xref: /openbmc/linux/net/ipv4/udp.c (revision ba6e8564)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *
74  *
75  *		This program is free software; you can redistribute it and/or
76  *		modify it under the terms of the GNU General Public License
77  *		as published by the Free Software Foundation; either version
78  *		2 of the License, or (at your option) any later version.
79  */
80 
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/icmp.h>
101 #include <net/route.h>
102 #include <net/checksum.h>
103 #include <net/xfrm.h>
104 #include "udp_impl.h"
105 
106 /*
107  *	Snmp MIB for the UDP layer
108  */
109 
110 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
111 
112 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113 DEFINE_RWLOCK(udp_hash_lock);
114 
115 static int udp_port_rover;
116 
117 static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
118 {
119 	struct sock *sk;
120 	struct hlist_node *node;
121 
122 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
123 		if (sk->sk_hash == num)
124 			return 1;
125 	return 0;
126 }
127 
128 /**
129  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
130  *
131  *  @sk:          socket struct in question
132  *  @snum:        port number to look up
133  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
134  *  @port_rover:  pointer to record of last unallocated port
135  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
136  */
137 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138 		       struct hlist_head udptable[], int *port_rover,
139 		       int (*saddr_comp)(const struct sock *sk1,
140 					 const struct sock *sk2 )    )
141 {
142 	struct hlist_node *node;
143 	struct hlist_head *head;
144 	struct sock *sk2;
145 	int    error = 1;
146 
147 	write_lock_bh(&udp_hash_lock);
148 	if (snum == 0) {
149 		int best_size_so_far, best, result, i;
150 
151 		if (*port_rover > sysctl_local_port_range[1] ||
152 		    *port_rover < sysctl_local_port_range[0])
153 			*port_rover = sysctl_local_port_range[0];
154 		best_size_so_far = 32767;
155 		best = result = *port_rover;
156 		for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
157 			int size;
158 
159 			head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
160 			if (hlist_empty(head)) {
161 				if (result > sysctl_local_port_range[1])
162 					result = sysctl_local_port_range[0] +
163 						((result - sysctl_local_port_range[0]) &
164 						 (UDP_HTABLE_SIZE - 1));
165 				goto gotit;
166 			}
167 			size = 0;
168 			sk_for_each(sk2, node, head) {
169 				if (++size >= best_size_so_far)
170 					goto next;
171 			}
172 			best_size_so_far = size;
173 			best = result;
174 		next:
175 			;
176 		}
177 		result = best;
178 		for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) {
179 			if (result > sysctl_local_port_range[1])
180 				result = sysctl_local_port_range[0]
181 					+ ((result - sysctl_local_port_range[0]) &
182 					   (UDP_HTABLE_SIZE - 1));
183 			if (! __udp_lib_lport_inuse(result, udptable))
184 				break;
185 		}
186 		if (i >= (1 << 16) / UDP_HTABLE_SIZE)
187 			goto fail;
188 gotit:
189 		*port_rover = snum = result;
190 	} else {
191 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
192 
193 		sk_for_each(sk2, node, head)
194 			if (sk2->sk_hash == snum                             &&
195 			    sk2 != sk                                        &&
196 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
197 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
198 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
199 			    (*saddr_comp)(sk, sk2)                             )
200 				goto fail;
201 	}
202 	inet_sk(sk)->num = snum;
203 	sk->sk_hash = snum;
204 	if (sk_unhashed(sk)) {
205 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
206 		sk_add_node(sk, head);
207 		sock_prot_inc_use(sk->sk_prot);
208 	}
209 	error = 0;
210 fail:
211 	write_unlock_bh(&udp_hash_lock);
212 	return error;
213 }
214 
215 __inline__ int udp_get_port(struct sock *sk, unsigned short snum,
216 			int (*scmp)(const struct sock *, const struct sock *))
217 {
218 	return  __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
219 }
220 
221 inline int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
222 {
223 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
224 
225 	return 	( !ipv6_only_sock(sk2)  &&
226 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
227 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
228 }
229 
230 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
231 {
232 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
233 }
234 
235 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
236  * harder than this. -DaveM
237  */
238 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
239 				      __be32 daddr, __be16 dport,
240 				      int dif, struct hlist_head udptable[])
241 {
242 	struct sock *sk, *result = NULL;
243 	struct hlist_node *node;
244 	unsigned short hnum = ntohs(dport);
245 	int badness = -1;
246 
247 	read_lock(&udp_hash_lock);
248 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
249 		struct inet_sock *inet = inet_sk(sk);
250 
251 		if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
252 			int score = (sk->sk_family == PF_INET ? 1 : 0);
253 			if (inet->rcv_saddr) {
254 				if (inet->rcv_saddr != daddr)
255 					continue;
256 				score+=2;
257 			}
258 			if (inet->daddr) {
259 				if (inet->daddr != saddr)
260 					continue;
261 				score+=2;
262 			}
263 			if (inet->dport) {
264 				if (inet->dport != sport)
265 					continue;
266 				score+=2;
267 			}
268 			if (sk->sk_bound_dev_if) {
269 				if (sk->sk_bound_dev_if != dif)
270 					continue;
271 				score+=2;
272 			}
273 			if(score == 9) {
274 				result = sk;
275 				break;
276 			} else if(score > badness) {
277 				result = sk;
278 				badness = score;
279 			}
280 		}
281 	}
282 	if (result)
283 		sock_hold(result);
284 	read_unlock(&udp_hash_lock);
285 	return result;
286 }
287 
288 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
289 					     __be16 loc_port, __be32 loc_addr,
290 					     __be16 rmt_port, __be32 rmt_addr,
291 					     int dif)
292 {
293 	struct hlist_node *node;
294 	struct sock *s = sk;
295 	unsigned short hnum = ntohs(loc_port);
296 
297 	sk_for_each_from(s, node) {
298 		struct inet_sock *inet = inet_sk(s);
299 
300 		if (s->sk_hash != hnum					||
301 		    (inet->daddr && inet->daddr != rmt_addr)		||
302 		    (inet->dport != rmt_port && inet->dport)		||
303 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
304 		    ipv6_only_sock(s)					||
305 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
306 			continue;
307 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
308 			continue;
309 		goto found;
310 	}
311 	s = NULL;
312 found:
313 	return s;
314 }
315 
316 /*
317  * This routine is called by the ICMP module when it gets some
318  * sort of error condition.  If err < 0 then the socket should
319  * be closed and the error returned to the user.  If err > 0
320  * it's just the icmp type << 8 | icmp code.
