xref: /openbmc/linux/net/ipv4/udp.c (revision b34e08d5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124 
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127 
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk,
138 			       int (*saddr_comp)(const struct sock *sk1,
139 						 const struct sock *sk2),
140 			       unsigned int log)
141 {
142 	struct sock *sk2;
143 	struct hlist_nulls_node *node;
144 	kuid_t uid = sock_i_uid(sk);
145 
146 	sk_nulls_for_each(sk2, node, &hslot->head)
147 		if (net_eq(sock_net(sk2), net) &&
148 		    sk2 != sk &&
149 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
151 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 		      !uid_eq(uid, sock_i_uid(sk2))) &&
155 		    (*saddr_comp)(sk, sk2)) {
156 			if (bitmap)
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			else
160 				return 1;
161 		}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 			       struct udp_hslot *hslot2,
171 			       struct sock *sk,
172 			       int (*saddr_comp)(const struct sock *sk1,
173 						 const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		      !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    (*saddr_comp)(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 /**
199  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
200  *
201  *  @sk:          socket struct in question
202  *  @snum:        port number to look up
203  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
204  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205  *                   with NULL address
206  */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 		       int (*saddr_comp)(const struct sock *sk1,
209 					 const struct sock *sk2),
210 		     unsigned int hash2_nulladdr)
211 {
212 	struct udp_hslot *hslot, *hslot2;
213 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 	int    error = 1;
215 	struct net *net = sock_net(sk);
216 
217 	if (!snum) {
218 		int low, high, remaining;
219 		unsigned int rand;
220 		unsigned short first, last;
221 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222 
223 		inet_get_local_port_range(net, &low, &high);
224 		remaining = (high - low) + 1;
225 
226 		rand = prandom_u32();
227 		first = (((u64)rand * remaining) >> 32) + low;
228 		/*
229 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 		 */
231 		rand = (rand | 1) * (udptable->mask + 1);
232 		last = first + udptable->mask + 1;
233 		do {
234 			hslot = udp_hashslot(udptable, net, first);
235 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 			spin_lock_bh(&hslot->lock);
237 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 					    saddr_comp, udptable->log);
239 
240 			snum = first;
241 			/*
242 			 * Iterate on all possible values of snum for this hash.
243 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 			 * give us randomization and full range coverage.
245 			 */
246 			do {
247 				if (low <= snum && snum <= high &&
248 				    !test_bit(snum >> udptable->log, bitmap) &&
249 				    !inet_is_reserved_local_port(snum))
250 					goto found;
251 				snum += rand;
252 			} while (snum != first);
253 			spin_unlock_bh(&hslot->lock);
254 		} while (++first != last);
255 		goto fail;
256 	} else {
257 		hslot = udp_hashslot(udptable, net, snum);
258 		spin_lock_bh(&hslot->lock);
259 		if (hslot->count > 10) {
260 			int exist;
261 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262 
263 			slot2          &= udptable->mask;
264 			hash2_nulladdr &= udptable->mask;
265 
266 			hslot2 = udp_hashslot2(udptable, slot2);
267 			if (hslot->count < hslot2->count)
268 				goto scan_primary_hash;
269 
270 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 						     sk, saddr_comp);
272 			if (!exist && (hash2_nulladdr != slot2)) {
273 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 							     sk, saddr_comp);
276 			}
277 			if (exist)
278 				goto fail_unlock;
279 			else
280 				goto found;
281 		}
282 scan_primary_hash:
283 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 					saddr_comp, 0))
285 			goto fail_unlock;
286 	}
287 found:
288 	inet_sk(sk)->inet_num = snum;
289 	udp_sk(sk)->udp_port_hash = snum;
290 	udp_sk(sk)->udp_portaddr_hash ^= snum;
291 	if (sk_unhashed(sk)) {
292 		sk_nulls_add_node_rcu(sk, &hslot->head);
293 		hslot->count++;
294 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295 
296 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 		spin_lock(&hslot2->lock);
298 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 					 &hslot2->head);
300 		hslot2->count++;
301 		spin_unlock(&hslot2->lock);
302 	}
303 	error = 0;
304 fail_unlock:
305 	spin_unlock_bh(&hslot->lock);
306 fail:
307 	return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310 
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314 
315 	return 	(!ipv6_only_sock(sk2)  &&
316 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319 
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 				       unsigned int port)
322 {
323 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325 
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 	unsigned int hash2_nulladdr =
329 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 	unsigned int hash2_partial =
331 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332 
333 	/* precompute partial secondary hash */
334 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337 
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 			 unsigned short hnum,
340 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 	int score = -1;
343 
344 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 			!ipv6_only_sock(sk)) {
346 		struct inet_sock *inet = inet_sk(sk);
347 
348 		score = (sk->sk_family == PF_INET ? 2 : 1);
349 		if (inet->inet_rcv_saddr) {
350 			if (inet->inet_rcv_saddr != daddr)
351 				return -1;
352 			score += 4;
353 		}
354 		if (inet->inet_daddr) {
355 			if (inet->inet_daddr != saddr)
356 				return -1;
357 			score += 4;
358 		}
359 		if (inet->inet_dport) {
360 			if (inet->inet_dport != sport)
361 				return -1;
362 			score += 4;
363 		}
364 		if (sk->sk_bound_dev_if) {
365 			if (sk->sk_bound_dev_if != dif)
366 				return -1;
367 			score += 4;
368 		}
369 	}
370 	return score;
371 }
372 
373 /*
374  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375  */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 				 __be32 saddr, __be16 sport,
378 				 __be32 daddr, unsigned int hnum, int dif)
379 {
380 	int score = -1;
381 
382 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 		struct inet_sock *inet = inet_sk(sk);
384 
385 		if (inet->inet_rcv_saddr != daddr)
386 			return -1;
387 		if (inet->inet_num != hnum)
388 			return -1;
389 
390 		score = (sk->sk_family == PF_INET ? 2 : 1);
391 		if (inet->inet_daddr) {
392 			if (inet->inet_daddr != saddr)
393 				return -1;
394 			score += 4;
395 		}
396 		if (inet->inet_dport) {
397 			if (inet->inet_dport != sport)
398 				return -1;
399 			score += 4;
400 		}
401 		if (sk->sk_bound_dev_if) {
402 			if (sk->sk_bound_dev_if != dif)
403 				return -1;
404 			score += 4;
405 		}
406 	}
407 	return score;
408 }
409 
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 				 const __u16 lport, const __be32 faddr,
412 				 const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 		__be32 saddr, __be16 sport,
426 		__be32 daddr, unsigned int hnum, int dif,
427 		struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 	struct sock *sk, *result;
430 	struct hlist_nulls_node *node;
431 	int score, badness, matches = 0, reuseport = 0;
432 	u32 hash = 0;
433 
434 begin:
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 		score = compute_score2(sk, net, saddr, sport,
439 				      daddr, hnum, dif);
440 		if (score > badness) {
441 			result = sk;
442 			badness = score;
443 			reuseport = sk->sk_reuseport;
444 			if (reuseport) {
445 				hash = udp_ehashfn(net, daddr, hnum,
446 						   saddr, sport);
447 				matches = 1;
448 			}
449 		} else if (score == badness && reuseport) {
450 			matches++;
451 			if (((u64)hash * matches) >> 32 == 0)
452 				result = sk;
453 			hash = next_pseudo_random32(hash);
454 		}
455 	}
456 	/*
457 	 * if the nulls value we got at the end of this lookup is
458 	 * not the expected one, we must restart lookup.
459 	 * We probably met an item that was moved to another chain.
