xref: /openbmc/linux/net/ipv4/udp.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 /* IPCB reference means this can not be used from early demux */
129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
132 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
133 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
134 		return true;
135 #endif
136 	return false;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_hslot *hslot, *hslot2;
241 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
242 	int    error = 1;
243 	struct net *net = sock_net(sk);
244 
245 	if (!snum) {
246 		int low, high, remaining;
247 		unsigned int rand;
248 		unsigned short first, last;
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 
251 		inet_get_local_port_range(net, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = prandom_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif, bool exact_dif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	score += 4;
401 
402 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
403 		score++;
404 	return score;
405 }
406 
407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
408 		       const __u16 lport, const __be32 faddr,
409 		       const __be16 fport)
410 {
411 	static u32 udp_ehash_secret __read_mostly;
412 
413 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
414 
415 	return __inet_ehashfn(laddr, lport, faddr, fport,
416 			      udp_ehash_secret + net_hash_mix(net));
417 }
418 
419 /* called with rcu_read_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 				     __be32 saddr, __be16 sport,
422 				     __be32 daddr, unsigned int hnum,
423 				     int dif, int sdif, bool exact_dif,
424 				     struct udp_hslot *hslot2,
425 				     struct sk_buff *skb)
426 {
427 	struct sock *sk, *result;
428 	int score, badness;
429 	u32 hash = 0;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif, exact_dif);
436 		if (score > badness) {
437 			if (sk->sk_reuseport) {
438 				hash = udp_ehashfn(net, daddr, hnum,
439 						   saddr, sport);
440 				result = reuseport_select_sock(sk, hash, skb,
441 							sizeof(struct udphdr));
442 				if (result)
443 					return result;
444 			}
445 			badness = score;
446 			result = sk;
447 		}
448 	}
449 	return result;
450 }
451 
452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
453  * harder than this. -DaveM
454  */
455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
456 		__be16 sport, __be32 daddr, __be16 dport, int dif,
457 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
458 {
459 	struct sock *result;
460 	unsigned short hnum = ntohs(dport);
461 	unsigned int hash2, slot2;
462 	struct udp_hslot *hslot2;
463 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
464 
465 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
466 	slot2 = hash2 & udptable->mask;
467 	hslot2 = &udptable->hash2[slot2];
468 
469 	result = udp4_lib_lookup2(net, saddr, sport,
470 				  daddr, hnum, dif, sdif,
471 				  exact_dif, hslot2, skb);
472 	if (!result) {
473 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 		slot2 = hash2 & udptable->mask;
475 		hslot2 = &udptable->hash2[slot2];
476 
477 		result = udp4_lib_lookup2(net, saddr, sport,
478 					  htonl(INADDR_ANY), hnum, dif, sdif,
479 					  exact_dif, hslot2, skb);
480 	}
481 	if (unlikely(IS_ERR(result)))
482 		return NULL;
483 	return result;
484 }
485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
486 
487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
488 						 __be16 sport, __be16 dport,
489 						 struct udp_table *udptable)
490 {
491 	const struct iphdr *iph = ip_hdr(skb);
492 
493 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
494 				 iph->daddr, dport, inet_iif(skb),
495 				 inet_sdif(skb), udptable, skb);
496 }
497 
498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
499 				 __be16 sport, __be16 dport)
500 {
501 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
502 }
503 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
504 
505 /* Must be called under rcu_read_lock().
506  * Does increment socket refcount.
507  */
508 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
509 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
510 			     __be32 daddr, __be16 dport, int dif)
511 {
512 	struct sock *sk;
513 
514 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
515 			       dif, 0, &udp_table, NULL);
516 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
517 		sk = NULL;
518 	return sk;
519 }
520 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
521 #endif
522 
523 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
524 				       __be16 loc_port, __be32 loc_addr,
525 				       __be16 rmt_port, __be32 rmt_addr,
526 				       int dif, int sdif, unsigned short hnum)
527 {
528 	struct inet_sock *inet = inet_sk(sk);
529 
530 	if (!net_eq(sock_net(sk), net) ||
531 	    udp_sk(sk)->udp_port_hash != hnum ||
532 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
533 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
534 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
535 	    ipv6_only_sock(sk) ||
536 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
537 		return false;
538 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
539 		return false;
540 	return true;
541 }
542 
543 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
544 void udp_encap_enable(void)
545 {
546 	static_branch_inc(&udp_encap_needed_key);
547 }
548 EXPORT_SYMBOL(udp_encap_enable);
549 
550 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
551  * through error handlers in encapsulations looking for a match.
552  */
553 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
554 {
555 	int i;
556 
557 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
558 		int (*handler)(struct sk_buff *skb, u32 info);
559 		const struct ip_tunnel_encap_ops *encap;
560 
561 		encap = rcu_dereference(iptun_encaps[i]);
562 		if (!encap)
563 			continue;
564 		handler = encap->err_handler;
565 		if (handler && !handler(skb, info))
566 			return 0;
567 	}
568 
569 	return -ENOENT;
570 }
571 
572 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
573  * reversing source and destination port: this will match tunnels that force the
574  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
575  * lwtunnels might actually break this assumption by being configured with
576  * different destination ports on endpoints, in this case we won't be able to
577  * trace ICMP messages back to them.
578  *
579  * If this doesn't match any socket, probe tunnels with arbitrary destination
580  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
581  * we've sent packets to won't necessarily match the local destination port.
582  *
583  * Then ask the tunnel implementation to match the error against a valid
584  * association.
585  *
586  * Return an error if we can't find a match, the socket if we need further
587  * processing, zero otherwise.
588  */
589 static struct sock *__udp4_lib_err_encap(struct net *net,
590 					 const struct iphdr *iph,
591 					 struct udphdr *uh,
592 					 struct udp_table *udptable,
593 					 struct sk_buff *skb, u32 info)
594 {
595 	int network_offset, transport_offset;
596 	struct sock *sk;
597 
598 	network_offset = skb_network_offset(skb);
599 	transport_offset = skb_transport_offset(skb);
600 
601 	/* Network header needs to point to the outer IPv4 header inside ICMP */
602 	skb_reset_network_header(skb);
603 
604 	/* Transport header needs to point to the UDP header */
605 	skb_set_transport_header(skb, iph->ihl << 2);
606 
607 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
608 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
609 			       udptable, NULL);
610 	if (sk) {
611 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
612 		struct udp_sock *up = udp_sk(sk);
613 
614 		lookup = READ_ONCE(up->encap_err_lookup);
615 		if (!lookup || lookup(sk, skb))
616 			sk = NULL;
617 	}
618 
619 	if (!sk)
620 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
621 
622 	skb_set_transport_header(skb, transport_offset);
623 	skb_set_network_header(skb, network_offset);
624 
625 	return sk;
626 }
627 
628 /*
629  * This routine is called by the ICMP module when it gets some
630  * sort of error condition.  If err < 0 then the socket should
631  * be closed and the error returned to the user.  If err > 0
632  * it's just the icmp type << 8 | icmp code.
633  * Header points to the ip header of the error packet. We move
634  * on past this. Then (as it used to claim before adjustment)
635  * header points to the first 8 bytes of the udp header.  We need
636  * to find the appropriate port.
637  */
638 
639 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
640 {
641 	struct inet_sock *inet;
642 	const struct iphdr *iph = (const struct iphdr *)skb->data;
643 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
644 	const int type = icmp_hdr(skb)->type;
645 	const int code = icmp_hdr(skb)->code;
646 	bool tunnel = false;
647 	struct sock *sk;
648 	int harderr;
649 	int err;
650 	struct net *net = dev_net(skb->dev);
651 
652 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
653 			       iph->saddr, uh->source, skb->dev->ifindex,
654 			       inet_sdif(skb), udptable, NULL);
655 	if (!sk) {
656 		/* No socket for error: try tunnels before discarding */
657 		sk = ERR_PTR(-ENOENT);
658 		if (static_branch_unlikely(&udp_encap_needed_key)) {
659 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
660 						  info);
661 			if (!sk)
662 				return 0;
663 		}
664 
665 		if (IS_ERR(sk)) {
666 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
667 			return PTR_ERR(sk);
668 		}
669 
670 		tunnel = true;
671 	}
672 
673 	err = 0;
674 	harderr = 0;
675 	inet = inet_sk(sk);
676 
677 	switch (type) {
678 	default:
679 	case ICMP_TIME_EXCEEDED:
680 		err = EHOSTUNREACH;
681 		break;
682 	case ICMP_SOURCE_QUENCH:
683 		goto out;
684 	case ICMP_PARAMETERPROB:
685 		err = EPROTO;
686 		harderr = 1;
687 		break;
688 	case ICMP_DEST_UNREACH:
689 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
690 			ipv4_sk_update_pmtu(skb, sk, info);
691 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
692 				err = EMSGSIZE;
693 				harderr = 1;
694 				break;
695 			}
696 			goto out;
697 		}
698 		err = EHOSTUNREACH;
699 		if (code <= NR_ICMP_UNREACH) {
700 			harderr = icmp_err_convert[code].fatal;
701 			err = icmp_err_convert[code].errno;
702 		}
703 		break;
704 	case ICMP_REDIRECT:
705 		ipv4_sk_redirect(skb, sk);
706 		goto out;
707 	}
708 
709 	/*
710 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
711 	 *	4.1.3.3.
712 	 */
713 	if (tunnel) {
714 		/* ...not for tunnels though: we don't have a sending socket */
715 		goto out;
716 	}
717 	if (!inet->recverr) {
718 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
719 			goto out;
720 	} else
721 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
722 
723 	sk->sk_err = err;
724 	sk->sk_error_report(sk);
725 out:
726 	return 0;
727 }
728 
729 int udp_err(struct sk_buff *skb, u32 info)
730 {
731 	return __udp4_lib_err(skb, info, &udp_table);
732 }
733 
734 /*
735  * Throw away all pending data and cancel the corking. Socket is locked.