321  * Header points to the ip header of the error packet. We move
322  * on past this. Then (as it used to claim before adjustment)
323  * header points to the first 8 bytes of the udp header.  We need
324  * to find the appropriate port.
325  */
326 
327 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
328 {
329 	struct inet_sock *inet;
330 	struct iphdr *iph = (struct iphdr*)skb->data;
331 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
332 	int type = skb->h.icmph->type;
333 	int code = skb->h.icmph->code;
334 	struct sock *sk;
335 	int harderr;
336 	int err;
337 
338 	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
339 			       skb->dev->ifindex, udptable		    );
340 	if (sk == NULL) {
341 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
342 		return;	/* No socket for error */
343 	}
344 
345 	err = 0;
346 	harderr = 0;
347 	inet = inet_sk(sk);
348 
349 	switch (type) {
350 	default:
351 	case ICMP_TIME_EXCEEDED:
352 		err = EHOSTUNREACH;
353 		break;
354 	case ICMP_SOURCE_QUENCH:
355 		goto out;
356 	case ICMP_PARAMETERPROB:
357 		err = EPROTO;
358 		harderr = 1;
359 		break;
360 	case ICMP_DEST_UNREACH:
361 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
362 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
363 				err = EMSGSIZE;
364 				harderr = 1;
365 				break;
366 			}
367 			goto out;
368 		}
369 		err = EHOSTUNREACH;
370 		if (code <= NR_ICMP_UNREACH) {
371 			harderr = icmp_err_convert[code].fatal;
372 			err = icmp_err_convert[code].errno;
373 		}
374 		break;
375 	}
376 
377 	/*
378 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
379 	 *	4.1.3.3.
380 	 */
381 	if (!inet->recverr) {
382 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
383 			goto out;
384 	} else {
385 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
386 	}
387 	sk->sk_err = err;
388 	sk->sk_error_report(sk);
389 out:
390 	sock_put(sk);
391 }
392 
393 __inline__ void udp_err(struct sk_buff *skb, u32 info)
394 {
395 	return __udp4_lib_err(skb, info, udp_hash);
396 }
397 
398 /*
399  * Throw away all pending data and cancel the corking. Socket is locked.
400  */
401 static void udp_flush_pending_frames(struct sock *sk)
402 {
403 	struct udp_sock *up = udp_sk(sk);
404 
405 	if (up->pending) {
406 		up->len = 0;
407 		up->pending = 0;
408 		ip_flush_pending_frames(sk);
409 	}
410 }
411 
412 /**
413  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
414  * 	@sk: 	socket we are sending on
415  * 	@skb: 	sk_buff containing the filled-in UDP header
416  * 	        (checksum field must be zeroed out)
417  */
418 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
419 				 __be32 src, __be32 dst, int len      )
420 {
421 	unsigned int offset;
422 	struct udphdr *uh = skb->h.uh;
423 	__wsum csum = 0;
424 
425 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
426 		/*
427 		 * Only one fragment on the socket.
428 		 */
429 		skb->csum_offset = offsetof(struct udphdr, check);
430 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
431 	} else {
432 		/*
433 		 * HW-checksum won't work as there are two or more
434 		 * fragments on the socket so that all csums of sk_buffs
435 		 * should be together
436 		 */
437 		offset = skb->h.raw - skb->data;
438 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
439 
440 		skb->ip_summed = CHECKSUM_NONE;
441 
442 		skb_queue_walk(&sk->sk_write_queue, skb) {
443 			csum = csum_add(csum, skb->csum);
444 		}
445 
446 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
447 		if (uh->check == 0)
448 			uh->check = CSUM_MANGLED_0;
449 	}
450 }
451 
452 /*
453  * Push out all pending data as one UDP datagram. Socket is locked.
454  */
455 static int udp_push_pending_frames(struct sock *sk)
456 {
457 	struct udp_sock  *up = udp_sk(sk);
458 	struct inet_sock *inet = inet_sk(sk);
459 	struct flowi *fl = &inet->cork.fl;
460 	struct sk_buff *skb;
461 	struct udphdr *uh;
462 	int err = 0;
463 	__wsum csum = 0;
464 
465 	/* Grab the skbuff where UDP header space exists. */
466 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
467 		goto out;
468 
469 	/*
470 	 * Create a UDP header
471 	 */
472 	uh = skb->h.uh;
473 	uh->source = fl->fl_ip_sport;
474 	uh->dest = fl->fl_ip_dport;
475 	uh->len = htons(up->len);
476 	uh->check = 0;
477 
478 	if (up->pcflag)  				 /*     UDP-Lite      */
479 		csum  = udplite_csum_outgoing(sk, skb);
480 
481 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
482 
483 		skb->ip_summed = CHECKSUM_NONE;
484 		goto send;
485 
486 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
487 
488 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
489 		goto send;
490 
491 	} else						 /*   `normal' UDP    */
492 		csum = udp_csum_outgoing(sk, skb);
493 
494 	/* add protocol-dependent pseudo-header */
495 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
496 				      sk->sk_protocol, csum             );
497 	if (uh->check == 0)
498 		uh->check = CSUM_MANGLED_0;
499 
500 send:
501 	err = ip_push_pending_frames(sk);
502 out:
503 	up->len = 0;
504 	up->pending = 0;
505 	return err;
506 }
507 
508 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
509 		size_t len)
510 {
511 	struct inet_sock *inet = inet_sk(sk);
512 	struct udp_sock *up = udp_sk(sk);
513 	int ulen = len;
514 	struct ipcm_cookie ipc;
515 	struct rtable *rt = NULL;
516 	int free = 0;
517 	int connected = 0;
518 	__be32 daddr, faddr, saddr;
519 	__be16 dport;
520 	u8  tos;
521 	int err, is_udplite = up->pcflag;
522 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
523 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
524 
525 	if (len > 0xFFFF)
526 		return -EMSGSIZE;
527 
528 	/*
529 	 *	Check the flags.
530 	 */
531 
532 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
533 		return -EOPNOTSUPP;
534 
535 	ipc.opt = NULL;
536 
537 	if (up->pending) {
538 		/*
539 		 * There are pending frames.
