* ... which is an evident application bug. --ANK */
1070 		release_sock(sk);
1071 
1072 		net_dbg_ratelimited("cork app bug 2\n");
1073 		err = -EINVAL;
1074 		goto out;
1075 	}
1076 	/*
1077 	 *	Now cork the socket to pend data.
1078 	 */
1079 	fl4 = &inet->cork.fl.u.ip4;
1080 	fl4->daddr = daddr;
1081 	fl4->saddr = saddr;
1082 	fl4->fl4_dport = dport;
1083 	fl4->fl4_sport = inet->inet_sport;
1084 	up->pending = AF_INET;
1085 
1086 do_append_data:
1087 	up->len += ulen;
1088 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1089 			     sizeof(struct udphdr), &ipc, &rt,
1090 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1091 	if (err)
1092 		udp_flush_pending_frames(sk);
1093 	else if (!corkreq)
1094 		err = udp_push_pending_frames(sk);
1095 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1096 		up->pending = 0;
1097 	release_sock(sk);
1098 
1099 out:
1100 	ip_rt_put(rt);
1101 	if (free)
1102 		kfree(ipc.opt);
1103 	if (!err)
1104 		return len;
1105 	/*
1106 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1107 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1108 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1109 	 * things).  We could add another new stat but at least for now that
1110 	 * seems like overkill.
1111 	 */
1112 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1113 		UDP_INC_STATS(sock_net(sk),
1114 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1115 	}
1116 	return err;
1117 
1118 do_confirm:
1119 	dst_confirm(&rt->dst);
1120 	if (!(msg->msg_flags&MSG_PROBE) || len)
1121 		goto back_from_confirm;
1122 	err = 0;
1123 	goto out;
1124 }
1125 EXPORT_SYMBOL(udp_sendmsg);
1126 
1127 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1128 		 size_t size, int flags)
1129 {
1130 	struct inet_sock *inet = inet_sk(sk);
1131 	struct udp_sock *up = udp_sk(sk);
1132 	int ret;
1133 
1134 	if (flags & MSG_SENDPAGE_NOTLAST)
1135 		flags |= MSG_MORE;
1136 
1137 	if (!up->pending) {
1138 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1139 
1140 		/* Call udp_sendmsg to specify destination address which
1141 		 * sendpage interface can't pass.
1142 		 * This will succeed only when the socket is connected.
1143 		 */
1144 		ret = udp_sendmsg(sk, &msg, 0);
1145 		if (ret < 0)
1146 			return ret;
1147 	}
1148 
1149 	lock_sock(sk);
1150 
1151 	if (unlikely(!up->pending)) {
1152 		release_sock(sk);
1153 
1154 		net_dbg_ratelimited("udp cork app bug 3\n");
1155 		return -EINVAL;
1156 	}
1157 
1158 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1159 			     page, offset, size, flags);
1160 	if (ret == -EOPNOTSUPP) {
1161 		release_sock(sk);
1162 		return sock_no_sendpage(sk->sk_socket, page, offset,
1163 					size, flags);
1164 	}
1165 	if (ret < 0) {
1166 		udp_flush_pending_frames(sk);
1167 		goto out;
1168 	}
1169 
1170 	up->len += size;
1171 	if (!(up->corkflag || (flags&MSG_MORE)))
1172 		ret = udp_push_pending_frames(sk);
1173 	if (!ret)
1174 		ret = size;
1175 out:
1176 	release_sock(sk);
1177 	return ret;
1178 }
1179 
1180 /**
1181  *	first_packet_length	- return length of first packet in receive queue
1182  *	@sk: socket
1183  *
1184  *	Drops all bad checksum frames, until a valid one is found.
1185  *	Returns the length of found skb, or -1 if none is found.
1186  */
1187 static int first_packet_length(struct sock *sk)
1188 {
1189 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1190 	struct sk_buff *skb;
1191 	int res;
1192 
1193 	__skb_queue_head_init(&list_kill);
1194 
1195 	spin_lock_bh(&rcvq->lock);
1196 	while ((skb = skb_peek(rcvq)) != NULL &&
1197 		udp_lib_checksum_complete(skb)) {
1198 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1199 				IS_UDPLITE(sk));
1200 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1201 				IS_UDPLITE(sk));
1202 		atomic_inc(&sk->sk_drops);
1203 		__skb_unlink(skb, rcvq);
1204 		__skb_queue_tail(&list_kill, skb);
1205 	}
1206 	res = skb ? skb->len : -1;
1207 	spin_unlock_bh(&rcvq->lock);
1208 
1209 	if (!skb_queue_empty(&list_kill)) {
1210 		bool slow = lock_sock_fast(sk);
1211 
1212 		__skb_queue_purge(&list_kill);
1213 		sk_mem_reclaim_partial(sk);
1214 		unlock_sock_fast(sk, slow);
1215 	}
1216 	return res;
1217 }
1218 
1219 /*
1220  *	IOCTL requests applicable to the UDP protocol
1221  */
1222 
1223 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1224 {
1225 	switch (cmd) {
1226 	case SIOCOUTQ:
1227 	{
1228 		int amount = sk_wmem_alloc_get(sk);
1229 
1230 		return put_user(amount, (int __user *)arg);
1231 	}
1232 
1233 	case SIOCINQ:
1234 	{
1235 		int amount = max_t(int, 0, first_packet_length(sk));
1236 
1237 		return put_user(amount, (int __user *)arg);
1238 	}
1239 
1240 	default:
1241 		return -ENOIOCTLCMD;
1242 	}
1243 
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(udp_ioctl);
1247 
1248 /*
1249  * 	This should be easy, if there is something there we
1250  * 	return it, otherwise we block.