736  */
737 void udp_flush_pending_frames(struct sock *sk)
738 {
739 	struct udp_sock *up = udp_sk(sk);
740 
741 	if (up->pending) {
742 		up->len = 0;
743 		up->pending = 0;
744 		ip_flush_pending_frames(sk);
745 	}
746 }
747 EXPORT_SYMBOL(udp_flush_pending_frames);
748 
749 /**
750  * 	udp4_hwcsum  -  handle outgoing HW checksumming
751  * 	@skb: 	sk_buff containing the filled-in UDP header
752  * 	        (checksum field must be zeroed out)
753  *	@src:	source IP address
754  *	@dst:	destination IP address
755  */
756 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
757 {
758 	struct udphdr *uh = udp_hdr(skb);
759 	int offset = skb_transport_offset(skb);
760 	int len = skb->len - offset;
761 	int hlen = len;
762 	__wsum csum = 0;
763 
764 	if (!skb_has_frag_list(skb)) {
765 		/*
766 		 * Only one fragment on the socket.
767 		 */
768 		skb->csum_start = skb_transport_header(skb) - skb->head;
769 		skb->csum_offset = offsetof(struct udphdr, check);
770 		uh->check = ~csum_tcpudp_magic(src, dst, len,
771 					       IPPROTO_UDP, 0);
772 	} else {
773 		struct sk_buff *frags;
774 
775 		/*
776 		 * HW-checksum won't work as there are two or more
777 		 * fragments on the socket so that all csums of sk_buffs
778 		 * should be together
779 		 */
780 		skb_walk_frags(skb, frags) {
781 			csum = csum_add(csum, frags->csum);
782 			hlen -= frags->len;
783 		}
784 
785 		csum = skb_checksum(skb, offset, hlen, csum);
786 		skb->ip_summed = CHECKSUM_NONE;
787 
788 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
789 		if (uh->check == 0)
790 			uh->check = CSUM_MANGLED_0;
791 	}
792 }
793 EXPORT_SYMBOL_GPL(udp4_hwcsum);
794 
795 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
796  * for the simple case like when setting the checksum for a UDP tunnel.
797  */
798 void udp_set_csum(bool nocheck, struct sk_buff *skb,
799 		  __be32 saddr, __be32 daddr, int len)
800 {
801 	struct udphdr *uh = udp_hdr(skb);
802 
803 	if (nocheck) {
804 		uh->check = 0;
805 	} else if (skb_is_gso(skb)) {
806 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
807 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
808 		uh->check = 0;
809 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
810 		if (uh->check == 0)
811 			uh->check = CSUM_MANGLED_0;
812 	} else {
813 		skb->ip_summed = CHECKSUM_PARTIAL;
814 		skb->csum_start = skb_transport_header(skb) - skb->head;
815 		skb->csum_offset = offsetof(struct udphdr, check);
816 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
817 	}
818 }
819 EXPORT_SYMBOL(udp_set_csum);
820 
821 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
822 			struct inet_cork *cork)
823 {
824 	struct sock *sk = skb->sk;
825 	struct inet_sock *inet = inet_sk(sk);
826 	struct udphdr *uh;
827 	int err = 0;
828 	int is_udplite = IS_UDPLITE(sk);
829 	int offset = skb_transport_offset(skb);
830 	int len = skb->len - offset;
831 	__wsum csum = 0;
832 
833 	/*
834 	 * Create a UDP header
835 	 */
836 	uh = udp_hdr(skb);
837 	uh->source = inet->inet_sport;
838 	uh->dest = fl4->fl4_dport;
839 	uh->len = htons(len);
840 	uh->check = 0;
841 
842 	if (cork->gso_size) {
843 		const int hlen = skb_network_header_len(skb) +
844 				 sizeof(struct udphdr);
845 
846 		if (hlen + cork->gso_size > cork->fragsize) {
847 			kfree_skb(skb);
848 			return -EINVAL;
849 		}
850 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
851 			kfree_skb(skb);
852 			return -EINVAL;
853 		}
854 		if (sk->sk_no_check_tx) {
855 			kfree_skb(skb);
856 			return -EINVAL;
857 		}
858 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
859 		    dst_xfrm(skb_dst(skb))) {
860 			kfree_skb(skb);
861 			return -EIO;
862 		}
863 
864 		skb_shinfo(skb)->gso_size = cork->gso_size;
865 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
866 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
867 							 cork->gso_size);
868 		goto csum_partial;
869 	}
870 
871 	if (is_udplite)  				 /*     UDP-Lite      */
872 		csum = udplite_csum(skb);
873 
874 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
875 
876 		skb->ip_summed = CHECKSUM_NONE;
877 		goto send;
878 
879 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
880 csum_partial:
881 
882 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
883 		goto send;
884 
885 	} else
886 		csum = udp_csum(skb);
887 
888 	/* add protocol-dependent pseudo-header */
889 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
890 				      sk->sk_protocol, csum);
891 	if (uh->check == 0)
892 		uh->check = CSUM_MANGLED_0;
893 
894 send:
895 	err = ip_send_skb(sock_net(sk), skb);
896 	if (err) {
897 		if (err == -ENOBUFS && !inet->recverr) {
898 			UDP_INC_STATS(sock_net(sk),
899 				      UDP_MIB_SNDBUFERRORS, is_udplite);
900 			err = 0;
901 		}
902 	} else
903 		UDP_INC_STATS(sock_net(sk),
904 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
905 	return err;
906 }
907 
908 /*
909  * Push out all pending data as one UDP datagram. Socket is locked.
910  */
911 int udp_push_pending_frames(struct sock *sk)
912 {
913 	struct udp_sock  *up = udp_sk(sk);
914 	struct inet_sock *inet = inet_sk(sk);
915 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
916 	struct sk_buff *skb;
917 	int err = 0;
918 
919 	skb = ip_finish_skb(sk, fl4);
920 	if (!skb)
921 		goto out;
922 
923 	err = udp_send_skb(skb, fl4, &inet->cork.base);
924 
925 out:
926 	up->len = 0;
927 	up->pending = 0;
928 	return err;
929 }
930 EXPORT_SYMBOL(udp_push_pending_frames);
931 
932 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
933 {
934 	switch (cmsg->cmsg_type) {
935 	case UDP_SEGMENT:
936 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
937 			return -EINVAL;
938 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
939 		return 0;
940 	default:
941 		return -EINVAL;
942 	}
943 }
944 
945 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
946 {
947 	struct cmsghdr *cmsg;
948 	bool need_ip = false;
949 	int err;
950 
951 	for_each_cmsghdr(cmsg, msg) {
952 		if (!CMSG_OK(msg, cmsg))
953 			return -EINVAL;
954 
955 		if (cmsg->cmsg_level != SOL_UDP) {
956 			need_ip = true;
957 			continue;
958 		}
959 
960 		err = __udp_cmsg_send(cmsg, gso_size);
961 		if (err)
962 			return err;
963 	}
964 
965 	return need_ip;
966 }
967 EXPORT_SYMBOL_GPL(udp_cmsg_send);
968 
969 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
970 {
971 	struct inet_sock *inet = inet_sk(sk);
972 	struct udp_sock *up = udp_sk(sk);
973 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
974 	struct flowi4 fl4_stack;
975 	struct flowi4 *fl4;
976 	int ulen = len;
977 	struct ipcm_cookie ipc;
978 	struct rtable *rt = NULL;
979 	int free = 0;
980 	int connected = 0;
981 	__be32 daddr, faddr, saddr;
982 	__be16 dport;
983 	u8  tos;
984 	int err, is_udplite = IS_UDPLITE(sk);
985 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
986 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
987 	struct sk_buff *skb;
988 	struct ip_options_data opt_copy;
989 
990 	if (len > 0xFFFF)
991 		return -EMSGSIZE;
992 
993 	/*
994 	 *	Check the flags.
995 	 */
996 
997 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
998 		return -EOPNOTSUPP;
999 
1000 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1001 
1002 	fl4 = &inet->cork.fl.u.ip4;
1003 	if (up->pending) {
1004 		/*
1005 		 * There are pending frames.
1006 		 * The socket lock must be held while it's corked.
1007 		 */
1008 		lock_sock(sk);
1009 		if (likely(up->pending)) {
1010 			if (unlikely(up->pending != AF_INET)) {
1011 				release_sock(sk);
1012 				return -EINVAL;
1013 			}
1014 			goto do_append_data;
1015 		}
1016 		release_sock(sk);
1017 	}
1018 	ulen += sizeof(struct udphdr);
1019 
1020 	/*
1021 	 *	Get and verify the address.
1022 	 */
1023 	if (usin) {
1024 		if (msg->msg_namelen < sizeof(*usin))
1025 			return -EINVAL;
1026 		if (usin->sin_family != AF_INET) {
1027 			if (usin->sin_family != AF_UNSPEC)
1028 				return -EAFNOSUPPORT;
1029 		}
1030 
1031 		daddr = usin->sin_addr.s_addr;
1032 		dport = usin->sin_port;
1033 		if (dport == 0)
1034 			return -EINVAL;
1035 	} else {
1036 		if (sk->sk_state != TCP_ESTABLISHED)
1037 			return -EDESTADDRREQ;
1038 		daddr = inet->inet_daddr;
1039 		dport = inet->inet_dport;
1040 		/* Open fast path for connected socket.