460 	 */
461 	if (get_nulls_value(node) != slot2)
462 		goto begin;
463 	if (result) {
464 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 			result = NULL;
466 		else if (unlikely(compute_score2(result, net, saddr, sport,
467 				  daddr, hnum, dif) < badness)) {
468 			sock_put(result);
469 			goto begin;
470 		}
471 	}
472 	return result;
473 }
474 
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476  * harder than this. -DaveM
477  */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 		__be16 sport, __be32 daddr, __be16 dport,
480 		int dif, struct udp_table *udptable)
481 {
482 	struct sock *sk, *result;
483 	struct hlist_nulls_node *node;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	int score, badness, matches = 0, reuseport = 0;
488 	u32 hash = 0;
489 
490 	rcu_read_lock();
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  hslot2, slot2);
501 		if (!result) {
502 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 			slot2 = hash2 & udptable->mask;
504 			hslot2 = &udptable->hash2[slot2];
505 			if (hslot->count < hslot2->count)
506 				goto begin;
507 
508 			result = udp4_lib_lookup2(net, saddr, sport,
509 						  htonl(INADDR_ANY), hnum, dif,
510 						  hslot2, slot2);
511 		}
512 		rcu_read_unlock();
513 		return result;
514 	}
515 begin:
516 	result = NULL;
517 	badness = 0;
518 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 		score = compute_score(sk, net, saddr, hnum, sport,
520 				      daddr, dport, dif);
521 		if (score > badness) {
522 			result = sk;
523 			badness = score;
524 			reuseport = sk->sk_reuseport;
525 			if (reuseport) {
526 				hash = udp_ehashfn(net, daddr, hnum,
527 						   saddr, sport);
528 				matches = 1;
529 			}
530 		} else if (score == badness && reuseport) {
531 			matches++;
532 			if (((u64)hash * matches) >> 32 == 0)
533 				result = sk;
534 			hash = next_pseudo_random32(hash);
535 		}
536 	}
537 	/*
538 	 * if the nulls value we got at the end of this lookup is
539 	 * not the expected one, we must restart lookup.
540 	 * We probably met an item that was moved to another chain.
541 	 */
542 	if (get_nulls_value(node) != slot)
543 		goto begin;
544 
545 	if (result) {
546 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 			result = NULL;
548 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 				  daddr, dport, dif) < badness)) {
550 			sock_put(result);
551 			goto begin;
552 		}
553 	}
554 	rcu_read_unlock();
555 	return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558 
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 						 __be16 sport, __be16 dport,
561 						 struct udp_table *udptable)
562 {
563 	const struct iphdr *iph = ip_hdr(skb);
564 
565 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 				 iph->daddr, dport, inet_iif(skb),
567 				 udptable);
568 }
569 
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 			     __be32 daddr, __be16 dport, int dif)
572 {
573 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576 
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 				       __be16 loc_port, __be32 loc_addr,
579 				       __be16 rmt_port, __be32 rmt_addr,
580 				       int dif, unsigned short hnum)
581 {
582 	struct inet_sock *inet = inet_sk(sk);
583 
584 	if (!net_eq(sock_net(sk), net) ||
585 	    udp_sk(sk)->udp_port_hash != hnum ||
586 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 	    ipv6_only_sock(sk) ||
590 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 		return false;
592 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 		return false;
594 	return true;
595 }
596 
597 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
598 					     __be16 loc_port, __be32 loc_addr,
599 					     __be16 rmt_port, __be32 rmt_addr,
600 					     int dif)
601 {
602 	struct hlist_nulls_node *node;
603 	struct sock *s = sk;
604 	unsigned short hnum = ntohs(loc_port);
605 
606 	sk_nulls_for_each_from(s, node) {
607 		if (__udp_is_mcast_sock(net, s,
608 					loc_port, loc_addr,
609 					rmt_port, rmt_addr,
610 					dif, hnum))
611 			goto found;
612 	}
613 	s = NULL;
614 found:
615 	return s;
616 }
617 
618 /*
619  * This routine is called by the ICMP module when it gets some
620  * sort of error condition.  If err < 0 then the socket should
621  * be closed and the error returned to the user.  If err > 0
622  * it's just the icmp type << 8 | icmp code.
623  * Header points to the ip header of the error packet. We move
624  * on past this. Then (as it used to claim before adjustment)
625  * header points to the first 8 bytes of the udp header.  We need
626  * to find the appropriate port.
627  */
628 
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 	struct inet_sock *inet;
632 	const struct iphdr *iph = (const struct iphdr *)skb->data;
633 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 	const int type = icmp_hdr(skb)->type;
635 	const int code = icmp_hdr(skb)->code;
636 	struct sock *sk;
637 	int harderr;
638 	int err;
639 	struct net *net = dev_net(skb->dev);
640 
641 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
643 	if (sk == NULL) {
644 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
645 		return;	/* No socket for error */
646 	}
647 
648 	err = 0;
649 	harderr = 0;
650 	inet = inet_sk(sk);
651 
652 	switch (type) {
653 	default:
654 	case ICMP_TIME_EXCEEDED:
655 		err = EHOSTUNREACH;
656 		break;
657 	case ICMP_SOURCE_QUENCH:
658 		goto out;
659 	case ICMP_PARAMETERPROB:
660 		err = EPROTO;
661 		harderr = 1;
662 		break;
663 	case ICMP_DEST_UNREACH:
664 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 			ipv4_sk_update_pmtu(skb, sk, info);
666 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 				err = EMSGSIZE;
668 				harderr = 1;
669 				break;
670 			}
671 			goto out;
672 		}
673 		err = EHOSTUNREACH;
674 		if (code <= NR_ICMP_UNREACH) {
675 			harderr = icmp_err_convert[code].fatal;
676 			err = icmp_err_convert[code].errno;
677 		}
678 		break;
679 	case ICMP_REDIRECT:
680 		ipv4_sk_redirect(skb, sk);
681 		goto out;
682 	}
683 
684 	/*
685 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
686 	 *	4.1.3.3.
687 	 */
688 	if (!inet->recverr) {
689 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 			goto out;
691 	} else
692 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693 
694 	sk->sk_err = err;
695 	sk->sk_error_report(sk);
696 out:
697 	sock_put(sk);
698 }
699 
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 	__udp4_lib_err(skb, info, &udp_table);
703 }
704 
705 /*
706  * Throw away all pending data and cancel the corking. Socket is locked.
707  */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 	struct udp_sock *up = udp_sk(sk);
711 
712 	if (up->pending) {
713 		up->len = 0;
714 		up->pending = 0;
715 		ip_flush_pending_frames(sk);
716 	}
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719 
720 /**
721  * 	udp4_hwcsum  -  handle outgoing HW checksumming
722  * 	@skb: 	sk_buff containing the filled-in UDP header
723  * 	        (checksum field must be zeroed out)
724  *	@src:	source IP address
725  *	@dst:	destination IP address
726  */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 	struct udphdr *uh = udp_hdr(skb);
730 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
731 	int offset = skb_transport_offset(skb);
732 	int len = skb->len - offset;
733 	int hlen = len;
734 	__wsum csum = 0;
735 
736 	if (!frags) {
737 		/*
738 		 * Only one fragment on the socket.