1251  */
1252 
1253 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1254 		int flags, int *addr_len)
1255 {
1256 	struct inet_sock *inet = inet_sk(sk);
1257 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1258 	struct sk_buff *skb;
1259 	unsigned int ulen, copied;
1260 	int peeked, peeking, off;
1261 	int err;
1262 	int is_udplite = IS_UDPLITE(sk);
1263 	bool checksum_valid = false;
1264 	bool slow;
1265 
1266 	if (flags & MSG_ERRQUEUE)
1267 		return ip_recv_error(sk, msg, len, addr_len);
1268 
1269 try_again:
1270 	peeking = off = sk_peek_offset(sk, flags);
1271 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1272 				  &peeked, &off, &err);
1273 	if (!skb)
1274 		return err;
1275 
1276 	ulen = skb->len;
1277 	copied = len;
1278 	if (copied > ulen - off)
1279 		copied = ulen - off;
1280 	else if (copied < ulen)
1281 		msg->msg_flags |= MSG_TRUNC;
1282 
1283 	/*
1284 	 * If checksum is needed at all, try to do it while copying the
1285 	 * data.  If the data is truncated, or if we only want a partial
1286 	 * coverage checksum (UDP-Lite), do it before the copy.
1287 	 */
1288 
1289 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1290 		checksum_valid = !udp_lib_checksum_complete(skb);
1291 		if (!checksum_valid)
1292 			goto csum_copy_err;
1293 	}
1294 
1295 	if (checksum_valid || skb_csum_unnecessary(skb))
1296 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1297 	else {
1298 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1299 
1300 		if (err == -EINVAL)
1301 			goto csum_copy_err;
1302 	}
1303 
1304 	if (unlikely(err)) {
1305 		trace_kfree_skb(skb, udp_recvmsg);
1306 		if (!peeked) {
1307 			atomic_inc(&sk->sk_drops);
1308 			UDP_INC_STATS(sock_net(sk),
1309 				      UDP_MIB_INERRORS, is_udplite);
1310 		}
1311 		skb_free_datagram_locked(sk, skb);
1312 		return err;
1313 	}
1314 
1315 	if (!peeked)
1316 		UDP_INC_STATS(sock_net(sk),
1317 			      UDP_MIB_INDATAGRAMS, is_udplite);
1318 
1319 	sock_recv_ts_and_drops(msg, sk, skb);
1320 
1321 	/* Copy the address. */
1322 	if (sin) {
1323 		sin->sin_family = AF_INET;
1324 		sin->sin_port = udp_hdr(skb)->source;
1325 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1326 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1327 		*addr_len = sizeof(*sin);
1328 	}
1329 	if (inet->cmsg_flags)
1330 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off);
1331 
1332 	err = copied;
1333 	if (flags & MSG_TRUNC)
1334 		err = ulen;
1335 
1336 	__skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1337 	return err;
1338 
1339 csum_copy_err:
1340 	slow = lock_sock_fast(sk);
1341 	if (!skb_kill_datagram(sk, skb, flags)) {
1342 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1343 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1344 	}
1345 	unlock_sock_fast(sk, slow);
1346 
1347 	/* starting over for a new packet, but check if we need to yield */
1348 	cond_resched();
1349 	msg->msg_flags &= ~MSG_TRUNC;
1350 	goto try_again;
1351 }
1352 
1353 int udp_disconnect(struct sock *sk, int flags)
1354 {
1355 	struct inet_sock *inet = inet_sk(sk);
1356 	/*
1357 	 *	1003.1g - break association.
1358 	 */
1359 
1360 	sk->sk_state = TCP_CLOSE;
1361 	inet->inet_daddr = 0;
1362 	inet->inet_dport = 0;
1363 	sock_rps_reset_rxhash(sk);
1364 	sk->sk_bound_dev_if = 0;
1365 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1366 		inet_reset_saddr(sk);
1367 
1368 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1369 		sk->sk_prot->unhash(sk);
1370 		inet->inet_sport = 0;
1371 	}
1372 	sk_dst_reset(sk);
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(udp_disconnect);
1376 
1377 void udp_lib_unhash(struct sock *sk)
1378 {
1379 	if (sk_hashed(sk)) {
1380 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1381 		struct udp_hslot *hslot, *hslot2;
1382 
1383 		hslot  = udp_hashslot(udptable, sock_net(sk),
1384 				      udp_sk(sk)->udp_port_hash);
1385 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1386 
1387 		spin_lock_bh(&hslot->lock);
1388 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1389 			reuseport_detach_sock(sk);
1390 		if (sk_del_node_init_rcu(sk)) {
1391 			hslot->count--;
1392 			inet_sk(sk)->inet_num = 0;
1393 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1394 
1395 			spin_lock(&hslot2->lock);
1396 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1397 			hslot2->count--;
1398 			spin_unlock(&hslot2->lock);
1399 		}
1400 		spin_unlock_bh(&hslot->lock);
1401 	}
1402 }
1403 EXPORT_SYMBOL(udp_lib_unhash);
1404 
1405 /*
1406  * inet_rcv_saddr was changed, we must rehash secondary hash
1407  */
1408 void udp_lib_rehash(struct sock *sk, u16 newhash)
1409 {
1410 	if (sk_hashed(sk)) {
1411 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1412 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1413 
1414 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1415 		nhslot2 = udp_hashslot2(udptable, newhash);
1416 		udp_sk(sk)->udp_portaddr_hash = newhash;
1417 
1418 		if (hslot2 != nhslot2 ||
1419 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1420 			hslot = udp_hashslot(udptable, sock_net(sk),
1421 					     udp_sk(sk)->udp_port_hash);
1422 			/* we must lock primary chain too */
1423 			spin_lock_bh(&hslot->lock);
1424 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1425 				reuseport_detach_sock(sk);
1426 
1427 			if (hslot2 != nhslot2) {
1428 				spin_lock(&hslot2->lock);
1429 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1430 				hslot2->count--;
1431 				spin_unlock(&hslot2->lock);
1432 
1433 				spin_lock(&nhslot2->lock);
1434 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1435 							 &nhslot2->head);