1041 		   Route will not be used, if at least one option is set.
1042 		 */
1043 		connected = 1;
1044 	}
1045 
1046 	ipcm_init_sk(&ipc, inet);
1047 	ipc.gso_size = up->gso_size;
1048 
1049 	if (msg->msg_controllen) {
1050 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1051 		if (err > 0)
1052 			err = ip_cmsg_send(sk, msg, &ipc,
1053 					   sk->sk_family == AF_INET6);
1054 		if (unlikely(err < 0)) {
1055 			kfree(ipc.opt);
1056 			return err;
1057 		}
1058 		if (ipc.opt)
1059 			free = 1;
1060 		connected = 0;
1061 	}
1062 	if (!ipc.opt) {
1063 		struct ip_options_rcu *inet_opt;
1064 
1065 		rcu_read_lock();
1066 		inet_opt = rcu_dereference(inet->inet_opt);
1067 		if (inet_opt) {
1068 			memcpy(&opt_copy, inet_opt,
1069 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1070 			ipc.opt = &opt_copy.opt;
1071 		}
1072 		rcu_read_unlock();
1073 	}
1074 
1075 	if (cgroup_bpf_enabled && !connected) {
1076 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1077 					    (struct sockaddr *)usin, &ipc.addr);
1078 		if (err)
1079 			goto out_free;
1080 		if (usin) {
1081 			if (usin->sin_port == 0) {
1082 				/* BPF program set invalid port. Reject it. */
1083 				err = -EINVAL;
1084 				goto out_free;
1085 			}
1086 			daddr = usin->sin_addr.s_addr;
1087 			dport = usin->sin_port;
1088 		}
1089 	}
1090 
1091 	saddr = ipc.addr;
1092 	ipc.addr = faddr = daddr;
1093 
1094 	if (ipc.opt && ipc.opt->opt.srr) {
1095 		if (!daddr) {
1096 			err = -EINVAL;
1097 			goto out_free;
1098 		}
1099 		faddr = ipc.opt->opt.faddr;
1100 		connected = 0;
1101 	}
1102 	tos = get_rttos(&ipc, inet);
1103 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1104 	    (msg->msg_flags & MSG_DONTROUTE) ||
1105 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1106 		tos |= RTO_ONLINK;
1107 		connected = 0;
1108 	}
1109 
1110 	if (ipv4_is_multicast(daddr)) {
1111 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1112 			ipc.oif = inet->mc_index;
1113 		if (!saddr)
1114 			saddr = inet->mc_addr;
1115 		connected = 0;
1116 	} else if (!ipc.oif) {
1117 		ipc.oif = inet->uc_index;
1118 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1119 		/* oif is set, packet is to local broadcast and
1120 		 * and uc_index is set. oif is most likely set
1121 		 * by sk_bound_dev_if. If uc_index != oif check if the
1122 		 * oif is an L3 master and uc_index is an L3 slave.
1123 		 * If so, we want to allow the send using the uc_index.
1124 		 */
1125 		if (ipc.oif != inet->uc_index &&
1126 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1127 							      inet->uc_index)) {
1128 			ipc.oif = inet->uc_index;
1129 		}
1130 	}
1131 
1132 	if (connected)
1133 		rt = (struct rtable *)sk_dst_check(sk, 0);
1134 
1135 	if (!rt) {
1136 		struct net *net = sock_net(sk);
1137 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1138 
1139 		fl4 = &fl4_stack;
1140 
1141 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1142 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1143 				   flow_flags,
1144 				   faddr, saddr, dport, inet->inet_sport,
1145 				   sk->sk_uid);
1146 
1147 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1148 		rt = ip_route_output_flow(net, fl4, sk);
1149 		if (IS_ERR(rt)) {
1150 			err = PTR_ERR(rt);
1151 			rt = NULL;
1152 			if (err == -ENETUNREACH)
1153 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1154 			goto out;
1155 		}
1156 
1157 		err = -EACCES;
1158 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1159 		    !sock_flag(sk, SOCK_BROADCAST))
1160 			goto out;
1161 		if (connected)
1162 			sk_dst_set(sk, dst_clone(&rt->dst));
1163 	}
1164 
1165 	if (msg->msg_flags&MSG_CONFIRM)
1166 		goto do_confirm;
1167 back_from_confirm:
1168 
1169 	saddr = fl4->saddr;
1170 	if (!ipc.addr)
1171 		daddr = ipc.addr = fl4->daddr;
1172 
1173 	/* Lockless fast path for the non-corking case. */
1174 	if (!corkreq) {
1175 		struct inet_cork cork;
1176 
1177 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1178 				  sizeof(struct udphdr), &ipc, &rt,
1179 				  &cork, msg->msg_flags);
1180 		err = PTR_ERR(skb);
1181 		if (!IS_ERR_OR_NULL(skb))
1182 			err = udp_send_skb(skb, fl4, &cork);
1183 		goto out;
1184 	}
1185 
1186 	lock_sock(sk);
1187 	if (unlikely(up->pending)) {
1188 		/* The socket is already corked while preparing it. */
1189 		/* ... which is an evident application bug. --ANK */
1190 		release_sock(sk);
1191 
1192 		net_dbg_ratelimited("socket already corked\n");
1193 		err = -EINVAL;
1194 		goto out;
1195 	}
1196 	/*
1197 	 *	Now cork the socket to pend data.
1198 	 */
1199 	fl4 = &inet->cork.fl.u.ip4;
1200 	fl4->daddr = daddr;
1201 	fl4->saddr = saddr;
1202 	fl4->fl4_dport = dport;
1203 	fl4->fl4_sport = inet->inet_sport;
1204 	up->pending = AF_INET;
1205 
1206 do_append_data:
1207 	up->len += ulen;
1208 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1209 			     sizeof(struct udphdr), &ipc, &rt,
1210 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1211 	if (err)
1212 		udp_flush_pending_frames(sk);
1213 	else if (!corkreq)
1214 		err = udp_push_pending_frames(sk);
1215 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1216 		up->pending = 0;
1217 	release_sock(sk);
1218 
1219 out:
1220 	ip_rt_put(rt);
1221 out_free:
1222 	if (free)
1223 		kfree(ipc.opt);
1224 	if (!err)
1225 		return len;
1226 	/*
1227 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1228 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1229 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1230 	 * things).  We could add another new stat but at least for now that
1231 	 * seems like overkill.
1232 	 */
1233 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1234 		UDP_INC_STATS(sock_net(sk),
1235 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1236 	}
1237 	return err;
1238 
1239 do_confirm:
1240 	if (msg->msg_flags & MSG_PROBE)
1241 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1242 	if (!(msg->msg_flags&MSG_PROBE) || len)
1243 		goto back_from_confirm;
1244 	err = 0;
1245 	goto out;
1246 }
1247 EXPORT_SYMBOL(udp_sendmsg);
1248 
1249 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1250 		 size_t size, int flags)
1251 {
1252 	struct inet_sock *inet = inet_sk(sk);
1253 	struct udp_sock *up = udp_sk(sk);
1254 	int ret;
1255 
1256 	if (flags & MSG_SENDPAGE_NOTLAST)
1257 		flags |= MSG_MORE;
1258 
1259 	if (!up->pending) {
1260 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1261 
1262 		/* Call udp_sendmsg to specify destination address which
1263 		 * sendpage interface can't pass.
1264 		 * This will succeed only when the socket is connected.
1265 		 */
1266 		ret = udp_sendmsg(sk, &msg, 0);
1267 		if (ret < 0)
1268 			return ret;
1269 	}
1270 
1271 	lock_sock(sk);
1272 
1273 	if (unlikely(!up->pending)) {
1274 		release_sock(sk);
1275 
1276 		net_dbg_ratelimited("cork failed\n");
1277 		return -EINVAL;
1278 	}
1279 
1280 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1281 			     page, offset, size, flags);
1282 	if (ret == -EOPNOTSUPP) {
1283 		release_sock(sk);
1284 		return sock_no_sendpage(sk->sk_socket, page, offset,
1285 					size, flags);
1286 	}
1287 	if (ret < 0) {
1288 		udp_flush_pending_frames(sk);
1289 		goto out;
1290 	}
1291 
1292 	up->len += size;
1293 	if (!(up->corkflag || (flags&MSG_MORE)))
1294 		ret = udp_push_pending_frames(sk);
1295 	if (!ret)
1296 		ret = size;
1297 out:
1298 	release_sock(sk);
1299 	return ret;
1300 }
1301 
1302 #define UDP_SKB_IS_STATELESS 0x80000000
1303 
1304 static void udp_set_dev_scratch(struct sk_buff *skb)
1305 {
1306 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1307 
1308 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1309 	scratch->_tsize_state = skb->truesize;
1310 #if BITS_PER_LONG == 64
1311 	scratch->len = skb->len;
1312 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1313 	scratch->is_linear = !skb_is_nonlinear(skb);
1314 #endif
1315 	/* all head states execept sp (dst, sk, nf) are always cleared by
1316 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1317 	 * process IP_CMSG_PASSSEC at recvmsg() time
1318 	 */
1319 	if (likely(!skb_sec_path(skb)))
1320 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1321 }
1322 
1323 static int udp_skb_truesize(struct sk_buff *skb)
1324 {
1325 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1326 }
1327 
1328 static bool udp_skb_has_head_state(struct sk_buff *skb)
1329 {
1330 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1331 }
1332 
1333 /* fully reclaim rmem/fwd memory allocated for skb */
1334 static void udp_rmem_release(struct sock *sk, int size, int partial,
1335 			     bool rx_queue_lock_held)
1336 {
1337 	struct udp_sock *up = udp_sk(sk);
1338 	struct sk_buff_head *sk_queue;
1339 	int amt;
1340 
1341 	if (likely(partial)) {
1342 		up->forward_deficit += size;
1343 		size = up->forward_deficit;
1344 		if (size < (sk->sk_rcvbuf >> 2))
1345 			return;
1346 	} else {
1347 		size += up->forward_deficit;
1348 	}
1349 	up->forward_deficit = 0;
1350 
1351 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1352 	 * if the called don't held it already
1353 	 */
1354 	sk_queue = &sk->sk_receive_queue;
1355 	if (!rx_queue_lock_held)
1356 		spin_lock(&sk_queue->lock);
1357 
1358 
1359 	sk->sk_forward_alloc += size;
1360 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1361 	sk->sk_forward_alloc -= amt;
1362 
1363 	if (amt)
1364 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1365 
1366 	atomic_sub(size, &sk->sk_rmem_alloc);
1367 
1368 	/* this can save us from acquiring the rx queue lock on next receive */
1369 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1370 
1371 	if (!rx_queue_lock_held)
1372 		spin_unlock(&sk_queue->lock);
1373 }
1374 
1375 /* Note: called with reader_queue.lock held.
1376  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1377  * This avoids a cache line miss while receive_queue lock is held.
1378  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1379  */
1380 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1381 {
1382 	prefetch(&skb->data);
1383 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1384 }
1385 EXPORT_SYMBOL(udp_skb_destructor);
1386 
1387 /* as above, but the caller held the rx queue lock, too */
1388 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1389 {
1390 	prefetch(&skb->data);
1391 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1392 }
1393 
1394 /* Idea of busylocks is to let producers grab an extra spinlock
1395  * to relieve pressure on the receive_queue spinlock shared by consumer.
1396  * Under flood, this means that only one producer can be in line
1397  * trying to acquire the receive_queue spinlock.