540 		 * The socket lock must be held while it's corked.
541 		 */
542 		lock_sock(sk);
543 		if (likely(up->pending)) {
544 			if (unlikely(up->pending != AF_INET)) {
545 				release_sock(sk);
546 				return -EINVAL;
547 			}
548 			goto do_append_data;
549 		}
550 		release_sock(sk);
551 	}
552 	ulen += sizeof(struct udphdr);
553 
554 	/*
555 	 *	Get and verify the address.
556 	 */
557 	if (msg->msg_name) {
558 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
559 		if (msg->msg_namelen < sizeof(*usin))
560 			return -EINVAL;
561 		if (usin->sin_family != AF_INET) {
562 			if (usin->sin_family != AF_UNSPEC)
563 				return -EAFNOSUPPORT;
564 		}
565 
566 		daddr = usin->sin_addr.s_addr;
567 		dport = usin->sin_port;
568 		if (dport == 0)
569 			return -EINVAL;
570 	} else {
571 		if (sk->sk_state != TCP_ESTABLISHED)
572 			return -EDESTADDRREQ;
573 		daddr = inet->daddr;
574 		dport = inet->dport;
575 		/* Open fast path for connected socket.
576 		   Route will not be used, if at least one option is set.
577 		 */
578 		connected = 1;
579 	}
580 	ipc.addr = inet->saddr;
581 
582 	ipc.oif = sk->sk_bound_dev_if;
583 	if (msg->msg_controllen) {
584 		err = ip_cmsg_send(msg, &ipc);
585 		if (err)
586 			return err;
587 		if (ipc.opt)
588 			free = 1;
589 		connected = 0;
590 	}
591 	if (!ipc.opt)
592 		ipc.opt = inet->opt;
593 
594 	saddr = ipc.addr;
595 	ipc.addr = faddr = daddr;
596 
597 	if (ipc.opt && ipc.opt->srr) {
598 		if (!daddr)
599 			return -EINVAL;
600 		faddr = ipc.opt->faddr;
601 		connected = 0;
602 	}
603 	tos = RT_TOS(inet->tos);
604 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
605 	    (msg->msg_flags & MSG_DONTROUTE) ||
606 	    (ipc.opt && ipc.opt->is_strictroute)) {
607 		tos |= RTO_ONLINK;
608 		connected = 0;
609 	}
610 
611 	if (MULTICAST(daddr)) {
612 		if (!ipc.oif)
613 			ipc.oif = inet->mc_index;
614 		if (!saddr)
615 			saddr = inet->mc_addr;
616 		connected = 0;
617 	}
618 
619 	if (connected)
620 		rt = (struct rtable*)sk_dst_check(sk, 0);
621 
622 	if (rt == NULL) {
623 		struct flowi fl = { .oif = ipc.oif,
624 				    .nl_u = { .ip4_u =
625 					      { .daddr = faddr,
626 						.saddr = saddr,
627 						.tos = tos } },
628 				    .proto = sk->sk_protocol,
629 				    .uli_u = { .ports =
630 					       { .sport = inet->sport,
631 						 .dport = dport } } };
632 		security_sk_classify_flow(sk, &fl);
633 		err = ip_route_output_flow(&rt, &fl, sk, 1);
634 		if (err)
635 			goto out;
636 
637 		err = -EACCES;
638 		if ((rt->rt_flags & RTCF_BROADCAST) &&
639 		    !sock_flag(sk, SOCK_BROADCAST))
640 			goto out;
641 		if (connected)
642 			sk_dst_set(sk, dst_clone(&rt->u.dst));
643 	}
644 
645 	if (msg->msg_flags&MSG_CONFIRM)
646 		goto do_confirm;
647 back_from_confirm:
648 
649 	saddr = rt->rt_src;
650 	if (!ipc.addr)
651 		daddr = ipc.addr = rt->rt_dst;
652 
653 	lock_sock(sk);
654 	if (unlikely(up->pending)) {
655 		/* The socket is already corked while preparing it. */
656 		/* ... which is an evident application bug. --ANK */
657 		release_sock(sk);
658 
659 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
660 		err = -EINVAL;
661 		goto out;
662 	}
663 	/*
664 	 *	Now cork the socket to pend data.
665 	 */
666 	inet->cork.fl.fl4_dst = daddr;
667 	inet->cork.fl.fl_ip_dport = dport;
668 	inet->cork.fl.fl4_src = saddr;
669 	inet->cork.fl.fl_ip_sport = inet->sport;
670 	up->pending = AF_INET;
671 
672 do_append_data:
673 	up->len += ulen;
674 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
675 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
676 			sizeof(struct udphdr), &ipc, rt,
677 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
678 	if (err)
679 		udp_flush_pending_frames(sk);
680 	else if (!corkreq)
681 		err = udp_push_pending_frames(sk);
682 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
683 		up->pending = 0;
684 	release_sock(sk);
685 
686 out:
687 	ip_rt_put(rt);
688 	if (free)
689 		kfree(ipc.opt);
690 	if (!err) {
691 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
692 		return len;
693 	}
694 	/*
695 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
696 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
697 	 * we don't have a good statistic (IpOutDiscards but it can be too many
698 	 * things).  We could add another new stat but at least for now that
699 	 * seems like overkill.
700 	 */
701 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
702 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
703 	}
704 	return err;
705 
706 do_confirm:
707 	dst_confirm(&rt->u.dst);
708 	if (!(msg->msg_flags&MSG_PROBE) || len)
709 		goto back_from_confirm;
710 	err = 0;
711 	goto out;
712 }
713 
714 int udp_sendpage(struct sock *sk, struct page *page, int offset,
715 		 size_t size, int flags)
716 {
717 	struct udp_sock *up = udp_sk(sk);
718 	int ret;
719 
720 	if (!up->pending) {
721 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
722 
723 		/* Call udp_sendmsg to specify destination address which
724 		 * sendpage interface can't pass.
725 		 * This will succeed only when the socket is connected.