1436 				nhslot2->count++;
1437 				spin_unlock(&nhslot2->lock);
1438 			}
1439 
1440 			spin_unlock_bh(&hslot->lock);
1441 		}
1442 	}
1443 }
1444 EXPORT_SYMBOL(udp_lib_rehash);
1445 
1446 static void udp_v4_rehash(struct sock *sk)
1447 {
1448 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1449 					  inet_sk(sk)->inet_rcv_saddr,
1450 					  inet_sk(sk)->inet_num);
1451 	udp_lib_rehash(sk, new_hash);
1452 }
1453 
1454 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1455 {
1456 	int rc;
1457 
1458 	if (inet_sk(sk)->inet_daddr) {
1459 		sock_rps_save_rxhash(sk, skb);
1460 		sk_mark_napi_id(sk, skb);
1461 		sk_incoming_cpu_update(sk);
1462 	}
1463 
1464 	rc = __sock_queue_rcv_skb(sk, skb);
1465 	if (rc < 0) {
1466 		int is_udplite = IS_UDPLITE(sk);
1467 
1468 		/* Note that an ENOMEM error is charged twice */
1469 		if (rc == -ENOMEM)
1470 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1471 					is_udplite);
1472 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1473 		kfree_skb(skb);
1474 		trace_udp_fail_queue_rcv_skb(rc, sk);
1475 		return -1;
1476 	}
1477 
1478 	return 0;
1479 
1480 }
1481 
1482 static struct static_key udp_encap_needed __read_mostly;
1483 void udp_encap_enable(void)
1484 {
1485 	if (!static_key_enabled(&udp_encap_needed))
1486 		static_key_slow_inc(&udp_encap_needed);
1487 }
1488 EXPORT_SYMBOL(udp_encap_enable);
1489 
1490 /* returns:
1491  *  -1: error
1492  *   0: success
1493  *  >0: "udp encap" protocol resubmission
1494  *
1495  * Note that in the success and error cases, the skb is assumed to
1496  * have either been requeued or freed.
1497  */
1498 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 	struct udp_sock *up = udp_sk(sk);
1501 	int rc;
1502 	int is_udplite = IS_UDPLITE(sk);
1503 
1504 	/*
1505 	 *	Charge it to the socket, dropping if the queue is full.
1506 	 */
1507 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1508 		goto drop;
1509 	nf_reset(skb);
1510 
1511 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1512 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1513 
1514 		/*
1515 		 * This is an encapsulation socket so pass the skb to
1516 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1517 		 * fall through and pass this up the UDP socket.
1518 		 * up->encap_rcv() returns the following value:
1519 		 * =0 if skb was successfully passed to the encap
1520 		 *    handler or was discarded by it.
1521 		 * >0 if skb should be passed on to UDP.
1522 		 * <0 if skb should be resubmitted as proto -N
1523 		 */
1524 
1525 		/* if we're overly short, let UDP handle it */
1526 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1527 		if (encap_rcv) {
1528 			int ret;
1529 
1530 			/* Verify checksum before giving to encap */
1531 			if (udp_lib_checksum_complete(skb))
1532 				goto csum_error;
1533 
1534 			ret = encap_rcv(sk, skb);
1535 			if (ret <= 0) {
1536 				__UDP_INC_STATS(sock_net(sk),
1537 						UDP_MIB_INDATAGRAMS,
1538 						is_udplite);
1539 				return -ret;
1540 			}
1541 		}
1542 
1543 		/* FALLTHROUGH -- it's a UDP Packet */
1544 	}
1545 
1546 	/*
1547 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1548 	 */
1549 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1550 
1551 		/*
1552 		 * MIB statistics other than incrementing the error count are
1553 		 * disabled for the following two types of errors: these depend
1554 		 * on the application settings, not on the functioning of the
1555 		 * protocol stack as such.
1556 		 *
1557 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1558 		 * way ... to ... at least let the receiving application block
1559 		 * delivery of packets with coverage values less than a value
1560 		 * provided by the application."
1561 		 */
1562 		if (up->pcrlen == 0) {          /* full coverage was set  */
1563 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1564 					    UDP_SKB_CB(skb)->cscov, skb->len);
1565 			goto drop;
1566 		}
1567 		/* The next case involves violating the min. coverage requested
1568 		 * by the receiver. This is subtle: if receiver wants x and x is
1569 		 * greater than the buffersize/MTU then receiver will complain
1570 		 * that it wants x while sender emits packets of smaller size y.
1571 		 * Therefore the above ...()->partial_cov statement is essential.
1572 		 */
1573 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1574 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1575 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1576 			goto drop;
1577 		}
1578 	}
1579 
1580 	if (rcu_access_pointer(sk->sk_filter) &&
1581 	    udp_lib_checksum_complete(skb))
1582 			goto csum_error;
1583 
1584 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1585 		goto drop;
1586 
1587 	udp_csum_pull_header(skb);
1588 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1589 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1590 				is_udplite);
1591 		goto drop;
1592 	}
1593 
1594 	rc = 0;
1595 
1596 	ipv4_pktinfo_prepare(sk, skb);
1597 	bh_lock_sock(sk);
1598 	if (!sock_owned_by_user(sk))
1599 		rc = __udp_queue_rcv_skb(sk, skb);
1600 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1601 		bh_unlock_sock(sk);
1602 		goto drop;
1603 	}
1604 	bh_unlock_sock(sk);
1605 
1606 	return rc;
1607 
1608 csum_error:
1609 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1610 drop:
1611 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1612 	atomic_inc(&sk->sk_drops);
1613 	kfree_skb(skb);
1614 	return -1;
1615 }
1616 
1617 /* For TCP sockets, sk_rx_dst is protected by socket lock
1618  * For UDP, we use xchg() to guard against concurrent changes.