1398  * These busylock can be allocated on a per cpu manner, instead of a
1399  * per socket one (that would consume a cache line per socket)
1400  */
1401 static int udp_busylocks_log __read_mostly;
1402 static spinlock_t *udp_busylocks __read_mostly;
1403 
1404 static spinlock_t *busylock_acquire(void *ptr)
1405 {
1406 	spinlock_t *busy;
1407 
1408 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1409 	spin_lock(busy);
1410 	return busy;
1411 }
1412 
1413 static void busylock_release(spinlock_t *busy)
1414 {
1415 	if (busy)
1416 		spin_unlock(busy);
1417 }
1418 
1419 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1420 {
1421 	struct sk_buff_head *list = &sk->sk_receive_queue;
1422 	int rmem, delta, amt, err = -ENOMEM;
1423 	spinlock_t *busy = NULL;
1424 	int size;
1425 
1426 	/* try to avoid the costly atomic add/sub pair when the receive
1427 	 * queue is full; always allow at least a packet
1428 	 */
1429 	rmem = atomic_read(&sk->sk_rmem_alloc);
1430 	if (rmem > sk->sk_rcvbuf)
1431 		goto drop;
1432 
1433 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1434 	 * having linear skbs :
1435 	 * - Reduce memory overhead and thus increase receive queue capacity
1436 	 * - Less cache line misses at copyout() time
1437 	 * - Less work at consume_skb() (less alien page frag freeing)
1438 	 */
1439 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1440 		skb_condense(skb);
1441 
1442 		busy = busylock_acquire(sk);
1443 	}
1444 	size = skb->truesize;
1445 	udp_set_dev_scratch(skb);
1446 
1447 	/* we drop only if the receive buf is full and the receive
1448 	 * queue contains some other skb
1449 	 */
1450 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1451 	if (rmem > (size + sk->sk_rcvbuf))
1452 		goto uncharge_drop;
1453 
1454 	spin_lock(&list->lock);
1455 	if (size >= sk->sk_forward_alloc) {
1456 		amt = sk_mem_pages(size);
1457 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1458 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1459 			err = -ENOBUFS;
1460 			spin_unlock(&list->lock);
1461 			goto uncharge_drop;
1462 		}
1463 
1464 		sk->sk_forward_alloc += delta;
1465 	}
1466 
1467 	sk->sk_forward_alloc -= size;
1468 
1469 	/* no need to setup a destructor, we will explicitly release the
1470 	 * forward allocated memory on dequeue
1471 	 */
1472 	sock_skb_set_dropcount(sk, skb);
1473 
1474 	__skb_queue_tail(list, skb);
1475 	spin_unlock(&list->lock);
1476 
1477 	if (!sock_flag(sk, SOCK_DEAD))
1478 		sk->sk_data_ready(sk);
1479 
1480 	busylock_release(busy);
1481 	return 0;
1482 
1483 uncharge_drop:
1484 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1485 
1486 drop:
1487 	atomic_inc(&sk->sk_drops);
1488 	busylock_release(busy);
1489 	return err;
1490 }
1491 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1492 
1493 void udp_destruct_sock(struct sock *sk)
1494 {
1495 	/* reclaim completely the forward allocated memory */
1496 	struct udp_sock *up = udp_sk(sk);
1497 	unsigned int total = 0;
1498 	struct sk_buff *skb;
1499 
1500 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1501 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1502 		total += skb->truesize;
1503 		kfree_skb(skb);
1504 	}
1505 	udp_rmem_release(sk, total, 0, true);
1506 
1507 	inet_sock_destruct(sk);
1508 }
1509 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1510 
1511 int udp_init_sock(struct sock *sk)
1512 {
1513 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1514 	sk->sk_destruct = udp_destruct_sock;
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(udp_init_sock);
1518 
1519 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1520 {
1521 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1522 		bool slow = lock_sock_fast(sk);
1523 
1524 		sk_peek_offset_bwd(sk, len);
1525 		unlock_sock_fast(sk, slow);
1526 	}
1527 
1528 	if (!skb_unref(skb))
1529 		return;
1530 
1531 	/* In the more common cases we cleared the head states previously,
1532 	 * see __udp_queue_rcv_skb().
1533 	 */
1534 	if (unlikely(udp_skb_has_head_state(skb)))
1535 		skb_release_head_state(skb);
1536 	__consume_stateless_skb(skb);
1537 }
1538 EXPORT_SYMBOL_GPL(skb_consume_udp);
1539 
1540 static struct sk_buff *__first_packet_length(struct sock *sk,
1541 					     struct sk_buff_head *rcvq,
1542 					     int *total)
1543 {
1544 	struct sk_buff *skb;
1545 
1546 	while ((skb = skb_peek(rcvq)) != NULL) {
1547 		if (udp_lib_checksum_complete(skb)) {
1548 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1549 					IS_UDPLITE(sk));
1550 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1551 					IS_UDPLITE(sk));
1552 			atomic_inc(&sk->sk_drops);
1553 			__skb_unlink(skb, rcvq);
1554 			*total += skb->truesize;
1555 			kfree_skb(skb);
1556 		} else {
1557 			/* the csum related bits could be changed, refresh
1558 			 * the scratch area
1559 			 */
1560 			udp_set_dev_scratch(skb);
1561 			break;
1562 		}
1563 	}
1564 	return skb;
1565 }
1566 
1567 /**
1568  *	first_packet_length	- return length of first packet in receive queue
1569  *	@sk: socket
1570  *
1571  *	Drops all bad checksum frames, until a valid one is found.
1572  *	Returns the length of found skb, or -1 if none is found.
1573  */
1574 static int first_packet_length(struct sock *sk)
1575 {
1576 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1577 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1578 	struct sk_buff *skb;
1579 	int total = 0;
1580 	int res;
1581 
1582 	spin_lock_bh(&rcvq->lock);
1583 	skb = __first_packet_length(sk, rcvq, &total);
1584 	if (!skb && !skb_queue_empty(sk_queue)) {
1585 		spin_lock(&sk_queue->lock);
1586 		skb_queue_splice_tail_init(sk_queue, rcvq);
1587 		spin_unlock(&sk_queue->lock);
1588 
1589 		skb = __first_packet_length(sk, rcvq, &total);
1590 	}
1591 	res = skb ? skb->len : -1;
1592 	if (total)
1593 		udp_rmem_release(sk, total, 1, false);
1594 	spin_unlock_bh(&rcvq->lock);
1595 	return res;
1596 }
1597 
1598 /*
1599  *	IOCTL requests applicable to the UDP protocol
1600  */
1601 
1602 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1603 {
1604 	switch (cmd) {
1605 	case SIOCOUTQ:
1606 	{
1607 		int amount = sk_wmem_alloc_get(sk);
1608 
1609 		return put_user(amount, (int __user *)arg);
1610 	}
1611 
1612 	case SIOCINQ:
1613 	{
1614 		int amount = max_t(int, 0, first_packet_length(sk));
1615 
1616 		return put_user(amount, (int __user *)arg);
1617 	}
1618 
1619 	default:
1620 		return -ENOIOCTLCMD;
1621 	}
1622 
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL(udp_ioctl);
1626 
1627 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1628 			       int noblock, int *off, int *err)
1629 {
1630 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1631 	struct sk_buff_head *queue;
1632 	struct sk_buff *last;
1633 	long timeo;
1634 	int error;
1635 
1636 	queue = &udp_sk(sk)->reader_queue;
1637 	flags |= noblock ? MSG_DONTWAIT : 0;
1638 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1639 	do {
1640 		struct sk_buff *skb;
1641 
1642 		error = sock_error(sk);
1643 		if (error)
1644 			break;
1645 
1646 		error = -EAGAIN;
1647 		do {
1648 			spin_lock_bh(&queue->lock);
1649 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1650 							udp_skb_destructor,
1651 							off, err, &last);
1652 			if (skb) {
1653 				spin_unlock_bh(&queue->lock);
1654 				return skb;
1655 			}
1656 
1657 			if (skb_queue_empty(sk_queue)) {
1658 				spin_unlock_bh(&queue->lock);
1659 				goto busy_check;
1660 			}
1661 
1662 			/* refill the reader queue and walk it again
1663 			 * keep both queues locked to avoid re-acquiring
1664 			 * the sk_receive_queue lock if fwd memory scheduling
1665 			 * is needed.
1666 			 */
1667 			spin_lock(&sk_queue->lock);
1668 			skb_queue_splice_tail_init(sk_queue, queue);
1669 
1670 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1671 							udp_skb_dtor_locked,
1672 							off, err, &last);
1673 			spin_unlock(&sk_queue->lock);
1674 			spin_unlock_bh(&queue->lock);
1675 			if (skb)
1676 				return skb;
1677 
1678 busy_check:
1679 			if (!sk_can_busy_loop(sk))
1680 				break;
1681 
1682 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1683 		} while (!skb_queue_empty(sk_queue));
1684 
1685 		/* sk_queue is empty, reader_queue may contain peeked packets */
1686 	} while (timeo &&
1687 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1688 					      (struct sk_buff *)sk_queue));
1689 
1690 	*err = error;
1691 	return NULL;
1692 }
1693 EXPORT_SYMBOL(__skb_recv_udp);
1694 
1695 /*
1696  * 	This should be easy, if there is something there we
1697  * 	return it, otherwise we block.
1698  */
1699 
1700 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1701 		int flags, int *addr_len)
1702 {
1703 	struct inet_sock *inet = inet_sk(sk);
1704 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1705 	struct sk_buff *skb;
1706 	unsigned int ulen, copied;
1707 	int off, err, peeking = flags & MSG_PEEK;
1708 	int is_udplite = IS_UDPLITE(sk);
1709 	bool checksum_valid = false;
1710 
1711 	if (flags & MSG_ERRQUEUE)
1712 		return ip_recv_error(sk, msg, len, addr_len);
1713 
1714 try_again:
1715 	off = sk_peek_offset(sk, flags);
1716 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1717 	if (!skb)
1718 		return err;
1719 
1720 	ulen = udp_skb_len(skb);
1721 	copied = len;
1722 	if (copied > ulen - off)
1723 		copied = ulen - off;
1724 	else if (copied < ulen)
1725 		msg->msg_flags |= MSG_TRUNC;
1726 
1727 	/*
1728 	 * If checksum is needed at all, try to do it while copying the
1729 	 * data.  If the data is truncated, or if we only want a partial
1730 	 * coverage checksum (UDP-Lite), do it before the copy.