726 		 */
727 		ret = udp_sendmsg(NULL, sk, &msg, 0);
728 		if (ret < 0)
729 			return ret;
730 	}
731 
732 	lock_sock(sk);
733 
734 	if (unlikely(!up->pending)) {
735 		release_sock(sk);
736 
737 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
738 		return -EINVAL;
739 	}
740 
741 	ret = ip_append_page(sk, page, offset, size, flags);
742 	if (ret == -EOPNOTSUPP) {
743 		release_sock(sk);
744 		return sock_no_sendpage(sk->sk_socket, page, offset,
745 					size, flags);
746 	}
747 	if (ret < 0) {
748 		udp_flush_pending_frames(sk);
749 		goto out;
750 	}
751 
752 	up->len += size;
753 	if (!(up->corkflag || (flags&MSG_MORE)))
754 		ret = udp_push_pending_frames(sk);
755 	if (!ret)
756 		ret = size;
757 out:
758 	release_sock(sk);
759 	return ret;
760 }
761 
762 /*
763  *	IOCTL requests applicable to the UDP protocol
764  */
765 
766 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
767 {
768 	switch(cmd)
769 	{
770 		case SIOCOUTQ:
771 		{
772 			int amount = atomic_read(&sk->sk_wmem_alloc);
773 			return put_user(amount, (int __user *)arg);
774 		}
775 
776 		case SIOCINQ:
777 		{
778 			struct sk_buff *skb;
779 			unsigned long amount;
780 
781 			amount = 0;
782 			spin_lock_bh(&sk->sk_receive_queue.lock);
783 			skb = skb_peek(&sk->sk_receive_queue);
784 			if (skb != NULL) {
785 				/*
786 				 * We will only return the amount
787 				 * of this packet since that is all
788 				 * that will be read.
789 				 */
790 				amount = skb->len - sizeof(struct udphdr);
791 			}
792 			spin_unlock_bh(&sk->sk_receive_queue.lock);
793 			return put_user(amount, (int __user *)arg);
794 		}
795 
796 		default:
797 			return -ENOIOCTLCMD;
798 	}
799 	return(0);
800 }
801 
802 /*
803  * 	This should be easy, if there is something there we
804  * 	return it, otherwise we block.
805  */
806 
807 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
808 		size_t len, int noblock, int flags, int *addr_len)
809 {
810 	struct inet_sock *inet = inet_sk(sk);
811 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
812 	struct sk_buff *skb;
813 	int copied, err, copy_only, is_udplite = IS_UDPLITE(sk);
814 
815 	/*
816 	 *	Check any passed addresses
817 	 */
818 	if (addr_len)
819 		*addr_len=sizeof(*sin);
820 
821 	if (flags & MSG_ERRQUEUE)
822 		return ip_recv_error(sk, msg, len);
823 
824 try_again:
825 	skb = skb_recv_datagram(sk, flags, noblock, &err);
826 	if (!skb)
827 		goto out;
828 
829 	copied = skb->len - sizeof(struct udphdr);
830 	if (copied > len) {
831 		copied = len;
832 		msg->msg_flags |= MSG_TRUNC;
833 	}
834 
835 	/*
836 	 * 	Decide whether to checksum and/or copy data.
837 	 *
838 	 * 	UDP:      checksum may have been computed in HW,
839 	 * 	          (re-)compute it if message is truncated.
840 	 * 	UDP-Lite: always needs to checksum, no HW support.
841 	 */
842 	copy_only = (skb->ip_summed==CHECKSUM_UNNECESSARY);
843 
844 	if (is_udplite  ||  (!copy_only  &&  msg->msg_flags&MSG_TRUNC)) {
845 		if (__udp_lib_checksum_complete(skb))
846 			goto csum_copy_err;
847 		copy_only = 1;
848 	}
849 
850 	if (copy_only)
851 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
852 					      msg->msg_iov, copied       );
853 	else {
854 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
855 
856 		if (err == -EINVAL)
857 			goto csum_copy_err;
858 	}
859 
860 	if (err)
861 		goto out_free;
862 
863 	sock_recv_timestamp(msg, sk, skb);
864 
865 	/* Copy the address. */
866 	if (sin)
867 	{
868 		sin->sin_family = AF_INET;
869 		sin->sin_port = skb->h.uh->source;
870 		sin->sin_addr.s_addr = skb->nh.iph->saddr;
871 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
872 	}
873 	if (inet->cmsg_flags)
874 		ip_cmsg_recv(msg, skb);
875 
876 	err = copied;
877 	if (flags & MSG_TRUNC)
878 		err = skb->len - sizeof(struct udphdr);
879 
880 out_free:
881 	skb_free_datagram(sk, skb);
882 out:
883 	return err;
884 
885 csum_copy_err:
886 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
887 
888 	skb_kill_datagram(sk, skb, flags);
889 
890 	if (noblock)
891 		return -EAGAIN;
892 	goto try_again;
893 }
894 
895 
896 int udp_disconnect(struct sock *sk, int flags)
897 {
898 	struct inet_sock *inet = inet_sk(sk);
899 	/*
900 	 *	1003.1g - break association.
901 	 */
902 
903 	sk->sk_state = TCP_CLOSE;
904 	inet->daddr = 0;
905 	inet->dport = 0;
906 	sk->sk_bound_dev_if = 0;
907 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
908 		inet_reset_saddr(sk);
909 
910 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
911 		sk->sk_prot->unhash(sk);
912 		inet->sport = 0;
913 	}
914 	sk_dst_reset(sk);
915 	return 0;
916 }
917 
918 /* return:
919  * 	1  if the the UDP system should process it
920  *	0  if we should drop this packet
921  * 	-1 if it should get processed by xfrm4_rcv_encap
922  */
923 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
924 {
925 #ifndef CONFIG_XFRM
926 	return 1;
927 #else
928 	struct udp_sock *up = udp_sk(sk);
929 	struct udphdr *uh;
930 	struct iphdr *iph;
931 	int iphlen, len;
932 
933 	__u8 *udpdata;
934 	__be32 *udpdata32;
935 	__u16 encap_type = up->encap_type;
936 
937 	/* if we're overly short, let UDP handle it */
938 	len = skb->len - sizeof(struct udphdr);
939 	if (len <= 0)
940 		return 1;
941 
942 	/* if this is not encapsulated socket, then just return now */
943 	if (!encap_type)
944 		return 1;
945 
946 	/* If this is a paged skb, make sure we pull up
947 	 * whatever data we need to look at. */
948 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
949 		return 1;
950 
951 	/* Now we can get the pointers */
952 	uh = skb->h.uh;
953 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
954 	udpdata32 = (__be32 *)udpdata;
955 
956 	switch (encap_type) {
957 	default:
958 	case UDP_ENCAP_ESPINUDP:
959 		/* Check if this is a keepalive packet.  If so, eat it. */
960 		if (len == 1 && udpdata[0] == 0xff) {
961 			return 0;
962 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) {
963 			/* ESP Packet without Non-ESP header */
964 			len = sizeof(struct udphdr);
965 		} else
966 			/* Must be an IKE packet.. pass it through */
967 			return 1;
968 		break;
969 	case UDP_ENCAP_ESPINUDP_NON_IKE:
970 		/* Check if this is a keepalive packet.  If so, eat it. */
971 		if (len == 1 && udpdata[0] == 0xff) {
972 			return 0;
973 		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
974 			   udpdata32[0] == 0 && udpdata32[1] == 0) {
975 
976 			/* ESP Packet with Non-IKE marker */
977 			len = sizeof(struct udphdr) + 2 * sizeof(u32);
978 		} else
979 			/* Must be an IKE packet.. pass it through */
980 			return 1;
981 		break;
982 	}
983 
984 	/* At this point we are sure that this is an ESPinUDP packet,
985 	 * so we need to remove 'len' bytes from the packet (the UDP
986 	 * header and optional ESP marker bytes) and then modify the
987 	 * protocol to ESP, and then call into the transform receiver.