739 		 */
740 		skb->csum_start = skb_transport_header(skb) - skb->head;
741 		skb->csum_offset = offsetof(struct udphdr, check);
742 		uh->check = ~csum_tcpudp_magic(src, dst, len,
743 					       IPPROTO_UDP, 0);
744 	} else {
745 		/*
746 		 * HW-checksum won't work as there are two or more
747 		 * fragments on the socket so that all csums of sk_buffs
748 		 * should be together
749 		 */
750 		do {
751 			csum = csum_add(csum, frags->csum);
752 			hlen -= frags->len;
753 		} while ((frags = frags->next));
754 
755 		csum = skb_checksum(skb, offset, hlen, csum);
756 		skb->ip_summed = CHECKSUM_NONE;
757 
758 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
759 		if (uh->check == 0)
760 			uh->check = CSUM_MANGLED_0;
761 	}
762 }
763 EXPORT_SYMBOL_GPL(udp4_hwcsum);
764 
765 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
766 {
767 	struct sock *sk = skb->sk;
768 	struct inet_sock *inet = inet_sk(sk);
769 	struct udphdr *uh;
770 	int err = 0;
771 	int is_udplite = IS_UDPLITE(sk);
772 	int offset = skb_transport_offset(skb);
773 	int len = skb->len - offset;
774 	__wsum csum = 0;
775 
776 	/*
777 	 * Create a UDP header
778 	 */
779 	uh = udp_hdr(skb);
780 	uh->source = inet->inet_sport;
781 	uh->dest = fl4->fl4_dport;
782 	uh->len = htons(len);
783 	uh->check = 0;
784 
785 	if (is_udplite)  				 /*     UDP-Lite      */
786 		csum = udplite_csum(skb);
787 
788 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
789 
790 		skb->ip_summed = CHECKSUM_NONE;
791 		goto send;
792 
793 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
794 
795 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
796 		goto send;
797 
798 	} else
799 		csum = udp_csum(skb);
800 
801 	/* add protocol-dependent pseudo-header */
802 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
803 				      sk->sk_protocol, csum);
804 	if (uh->check == 0)
805 		uh->check = CSUM_MANGLED_0;
806 
807 send:
808 	err = ip_send_skb(sock_net(sk), skb);
809 	if (err) {
810 		if (err == -ENOBUFS && !inet->recverr) {
811 			UDP_INC_STATS_USER(sock_net(sk),
812 					   UDP_MIB_SNDBUFERRORS, is_udplite);
813 			err = 0;
814 		}
815 	} else
816 		UDP_INC_STATS_USER(sock_net(sk),
817 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
818 	return err;
819 }
820 
821 /*
822  * Push out all pending data as one UDP datagram. Socket is locked.
823  */
824 int udp_push_pending_frames(struct sock *sk)
825 {
826 	struct udp_sock  *up = udp_sk(sk);
827 	struct inet_sock *inet = inet_sk(sk);
828 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
829 	struct sk_buff *skb;
830 	int err = 0;
831 
832 	skb = ip_finish_skb(sk, fl4);
833 	if (!skb)
834 		goto out;
835 
836 	err = udp_send_skb(skb, fl4);
837 
838 out:
839 	up->len = 0;
840 	up->pending = 0;
841 	return err;
842 }
843 EXPORT_SYMBOL(udp_push_pending_frames);
844 
845 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
846 		size_t len)
847 {
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct udp_sock *up = udp_sk(sk);
850 	struct flowi4 fl4_stack;
851 	struct flowi4 *fl4;
852 	int ulen = len;
853 	struct ipcm_cookie ipc;
854 	struct rtable *rt = NULL;
855 	int free = 0;
856 	int connected = 0;
857 	__be32 daddr, faddr, saddr;
858 	__be16 dport;
859 	u8  tos;
860 	int err, is_udplite = IS_UDPLITE(sk);
861 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 	struct sk_buff *skb;
864 	struct ip_options_data opt_copy;
865 
866 	if (len > 0xFFFF)
867 		return -EMSGSIZE;
868 
869 	/*
870 	 *	Check the flags.
871 	 */
872 
873 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 		return -EOPNOTSUPP;
875 
876 	ipc.opt = NULL;
877 	ipc.tx_flags = 0;
878 	ipc.ttl = 0;
879 	ipc.tos = -1;
880 
881 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
882 
883 	fl4 = &inet->cork.fl.u.ip4;
884 	if (up->pending) {
885 		/*
886 		 * There are pending frames.
887 		 * The socket lock must be held while it's corked.
888 		 */
889 		lock_sock(sk);
890 		if (likely(up->pending)) {
891 			if (unlikely(up->pending != AF_INET)) {
892 				release_sock(sk);
893 				return -EINVAL;
894 			}
895 			goto do_append_data;
896 		}
897 		release_sock(sk);
898 	}
899 	ulen += sizeof(struct udphdr);
900 
901 	/*
902 	 *	Get and verify the address.
903 	 */
904 	if (msg->msg_name) {
905 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 		if (msg->msg_namelen < sizeof(*usin))
907 			return -EINVAL;
908 		if (usin->sin_family != AF_INET) {
909 			if (usin->sin_family != AF_UNSPEC)
910 				return -EAFNOSUPPORT;
911 		}
912 
913 		daddr = usin->sin_addr.s_addr;
914 		dport = usin->sin_port;
915 		if (dport == 0)
916 			return -EINVAL;
917 	} else {
918 		if (sk->sk_state != TCP_ESTABLISHED)
919 			return -EDESTADDRREQ;
920 		daddr = inet->inet_daddr;
921 		dport = inet->inet_dport;
922 		/* Open fast path for connected socket.
923 		   Route will not be used, if at least one option is set.
924 		 */
925 		connected = 1;
926 	}
927 	ipc.addr = inet->inet_saddr;
928 
929 	ipc.oif = sk->sk_bound_dev_if;
930 
931 	sock_tx_timestamp(sk, &ipc.tx_flags);
932 
933 	if (msg->msg_controllen) {
934 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
935 				   sk->sk_family == AF_INET6);
936 		if (err)
937 			return err;
938 		if (ipc.opt)
939 			free = 1;
940 		connected = 0;
941 	}
942 	if (!ipc.opt) {
943 		struct ip_options_rcu *inet_opt;
944 
945 		rcu_read_lock();
946 		inet_opt = rcu_dereference(inet->inet_opt);
947 		if (inet_opt) {
948 			memcpy(&opt_copy, inet_opt,
949 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
950 			ipc.opt = &opt_copy.opt;
951 		}
952 		rcu_read_unlock();
953 	}
954 
955 	saddr = ipc.addr;
956 	ipc.addr = faddr = daddr;
957 
958 	if (ipc.opt && ipc.opt->opt.srr) {
959 		if (!daddr)
960 			return -EINVAL;
961 		faddr = ipc.opt->opt.faddr;
962 		connected = 0;
963 	}
964 	tos = get_rttos(&ipc, inet);
965 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
966 	    (msg->msg_flags & MSG_DONTROUTE) ||
967 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
968 		tos |= RTO_ONLINK;
969 		connected = 0;
970 	}
971 
972 	if (ipv4_is_multicast(daddr)) {
973 		if (!ipc.oif)
974 			ipc.oif = inet->mc_index;
975 		if (!saddr)
976 			saddr = inet->mc_addr;
977 		connected = 0;
978 	} else if (!ipc.oif)
979 		ipc.oif = inet->uc_index;
980 
981 	if (connected)
982 		rt = (struct rtable *)sk_dst_check(sk, 0);
983 
984 	if (rt == NULL) {
985 		struct net *net = sock_net(sk);
986 
987 		fl4 = &fl4_stack;
988 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
989 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
990 				   inet_sk_flowi_flags(sk),
991 				   faddr, saddr, dport, inet->inet_sport);
992 
993 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
994 		rt = ip_route_output_flow(net, fl4, sk);
995 		if (IS_ERR(rt)) {
996 			err = PTR_ERR(rt);
997 			rt = NULL;
998 			if (err == -ENETUNREACH)
999 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1000 			goto out;
1001 		}
1002 
1003 		err = -EACCES;
1004 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1005 		    !sock_flag(sk, SOCK_BROADCAST))
1006 			goto out;
1007 		if (connected)
1008 			sk_dst_set(sk, dst_clone(&rt->dst));
1009 	}
1010 
1011 	if (msg->msg_flags&MSG_CONFIRM)
1012 		goto do_confirm;
1013 back_from_confirm:
1014 
1015 	saddr = fl4->saddr;
1016 	if (!ipc.addr)
1017 		daddr = ipc.addr = fl4->daddr;
1018 
1019 	/* Lockless fast path for the non-corking case. */
1020 	if (!corkreq) {
1021 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1022 				  sizeof(struct udphdr), &ipc, &rt,
1023 				  msg->msg_flags);
1024 		err = PTR_ERR(skb);
1025 		if (!IS_ERR_OR_NULL(skb))
1026 			err = udp_send_skb(skb, fl4);
1027 		goto out;
1028 	}
1029 
1030 	lock_sock(sk);
1031 	if (unlikely(up->pending)) {
1032 		/* The socket is already corked while preparing it. */
1033 		/* ... which is an evident application bug. --ANK */
1034 		release_sock(sk);
1035 
1036 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1037 		err = -EINVAL;
1038 		goto out;
1039 	}
1040 	/*
1041 	 *	Now cork the socket to pend data.