1731 	 */
1732 
1733 	if (copied < ulen || peeking ||
1734 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1735 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1736 				!__udp_lib_checksum_complete(skb);
1737 		if (!checksum_valid)
1738 			goto csum_copy_err;
1739 	}
1740 
1741 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1742 		if (udp_skb_is_linear(skb))
1743 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1744 		else
1745 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1746 	} else {
1747 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1748 
1749 		if (err == -EINVAL)
1750 			goto csum_copy_err;
1751 	}
1752 
1753 	if (unlikely(err)) {
1754 		if (!peeking) {
1755 			atomic_inc(&sk->sk_drops);
1756 			UDP_INC_STATS(sock_net(sk),
1757 				      UDP_MIB_INERRORS, is_udplite);
1758 		}
1759 		kfree_skb(skb);
1760 		return err;
1761 	}
1762 
1763 	if (!peeking)
1764 		UDP_INC_STATS(sock_net(sk),
1765 			      UDP_MIB_INDATAGRAMS, is_udplite);
1766 
1767 	sock_recv_ts_and_drops(msg, sk, skb);
1768 
1769 	/* Copy the address. */
1770 	if (sin) {
1771 		sin->sin_family = AF_INET;
1772 		sin->sin_port = udp_hdr(skb)->source;
1773 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1774 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1775 		*addr_len = sizeof(*sin);
1776 	}
1777 
1778 	if (udp_sk(sk)->gro_enabled)
1779 		udp_cmsg_recv(msg, sk, skb);
1780 
1781 	if (inet->cmsg_flags)
1782 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1783 
1784 	err = copied;
1785 	if (flags & MSG_TRUNC)
1786 		err = ulen;
1787 
1788 	skb_consume_udp(sk, skb, peeking ? -err : err);
1789 	return err;
1790 
1791 csum_copy_err:
1792 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1793 				 udp_skb_destructor)) {
1794 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1795 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1796 	}
1797 	kfree_skb(skb);
1798 
1799 	/* starting over for a new packet, but check if we need to yield */
1800 	cond_resched();
1801 	msg->msg_flags &= ~MSG_TRUNC;
1802 	goto try_again;
1803 }
1804 
1805 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1806 {
1807 	/* This check is replicated from __ip4_datagram_connect() and
1808 	 * intended to prevent BPF program called below from accessing bytes
1809 	 * that are out of the bound specified by user in addr_len.
1810 	 */
1811 	if (addr_len < sizeof(struct sockaddr_in))
1812 		return -EINVAL;
1813 
1814 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1815 }
1816 EXPORT_SYMBOL(udp_pre_connect);
1817 
1818 int __udp_disconnect(struct sock *sk, int flags)
1819 {
1820 	struct inet_sock *inet = inet_sk(sk);
1821 	/*
1822 	 *	1003.1g - break association.
1823 	 */
1824 
1825 	sk->sk_state = TCP_CLOSE;
1826 	inet->inet_daddr = 0;
1827 	inet->inet_dport = 0;
1828 	sock_rps_reset_rxhash(sk);
1829 	sk->sk_bound_dev_if = 0;
1830 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1831 		inet_reset_saddr(sk);
1832 
1833 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1834 		sk->sk_prot->unhash(sk);
1835 		inet->inet_sport = 0;
1836 	}
1837 	sk_dst_reset(sk);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(__udp_disconnect);
1841 
1842 int udp_disconnect(struct sock *sk, int flags)
1843 {
1844 	lock_sock(sk);
1845 	__udp_disconnect(sk, flags);
1846 	release_sock(sk);
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(udp_disconnect);
1850 
1851 void udp_lib_unhash(struct sock *sk)
1852 {
1853 	if (sk_hashed(sk)) {
1854 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1855 		struct udp_hslot *hslot, *hslot2;
1856 
1857 		hslot  = udp_hashslot(udptable, sock_net(sk),
1858 				      udp_sk(sk)->udp_port_hash);
1859 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1860 
1861 		spin_lock_bh(&hslot->lock);
1862 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1863 			reuseport_detach_sock(sk);
1864 		if (sk_del_node_init_rcu(sk)) {
1865 			hslot->count--;
1866 			inet_sk(sk)->inet_num = 0;
1867 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1868 
1869 			spin_lock(&hslot2->lock);
1870 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1871 			hslot2->count--;
1872 			spin_unlock(&hslot2->lock);
1873 		}
1874 		spin_unlock_bh(&hslot->lock);
1875 	}
1876 }
1877 EXPORT_SYMBOL(udp_lib_unhash);
1878 
1879 /*
1880  * inet_rcv_saddr was changed, we must rehash secondary hash
1881  */
1882 void udp_lib_rehash(struct sock *sk, u16 newhash)
1883 {
1884 	if (sk_hashed(sk)) {
1885 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1886 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1887 
1888 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1889 		nhslot2 = udp_hashslot2(udptable, newhash);
1890 		udp_sk(sk)->udp_portaddr_hash = newhash;
1891 
1892 		if (hslot2 != nhslot2 ||
1893 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1894 			hslot = udp_hashslot(udptable, sock_net(sk),
1895 					     udp_sk(sk)->udp_port_hash);
1896 			/* we must lock primary chain too */
1897 			spin_lock_bh(&hslot->lock);
1898 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1899 				reuseport_detach_sock(sk);
1900 
1901 			if (hslot2 != nhslot2) {
1902 				spin_lock(&hslot2->lock);
1903 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1904 				hslot2->count--;
1905 				spin_unlock(&hslot2->lock);
1906 
1907 				spin_lock(&nhslot2->lock);
1908 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1909 							 &nhslot2->head);
1910 				nhslot2->count++;
1911 				spin_unlock(&nhslot2->lock);
1912 			}
1913 
1914 			spin_unlock_bh(&hslot->lock);
1915 		}
1916 	}
1917 }
1918 EXPORT_SYMBOL(udp_lib_rehash);
1919 
1920 void udp_v4_rehash(struct sock *sk)
1921 {
1922 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1923 					  inet_sk(sk)->inet_rcv_saddr,
1924 					  inet_sk(sk)->inet_num);
1925 	udp_lib_rehash(sk, new_hash);
1926 }
1927 
1928 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1929 {
1930 	int rc;
1931 
1932 	if (inet_sk(sk)->inet_daddr) {
1933 		sock_rps_save_rxhash(sk, skb);
1934 		sk_mark_napi_id(sk, skb);
1935 		sk_incoming_cpu_update(sk);
1936 	} else {
1937 		sk_mark_napi_id_once(sk, skb);
1938 	}
1939 
1940 	rc = __udp_enqueue_schedule_skb(sk, skb);
1941 	if (rc < 0) {
1942 		int is_udplite = IS_UDPLITE(sk);
1943 
1944 		/* Note that an ENOMEM error is charged twice */
1945 		if (rc == -ENOMEM)
1946 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1947 					is_udplite);
1948 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1949 		kfree_skb(skb);
1950 		trace_udp_fail_queue_rcv_skb(rc, sk);
1951 		return -1;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 /* returns:
1958  *  -1: error
1959  *   0: success
1960  *  >0: "udp encap" protocol resubmission
1961  *
1962  * Note that in the success and error cases, the skb is assumed to
1963  * have either been requeued or freed.
1964  */
1965 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1966 {
1967 	struct udp_sock *up = udp_sk(sk);
1968 	int is_udplite = IS_UDPLITE(sk);
1969 
1970 	/*
1971 	 *	Charge it to the socket, dropping if the queue is full.
1972 	 */
1973 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1974 		goto drop;
1975 	nf_reset(skb);
1976 
1977 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1978 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1979 
1980 		/*
1981 		 * This is an encapsulation socket so pass the skb to
1982 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1983 		 * fall through and pass this up the UDP socket.
1984 		 * up->encap_rcv() returns the following value:
1985 		 * =0 if skb was successfully passed to the encap
1986 		 *    handler or was discarded by it.
1987 		 * >0 if skb should be passed on to UDP.
1988 		 * <0 if skb should be resubmitted as proto -N
1989 		 */
1990 
1991 		/* if we're overly short, let UDP handle it */
1992 		encap_rcv = READ_ONCE(up->encap_rcv);
1993 		if (encap_rcv) {
1994 			int ret;
1995 
1996 			/* Verify checksum before giving to encap */
1997 			if (udp_lib_checksum_complete(skb))
1998 				goto csum_error;
1999 
2000 			ret = encap_rcv(sk, skb);
2001 			if (ret <= 0) {
2002 				__UDP_INC_STATS(sock_net(sk),
2003 						UDP_MIB_INDATAGRAMS,
2004 						is_udplite);
2005 				return -ret;
2006 			}
2007 		}
2008 
2009 		/* FALLTHROUGH -- it's a UDP Packet */
2010 	}
2011 
2012 	/*
2013 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2014 	 */
2015 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2016 
2017 		/*
2018 		 * MIB statistics other than incrementing the error count are
2019 		 * disabled for the following two types of errors: these depend
2020 		 * on the application settings, not on the functioning of the
2021 		 * protocol stack as such.
2022 		 *
2023 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2024 		 * way ... to ... at least let the receiving application block
2025 		 * delivery of packets with coverage values less than a value
2026 		 * provided by the application."
2027 		 */
2028 		if (up->pcrlen == 0) {          /* full coverage was set  */
2029 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2030 					    UDP_SKB_CB(skb)->cscov, skb->len);
2031 			goto drop;
2032 		}
2033 		/* The next case involves violating the min. coverage requested
2034 		 * by the receiver. This is subtle: if receiver wants x and x is
2035 		 * greater than the buffersize/MTU then receiver will complain
2036 		 * that it wants x while sender emits packets of smaller size y.
2037 		 * Therefore the above ...()->partial_cov statement is essential.