1619  */
1620 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1621 {
1622 	struct dst_entry *old;
1623 
1624 	dst_hold(dst);
1625 	old = xchg(&sk->sk_rx_dst, dst);
1626 	dst_release(old);
1627 }
1628 
1629 /*
1630  *	Multicasts and broadcasts go to each listener.
1631  *
1632  *	Note: called only from the BH handler context.
1633  */
1634 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1635 				    struct udphdr  *uh,
1636 				    __be32 saddr, __be32 daddr,
1637 				    struct udp_table *udptable,
1638 				    int proto)
1639 {
1640 	struct sock *sk, *first = NULL;
1641 	unsigned short hnum = ntohs(uh->dest);
1642 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1643 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1644 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1645 	int dif = skb->dev->ifindex;
1646 	struct hlist_node *node;
1647 	struct sk_buff *nskb;
1648 
1649 	if (use_hash2) {
1650 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1651 			    udp_table.mask;
1652 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1653 start_lookup:
1654 		hslot = &udp_table.hash2[hash2];
1655 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1656 	}
1657 
1658 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1659 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1660 					 uh->source, saddr, dif, hnum))
1661 			continue;
1662 
1663 		if (!first) {
1664 			first = sk;
1665 			continue;
1666 		}
1667 		nskb = skb_clone(skb, GFP_ATOMIC);
1668 
1669 		if (unlikely(!nskb)) {
1670 			atomic_inc(&sk->sk_drops);
1671 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1672 					IS_UDPLITE(sk));
1673 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1674 					IS_UDPLITE(sk));
1675 			continue;
1676 		}
1677 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1678 			consume_skb(nskb);
1679 	}
1680 
1681 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1682 	if (use_hash2 && hash2 != hash2_any) {
1683 		hash2 = hash2_any;
1684 		goto start_lookup;
1685 	}
1686 
1687 	if (first) {
1688 		if (udp_queue_rcv_skb(first, skb) > 0)
1689 			consume_skb(skb);
1690 	} else {
1691 		kfree_skb(skb);
1692 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1693 				proto == IPPROTO_UDPLITE);
1694 	}
1695 	return 0;
1696 }
1697 
1698 /* Initialize UDP checksum. If exited with zero value (success),
1699  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1700  * Otherwise, csum completion requires chacksumming packet body,
1701  * including udp header and folding it to skb->csum.
1702  */
1703 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1704 				 int proto)
1705 {
1706 	int err;
1707 
1708 	UDP_SKB_CB(skb)->partial_cov = 0;
1709 	UDP_SKB_CB(skb)->cscov = skb->len;
1710 
1711 	if (proto == IPPROTO_UDPLITE) {
1712 		err = udplite_checksum_init(skb, uh);
1713 		if (err)
1714 			return err;
1715 	}
1716 
1717 	/* Note, we are only interested in != 0 or == 0, thus the
1718 	 * force to int.
1719 	 */
1720 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1721 							 inet_compute_pseudo);
1722 }
1723 
1724 /*
1725  *	All we need to do is get the socket, and then do a checksum.
1726  */
1727 
1728 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1729 		   int proto)
1730 {
1731 	struct sock *sk;
1732 	struct udphdr *uh;
1733 	unsigned short ulen;
1734 	struct rtable *rt = skb_rtable(skb);
1735 	__be32 saddr, daddr;
1736 	struct net *net = dev_net(skb->dev);
1737 
1738 	/*
1739 	 *  Validate the packet.
1740 	 */
1741 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1742 		goto drop;		/* No space for header. */
1743 
1744 	uh   = udp_hdr(skb);
1745 	ulen = ntohs(uh->len);
1746 	saddr = ip_hdr(skb)->saddr;
1747 	daddr = ip_hdr(skb)->daddr;
1748 
1749 	if (ulen > skb->len)
1750 		goto short_packet;
1751 
1752 	if (proto == IPPROTO_UDP) {
1753 		/* UDP validates ulen. */
1754 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1755 			goto short_packet;
1756 		uh = udp_hdr(skb);
1757 	}
1758 
1759 	if (udp4_csum_init(skb, uh, proto))
1760 		goto csum_error;
1761 
1762 	sk = skb_steal_sock(skb);
1763 	if (sk) {
1764 		struct dst_entry *dst = skb_dst(skb);
1765 		int ret;
1766 
1767 		if (unlikely(sk->sk_rx_dst != dst))
1768 			udp_sk_rx_dst_set(sk, dst);
1769 
1770 		ret = udp_queue_rcv_skb(sk, skb);
1771 		sock_put(sk);
1772 		/* a return value > 0 means to resubmit the input, but
1773 		 * it wants the return to be -protocol, or 0
1774 		 */
1775 		if (ret > 0)
1776 			return -ret;
1777 		return 0;
1778 	}
1779 
1780 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1781 		return __udp4_lib_mcast_deliver(net, skb, uh,
1782 						saddr, daddr, udptable, proto);
1783 
1784 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1785 	if (sk) {
1786 		int ret;
1787 
1788 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1789 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1790 						 inet_compute_pseudo);
1791 
1792 		ret = udp_queue_rcv_skb(sk, skb);
1793 
1794 		/* a return value > 0 means to resubmit the input, but
1795 		 * it wants the return to be -protocol, or 0
1796 		 */
1797 		if (ret > 0)
1798 			return -ret;
1799 		return 0;
1800 	}
1801 
1802 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1803 		goto drop;
1804 	nf_reset(skb);
1805 
1806 	/* No socket. Drop packet silently, if checksum is wrong */
1807 	if (udp_lib_checksum_complete(skb))
1808 		goto csum_error;
1809 
1810 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1811 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1812 
1813 	/*
1814 	 * Hmm.  We got an UDP packet to a port to which we
1815 	 * don't wanna listen.  Ignore it.