1042 	 */
1043 	fl4 = &inet->cork.fl.u.ip4;
1044 	fl4->daddr = daddr;
1045 	fl4->saddr = saddr;
1046 	fl4->fl4_dport = dport;
1047 	fl4->fl4_sport = inet->inet_sport;
1048 	up->pending = AF_INET;
1049 
1050 do_append_data:
1051 	up->len += ulen;
1052 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1053 			     sizeof(struct udphdr), &ipc, &rt,
1054 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1055 	if (err)
1056 		udp_flush_pending_frames(sk);
1057 	else if (!corkreq)
1058 		err = udp_push_pending_frames(sk);
1059 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1060 		up->pending = 0;
1061 	release_sock(sk);
1062 
1063 out:
1064 	ip_rt_put(rt);
1065 	if (free)
1066 		kfree(ipc.opt);
1067 	if (!err)
1068 		return len;
1069 	/*
1070 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1071 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1072 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1073 	 * things).  We could add another new stat but at least for now that
1074 	 * seems like overkill.
1075 	 */
1076 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1077 		UDP_INC_STATS_USER(sock_net(sk),
1078 				UDP_MIB_SNDBUFERRORS, is_udplite);
1079 	}
1080 	return err;
1081 
1082 do_confirm:
1083 	dst_confirm(&rt->dst);
1084 	if (!(msg->msg_flags&MSG_PROBE) || len)
1085 		goto back_from_confirm;
1086 	err = 0;
1087 	goto out;
1088 }
1089 EXPORT_SYMBOL(udp_sendmsg);
1090 
1091 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1092 		 size_t size, int flags)
1093 {
1094 	struct inet_sock *inet = inet_sk(sk);
1095 	struct udp_sock *up = udp_sk(sk);
1096 	int ret;
1097 
1098 	if (flags & MSG_SENDPAGE_NOTLAST)
1099 		flags |= MSG_MORE;
1100 
1101 	if (!up->pending) {
1102 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1103 
1104 		/* Call udp_sendmsg to specify destination address which
1105 		 * sendpage interface can't pass.
1106 		 * This will succeed only when the socket is connected.
1107 		 */
1108 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1109 		if (ret < 0)
1110 			return ret;
1111 	}
1112 
1113 	lock_sock(sk);
1114 
1115 	if (unlikely(!up->pending)) {
1116 		release_sock(sk);
1117 
1118 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1119 		return -EINVAL;
1120 	}
1121 
1122 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1123 			     page, offset, size, flags);
1124 	if (ret == -EOPNOTSUPP) {
1125 		release_sock(sk);
1126 		return sock_no_sendpage(sk->sk_socket, page, offset,
1127 					size, flags);
1128 	}
1129 	if (ret < 0) {
1130 		udp_flush_pending_frames(sk);
1131 		goto out;
1132 	}
1133 
1134 	up->len += size;
1135 	if (!(up->corkflag || (flags&MSG_MORE)))
1136 		ret = udp_push_pending_frames(sk);
1137 	if (!ret)
1138 		ret = size;
1139 out:
1140 	release_sock(sk);
1141 	return ret;
1142 }
1143 
1144 
1145 /**
1146  *	first_packet_length	- return length of first packet in receive queue
1147  *	@sk: socket
1148  *
1149  *	Drops all bad checksum frames, until a valid one is found.
1150  *	Returns the length of found skb, or 0 if none is found.
1151  */
1152 static unsigned int first_packet_length(struct sock *sk)
1153 {
1154 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1155 	struct sk_buff *skb;
1156 	unsigned int res;
1157 
1158 	__skb_queue_head_init(&list_kill);
1159 
1160 	spin_lock_bh(&rcvq->lock);
1161 	while ((skb = skb_peek(rcvq)) != NULL &&
1162 		udp_lib_checksum_complete(skb)) {
1163 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1164 				 IS_UDPLITE(sk));
1165 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1166 				 IS_UDPLITE(sk));
1167 		atomic_inc(&sk->sk_drops);
1168 		__skb_unlink(skb, rcvq);
1169 		__skb_queue_tail(&list_kill, skb);
1170 	}
1171 	res = skb ? skb->len : 0;
1172 	spin_unlock_bh(&rcvq->lock);
1173 
1174 	if (!skb_queue_empty(&list_kill)) {
1175 		bool slow = lock_sock_fast(sk);
1176 
1177 		__skb_queue_purge(&list_kill);
1178 		sk_mem_reclaim_partial(sk);
1179 		unlock_sock_fast(sk, slow);
1180 	}
1181 	return res;
1182 }
1183 
1184 /*
1185  *	IOCTL requests applicable to the UDP protocol
1186  */
1187 
1188 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1189 {
1190 	switch (cmd) {
1191 	case SIOCOUTQ:
1192 	{
1193 		int amount = sk_wmem_alloc_get(sk);
1194 
1195 		return put_user(amount, (int __user *)arg);
1196 	}
1197 
1198 	case SIOCINQ:
1199 	{
1200 		unsigned int amount = first_packet_length(sk);
1201 
1202 		if (amount)
1203 			/*
1204 			 * We will only return the amount
1205 			 * of this packet since that is all
1206 			 * that will be read.
1207 			 */
1208 			amount -= sizeof(struct udphdr);
1209 
1210 		return put_user(amount, (int __user *)arg);
1211 	}
1212 
1213 	default:
1214 		return -ENOIOCTLCMD;
1215 	}
1216 
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL(udp_ioctl);
1220 
1221 /*
1222  * 	This should be easy, if there is something there we
1223  * 	return it, otherwise we block.
1224  */
1225 
1226 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1227 		size_t len, int noblock, int flags, int *addr_len)
1228 {
1229 	struct inet_sock *inet = inet_sk(sk);
1230 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1231 	struct sk_buff *skb;
1232 	unsigned int ulen, copied;
1233 	int peeked, off = 0;
1234 	int err;
1235 	int is_udplite = IS_UDPLITE(sk);
1236 	bool slow;
1237 
1238 	if (flags & MSG_ERRQUEUE)
1239 		return ip_recv_error(sk, msg, len, addr_len);
1240 
1241 try_again:
1242 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1243 				  &peeked, &off, &err);
1244 	if (!skb)
1245 		goto out;
1246 
1247 	ulen = skb->len - sizeof(struct udphdr);
1248 	copied = len;
1249 	if (copied > ulen)
1250 		copied = ulen;
1251 	else if (copied < ulen)
1252 		msg->msg_flags |= MSG_TRUNC;
1253 
1254 	/*
1255 	 * If checksum is needed at all, try to do it while copying the
1256 	 * data.  If the data is truncated, or if we only want a partial
1257 	 * coverage checksum (UDP-Lite), do it before the copy.