2038 		 */
2039 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2040 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2041 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2042 			goto drop;
2043 		}
2044 	}
2045 
2046 	prefetch(&sk->sk_rmem_alloc);
2047 	if (rcu_access_pointer(sk->sk_filter) &&
2048 	    udp_lib_checksum_complete(skb))
2049 			goto csum_error;
2050 
2051 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2052 		goto drop;
2053 
2054 	udp_csum_pull_header(skb);
2055 
2056 	ipv4_pktinfo_prepare(sk, skb);
2057 	return __udp_queue_rcv_skb(sk, skb);
2058 
2059 csum_error:
2060 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2061 drop:
2062 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2063 	atomic_inc(&sk->sk_drops);
2064 	kfree_skb(skb);
2065 	return -1;
2066 }
2067 
2068 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 	struct sk_buff *next, *segs;
2071 	int ret;
2072 
2073 	if (likely(!udp_unexpected_gso(sk, skb)))
2074 		return udp_queue_rcv_one_skb(sk, skb);
2075 
2076 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2077 	__skb_push(skb, -skb_mac_offset(skb));
2078 	segs = udp_rcv_segment(sk, skb, true);
2079 	for (skb = segs; skb; skb = next) {
2080 		next = skb->next;
2081 		__skb_pull(skb, skb_transport_offset(skb));
2082 		ret = udp_queue_rcv_one_skb(sk, skb);
2083 		if (ret > 0)
2084 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2085 	}
2086 	return 0;
2087 }
2088 
2089 /* For TCP sockets, sk_rx_dst is protected by socket lock
2090  * For UDP, we use xchg() to guard against concurrent changes.
2091  */
2092 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2093 {
2094 	struct dst_entry *old;
2095 
2096 	if (dst_hold_safe(dst)) {
2097 		old = xchg(&sk->sk_rx_dst, dst);
2098 		dst_release(old);
2099 		return old != dst;
2100 	}
2101 	return false;
2102 }
2103 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2104 
2105 /*
2106  *	Multicasts and broadcasts go to each listener.
2107  *
2108  *	Note: called only from the BH handler context.
2109  */
2110 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2111 				    struct udphdr  *uh,
2112 				    __be32 saddr, __be32 daddr,
2113 				    struct udp_table *udptable,
2114 				    int proto)
2115 {
2116 	struct sock *sk, *first = NULL;
2117 	unsigned short hnum = ntohs(uh->dest);
2118 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2119 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2120 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2121 	int dif = skb->dev->ifindex;
2122 	int sdif = inet_sdif(skb);
2123 	struct hlist_node *node;
2124 	struct sk_buff *nskb;
2125 
2126 	if (use_hash2) {
2127 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2128 			    udptable->mask;
2129 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2130 start_lookup:
2131 		hslot = &udptable->hash2[hash2];
2132 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2133 	}
2134 
2135 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2136 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2137 					 uh->source, saddr, dif, sdif, hnum))
2138 			continue;
2139 
2140 		if (!first) {
2141 			first = sk;
2142 			continue;
2143 		}
2144 		nskb = skb_clone(skb, GFP_ATOMIC);
2145 
2146 		if (unlikely(!nskb)) {
2147 			atomic_inc(&sk->sk_drops);
2148 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2149 					IS_UDPLITE(sk));
2150 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2151 					IS_UDPLITE(sk));
2152 			continue;
2153 		}
2154 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2155 			consume_skb(nskb);
2156 	}
2157 
2158 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2159 	if (use_hash2 && hash2 != hash2_any) {
2160 		hash2 = hash2_any;
2161 		goto start_lookup;
2162 	}
2163 
2164 	if (first) {
2165 		if (udp_queue_rcv_skb(first, skb) > 0)
2166 			consume_skb(skb);
2167 	} else {
2168 		kfree_skb(skb);
2169 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2170 				proto == IPPROTO_UDPLITE);
2171 	}
2172 	return 0;
2173 }
2174 
2175 /* Initialize UDP checksum. If exited with zero value (success),
2176  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2177  * Otherwise, csum completion requires chacksumming packet body,
2178  * including udp header and folding it to skb->csum.
2179  */
2180 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2181 				 int proto)
2182 {
2183 	int err;
2184 
2185 	UDP_SKB_CB(skb)->partial_cov = 0;
2186 	UDP_SKB_CB(skb)->cscov = skb->len;
2187 
2188 	if (proto == IPPROTO_UDPLITE) {
2189 		err = udplite_checksum_init(skb, uh);
2190 		if (err)
2191 			return err;
2192 
2193 		if (UDP_SKB_CB(skb)->partial_cov) {
2194 			skb->csum = inet_compute_pseudo(skb, proto);
2195 			return 0;
2196 		}
2197 	}
2198 
2199 	/* Note, we are only interested in != 0 or == 0, thus the
2200 	 * force to int.
2201 	 */
2202 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2203 							inet_compute_pseudo);
2204 	if (err)
2205 		return err;
2206 
2207 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2208 		/* If SW calculated the value, we know it's bad */
2209 		if (skb->csum_complete_sw)
2210 			return 1;
2211 
2212 		/* HW says the value is bad. Let's validate that.
2213 		 * skb->csum is no longer the full packet checksum,
2214 		 * so don't treat it as such.
2215 		 */
2216 		skb_checksum_complete_unset(skb);
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2223  * return code conversion for ip layer consumption
2224  */
2225 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2226 			       struct udphdr *uh)
2227 {
2228 	int ret;
2229 
2230 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2231 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2232 					 inet_compute_pseudo);
2233 
2234 	ret = udp_queue_rcv_skb(sk, skb);
2235 
2236 	/* a return value > 0 means to resubmit the input, but
2237 	 * it wants the return to be -protocol, or 0
2238 	 */
2239 	if (ret > 0)
2240 		return -ret;
2241 	return 0;
2242 }
2243 
2244 /*
2245  *	All we need to do is get the socket, and then do a checksum.
2246  */
2247 
2248 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2249 		   int proto)
2250 {
2251 	struct sock *sk;
2252 	struct udphdr *uh;
2253 	unsigned short ulen;
2254 	struct rtable *rt = skb_rtable(skb);
2255 	__be32 saddr, daddr;
2256 	struct net *net = dev_net(skb->dev);
2257 
2258 	/*
2259 	 *  Validate the packet.
2260 	 */
2261 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2262 		goto drop;		/* No space for header. */
2263 
2264 	uh   = udp_hdr(skb);
2265 	ulen = ntohs(uh->len);
2266 	saddr = ip_hdr(skb)->saddr;
2267 	daddr = ip_hdr(skb)->daddr;
2268 
2269 	if (ulen > skb->len)
2270 		goto short_packet;
2271 
2272 	if (proto == IPPROTO_UDP) {
2273 		/* UDP validates ulen. */
2274 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2275 			goto short_packet;
2276 		uh = udp_hdr(skb);
2277 	}
2278 
2279 	if (udp4_csum_init(skb, uh, proto))
2280 		goto csum_error;
2281 
2282 	sk = skb_steal_sock(skb);
2283 	if (sk) {
2284 		struct dst_entry *dst = skb_dst(skb);
2285 		int ret;
2286 
2287 		if (unlikely(sk->sk_rx_dst != dst))
2288 			udp_sk_rx_dst_set(sk, dst);
2289 
2290 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2291 		sock_put(sk);
2292 		return ret;
2293 	}
2294 
2295 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2296 		return __udp4_lib_mcast_deliver(net, skb, uh,
2297 						saddr, daddr, udptable, proto);
2298 
2299 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2300 	if (sk)
2301 		return udp_unicast_rcv_skb(sk, skb, uh);
2302 
2303 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2304 		goto drop;
2305 	nf_reset(skb);
2306 
2307 	/* No socket. Drop packet silently, if checksum is wrong */
2308 	if (udp_lib_checksum_complete(skb))
2309 		goto csum_error;
2310 
2311 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2312 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2313 
2314 	/*
2315 	 * Hmm.  We got an UDP packet to a port to which we
2316 	 * don't wanna listen.  Ignore it.
2317 	 */
2318 	kfree_skb(skb);
2319 	return 0;
2320 
2321 short_packet:
2322 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2323 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2324 			    &saddr, ntohs(uh->source),
2325 			    ulen, skb->len,
2326 			    &daddr, ntohs(uh->dest));
2327 	goto drop;
2328 
2329 csum_error:
2330 	/*
2331 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2332 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2333 	 */
2334 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2335 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2336 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2337 			    ulen);
2338 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2339 drop:
2340 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2341 	kfree_skb(skb);
2342 	return 0;
2343 }
2344 
2345 /* We can only early demux multicast if there is a single matching socket.
2346  * If more than one socket found returns NULL
2347  */
2348 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2349 						  __be16 loc_port, __be32 loc_addr,
2350 						  __be16 rmt_port, __be32 rmt_addr,
2351 						  int dif, int sdif)
2352 {
2353 	struct sock *sk, *result;
2354 	unsigned short hnum = ntohs(loc_port);
2355 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2356 	struct udp_hslot *hslot = &udp_table.hash[slot];
2357 
2358 	/* Do not bother scanning a too big list */
2359 	if (hslot->count > 10)
2360 		return NULL;
2361 
2362 	result = NULL;
2363 	sk_for_each_rcu(sk, &hslot->head) {
2364 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2365 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2366 			if (result)
2367 				return NULL;
2368 			result = sk;
2369 		}
2370 	}
2371 
2372 	return result;
2373 }
2374 
2375 /* For unicast we should only early demux connected sockets or we can
2376  * break forwarding setups.  The chains here can be long so only check
2377  * if the first socket is an exact match and if not move on.