1816 	 */
1817 	kfree_skb(skb);
1818 	return 0;
1819 
1820 short_packet:
1821 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1822 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1823 			    &saddr, ntohs(uh->source),
1824 			    ulen, skb->len,
1825 			    &daddr, ntohs(uh->dest));
1826 	goto drop;
1827 
1828 csum_error:
1829 	/*
1830 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1831 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1832 	 */
1833 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1834 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1835 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1836 			    ulen);
1837 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1838 drop:
1839 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1840 	kfree_skb(skb);
1841 	return 0;
1842 }
1843 
1844 /* We can only early demux multicast if there is a single matching socket.
1845  * If more than one socket found returns NULL
1846  */
1847 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1848 						  __be16 loc_port, __be32 loc_addr,
1849 						  __be16 rmt_port, __be32 rmt_addr,
1850 						  int dif)
1851 {
1852 	struct sock *sk, *result;
1853 	unsigned short hnum = ntohs(loc_port);
1854 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1855 	struct udp_hslot *hslot = &udp_table.hash[slot];
1856 
1857 	/* Do not bother scanning a too big list */
1858 	if (hslot->count > 10)
1859 		return NULL;
1860 
1861 	result = NULL;
1862 	sk_for_each_rcu(sk, &hslot->head) {
1863 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1864 					rmt_port, rmt_addr, dif, hnum)) {
1865 			if (result)
1866 				return NULL;
1867 			result = sk;
1868 		}
1869 	}
1870 
1871 	return result;
1872 }
1873 
1874 /* For unicast we should only early demux connected sockets or we can
1875  * break forwarding setups.  The chains here can be long so only check
1876  * if the first socket is an exact match and if not move on.
1877  */
1878 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1879 					    __be16 loc_port, __be32 loc_addr,
1880 					    __be16 rmt_port, __be32 rmt_addr,
1881 					    int dif)
1882 {
1883 	unsigned short hnum = ntohs(loc_port);
1884 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1885 	unsigned int slot2 = hash2 & udp_table.mask;
1886 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1887 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1888 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1889 	struct sock *sk;
1890 
1891 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1892 		if (INET_MATCH(sk, net, acookie, rmt_addr,
1893 			       loc_addr, ports, dif))
1894 			return sk;
1895 		/* Only check first socket in chain */
1896 		break;
1897 	}
1898 	return NULL;
1899 }
1900 
1901 void udp_v4_early_demux(struct sk_buff *skb)
1902 {
1903 	struct net *net = dev_net(skb->dev);
1904 	const struct iphdr *iph;
1905 	const struct udphdr *uh;
1906 	struct sock *sk = NULL;
1907 	struct dst_entry *dst;
1908 	int dif = skb->dev->ifindex;
1909 	int ours;
1910 
1911 	/* validate the packet */
1912 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1913 		return;
1914 
1915 	iph = ip_hdr(skb);
1916 	uh = udp_hdr(skb);
1917 
1918 	if (skb->pkt_type == PACKET_BROADCAST ||
1919 	    skb->pkt_type == PACKET_MULTICAST) {
1920 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1921 
1922 		if (!in_dev)
1923 			return;
1924 
1925 		/* we are supposed to accept bcast packets */
1926 		if (skb->pkt_type == PACKET_MULTICAST) {
1927 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1928 					       iph->protocol);
1929 			if (!ours)
1930 				return;
1931 		}
1932 
1933 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1934 						   uh->source, iph->saddr, dif);
1935 	} else if (skb->pkt_type == PACKET_HOST) {
1936 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1937 					     uh->source, iph->saddr, dif);
1938 	}
1939 
1940 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1941 		return;
1942 
1943 	skb->sk = sk;
1944 	skb->destructor = sock_efree;
1945 	dst = READ_ONCE(sk->sk_rx_dst);
1946 
1947 	if (dst)
1948 		dst = dst_check(dst, 0);
1949 	if (dst) {
1950 		/* DST_NOCACHE can not be used without taking a reference */
1951 		if (dst->flags & DST_NOCACHE) {
1952 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1953 				skb_dst_set(skb, dst);
1954 		} else {
1955 			skb_dst_set_noref(skb, dst);
1956 		}
1957 	}
1958 }
1959 
1960 int udp_rcv(struct sk_buff *skb)
1961 {
1962 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1963 }
1964 
1965 void udp_destroy_sock(struct sock *sk)
1966 {
1967 	struct udp_sock *up = udp_sk(sk);
1968 	bool slow = lock_sock_fast(sk);
1969 	udp_flush_pending_frames(sk);
1970 	unlock_sock_fast(sk, slow);
1971 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1972 		void (*encap_destroy)(struct sock *sk);
1973 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1974 		if (encap_destroy)
1975 			encap_destroy(sk);
1976 	}
1977 }
1978 
1979 /*
1980  *	Socket option code for UDP
1981  */
1982 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1983 		       char __user *optval, unsigned int optlen,
1984 		       int (*push_pending_frames)(struct sock *))
1985 {
1986 	struct udp_sock *up = udp_sk(sk);
1987 	int val, valbool;
1988 	int err = 0;
1989 	int is_udplite = IS_UDPLITE(sk);
1990 
1991 	if (optlen < sizeof(int))
1992 		return -EINVAL;
1993 
1994 	if (get_user(val, (int __user *)optval))
1995 		return -EFAULT;
1996 
1997 	valbool = val ? 1 : 0;
1998 
1999 	switch (optname) {
2000 	case UDP_CORK:
2001 		if (val != 0) {
2002 			up->corkflag = 1;
2003 		} else {
2004 			up->corkflag = 0;
2005 			lock_sock(sk);
2006 			push_pending_frames(sk);
2007 			release_sock(sk);
2008 		}
2009 		break;
2010 
2011 	case UDP_ENCAP:
2012 		switch (val) {
2013 		case 0:
2014 		case UDP_ENCAP_ESPINUDP:
2015 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2016 			up->encap_rcv = xfrm4_udp_encap_rcv;
2017 			/* FALLTHROUGH */
2018 		case UDP_ENCAP_L2TPINUDP:
2019 			up->encap_type = val;
2020 			udp_encap_enable();
2021 			break;
2022 		default:
2023 			err = -ENOPROTOOPT;
2024 			break;
2025 		}
2026 		break;
2027 
2028 	case UDP_NO_CHECK6_TX:
2029 		up->no_check6_tx = valbool;
2030 		break;
2031 
2032 	case UDP_NO_CHECK6_RX:
2033 		up->no_check6_rx = valbool;
2034 		break;
2035 
2036 	/*
2037 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2038 	 */
2039 	/* The sender sets actual checksum coverage length via this option.