1258 	 */
1259 
1260 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1261 		if (udp_lib_checksum_complete(skb))
1262 			goto csum_copy_err;
1263 	}
1264 
1265 	if (skb_csum_unnecessary(skb))
1266 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1267 					      msg->msg_iov, copied);
1268 	else {
1269 		err = skb_copy_and_csum_datagram_iovec(skb,
1270 						       sizeof(struct udphdr),
1271 						       msg->msg_iov);
1272 
1273 		if (err == -EINVAL)
1274 			goto csum_copy_err;
1275 	}
1276 
1277 	if (unlikely(err)) {
1278 		trace_kfree_skb(skb, udp_recvmsg);
1279 		if (!peeked) {
1280 			atomic_inc(&sk->sk_drops);
1281 			UDP_INC_STATS_USER(sock_net(sk),
1282 					   UDP_MIB_INERRORS, is_udplite);
1283 		}
1284 		goto out_free;
1285 	}
1286 
1287 	if (!peeked)
1288 		UDP_INC_STATS_USER(sock_net(sk),
1289 				UDP_MIB_INDATAGRAMS, is_udplite);
1290 
1291 	sock_recv_ts_and_drops(msg, sk, skb);
1292 
1293 	/* Copy the address. */
1294 	if (sin) {
1295 		sin->sin_family = AF_INET;
1296 		sin->sin_port = udp_hdr(skb)->source;
1297 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1298 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1299 		*addr_len = sizeof(*sin);
1300 	}
1301 	if (inet->cmsg_flags)
1302 		ip_cmsg_recv(msg, skb);
1303 
1304 	err = copied;
1305 	if (flags & MSG_TRUNC)
1306 		err = ulen;
1307 
1308 out_free:
1309 	skb_free_datagram_locked(sk, skb);
1310 out:
1311 	return err;
1312 
1313 csum_copy_err:
1314 	slow = lock_sock_fast(sk);
1315 	if (!skb_kill_datagram(sk, skb, flags)) {
1316 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1317 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1318 	}
1319 	unlock_sock_fast(sk, slow);
1320 
1321 	if (noblock)
1322 		return -EAGAIN;
1323 
1324 	/* starting over for a new packet */
1325 	msg->msg_flags &= ~MSG_TRUNC;
1326 	goto try_again;
1327 }
1328 
1329 
1330 int udp_disconnect(struct sock *sk, int flags)
1331 {
1332 	struct inet_sock *inet = inet_sk(sk);
1333 	/*
1334 	 *	1003.1g - break association.
1335 	 */
1336 
1337 	sk->sk_state = TCP_CLOSE;
1338 	inet->inet_daddr = 0;
1339 	inet->inet_dport = 0;
1340 	sock_rps_reset_rxhash(sk);
1341 	sk->sk_bound_dev_if = 0;
1342 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1343 		inet_reset_saddr(sk);
1344 
1345 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1346 		sk->sk_prot->unhash(sk);
1347 		inet->inet_sport = 0;
1348 	}
1349 	sk_dst_reset(sk);
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL(udp_disconnect);
1353 
1354 void udp_lib_unhash(struct sock *sk)
1355 {
1356 	if (sk_hashed(sk)) {
1357 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1358 		struct udp_hslot *hslot, *hslot2;
1359 
1360 		hslot  = udp_hashslot(udptable, sock_net(sk),
1361 				      udp_sk(sk)->udp_port_hash);
1362 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1363 
1364 		spin_lock_bh(&hslot->lock);
1365 		if (sk_nulls_del_node_init_rcu(sk)) {
1366 			hslot->count--;
1367 			inet_sk(sk)->inet_num = 0;
1368 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1369 
1370 			spin_lock(&hslot2->lock);
1371 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372 			hslot2->count--;
1373 			spin_unlock(&hslot2->lock);
1374 		}
1375 		spin_unlock_bh(&hslot->lock);
1376 	}
1377 }
1378 EXPORT_SYMBOL(udp_lib_unhash);
1379 
1380 /*
1381  * inet_rcv_saddr was changed, we must rehash secondary hash
1382  */
1383 void udp_lib_rehash(struct sock *sk, u16 newhash)
1384 {
1385 	if (sk_hashed(sk)) {
1386 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1387 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1388 
1389 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390 		nhslot2 = udp_hashslot2(udptable, newhash);
1391 		udp_sk(sk)->udp_portaddr_hash = newhash;
1392 		if (hslot2 != nhslot2) {
1393 			hslot = udp_hashslot(udptable, sock_net(sk),
1394 					     udp_sk(sk)->udp_port_hash);
1395 			/* we must lock primary chain too */
1396 			spin_lock_bh(&hslot->lock);
1397 
1398 			spin_lock(&hslot2->lock);
1399 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1400 			hslot2->count--;
1401 			spin_unlock(&hslot2->lock);
1402 
1403 			spin_lock(&nhslot2->lock);
1404 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1405 						 &nhslot2->head);
1406 			nhslot2->count++;
1407 			spin_unlock(&nhslot2->lock);
1408 
1409 			spin_unlock_bh(&hslot->lock);
1410 		}
1411 	}
1412 }
1413 EXPORT_SYMBOL(udp_lib_rehash);
1414 
1415 static void udp_v4_rehash(struct sock *sk)
1416 {
1417 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1418 					  inet_sk(sk)->inet_rcv_saddr,
1419 					  inet_sk(sk)->inet_num);
1420 	udp_lib_rehash(sk, new_hash);
1421 }
1422 
1423 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 	int rc;
1426 
1427 	if (inet_sk(sk)->inet_daddr) {
1428 		sock_rps_save_rxhash(sk, skb);
1429 		sk_mark_napi_id(sk, skb);
1430 	}
1431 
1432 	rc = sock_queue_rcv_skb(sk, skb);
1433 	if (rc < 0) {
1434 		int is_udplite = IS_UDPLITE(sk);
1435 
1436 		/* Note that an ENOMEM error is charged twice */
1437 		if (rc == -ENOMEM)
1438 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1439 					 is_udplite);
1440 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1441 		kfree_skb(skb);
1442 		trace_udp_fail_queue_rcv_skb(rc, sk);
1443 		return -1;
1444 	}
1445 
1446 	return 0;
1447 
1448 }
1449 
1450 static struct static_key udp_encap_needed __read_mostly;
1451 void udp_encap_enable(void)
1452 {
1453 	if (!static_key_enabled(&udp_encap_needed))
1454 		static_key_slow_inc(&udp_encap_needed);
1455 }
1456 EXPORT_SYMBOL(udp_encap_enable);
1457 
1458 /* returns:
1459  *  -1: error
1460  *   0: success
1461  *  >0: "udp encap" protocol resubmission
1462  *
1463  * Note that in the success and error cases, the skb is assumed to
1464  * have either been requeued or freed.
1465  */
1466 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	struct udp_sock *up = udp_sk(sk);
1469 	int rc;
1470 	int is_udplite = IS_UDPLITE(sk);
1471 
1472 	/*
1473 	 *	Charge it to the socket, dropping if the queue is full.
1474 	 */
1475 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1476 		goto drop;
1477 	nf_reset(skb);
1478 
1479 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1480 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1481 
1482 		/*
1483 		 * This is an encapsulation socket so pass the skb to
1484 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1485 		 * fall through and pass this up the UDP socket.
1486 		 * up->encap_rcv() returns the following value:
1487 		 * =0 if skb was successfully passed to the encap
1488 		 *    handler or was discarded by it.
1489 		 * >0 if skb should be passed on to UDP.