2378  */
2379 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2380 					    __be16 loc_port, __be32 loc_addr,
2381 					    __be16 rmt_port, __be32 rmt_addr,
2382 					    int dif, int sdif)
2383 {
2384 	unsigned short hnum = ntohs(loc_port);
2385 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2386 	unsigned int slot2 = hash2 & udp_table.mask;
2387 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2388 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2389 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2390 	struct sock *sk;
2391 
2392 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2393 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2394 			       loc_addr, ports, dif, sdif))
2395 			return sk;
2396 		/* Only check first socket in chain */
2397 		break;
2398 	}
2399 	return NULL;
2400 }
2401 
2402 int udp_v4_early_demux(struct sk_buff *skb)
2403 {
2404 	struct net *net = dev_net(skb->dev);
2405 	struct in_device *in_dev = NULL;
2406 	const struct iphdr *iph;
2407 	const struct udphdr *uh;
2408 	struct sock *sk = NULL;
2409 	struct dst_entry *dst;
2410 	int dif = skb->dev->ifindex;
2411 	int sdif = inet_sdif(skb);
2412 	int ours;
2413 
2414 	/* validate the packet */
2415 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2416 		return 0;
2417 
2418 	iph = ip_hdr(skb);
2419 	uh = udp_hdr(skb);
2420 
2421 	if (skb->pkt_type == PACKET_MULTICAST) {
2422 		in_dev = __in_dev_get_rcu(skb->dev);
2423 
2424 		if (!in_dev)
2425 			return 0;
2426 
2427 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2428 				       iph->protocol);
2429 		if (!ours)
2430 			return 0;
2431 
2432 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2433 						   uh->source, iph->saddr,
2434 						   dif, sdif);
2435 	} else if (skb->pkt_type == PACKET_HOST) {
2436 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2437 					     uh->source, iph->saddr, dif, sdif);
2438 	}
2439 
2440 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2441 		return 0;
2442 
2443 	skb->sk = sk;
2444 	skb->destructor = sock_efree;
2445 	dst = READ_ONCE(sk->sk_rx_dst);
2446 
2447 	if (dst)
2448 		dst = dst_check(dst, 0);
2449 	if (dst) {
2450 		u32 itag = 0;
2451 
2452 		/* set noref for now.
2453 		 * any place which wants to hold dst has to call
2454 		 * dst_hold_safe()
2455 		 */
2456 		skb_dst_set_noref(skb, dst);
2457 
2458 		/* for unconnected multicast sockets we need to validate
2459 		 * the source on each packet
2460 		 */
2461 		if (!inet_sk(sk)->inet_daddr && in_dev)
2462 			return ip_mc_validate_source(skb, iph->daddr,
2463 						     iph->saddr, iph->tos,
2464 						     skb->dev, in_dev, &itag);
2465 	}
2466 	return 0;
2467 }
2468 
2469 int udp_rcv(struct sk_buff *skb)
2470 {
2471 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2472 }
2473 
2474 void udp_destroy_sock(struct sock *sk)
2475 {
2476 	struct udp_sock *up = udp_sk(sk);
2477 	bool slow = lock_sock_fast(sk);
2478 	udp_flush_pending_frames(sk);
2479 	unlock_sock_fast(sk, slow);
2480 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2481 		if (up->encap_type) {
2482 			void (*encap_destroy)(struct sock *sk);
2483 			encap_destroy = READ_ONCE(up->encap_destroy);
2484 			if (encap_destroy)
2485 				encap_destroy(sk);
2486 		}
2487 		if (up->encap_enabled)
2488 			static_branch_dec(&udp_encap_needed_key);
2489 	}
2490 }
2491 
2492 /*
2493  *	Socket option code for UDP
2494  */
2495 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2496 		       char __user *optval, unsigned int optlen,
2497 		       int (*push_pending_frames)(struct sock *))
2498 {
2499 	struct udp_sock *up = udp_sk(sk);
2500 	int val, valbool;
2501 	int err = 0;
2502 	int is_udplite = IS_UDPLITE(sk);
2503 
2504 	if (optlen < sizeof(int))
2505 		return -EINVAL;
2506 
2507 	if (get_user(val, (int __user *)optval))
2508 		return -EFAULT;
2509 
2510 	valbool = val ? 1 : 0;
2511 
2512 	switch (optname) {
2513 	case UDP_CORK:
2514 		if (val != 0) {
2515 			up->corkflag = 1;
2516 		} else {
2517 			up->corkflag = 0;
2518 			lock_sock(sk);
2519 			push_pending_frames(sk);
2520 			release_sock(sk);
2521 		}
2522 		break;
2523 
2524 	case UDP_ENCAP:
2525 		switch (val) {
2526 		case 0:
2527 		case UDP_ENCAP_ESPINUDP:
2528 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2529 			up->encap_rcv = xfrm4_udp_encap_rcv;
2530 			/* FALLTHROUGH */
2531 		case UDP_ENCAP_L2TPINUDP:
2532 			up->encap_type = val;
2533 			lock_sock(sk);
2534 			udp_tunnel_encap_enable(sk->sk_socket);
2535 			release_sock(sk);
2536 			break;
2537 		default:
2538 			err = -ENOPROTOOPT;
2539 			break;
2540 		}
2541 		break;
2542 
2543 	case UDP_NO_CHECK6_TX:
2544 		up->no_check6_tx = valbool;
2545 		break;
2546 
2547 	case UDP_NO_CHECK6_RX:
2548 		up->no_check6_rx = valbool;
2549 		break;
2550 
2551 	case UDP_SEGMENT:
2552 		if (val < 0 || val > USHRT_MAX)
2553 			return -EINVAL;
2554 		up->gso_size = val;
2555 		break;
2556 
2557 	case UDP_GRO:
2558 		lock_sock(sk);
2559 		if (valbool)
2560 			udp_tunnel_encap_enable(sk->sk_socket);
2561 		up->gro_enabled = valbool;
2562 		release_sock(sk);
2563 		break;
2564 
2565 	/*
2566 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2567 	 */
2568 	/* The sender sets actual checksum coverage length via this option.
2569 	 * The case coverage > packet length is handled by send module. */
2570 	case UDPLITE_SEND_CSCOV:
2571 		if (!is_udplite)         /* Disable the option on UDP sockets */
2572 			return -ENOPROTOOPT;
2573 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2574 			val = 8;
2575 		else if (val > USHRT_MAX)
2576 			val = USHRT_MAX;
2577 		up->pcslen = val;
2578 		up->pcflag |= UDPLITE_SEND_CC;
2579 		break;
2580 
2581 	/* The receiver specifies a minimum checksum coverage value. To make
2582 	 * sense, this should be set to at least 8 (as done below). If zero is
2583 	 * used, this again means full checksum coverage.                     */
2584 	case UDPLITE_RECV_CSCOV:
2585 		if (!is_udplite)         /* Disable the option on UDP sockets */
2586 			return -ENOPROTOOPT;
2587 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2588 			val = 8;
2589 		else if (val > USHRT_MAX)
2590 			val = USHRT_MAX;
2591 		up->pcrlen = val;
2592 		up->pcflag |= UDPLITE_RECV_CC;
2593 		break;
2594 
2595 	default:
2596 		err = -ENOPROTOOPT;
2597 		break;
2598 	}
2599 
2600 	return err;
2601 }
2602 EXPORT_SYMBOL(udp_lib_setsockopt);
2603 
2604 int udp_setsockopt(struct sock *sk, int level, int optname,
2605 		   char __user *optval, unsigned int optlen)
2606 {
2607 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2608 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2609 					  udp_push_pending_frames);
2610 	return ip_setsockopt(sk, level, optname, optval, optlen);
2611 }
2612 
2613 #ifdef CONFIG_COMPAT
2614 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2615 			  char __user *optval, unsigned int optlen)
2616 {
2617 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2618 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2619 					  udp_push_pending_frames);
2620 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2621 }
2622 #endif
2623 
2624 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2625 		       char __user *optval, int __user *optlen)
2626 {
2627 	struct udp_sock *up = udp_sk(sk);
2628 	int val, len;
2629 
2630 	if (get_user(len, optlen))
2631 		return -EFAULT;
2632 
2633 	len = min_t(unsigned int, len, sizeof(int));
2634 
2635 	if (len < 0)
2636 		return -EINVAL;
2637 
2638 	switch (optname) {
2639 	case UDP_CORK:
2640 		val = up->corkflag;
2641 		break;
2642 
2643 	case UDP_ENCAP:
2644 		val = up->encap_type;
2645 		break;
2646 
2647 	case UDP_NO_CHECK6_TX:
2648 		val = up->no_check6_tx;
2649 		break;
2650 
2651 	case UDP_NO_CHECK6_RX:
2652 		val = up->no_check6_rx;
2653 		break;
2654 
2655 	case UDP_SEGMENT:
2656 		val = up->gso_size;
2657 		break;
2658 
2659 	/* The following two cannot be changed on UDP sockets, the return is
2660 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2661 	case UDPLITE_SEND_CSCOV:
2662 		val = up->pcslen;
2663 		break;
2664 
2665 	case UDPLITE_RECV_CSCOV:
2666 		val = up->pcrlen;
2667 		break;
2668 
2669 	default:
2670 		return -ENOPROTOOPT;
2671 	}
2672 
2673 	if (put_user(len, optlen))
2674 		return -EFAULT;
2675 	if (copy_to_user(optval, &val, len))
2676 		return -EFAULT;
2677 	return 0;
2678 }
2679 EXPORT_SYMBOL(udp_lib_getsockopt);
2680 
2681 int udp_getsockopt(struct sock *sk, int level, int optname,
2682 		   char __user *optval, int __user *optlen)
2683 {
2684 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2685 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2686 	return ip_getsockopt(sk, level, optname, optval, optlen);
2687 }
2688 
2689 #ifdef CONFIG_COMPAT
2690 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2691 				 char __user *optval, int __user *optlen)
2692 {
2693 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2694 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2695 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2696 }
2697 #endif
2698 /**
2699  * 	udp_poll - wait for a UDP event.
2700  *	@file - file struct
2701  *	@sock - socket
2702  *	@wait - poll table
2703  *
2704  *	This is same as datagram poll, except for the special case of
2705  *	blocking sockets. If application is using a blocking fd
2706  *	and a packet with checksum error is in the queue;
2707  *	then it could get return from select indicating data available
2708  *	but then block when reading it. Add special case code
2709  *	to work around these arguably broken applications.