2040 	 * The case coverage > packet length is handled by send module. */
2041 	case UDPLITE_SEND_CSCOV:
2042 		if (!is_udplite)         /* Disable the option on UDP sockets */
2043 			return -ENOPROTOOPT;
2044 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2045 			val = 8;
2046 		else if (val > USHRT_MAX)
2047 			val = USHRT_MAX;
2048 		up->pcslen = val;
2049 		up->pcflag |= UDPLITE_SEND_CC;
2050 		break;
2051 
2052 	/* The receiver specifies a minimum checksum coverage value. To make
2053 	 * sense, this should be set to at least 8 (as done below). If zero is
2054 	 * used, this again means full checksum coverage.                     */
2055 	case UDPLITE_RECV_CSCOV:
2056 		if (!is_udplite)         /* Disable the option on UDP sockets */
2057 			return -ENOPROTOOPT;
2058 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2059 			val = 8;
2060 		else if (val > USHRT_MAX)
2061 			val = USHRT_MAX;
2062 		up->pcrlen = val;
2063 		up->pcflag |= UDPLITE_RECV_CC;
2064 		break;
2065 
2066 	default:
2067 		err = -ENOPROTOOPT;
2068 		break;
2069 	}
2070 
2071 	return err;
2072 }
2073 EXPORT_SYMBOL(udp_lib_setsockopt);
2074 
2075 int udp_setsockopt(struct sock *sk, int level, int optname,
2076 		   char __user *optval, unsigned int optlen)
2077 {
2078 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2079 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2080 					  udp_push_pending_frames);
2081 	return ip_setsockopt(sk, level, optname, optval, optlen);
2082 }
2083 
2084 #ifdef CONFIG_COMPAT
2085 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2086 			  char __user *optval, unsigned int optlen)
2087 {
2088 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2089 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2090 					  udp_push_pending_frames);
2091 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2092 }
2093 #endif
2094 
2095 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2096 		       char __user *optval, int __user *optlen)
2097 {
2098 	struct udp_sock *up = udp_sk(sk);
2099 	int val, len;
2100 
2101 	if (get_user(len, optlen))
2102 		return -EFAULT;
2103 
2104 	len = min_t(unsigned int, len, sizeof(int));
2105 
2106 	if (len < 0)
2107 		return -EINVAL;
2108 
2109 	switch (optname) {
2110 	case UDP_CORK:
2111 		val = up->corkflag;
2112 		break;
2113 
2114 	case UDP_ENCAP:
2115 		val = up->encap_type;
2116 		break;
2117 
2118 	case UDP_NO_CHECK6_TX:
2119 		val = up->no_check6_tx;
2120 		break;
2121 
2122 	case UDP_NO_CHECK6_RX:
2123 		val = up->no_check6_rx;
2124 		break;
2125 
2126 	/* The following two cannot be changed on UDP sockets, the return is
2127 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2128 	case UDPLITE_SEND_CSCOV:
2129 		val = up->pcslen;
2130 		break;
2131 
2132 	case UDPLITE_RECV_CSCOV:
2133 		val = up->pcrlen;
2134 		break;
2135 
2136 	default:
2137 		return -ENOPROTOOPT;
2138 	}
2139 
2140 	if (put_user(len, optlen))
2141 		return -EFAULT;
2142 	if (copy_to_user(optval, &val, len))
2143 		return -EFAULT;
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL(udp_lib_getsockopt);
2147 
2148 int udp_getsockopt(struct sock *sk, int level, int optname,
2149 		   char __user *optval, int __user *optlen)
2150 {
2151 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2152 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2153 	return ip_getsockopt(sk, level, optname, optval, optlen);
2154 }
2155 
2156 #ifdef CONFIG_COMPAT
2157 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2158 				 char __user *optval, int __user *optlen)
2159 {
2160 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2161 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2162 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2163 }
2164 #endif
2165 /**
2166  * 	udp_poll - wait for a UDP event.