1490 		 * <0 if skb should be resubmitted as proto -N
1491 		 */
1492 
1493 		/* if we're overly short, let UDP handle it */
1494 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1495 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1496 			int ret;
1497 
1498 			ret = encap_rcv(sk, skb);
1499 			if (ret <= 0) {
1500 				UDP_INC_STATS_BH(sock_net(sk),
1501 						 UDP_MIB_INDATAGRAMS,
1502 						 is_udplite);
1503 				return -ret;
1504 			}
1505 		}
1506 
1507 		/* FALLTHROUGH -- it's a UDP Packet */
1508 	}
1509 
1510 	/*
1511 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1512 	 */
1513 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1514 
1515 		/*
1516 		 * MIB statistics other than incrementing the error count are
1517 		 * disabled for the following two types of errors: these depend
1518 		 * on the application settings, not on the functioning of the
1519 		 * protocol stack as such.
1520 		 *
1521 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1522 		 * way ... to ... at least let the receiving application block
1523 		 * delivery of packets with coverage values less than a value
1524 		 * provided by the application."
1525 		 */
1526 		if (up->pcrlen == 0) {          /* full coverage was set  */
1527 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1528 				       UDP_SKB_CB(skb)->cscov, skb->len);
1529 			goto drop;
1530 		}
1531 		/* The next case involves violating the min. coverage requested
1532 		 * by the receiver. This is subtle: if receiver wants x and x is
1533 		 * greater than the buffersize/MTU then receiver will complain
1534 		 * that it wants x while sender emits packets of smaller size y.
1535 		 * Therefore the above ...()->partial_cov statement is essential.
1536 		 */
1537 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1538 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1539 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1540 			goto drop;
1541 		}
1542 	}
1543 
1544 	if (rcu_access_pointer(sk->sk_filter) &&
1545 	    udp_lib_checksum_complete(skb))
1546 		goto csum_error;
1547 
1548 
1549 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1550 		goto drop;
1551 
1552 	rc = 0;
1553 
1554 	ipv4_pktinfo_prepare(sk, skb);
1555 	bh_lock_sock(sk);
1556 	if (!sock_owned_by_user(sk))
1557 		rc = __udp_queue_rcv_skb(sk, skb);
1558 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1559 		bh_unlock_sock(sk);
1560 		goto drop;
1561 	}
1562 	bh_unlock_sock(sk);
1563 
1564 	return rc;
1565 
1566 csum_error:
1567 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1568 drop:
1569 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1570 	atomic_inc(&sk->sk_drops);
1571 	kfree_skb(skb);
1572 	return -1;
1573 }
1574 
1575 
1576 static void flush_stack(struct sock **stack, unsigned int count,
1577 			struct sk_buff *skb, unsigned int final)
1578 {
1579 	unsigned int i;
1580 	struct sk_buff *skb1 = NULL;
1581 	struct sock *sk;
1582 
1583 	for (i = 0; i < count; i++) {
1584 		sk = stack[i];
1585 		if (likely(skb1 == NULL))
1586 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1587 
1588 		if (!skb1) {
1589 			atomic_inc(&sk->sk_drops);
1590 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1591 					 IS_UDPLITE(sk));
1592 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1593 					 IS_UDPLITE(sk));
1594 		}
1595 
1596 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1597 			skb1 = NULL;
1598 	}
1599 	if (unlikely(skb1))
1600 		kfree_skb(skb1);
1601 }
1602 
1603 /* For TCP sockets, sk_rx_dst is protected by socket lock
1604  * For UDP, we use xchg() to guard against concurrent changes.
1605  */
1606 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1607 {
1608 	struct dst_entry *old;
1609 
1610 	dst_hold(dst);
1611 	old = xchg(&sk->sk_rx_dst, dst);
1612 	dst_release(old);
1613 }
1614 
1615 /*
1616  *	Multicasts and broadcasts go to each listener.
1617  *
1618  *	Note: called only from the BH handler context.
1619  */
1620 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1621 				    struct udphdr  *uh,
1622 				    __be32 saddr, __be32 daddr,
1623 				    struct udp_table *udptable)
1624 {
1625 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1626 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1627 	int dif;
1628 	unsigned int i, count = 0;
1629 
1630 	spin_lock(&hslot->lock);
1631 	sk = sk_nulls_head(&hslot->head);
1632 	dif = skb->dev->ifindex;
1633 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1634 	while (sk) {
1635 		stack[count++] = sk;
1636 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1637 				       daddr, uh->source, saddr, dif);
1638 		if (unlikely(count == ARRAY_SIZE(stack))) {
1639 			if (!sk)
1640 				break;
1641 			flush_stack(stack, count, skb, ~0);
1642 			count = 0;
1643 		}
1644 	}
1645 	/*
1646 	 * before releasing chain lock, we must take a reference on sockets
1647 	 */
1648 	for (i = 0; i < count; i++)
1649 		sock_hold(stack[i]);
1650 
1651 	spin_unlock(&hslot->lock);
1652 
1653 	/*
1654 	 * do the slow work with no lock held
1655 	 */
1656 	if (count) {
1657 		flush_stack(stack, count, skb, count - 1);
1658 
1659 		for (i = 0; i < count; i++)
1660 			sock_put(stack[i]);
1661 	} else {
1662 		kfree_skb(skb);
1663 	}
1664 	return 0;
1665 }
1666 
1667 /* Initialize UDP checksum. If exited with zero value (success),
1668  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1669  * Otherwise, csum completion requires chacksumming packet body,
1670  * including udp header and folding it to skb->csum.
1671  */
1672 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1673 				 int proto)
1674 {
1675 	const struct iphdr *iph;
1676 	int err;
1677 
1678 	UDP_SKB_CB(skb)->partial_cov = 0;
1679 	UDP_SKB_CB(skb)->cscov = skb->len;
1680 
1681 	if (proto == IPPROTO_UDPLITE) {
1682 		err = udplite_checksum_init(skb, uh);
1683 		if (err)
1684 			return err;
1685 	}
1686 
1687 	iph = ip_hdr(skb);
1688 	if (uh->check == 0) {
1689 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1690 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1691 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1692 				      proto, skb->csum))
1693 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1694 	}
1695 	if (!skb_csum_unnecessary(skb))
1696 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1697 					       skb->len, proto, 0);
1698 	/* Probably, we should checksum udp header (it should be in cache
1699 	 * in any case) and data in tiny packets (< rx copybreak).
1700 	 */
1701 
1702 	return 0;
1703 }
1704 
1705 /*
1706  *	All we need to do is get the socket, and then do a checksum.
1707  */
1708 
1709 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1710 		   int proto)
1711 {
1712 	struct sock *sk;
1713 	struct udphdr *uh;
1714 	unsigned short ulen;
1715 	struct rtable *rt = skb_rtable(skb);
1716 	__be32 saddr, daddr;
1717 	struct net *net = dev_net(skb->dev);
1718 
1719 	/*
1720 	 *  Validate the packet.