2710  */
2711 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2712 {
2713 	__poll_t mask = datagram_poll(file, sock, wait);
2714 	struct sock *sk = sock->sk;
2715 
2716 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2717 		mask |= EPOLLIN | EPOLLRDNORM;
2718 
2719 	/* Check for false positives due to checksum errors */
2720 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2721 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2722 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2723 
2724 	return mask;
2725 
2726 }
2727 EXPORT_SYMBOL(udp_poll);
2728 
2729 int udp_abort(struct sock *sk, int err)
2730 {
2731 	lock_sock(sk);
2732 
2733 	sk->sk_err = err;
2734 	sk->sk_error_report(sk);
2735 	__udp_disconnect(sk, 0);
2736 
2737 	release_sock(sk);
2738 
2739 	return 0;
2740 }
2741 EXPORT_SYMBOL_GPL(udp_abort);
2742 
2743 struct proto udp_prot = {
2744 	.name			= "UDP",
2745 	.owner			= THIS_MODULE,
2746 	.close			= udp_lib_close,
2747 	.pre_connect		= udp_pre_connect,
2748 	.connect		= ip4_datagram_connect,
2749 	.disconnect		= udp_disconnect,
2750 	.ioctl			= udp_ioctl,
2751 	.init			= udp_init_sock,
2752 	.destroy		= udp_destroy_sock,
2753 	.setsockopt		= udp_setsockopt,
2754 	.getsockopt		= udp_getsockopt,
2755 	.sendmsg		= udp_sendmsg,
2756 	.recvmsg		= udp_recvmsg,
2757 	.sendpage		= udp_sendpage,
2758 	.release_cb		= ip4_datagram_release_cb,
2759 	.hash			= udp_lib_hash,
2760 	.unhash			= udp_lib_unhash,
2761 	.rehash			= udp_v4_rehash,
2762 	.get_port		= udp_v4_get_port,
2763 	.memory_allocated	= &udp_memory_allocated,
2764 	.sysctl_mem		= sysctl_udp_mem,
2765 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2766 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2767 	.obj_size		= sizeof(struct udp_sock),
2768 	.h.udp_table		= &udp_table,
2769 #ifdef CONFIG_COMPAT
2770 	.compat_setsockopt	= compat_udp_setsockopt,
2771 	.compat_getsockopt	= compat_udp_getsockopt,
2772 #endif
2773 	.diag_destroy		= udp_abort,
2774 };
2775 EXPORT_SYMBOL(udp_prot);
2776 
2777 /* ------------------------------------------------------------------------ */
2778 #ifdef CONFIG_PROC_FS
2779 
2780 static struct sock *udp_get_first(struct seq_file *seq, int start)
2781 {
2782 	struct sock *sk;
2783 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2784 	struct udp_iter_state *state = seq->private;
2785 	struct net *net = seq_file_net(seq);
2786 
2787 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2788 	     ++state->bucket) {
2789 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2790 
2791 		if (hlist_empty(&hslot->head))
2792 			continue;
2793 
2794 		spin_lock_bh(&hslot->lock);
2795 		sk_for_each(sk, &hslot->head) {
2796 			if (!net_eq(sock_net(sk), net))
2797 				continue;
2798 			if (sk->sk_family == afinfo->family)
2799 				goto found;
2800 		}
2801 		spin_unlock_bh(&hslot->lock);
2802 	}
2803 	sk = NULL;
2804 found:
2805 	return sk;
2806 }
2807 
2808 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2809 {
2810 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2811 	struct udp_iter_state *state = seq->private;
2812 	struct net *net = seq_file_net(seq);
2813 
2814 	do {
2815 		sk = sk_next(sk);
2816 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2817 
2818 	if (!sk) {
2819 		if (state->bucket <= afinfo->udp_table->mask)
2820 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2821 		return udp_get_first(seq, state->bucket + 1);
2822 	}
2823 	return sk;
2824 }
2825 
2826 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2827 {
2828 	struct sock *sk = udp_get_first(seq, 0);
2829 
2830 	if (sk)
2831 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2832 			--pos;
2833 	return pos ? NULL : sk;
2834 }
2835 
2836 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2837 {
2838 	struct udp_iter_state *state = seq->private;
2839 	state->bucket = MAX_UDP_PORTS;
2840 
2841 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2842 }
2843 EXPORT_SYMBOL(udp_seq_start);
2844 
2845 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2846 {
2847 	struct sock *sk;
2848 
2849 	if (v == SEQ_START_TOKEN)
2850 		sk = udp_get_idx(seq, 0);
2851 	else
2852 		sk = udp_get_next(seq, v);
2853 
2854 	++*pos;
2855 	return sk;
2856 }
2857 EXPORT_SYMBOL(udp_seq_next);
2858 
2859 void udp_seq_stop(struct seq_file *seq, void *v)
2860 {
2861 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2862 	struct udp_iter_state *state = seq->private;
2863 
2864 	if (state->bucket <= afinfo->udp_table->mask)
2865 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2866 }
2867 EXPORT_SYMBOL(udp_seq_stop);
2868 
2869 /* ------------------------------------------------------------------------ */
2870 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2871 		int bucket)
2872 {
2873 	struct inet_sock *inet = inet_sk(sp);
2874 	__be32 dest = inet->inet_daddr;
2875 	__be32 src  = inet->inet_rcv_saddr;
2876 	__u16 destp	  = ntohs(inet->inet_dport);
2877 	__u16 srcp	  = ntohs(inet->inet_sport);
2878 
2879 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2880 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2881 		bucket, src, srcp, dest, destp, sp->sk_state,
2882 		sk_wmem_alloc_get(sp),
2883 		udp_rqueue_get(sp),
2884 		0, 0L, 0,
2885 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2886 		0, sock_i_ino(sp),
2887 		refcount_read(&sp->sk_refcnt), sp,
2888 		atomic_read(&sp->sk_drops));
2889 }
2890 
2891 int udp4_seq_show(struct seq_file *seq, void *v)
2892 {
2893 	seq_setwidth(seq, 127);
2894 	if (v == SEQ_START_TOKEN)
2895 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2896 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2897 			   "inode ref pointer drops");
2898 	else {
2899 		struct udp_iter_state *state = seq->private;
2900 
2901 		udp4_format_sock(v, seq, state->bucket);
2902 	}
2903 	seq_pad(seq, '\n');
2904 	return 0;
2905 }
2906 
2907 const struct seq_operations udp_seq_ops = {
2908 	.start		= udp_seq_start,
2909 	.next		= udp_seq_next,
2910 	.stop		= udp_seq_stop,
2911 	.show		= udp4_seq_show,
2912 };
2913 EXPORT_SYMBOL(udp_seq_ops);
2914 
2915 static struct udp_seq_afinfo udp4_seq_afinfo = {
2916 	.family		= AF_INET,
2917 	.udp_table	= &udp_table,
2918 };
2919 
2920 static int __net_init udp4_proc_init_net(struct net *net)
2921 {
2922 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2923 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2924 		return -ENOMEM;
2925 	return 0;
2926 }
2927 
2928 static void __net_exit udp4_proc_exit_net(struct net *net)
2929 {
2930 	remove_proc_entry("udp", net->proc_net);
2931 }
2932 
2933 static struct pernet_operations udp4_net_ops = {
2934 	.init = udp4_proc_init_net,
2935 	.exit = udp4_proc_exit_net,
2936 };
2937 
2938 int __init udp4_proc_init(void)
2939 {
2940 	return register_pernet_subsys(&udp4_net_ops);
2941 }
2942 
2943 void udp4_proc_exit(void)
2944 {
2945 	unregister_pernet_subsys(&udp4_net_ops);
2946 }
2947 #endif /* CONFIG_PROC_FS */
2948 
2949 static __initdata unsigned long uhash_entries;
2950 static int __init set_uhash_entries(char *str)
2951 {
2952 	ssize_t ret;
2953 
2954 	if (!str)
2955 		return 0;
2956 
2957 	ret = kstrtoul(str, 0, &uhash_entries);
2958 	if (ret)
2959 		return 0;
2960 
2961 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2962 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2963 	return 1;
2964 }
2965 __setup("uhash_entries=", set_uhash_entries);
2966 
2967 void __init udp_table_init(struct udp_table *table, const char *name)
2968 {
2969 	unsigned int i;
2970 
2971 	table->hash = alloc_large_system_hash(name,
2972 					      2 * sizeof(struct udp_hslot),
2973 					      uhash_entries,
2974 					      21, /* one slot per 2 MB */
2975 					      0,
2976 					      &table->log,
2977 					      &table->mask,
2978 					      UDP_HTABLE_SIZE_MIN,
2979 					      64 * 1024);
2980 
2981 	table->hash2 = table->hash + (table->mask + 1);
2982 	for (i = 0; i <= table->mask; i++) {
2983 		INIT_HLIST_HEAD(&table->hash[i].head);
2984 		table->hash[i].count = 0;
2985 		spin_lock_init(&table->hash[i].lock);
2986 	}
2987 	for (i = 0; i <= table->mask; i++) {
2988 		INIT_HLIST_HEAD(&table->hash2[i].head);
2989 		table->hash2[i].count = 0;
2990 		spin_lock_init(&table->hash2[i].lock);
2991 	}
2992 }
2993 
2994 u32 udp_flow_hashrnd(void)
2995 {
2996 	static u32 hashrnd __read_mostly;
2997 
2998 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2999 
3000 	return hashrnd;
3001 }
3002 EXPORT_SYMBOL(udp_flow_hashrnd);
3003 
3004 static void __udp_sysctl_init(struct net *net)
3005 {
3006 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3007 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3008 
3009 #ifdef CONFIG_NET_L3_MASTER_DEV
3010 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3011 #endif
3012 }
3013 
3014 static int __net_init udp_sysctl_init(struct net *net)
3015 {
3016 	__udp_sysctl_init(net);
3017 	return 0;
3018 }
3019 
3020 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3021 	.init	= udp_sysctl_init,
3022 };
3023 
3024 void __init udp_init(void)
3025 {
3026 	unsigned long limit;
3027 	unsigned int i;
3028 
3029 	udp_table_init(&udp_table, "UDP");
3030 	limit = nr_free_buffer_pages() / 8;
3031 	limit = max(limit, 128UL);
3032 	sysctl_udp_mem[0] = limit / 4 * 3;
3033 	sysctl_udp_mem[1] = limit;
3034 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3035 
3036 	__udp_sysctl_init(&init_net);
3037 
3038 	/* 16 spinlocks per cpu */
3039 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3040 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3041 				GFP_KERNEL);
3042 	if (!udp_busylocks)
3043 		panic("UDP: failed to alloc udp_busylocks\n");
3044 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3045 		spin_lock_init(udp_busylocks + i);
3046 
3047 	if (register_pernet_subsys(&udp_sysctl_ops))
3048 		panic("UDP: failed to init sysctl parameters.\n");
3049 }
3050