2167  *	@file - file struct
2168  *	@sock - socket
2169  *	@wait - poll table
2170  *
2171  *	This is same as datagram poll, except for the special case of
2172  *	blocking sockets. If application is using a blocking fd
2173  *	and a packet with checksum error is in the queue;
2174  *	then it could get return from select indicating data available
2175  *	but then block when reading it. Add special case code
2176  *	to work around these arguably broken applications.
2177  */
2178 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2179 {
2180 	unsigned int mask = datagram_poll(file, sock, wait);
2181 	struct sock *sk = sock->sk;
2182 
2183 	sock_rps_record_flow(sk);
2184 
2185 	/* Check for false positives due to checksum errors */
2186 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2187 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2188 		mask &= ~(POLLIN | POLLRDNORM);
2189 
2190 	return mask;
2191 
2192 }
2193 EXPORT_SYMBOL(udp_poll);
2194 
2195 struct proto udp_prot = {
2196 	.name		   = "UDP",
2197 	.owner		   = THIS_MODULE,
2198 	.close		   = udp_lib_close,
2199 	.connect	   = ip4_datagram_connect,
2200 	.disconnect	   = udp_disconnect,
2201 	.ioctl		   = udp_ioctl,
2202 	.destroy	   = udp_destroy_sock,
2203 	.setsockopt	   = udp_setsockopt,
2204 	.getsockopt	   = udp_getsockopt,
2205 	.sendmsg	   = udp_sendmsg,
2206 	.recvmsg	   = udp_recvmsg,
2207 	.sendpage	   = udp_sendpage,
2208 	.backlog_rcv	   = __udp_queue_rcv_skb,
2209 	.release_cb	   = ip4_datagram_release_cb,
2210 	.hash		   = udp_lib_hash,
2211 	.unhash		   = udp_lib_unhash,
2212 	.rehash		   = udp_v4_rehash,
2213 	.get_port	   = udp_v4_get_port,
2214 	.memory_allocated  = &udp_memory_allocated,
2215 	.sysctl_mem	   = sysctl_udp_mem,
2216 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2217 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2218 	.obj_size	   = sizeof(struct udp_sock),
2219 	.h.udp_table	   = &udp_table,
2220 #ifdef CONFIG_COMPAT
2221 	.compat_setsockopt = compat_udp_setsockopt,
2222 	.compat_getsockopt = compat_udp_getsockopt,
2223 #endif
2224 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2225 };
2226 EXPORT_SYMBOL(udp_prot);
2227 
2228 /* ------------------------------------------------------------------------ */
2229 #ifdef CONFIG_PROC_FS
2230 
2231 static struct sock *udp_get_first(struct seq_file *seq, int start)
2232 {
2233 	struct sock *sk;
2234 	struct udp_iter_state *state = seq->private;
2235 	struct net *net = seq_file_net(seq);
2236 
2237 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2238 	     ++state->bucket) {
2239 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2240 
2241 		if (hlist_empty(&hslot->head))
2242 			continue;
2243 
2244 		spin_lock_bh(&hslot->lock);
2245 		sk_for_each(sk, &hslot->head) {
2246 			if (!net_eq(sock_net(sk), net))
2247 				continue;
2248 			if (sk->sk_family == state->family)
2249 				goto found;
2250 		}
2251 		spin_unlock_bh(&hslot->lock);
2252 	}
2253 	sk = NULL;
2254 found:
2255 	return sk;
2256 }
2257 
2258 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2259 {
2260 	struct udp_iter_state *state = seq->private;
2261 	struct net *net = seq_file_net(seq);
2262 
2263 	do {
2264 		sk = sk_next(sk);
2265 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2266 
2267 	if (!sk) {
2268 		if (state->bucket <= state->udp_table->mask)
2269 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2270 		return udp_get_first(seq, state->bucket + 1);
2271 	}
2272 	return sk;
2273 }
2274 
2275 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2276 {
2277 	struct sock *sk = udp_get_first(seq, 0);
2278 
2279 	if (sk)
2280 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2281 			--pos;
2282 	return pos ? NULL : sk;
2283 }
2284 
2285 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2286 {
2287 	struct udp_iter_state *state = seq->private;
2288 	state->bucket = MAX_UDP_PORTS;
2289 
2290 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2291 }
2292 
2293 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2294 {
2295 	struct sock *sk;
2296 
2297 	if (v == SEQ_START_TOKEN)
2298 		sk = udp_get_idx(seq, 0);
2299 	else
2300 		sk = udp_get_next(seq, v);
2301 
2302 	++*pos;
2303 	return sk;
2304 }
2305 
2306 static void udp_seq_stop(struct seq_file *seq, void *v)
2307 {
2308 	struct udp_iter_state *state = seq->private;
2309 
2310 	if (state->bucket <= state->udp_table->mask)
2311 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2312 }
2313 
2314 int udp_seq_open(struct inode *inode, struct file *file)
2315 {
2316 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2317 	struct udp_iter_state *s;
2318 	int err;
2319 
2320 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2321 			   sizeof(struct udp_iter_state));
2322 	if (err < 0)
2323 		return err;
2324 
2325 	s = ((struct seq_file *)file->private_data)->private;
2326 	s->family		= afinfo->family;
2327 	s->udp_table		= afinfo->udp_table;
2328 	return err;
2329 }
2330 EXPORT_SYMBOL(udp_seq_open);
2331 
2332 /* ------------------------------------------------------------------------ */