988 	 */
989 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
990 		return 0;
991 
992 	/* Now we can update and verify the packet length... */
993 	iph = skb->nh.iph;
994 	iphlen = iph->ihl << 2;
995 	iph->tot_len = htons(ntohs(iph->tot_len) - len);
996 	if (skb->len < iphlen + len) {
997 		/* packet is too small!?! */
998 		return 0;
999 	}
1000 
1001 	/* pull the data buffer up to the ESP header and set the
1002 	 * transport header to point to ESP.  Keep UDP on the stack
1003 	 * for later.
1004 	 */
1005 	skb->h.raw = skb_pull(skb, len);
1006 
1007 	/* modify the protocol (it's ESP!) */
1008 	iph->protocol = IPPROTO_ESP;
1009 
1010 	/* and let the caller know to send this into the ESP processor... */
1011 	return -1;
1012 #endif
1013 }
1014 
1015 /* returns:
1016  *  -1: error
1017  *   0: success
1018  *  >0: "udp encap" protocol resubmission
1019  *
1020  * Note that in the success and error cases, the skb is assumed to
1021  * have either been requeued or freed.
1022  */
1023 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1024 {
1025 	struct udp_sock *up = udp_sk(sk);
1026 	int rc;
1027 
1028 	/*
1029 	 *	Charge it to the socket, dropping if the queue is full.
1030 	 */
1031 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1032 		goto drop;
1033 	nf_reset(skb);
1034 
1035 	if (up->encap_type) {
1036 		/*
1037 		 * This is an encapsulation socket, so let's see if this is
1038 		 * an encapsulated packet.
1039 		 * If it's a keepalive packet, then just eat it.
1040 		 * If it's an encapsulateed packet, then pass it to the
1041 		 * IPsec xfrm input and return the response
1042 		 * appropriately.  Otherwise, just fall through and
1043 		 * pass this up the UDP socket.
1044 		 */
1045 		int ret;
1046 
1047 		ret = udp_encap_rcv(sk, skb);
1048 		if (ret == 0) {
1049 			/* Eat the packet .. */
1050 			kfree_skb(skb);
1051 			return 0;
1052 		}
1053 		if (ret < 0) {
1054 			/* process the ESP packet */
1055 			ret = xfrm4_rcv_encap(skb, up->encap_type);
1056 			UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1057 			return -ret;
1058 		}
1059 		/* FALLTHROUGH -- it's a UDP Packet */
1060 	}
1061 
1062 	/*
1063 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1064 	 */
1065 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1066 
1067 		/*
1068 		 * MIB statistics other than incrementing the error count are
1069 		 * disabled for the following two types of errors: these depend
1070 		 * on the application settings, not on the functioning of the
1071 		 * protocol stack as such.
1072 		 *
1073 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1074 		 * way ... to ... at least let the receiving application block
1075 		 * delivery of packets with coverage values less than a value
1076 		 * provided by the application."
1077 		 */
1078 		if (up->pcrlen == 0) {          /* full coverage was set  */
1079 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1080 				"%d while full coverage %d requested\n",
1081 				UDP_SKB_CB(skb)->cscov, skb->len);
1082 			goto drop;
1083 		}
1084 		/* The next case involves violating the min. coverage requested
1085 		 * by the receiver. This is subtle: if receiver wants x and x is
1086 		 * greater than the buffersize/MTU then receiver will complain
1087 		 * that it wants x while sender emits packets of smaller size y.
1088 		 * Therefore the above ...()->partial_cov statement is essential.
1089 		 */
1090 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1091 			LIMIT_NETDEBUG(KERN_WARNING
1092 				"UDPLITE: coverage %d too small, need min %d\n",
1093 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1094 			goto drop;
1095 		}
1096 	}
1097 
1098 	if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) {
1099 		if (__udp_lib_checksum_complete(skb))
1100 			goto drop;
1101 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1102 	}
1103 
1104 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1105 		/* Note that an ENOMEM error is charged twice */
1106 		if (rc == -ENOMEM)
1107 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1108 		goto drop;
1109 	}
1110 
1111 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1112 	return 0;
1113 
1114 drop:
1115 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1116 	kfree_skb(skb);
1117 	return -1;
1118 }
1119 
1120 /*
1121  *	Multicasts and broadcasts go to each listener.
1122  *
1123  *	Note: called only from the BH handler context,
1124  *	so we don't need to lock the hashes.