1721 	 */
1722 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1723 		goto drop;		/* No space for header. */
1724 
1725 	uh   = udp_hdr(skb);
1726 	ulen = ntohs(uh->len);
1727 	saddr = ip_hdr(skb)->saddr;
1728 	daddr = ip_hdr(skb)->daddr;
1729 
1730 	if (ulen > skb->len)
1731 		goto short_packet;
1732 
1733 	if (proto == IPPROTO_UDP) {
1734 		/* UDP validates ulen. */
1735 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1736 			goto short_packet;
1737 		uh = udp_hdr(skb);
1738 	}
1739 
1740 	if (udp4_csum_init(skb, uh, proto))
1741 		goto csum_error;
1742 
1743 	sk = skb_steal_sock(skb);
1744 	if (sk) {
1745 		struct dst_entry *dst = skb_dst(skb);
1746 		int ret;
1747 
1748 		if (unlikely(sk->sk_rx_dst != dst))
1749 			udp_sk_rx_dst_set(sk, dst);
1750 
1751 		ret = udp_queue_rcv_skb(sk, skb);
1752 		sock_put(sk);
1753 		/* a return value > 0 means to resubmit the input, but
1754 		 * it wants the return to be -protocol, or 0
1755 		 */
1756 		if (ret > 0)
1757 			return -ret;
1758 		return 0;
1759 	} else {
1760 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1761 			return __udp4_lib_mcast_deliver(net, skb, uh,
1762 					saddr, daddr, udptable);
1763 
1764 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1765 	}
1766 
1767 	if (sk != NULL) {
1768 		int ret;
1769 
1770 		ret = udp_queue_rcv_skb(sk, skb);
1771 		sock_put(sk);
1772 
1773 		/* a return value > 0 means to resubmit the input, but
1774 		 * it wants the return to be -protocol, or 0
1775 		 */
1776 		if (ret > 0)
1777 			return -ret;
1778 		return 0;
1779 	}
1780 
1781 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1782 		goto drop;
1783 	nf_reset(skb);
1784 
1785 	/* No socket. Drop packet silently, if checksum is wrong */
1786 	if (udp_lib_checksum_complete(skb))
1787 		goto csum_error;
1788 
1789 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1790 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1791 
1792 	/*
1793 	 * Hmm.  We got an UDP packet to a port to which we
1794 	 * don't wanna listen.  Ignore it.
1795 	 */
1796 	kfree_skb(skb);
1797 	return 0;
1798 
1799 short_packet:
1800 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1801 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1802 		       &saddr, ntohs(uh->source),
1803 		       ulen, skb->len,
1804 		       &daddr, ntohs(uh->dest));
1805 	goto drop;
1806 
1807 csum_error:
1808 	/*
1809 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1810 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1811 	 */
1812 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1813 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1814 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1815 		       ulen);
1816 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1817 drop:
1818 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1819 	kfree_skb(skb);
1820 	return 0;
1821 }
1822 
1823 /* We can only early demux multicast if there is a single matching socket.
1824  * If more than one socket found returns NULL
1825  */
1826 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1827 						  __be16 loc_port, __be32 loc_addr,
1828 						  __be16 rmt_port, __be32 rmt_addr,
1829 						  int dif)
1830 {
1831 	struct sock *sk, *result;
1832 	struct hlist_nulls_node *node;
1833 	unsigned short hnum = ntohs(loc_port);
1834 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1835 	struct udp_hslot *hslot = &udp_table.hash[slot];
1836 
1837 	rcu_read_lock();
1838 begin:
1839 	count = 0;
1840 	result = NULL;
1841 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1842 		if (__udp_is_mcast_sock(net, sk,
1843 					loc_port, loc_addr,
1844 					rmt_port, rmt_addr,
1845 					dif, hnum)) {
1846 			result = sk;
1847 			++count;
1848 		}
1849 	}
1850 	/*
1851 	 * if the nulls value we got at the end of this lookup is
1852 	 * not the expected one, we must restart lookup.
1853 	 * We probably met an item that was moved to another chain.
1854 	 */
1855 	if (get_nulls_value(node) != slot)
1856 		goto begin;
1857 
1858 	if (result) {
1859 		if (count != 1 ||
1860 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1861 			result = NULL;
1862 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1863 						       loc_port, loc_addr,
1864 						       rmt_port, rmt_addr,
1865 						       dif, hnum))) {
1866 			sock_put(result);
1867 			result = NULL;
1868 		}
1869 	}
1870 	rcu_read_unlock();
1871 	return result;
1872 }
1873 
1874 /* For unicast we should only early demux connected sockets or we can
1875  * break forwarding setups.  The chains here can be long so only check
1876  * if the first socket is an exact match and if not move on.
1877  */
1878 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1879 					    __be16 loc_port, __be32 loc_addr,
1880 					    __be16 rmt_port, __be32 rmt_addr,
1881 					    int dif)
1882 {
1883 	struct sock *sk, *result;
1884 	struct hlist_nulls_node *node;
1885 	unsigned short hnum = ntohs(loc_port);
1886 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1887 	unsigned int slot2 = hash2 & udp_table.mask;
1888 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1889 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1890 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1891 
1892 	rcu_read_lock();
1893 	result = NULL;
1894 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1895 		if (INET_MATCH(sk, net, acookie,
1896 			       rmt_addr, loc_addr, ports, dif))
1897 			result = sk;
1898 		/* Only check first socket in chain */
1899 		break;
1900 	}
1901 
1902 	if (result) {
1903 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1904 			result = NULL;
1905 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1906 					      rmt_addr, loc_addr,
1907 					      ports, dif))) {
1908 			sock_put(result);
1909 			result = NULL;
1910 		}
1911 	}
1912 	rcu_read_unlock();
1913 	return result;
1914 }
1915 
1916 void udp_v4_early_demux(struct sk_buff *skb)
1917 {
1918 	struct net *net = dev_net(skb->dev);
1919 	const struct iphdr *iph;
1920 	const struct udphdr *uh;
1921 	struct sock *sk;
1922 	struct dst_entry *dst;
1923 	int dif = skb->dev->ifindex;
1924 
1925 	/* validate the packet */
1926 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1927 		return;
1928 
1929 	iph = ip_hdr(skb);
1930 	uh = udp_hdr(skb);
1931 
1932 	if (skb->pkt_type == PACKET_BROADCAST ||
1933 	    skb->pkt_type == PACKET_MULTICAST)
1934 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1935 						   uh->source, iph->saddr, dif);
1936 	else if (skb->pkt_type == PACKET_HOST)
1937 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1938 					     uh->source, iph->saddr, dif);
1939 	else
1940 		return;
1941 
1942 	if (!sk)
1943 		return;
1944 
1945 	skb->sk = sk;
1946 	skb->destructor = sock_edemux;
1947 	dst = sk->sk_rx_dst;
1948 
1949 	if (dst)
1950 		dst = dst_check(dst, 0);
1951 	if (dst)
1952 		skb_dst_set_noref(skb, dst);
1953 }
1954 
1955 int udp_rcv(struct sk_buff *skb)
1956 {
1957 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1958 }
1959 
1960 void udp_destroy_sock(struct sock *sk)
1961 {
1962 	struct udp_sock *up = udp_sk(sk);
1963 	bool slow = lock_sock_fast(sk);
1964 	udp_flush_pending_frames(sk);
1965 	unlock_sock_fast(sk, slow);
1966 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1967 		void (*encap_destroy)(struct sock *sk);
1968 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1969 		if (encap_destroy)
1970 			encap_destroy(sk);
1971 	}
1972 }
1973 
1974 /*
1975  *	Socket option code for UDP
1976  */
1977 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1978 		       char __user *optval, unsigned int optlen,
1979 		       int (*push_pending_frames)(struct sock *))
1980 {
1981 	struct udp_sock *up = udp_sk(sk);
1982 	int val;
1983 	int err = 0;
1984 	int is_udplite = IS_UDPLITE(sk);
1985 
1986 	if (optlen < sizeof(int))
1987 		return -EINVAL;
1988 
1989 	if (get_user(val, (int __user *)optval))
1990 		return -EFAULT;
1991 
1992 	switch (optname) {
1993 	case UDP_CORK:
1994 		if (val != 0) {
1995 			up->corkflag = 1;
1996 		} else {
1997 			up->corkflag = 0;
1998 			lock_sock(sk);
1999 			(*push_pending_frames)(sk);
2000 			release_sock(sk);
2001 		}
2002 		break;
2003 
2004 	case UDP_ENCAP:
2005 		switch (val) {
2006 		case 0:
2007 		case UDP_ENCAP_ESPINUDP:
2008 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2009 			up->encap_rcv = xfrm4_udp_encap_rcv;
2010 			/* FALLTHROUGH */
2011 		case UDP_ENCAP_L2TPINUDP:
2012 			up->encap_type = val;
2013 			udp_encap_enable();
2014 			break;
2015 		default:
2016 			err = -ENOPROTOOPT;
2017 			break;
2018 		}
2019 		break;
2020 
2021 	/*
2022 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2023 	 */
2024 	/* The sender sets actual checksum coverage length via this option.