2333 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2334 {
2335 	struct proc_dir_entry *p;
2336 	int rc = 0;
2337 
2338 	afinfo->seq_ops.start		= udp_seq_start;
2339 	afinfo->seq_ops.next		= udp_seq_next;
2340 	afinfo->seq_ops.stop		= udp_seq_stop;
2341 
2342 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2343 			     afinfo->seq_fops, afinfo);
2344 	if (!p)
2345 		rc = -ENOMEM;
2346 	return rc;
2347 }
2348 EXPORT_SYMBOL(udp_proc_register);
2349 
2350 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2351 {
2352 	remove_proc_entry(afinfo->name, net->proc_net);
2353 }
2354 EXPORT_SYMBOL(udp_proc_unregister);
2355 
2356 /* ------------------------------------------------------------------------ */
2357 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2358 		int bucket)
2359 {
2360 	struct inet_sock *inet = inet_sk(sp);
2361 	__be32 dest = inet->inet_daddr;
2362 	__be32 src  = inet->inet_rcv_saddr;
2363 	__u16 destp	  = ntohs(inet->inet_dport);
2364 	__u16 srcp	  = ntohs(inet->inet_sport);
2365 
2366 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2367 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2368 		bucket, src, srcp, dest, destp, sp->sk_state,
2369 		sk_wmem_alloc_get(sp),
2370 		sk_rmem_alloc_get(sp),
2371 		0, 0L, 0,
2372 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2373 		0, sock_i_ino(sp),
2374 		atomic_read(&sp->sk_refcnt), sp,
2375 		atomic_read(&sp->sk_drops));
2376 }
2377 
2378 int udp4_seq_show(struct seq_file *seq, void *v)
2379 {
2380 	seq_setwidth(seq, 127);
2381 	if (v == SEQ_START_TOKEN)
2382 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2383 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2384 			   "inode ref pointer drops");
2385 	else {
2386 		struct udp_iter_state *state = seq->private;
2387 
2388 		udp4_format_sock(v, seq, state->bucket);
2389 	}
2390 	seq_pad(seq, '\n');
2391 	return 0;
2392 }
2393 
2394 static const struct file_operations udp_afinfo_seq_fops = {
2395 	.owner    = THIS_MODULE,
2396 	.open     = udp_seq_open,
2397 	.read     = seq_read,
2398 	.llseek   = seq_lseek,
2399 	.release  = seq_release_net
2400 };
2401 
2402 /* ------------------------------------------------------------------------ */
2403 static struct udp_seq_afinfo udp4_seq_afinfo = {
2404 	.name		= "udp",
2405 	.family		= AF_INET,
2406 	.udp_table	= &udp_table,
2407 	.seq_fops	= &udp_afinfo_seq_fops,
2408 	.seq_ops	= {
2409 		.show		= udp4_seq_show,
2410 	},
2411 };
2412 
2413 static int __net_init udp4_proc_init_net(struct net *net)
2414 {
2415 	return udp_proc_register(net, &udp4_seq_afinfo);
2416 }
2417 
2418 static void __net_exit udp4_proc_exit_net(struct net *net)
2419 {
2420 	udp_proc_unregister(net, &udp4_seq_afinfo);
2421 }
2422 
2423 static struct pernet_operations udp4_net_ops = {
2424 	.init = udp4_proc_init_net,
2425 	.exit = udp4_proc_exit_net,
2426 };
2427 
2428 int __init udp4_proc_init(void)
2429 {
2430 	return register_pernet_subsys(&udp4_net_ops);
2431 }
2432 
2433 void udp4_proc_exit(void)
2434 {
2435 	unregister_pernet_subsys(&udp4_net_ops);
2436 }
2437 #endif /* CONFIG_PROC_FS */
2438 
2439 static __initdata unsigned long uhash_entries;
2440 static int __init set_uhash_entries(char *str)
2441 {
2442 	ssize_t ret;
2443 
2444 	if (!str)
2445 		return 0;
2446 
2447 	ret = kstrtoul(str, 0, &uhash_entries);
2448 	if (ret)
2449 		return 0;
2450 
2451 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2452 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2453 	return 1;
2454 }
2455 __setup("uhash_entries=", set_uhash_entries);
2456 
2457 void __init udp_table_init(struct udp_table *table, const char *name)
2458 {
2459 	unsigned int i;
2460 
2461 	table->hash = alloc_large_system_hash(name,
2462 					      2 * sizeof(struct udp_hslot),
2463 					      uhash_entries,
2464 					      21, /* one slot per 2 MB */
2465 					      0,
2466 					      &table->log,
2467 					      &table->mask,
2468 					      UDP_HTABLE_SIZE_MIN,
2469 					      64 * 1024);
2470 
2471 	table->hash2 = table->hash + (table->mask + 1);
2472 	for (i = 0; i <= table->mask; i++) {
2473 		INIT_HLIST_HEAD(&table->hash[i].head);
2474 		table->hash[i].count = 0;
2475 		spin_lock_init(&table->hash[i].lock);
2476 	}
2477 	for (i = 0; i <= table->mask; i++) {
2478 		INIT_HLIST_HEAD(&table->hash2[i].head);
2479 		table->hash2[i].count = 0;
2480 		spin_lock_init(&table->hash2[i].lock);
2481 	}
2482 }
2483 
2484 u32 udp_flow_hashrnd(void)
2485 {
2486 	static u32 hashrnd __read_mostly;
2487 
2488 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2489 
2490 	return hashrnd;
2491 }
2492 EXPORT_SYMBOL(udp_flow_hashrnd);
2493 
2494 void __init udp_init(void)
2495 {
2496 	unsigned long limit;
2497 
2498 	udp_table_init(&udp_table, "UDP");
2499 	limit = nr_free_buffer_pages() / 8;
2500 	limit = max(limit, 128UL);
2501 	sysctl_udp_mem[0] = limit / 4 * 3;
2502 	sysctl_udp_mem[1] = limit;
2503 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2504 
2505 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2506 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2507 }
2508