1125  */
1126 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1127 				    struct udphdr  *uh,
1128 				    __be32 saddr, __be32 daddr,
1129 				    struct hlist_head udptable[])
1130 {
1131 	struct sock *sk;
1132 	int dif;
1133 
1134 	read_lock(&udp_hash_lock);
1135 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1136 	dif = skb->dev->ifindex;
1137 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1138 	if (sk) {
1139 		struct sock *sknext = NULL;
1140 
1141 		do {
1142 			struct sk_buff *skb1 = skb;
1143 
1144 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1145 						   uh->source, saddr, dif);
1146 			if(sknext)
1147 				skb1 = skb_clone(skb, GFP_ATOMIC);
1148 
1149 			if(skb1) {
1150 				int ret = udp_queue_rcv_skb(sk, skb1);
1151 				if (ret > 0)
1152 					/* we should probably re-process instead
1153 					 * of dropping packets here. */
1154 					kfree_skb(skb1);
1155 			}
1156 			sk = sknext;
1157 		} while(sknext);
1158 	} else
1159 		kfree_skb(skb);
1160 	read_unlock(&udp_hash_lock);
1161 	return 0;
1162 }
1163 
1164 /* Initialize UDP checksum. If exited with zero value (success),
1165  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1166  * Otherwise, csum completion requires chacksumming packet body,
1167  * including udp header and folding it to skb->csum.
1168  */
1169 static inline void udp4_csum_init(struct sk_buff *skb, struct udphdr *uh)
1170 {
1171 	if (uh->check == 0) {
1172 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1173 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1174 	       if (!csum_tcpudp_magic(skb->nh.iph->saddr, skb->nh.iph->daddr,
1175 				      skb->len, IPPROTO_UDP, skb->csum       ))
1176 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1177 	}
1178 	if (skb->ip_summed != CHECKSUM_UNNECESSARY)
1179 		skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr,
1180 					       skb->nh.iph->daddr,
1181 					       skb->len, IPPROTO_UDP, 0);
1182 	/* Probably, we should checksum udp header (it should be in cache
1183 	 * in any case) and data in tiny packets (< rx copybreak).
1184 	 */
1185 
1186 	/* UDP = UDP-Lite with a non-partial checksum coverage */
1187 	UDP_SKB_CB(skb)->partial_cov = 0;
1188 }
1189 
1190 /*
1191  *	All we need to do is get the socket, and then do a checksum.
1192  */
1193 
1194 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1195 		   int is_udplite)
1196 {
1197 	struct sock *sk;
1198 	struct udphdr *uh = skb->h.uh;
1199 	unsigned short ulen;
1200 	struct rtable *rt = (struct rtable*)skb->dst;
1201 	__be32 saddr = skb->nh.iph->saddr;
1202 	__be32 daddr = skb->nh.iph->daddr;
1203 
1204 	/*
1205 	 *  Validate the packet.
1206 	 */
1207 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1208 		goto drop;		/* No space for header. */
1209 
1210 	ulen = ntohs(uh->len);
1211 	if (ulen > skb->len)
1212 		goto short_packet;
1213 
1214 	if(! is_udplite ) {		/* UDP validates ulen. */
1215 
1216 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1217 			goto short_packet;
1218 		uh = skb->h.uh;
1219 
1220 		udp4_csum_init(skb, uh);
1221 
1222 	} else 	{			/* UDP-Lite validates cscov. */
1223 		if (udplite4_csum_init(skb, uh))
1224 			goto csum_error;
1225 	}
1226 
1227 	if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1228 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1229 
1230 	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1231 			       skb->dev->ifindex, udptable        );
1232 
1233 	if (sk != NULL) {
1234 		int ret = udp_queue_rcv_skb(sk, skb);
1235 		sock_put(sk);
1236 
1237 		/* a return value > 0 means to resubmit the input, but
1238 		 * it wants the return to be -protocol, or 0
1239 		 */
1240 		if (ret > 0)
1241 			return -ret;
1242 		return 0;
1243 	}
1244 
1245 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1246 		goto drop;
1247 	nf_reset(skb);
1248 
1249 	/* No socket. Drop packet silently, if checksum is wrong */
1250 	if (udp_lib_checksum_complete(skb))
1251 		goto csum_error;
1252 
1253 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, is_udplite);
1254 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1255 
1256 	/*
1257 	 * Hmm.  We got an UDP packet to a port to which we
1258 	 * don't wanna listen.  Ignore it.
1259 	 */
1260 	kfree_skb(skb);
1261 	return(0);
1262 
1263 short_packet:
1264 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1265 		       is_udplite? "-Lite" : "",
1266 		       NIPQUAD(saddr),
1267 		       ntohs(uh->source),
1268 		       ulen,
1269 		       skb->len,
1270 		       NIPQUAD(daddr),
1271 		       ntohs(uh->dest));
1272 	goto drop;
1273 
1274 csum_error:
1275 	/*
1276 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1277 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1278 	 */
1279 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1280 		       is_udplite? "-Lite" : "",
1281 		       NIPQUAD(saddr),
1282 		       ntohs(uh->source),
1283 		       NIPQUAD(daddr),
1284 		       ntohs(uh->dest),
1285 		       ulen);
1286 drop:
1287 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1288 	kfree_skb(skb);
1289 	return(0);
1290 }
1291 
1292 __inline__ int udp_rcv(struct sk_buff *skb)
1293 {
1294 	return __udp4_lib_rcv(skb, udp_hash, 0);
1295 }
1296 
1297 int udp_destroy_sock(struct sock *sk)
1298 {
1299 	lock_sock(sk);
1300 	udp_flush_pending_frames(sk);
1301 	release_sock(sk);
1302 	return 0;
1303 }
1304 
1305 /*
1306  *	Socket option code for UDP
1307  */
1308 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1309 		       char __user *optval, int optlen,
1310 		       int (*push_pending_frames)(struct sock *))
1311 {
1312 	struct udp_sock *up = udp_sk(sk);
1313 	int val;
1314 	int err = 0;
1315 
1316 	if(optlen<sizeof(int))
1317 		return -EINVAL;
1318 
1319 	if (get_user(val, (int __user *)optval))
1320 		return -EFAULT;
1321 
1322 	switch(optname) {
1323 	case UDP_CORK:
1324 		if (val != 0) {
1325 			up->corkflag = 1;
1326 		} else {
1327 			up->corkflag = 0;
1328 			lock_sock(sk);
1329 			(*push_pending_frames)(sk);
1330 			release_sock(sk);
1331 		}
1332 		break;
1333 
1334 	case UDP_ENCAP:
1335 		switch (val) {
1336 		case 0:
1337 		case UDP_ENCAP_ESPINUDP:
1338 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1339 			up->encap_type = val;
1340 			break;
1341 		default:
1342 			err = -ENOPROTOOPT;
1343 			break;
1344 		}
1345 		break;
1346 
1347 	/*
1348 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1349 	 */
1350 	/* The sender sets actual checksum coverage length via this option.
1351 	 * The case coverage > packet length is handled by send module. */
1352 	case UDPLITE_SEND_CSCOV:
1353 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1354 			return -ENOPROTOOPT;
1355 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1356 			val = 8;
1357 		up->pcslen = val;
1358 		up->pcflag |= UDPLITE_SEND_CC;
1359 		break;
1360 
1361 	/* The receiver specifies a minimum checksum coverage value. To make
1362 	 * sense, this should be set to at least 8 (as done below). If zero is
1363 	 * used, this again means full checksum coverage.                     */
1364 	case UDPLITE_RECV_CSCOV:
1365 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1366 			return -ENOPROTOOPT;
1367 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1368 			val = 8;
1369 		up->pcrlen = val;
1370 		up->pcflag |= UDPLITE_RECV_CC;
1371 		break;
1372 
1373 	default:
1374 		err = -ENOPROTOOPT;
1375 		break;
1376 	};
1377 
1378 	return err;
1379 }
1380 
1381 int udp_setsockopt(struct sock *sk, int level, int optname,
1382 		   char __user *optval, int optlen)
1383 {
1384 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1385 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1386 					  udp_push_pending_frames);
1387 	return ip_setsockopt(sk, level, optname, optval, optlen);
1388 }
1389 
1390 #ifdef CONFIG_COMPAT
1391 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1392 			  char __user *optval, int optlen)
1393 {
1394 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1395 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1396 					  udp_push_pending_frames);
1397 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1398 }
1399 #endif
1400 
1401 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1402 		       char __user *optval, int __user *optlen)
1403 {
1404 	struct udp_sock *up = udp_sk(sk);
1405 	int val, len;
1406 
1407 	if(get_user(len,optlen))
1408 		return -EFAULT;
1409 
1410 	len = min_t(unsigned int, len, sizeof(int));
1411 
1412 	if(len < 0)
1413 		return -EINVAL;
1414 
1415 	switch(optname) {
1416 	case UDP_CORK:
1417 		val = up->corkflag;
1418 		break;
1419 
1420 	case UDP_ENCAP:
1421 		val = up->encap_type;
1422 		break;
1423 
1424 	/* The following two cannot be changed on UDP sockets, the return is
1425 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1426 	case UDPLITE_SEND_CSCOV:
1427 		val = up->pcslen;
1428 		break;
1429 
1430 	case UDPLITE_RECV_CSCOV:
1431 		val = up->pcrlen;
1432 		break;
1433 
1434 	default:
1435 		return -ENOPROTOOPT;
1436 	};
1437 
1438 	if(put_user(len, optlen))
1439 		return -EFAULT;
1440 	if(copy_to_user(optval, &val,len))
1441 		return -EFAULT;
1442 	return 0;
1443 }
1444 
1445 int udp_getsockopt(struct sock *sk, int level, int optname,
1446 		   char __user *optval, int __user *optlen)
1447 {
1448 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1449 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1450 	return ip_getsockopt(sk, level, optname, optval, optlen);
1451 }
1452 
1453 #ifdef CONFIG_COMPAT
1454 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1455 				 char __user *optval, int __user *optlen)
1456 {
1457 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1458 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1459 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1460 }
1461 #endif
1462 /**
1463  * 	udp_poll - wait for a UDP event.
1464  *	@file - file struct
1465  *	@sock - socket
1466  *	@wait - poll table
1467  *
1468  *	This is same as datagram poll, except for the special case of
1469  *	blocking sockets. If application is using a blocking fd
1470  *	and a packet with checksum error is in the queue;
1471  *	then it could get return from select indicating data available
1472  *	but then block when reading it. Add special case code
1473  *	to work around these arguably broken applications.
1474  */
1475 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1476 {
1477 	unsigned int mask = datagram_poll(file, sock, wait);
1478 	struct sock *sk = sock->sk;
1479 	int 	is_lite = IS_UDPLITE(sk);
1480 
1481 	/* Check for false positives due to checksum errors */
1482 	if ( (mask & POLLRDNORM) &&
1483 	     !(file->f_flags & O_NONBLOCK) &&
1484 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1485 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1486 		struct sk_buff *skb;
1487 
1488 		spin_lock_bh(&rcvq->lock);
1489 		while ((skb = skb_peek(rcvq)) != NULL) {
1490 			if (udp_lib_checksum_complete(skb)) {
1491 				UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1492 				__skb_unlink(skb, rcvq);
1493 				kfree_skb(skb);
1494 			} else {
1495 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1496 				break;
1497 			}
1498 		}
1499 		spin_unlock_bh(&rcvq->lock);
1500 
1501 		/* nothing to see, move along */
1502 		if (skb == NULL)
1503 			mask &= ~(POLLIN | POLLRDNORM);
1504 	}
1505 
1506 	return mask;
1507 
1508 }
1509 
1510 struct proto udp_prot = {
1511 	.name		   = "UDP",
1512 	.owner		   = THIS_MODULE,
1513 	.close		   = udp_lib_close,
1514 	.connect	   = ip4_datagram_connect,
1515 	.disconnect	   = udp_disconnect,
1516 	.ioctl		   = udp_ioctl,
1517 	.destroy	   = udp_destroy_sock,
1518 	.setsockopt	   = udp_setsockopt,
1519 	.getsockopt	   = udp_getsockopt,
1520 	.sendmsg	   = udp_sendmsg,
1521 	.recvmsg	   = udp_recvmsg,
1522 	.sendpage	   = udp_sendpage,
1523 	.backlog_rcv	   = udp_queue_rcv_skb,
1524 	.hash		   = udp_lib_hash,
1525 	.unhash		   = udp_lib_unhash,
1526 	.get_port	   = udp_v4_get_port,
1527 	.obj_size	   = sizeof(struct udp_sock),
1528 #ifdef CONFIG_COMPAT
1529 	.compat_setsockopt = compat_udp_setsockopt,
1530 	.compat_getsockopt = compat_udp_getsockopt,
1531 #endif
1532 };
1533 
1534 /* ------------------------------------------------------------------------ */
1535 #ifdef CONFIG_PROC_FS
1536 
1537 static struct sock *udp_get_first(struct seq_file *seq)
1538 {
1539 	struct sock *sk;
1540 	struct udp_iter_state *state = seq->private;
1541 
1542 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1543 		struct hlist_node *node;
1544 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1545 			if (sk->sk_family == state->family)
1546 				goto found;
1547 		}
1548 	}
1549 	sk = NULL;
1550 found:
1551 	return sk;
1552 }
1553 
1554 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1555 {
1556 	struct udp_iter_state *state = seq->private;
1557 
1558 	do {
1559 		sk = sk_next(sk);
1560 try_again:
1561 		;
1562 	} while (sk && sk->sk_family != state->family);
1563 
1564 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1565 		sk = sk_head(state->hashtable + state->bucket);
1566 		goto try_again;
1567 	}
1568 	return sk;
1569 }
1570 
1571 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1572 {
1573 	struct sock *sk = udp_get_first(seq);
1574 
1575 	if (sk)
1576 		while(pos && (sk = udp_get_next(seq, sk)) != NULL)
1577 			--pos;
1578 	return pos ? NULL : sk;
1579 }
1580 
1581 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1582 {
1583 	read_lock(&udp_hash_lock);
1584 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1585 }
1586 
1587 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1588 {
1589 	struct sock *sk;
1590 
1591 	if (v == (void *)1)
1592 		sk = udp_get_idx(seq, 0);
1593 	else
1594 		sk = udp_get_next(seq, v);
1595 
1596 	++*pos;
1597 	return sk;
1598 }
1599 
1600 static void udp_seq_stop(struct seq_file *seq, void *v)
1601 {
1602 	read_unlock(&udp_hash_lock);
1603 }
1604 
1605 static int udp_seq_open(struct inode *inode, struct file *file)
1606 {
1607 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1608 	struct seq_file *seq;
1609 	int rc = -ENOMEM;
1610 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1611 
1612 	if (!s)
1613 		goto out;
1614 	s->family		= afinfo->family;
1615 	s->hashtable		= afinfo->hashtable;
1616 	s->seq_ops.start	= udp_seq_start;
1617 	s->seq_ops.next		= udp_seq_next;
1618 	s->seq_ops.show		= afinfo->seq_show;
1619 	s->seq_ops.stop		= udp_seq_stop;
1620 
1621 	rc = seq_open(file, &s->seq_ops);
1622 	if (rc)
1623 		goto out_kfree;
1624 
1625 	seq	     = file->private_data;
1626 	seq->private = s;
1627 out:
1628 	return rc;
1629 out_kfree:
1630 	kfree(s);
1631 	goto out;
1632 }
1633 
1634 /* ------------------------------------------------------------------------ */
1635 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1636 {
1637 	struct proc_dir_entry *p;
1638 	int rc = 0;
1639 
1640 	if (!afinfo)
1641 		return -EINVAL;
1642 	afinfo->seq_fops->owner		= afinfo->owner;
1643 	afinfo->seq_fops->open		= udp_seq_open;
1644 	afinfo->seq_fops->read		= seq_read;
1645 	afinfo->seq_fops->llseek	= seq_lseek;
1646 	afinfo->seq_fops->release	= seq_release_private;
1647 
1648 	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1649 	if (p)
1650 		p->data = afinfo;
1651 	else
1652 		rc = -ENOMEM;
1653 	return rc;
1654 }
1655 
1656 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1657 {
1658 	if (!afinfo)
1659 		return;
1660 	proc_net_remove(afinfo->name);
1661 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1662 }
1663 
1664 /* ------------------------------------------------------------------------ */
1665 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1666 {
1667 	struct inet_sock *inet = inet_sk(sp);
1668 	__be32 dest = inet->daddr;
1669 	__be32 src  = inet->rcv_saddr;
1670 	__u16 destp	  = ntohs(inet->dport);
1671 	__u16 srcp	  = ntohs(inet->sport);
1672 
1673 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1674 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1675 		bucket, src, srcp, dest, destp, sp->sk_state,
1676 		atomic_read(&sp->sk_wmem_alloc),
1677 		atomic_read(&sp->sk_rmem_alloc),
1678 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1679 		atomic_read(&sp->sk_refcnt), sp);
1680 }
1681 
1682 int udp4_seq_show(struct seq_file *seq, void *v)
1683 {
1684 	if (v == SEQ_START_TOKEN)
1685 		seq_printf(seq, "%-127s\n",
1686 			   "  sl  local_address rem_address   st tx_queue "
1687 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1688 			   "inode");
1689 	else {
1690 		char tmpbuf[129];
1691 		struct udp_iter_state *state = seq->private;
1692 
1693 		udp4_format_sock(v, tmpbuf, state->bucket);
1694 		seq_printf(seq, "%-127s\n", tmpbuf);
1695 	}
1696 	return 0;
1697 }
1698 
1699 /* ------------------------------------------------------------------------ */
1700 static struct file_operations udp4_seq_fops;
1701 static struct udp_seq_afinfo udp4_seq_afinfo = {
1702 	.owner		= THIS_MODULE,
1703 	.name		= "udp",
1704 	.family		= AF_INET,
1705 	.hashtable	= udp_hash,
1706 	.seq_show	= udp4_seq_show,
1707 	.seq_fops	= &udp4_seq_fops,
1708 };
1709 
1710 int __init udp4_proc_init(void)
1711 {
1712 	return udp_proc_register(&udp4_seq_afinfo);
1713 }
1714 
1715 void udp4_proc_exit(void)
1716 {
1717 	udp_proc_unregister(&udp4_seq_afinfo);
1718 }
1719 #endif /* CONFIG_PROC_FS */
1720 
1721 EXPORT_SYMBOL(udp_disconnect);
1722 EXPORT_SYMBOL(udp_hash);
1723 EXPORT_SYMBOL(udp_hash_lock);
1724 EXPORT_SYMBOL(udp_ioctl);
1725 EXPORT_SYMBOL(udp_get_port);
1726 EXPORT_SYMBOL(udp_prot);
1727 EXPORT_SYMBOL(udp_sendmsg);
1728 EXPORT_SYMBOL(udp_lib_getsockopt);
1729 EXPORT_SYMBOL(udp_lib_setsockopt);
1730 EXPORT_SYMBOL(udp_poll);
1731 
1732 #ifdef CONFIG_PROC_FS
1733 EXPORT_SYMBOL(udp_proc_register);
1734 EXPORT_SYMBOL(udp_proc_unregister);
1735 #endif
1736