2025 	 * The case coverage > packet length is handled by send module. */
2026 	case UDPLITE_SEND_CSCOV:
2027 		if (!is_udplite)         /* Disable the option on UDP sockets */
2028 			return -ENOPROTOOPT;
2029 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2030 			val = 8;
2031 		else if (val > USHRT_MAX)
2032 			val = USHRT_MAX;
2033 		up->pcslen = val;
2034 		up->pcflag |= UDPLITE_SEND_CC;
2035 		break;
2036 
2037 	/* The receiver specifies a minimum checksum coverage value. To make
2038 	 * sense, this should be set to at least 8 (as done below). If zero is
2039 	 * used, this again means full checksum coverage.                     */
2040 	case UDPLITE_RECV_CSCOV:
2041 		if (!is_udplite)         /* Disable the option on UDP sockets */
2042 			return -ENOPROTOOPT;
2043 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2044 			val = 8;
2045 		else if (val > USHRT_MAX)
2046 			val = USHRT_MAX;
2047 		up->pcrlen = val;
2048 		up->pcflag |= UDPLITE_RECV_CC;
2049 		break;
2050 
2051 	default:
2052 		err = -ENOPROTOOPT;
2053 		break;
2054 	}
2055 
2056 	return err;
2057 }
2058 EXPORT_SYMBOL(udp_lib_setsockopt);
2059 
2060 int udp_setsockopt(struct sock *sk, int level, int optname,
2061 		   char __user *optval, unsigned int optlen)
2062 {
2063 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2064 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2065 					  udp_push_pending_frames);
2066 	return ip_setsockopt(sk, level, optname, optval, optlen);
2067 }
2068 
2069 #ifdef CONFIG_COMPAT
2070 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2071 			  char __user *optval, unsigned int optlen)
2072 {
2073 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2074 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2075 					  udp_push_pending_frames);
2076 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2077 }
2078 #endif
2079 
2080 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2081 		       char __user *optval, int __user *optlen)
2082 {
2083 	struct udp_sock *up = udp_sk(sk);
2084 	int val, len;
2085 
2086 	if (get_user(len, optlen))
2087 		return -EFAULT;
2088 
2089 	len = min_t(unsigned int, len, sizeof(int));
2090 
2091 	if (len < 0)
2092 		return -EINVAL;
2093 
2094 	switch (optname) {
2095 	case UDP_CORK:
2096 		val = up->corkflag;
2097 		break;
2098 
2099 	case UDP_ENCAP:
2100 		val = up->encap_type;
2101 		break;
2102 
2103 	/* The following two cannot be changed on UDP sockets, the return is
2104 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2105 	case UDPLITE_SEND_CSCOV:
2106 		val = up->pcslen;
2107 		break;
2108 
2109 	case UDPLITE_RECV_CSCOV:
2110 		val = up->pcrlen;
2111 		break;
2112 
2113 	default:
2114 		return -ENOPROTOOPT;
2115 	}
2116 
2117 	if (put_user(len, optlen))
2118 		return -EFAULT;
2119 	if (copy_to_user(optval, &val, len))
2120 		return -EFAULT;
2121 	return 0;
2122 }
2123 EXPORT_SYMBOL(udp_lib_getsockopt);
2124 
2125 int udp_getsockopt(struct sock *sk, int level, int optname,
2126 		   char __user *optval, int __user *optlen)
2127 {
2128 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2129 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2130 	return ip_getsockopt(sk, level, optname, optval, optlen);
2131 }
2132 
2133 #ifdef CONFIG_COMPAT
2134 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2135 				 char __user *optval, int __user *optlen)
2136 {
2137 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2138 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2139 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2140 }
2141 #endif
2142 /**
2143  * 	udp_poll - wait for a UDP event.
2144  *	@file - file struct
2145  *	@sock - socket
2146  *	@wait - poll table
2147  *
2148  *	This is same as datagram poll, except for the special case of
2149  *	blocking sockets. If application is using a blocking fd
2150  *	and a packet with checksum error is in the queue;
2151  *	then it could get return from select indicating data available
2152  *	but then block when reading it. Add special case code
2153  *	to work around these arguably broken applications.
2154  */
2155 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2156 {
2157 	unsigned int mask = datagram_poll(file, sock, wait);
2158 	struct sock *sk = sock->sk;
2159 
2160 	sock_rps_record_flow(sk);
2161 
2162 	/* Check for false positives due to checksum errors */
2163 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2164 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2165 		mask &= ~(POLLIN | POLLRDNORM);
2166 
2167 	return mask;
2168 
2169 }
2170 EXPORT_SYMBOL(udp_poll);
2171 
2172 struct proto udp_prot = {
2173 	.name		   = "UDP",
2174 	.owner		   = THIS_MODULE,
2175 	.close		   = udp_lib_close,
2176 	.connect	   = ip4_datagram_connect,
2177 	.disconnect	   = udp_disconnect,
2178 	.ioctl		   = udp_ioctl,
2179 	.destroy	   = udp_destroy_sock,
2180 	.setsockopt	   = udp_setsockopt,
2181 	.getsockopt	   = udp_getsockopt,
2182 	.sendmsg	   = udp_sendmsg,
2183 	.recvmsg	   = udp_recvmsg,
2184 	.sendpage	   = udp_sendpage,
2185 	.backlog_rcv	   = __udp_queue_rcv_skb,
2186 	.release_cb	   = ip4_datagram_release_cb,
2187 	.hash		   = udp_lib_hash,
2188 	.unhash		   = udp_lib_unhash,
2189 	.rehash		   = udp_v4_rehash,
2190 	.get_port	   = udp_v4_get_port,
2191 	.memory_allocated  = &udp_memory_allocated,
2192 	.sysctl_mem	   = sysctl_udp_mem,
2193 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2194 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2195 	.obj_size	   = sizeof(struct udp_sock),
2196 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2197 	.h.udp_table	   = &udp_table,
2198 #ifdef CONFIG_COMPAT
2199 	.compat_setsockopt = compat_udp_setsockopt,
2200 	.compat_getsockopt = compat_udp_getsockopt,
2201 #endif
2202 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2203 };
2204 EXPORT_SYMBOL(udp_prot);
2205 
2206 /* ------------------------------------------------------------------------ */
2207 #ifdef CONFIG_PROC_FS
2208 
2209 static struct sock *udp_get_first(struct seq_file *seq, int start)
2210 {
2211 	struct sock *sk;
2212 	struct udp_iter_state *state = seq->private;
2213 	struct net *net = seq_file_net(seq);
2214 
2215 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2216 	     ++state->bucket) {
2217 		struct hlist_nulls_node *node;
2218 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2219 
2220 		if (hlist_nulls_empty(&hslot->head))
2221 			continue;
2222 
2223 		spin_lock_bh(&hslot->lock);
2224 		sk_nulls_for_each(sk, node, &hslot->head) {
2225 			if (!net_eq(sock_net(sk), net))
2226 				continue;
2227 			if (sk->sk_family == state->family)
2228 				goto found;
2229 		}
2230 		spin_unlock_bh(&hslot->lock);
2231 	}
2232 	sk = NULL;
2233 found:
2234 	return sk;
2235 }
2236 
2237 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2238 {
2239 	struct udp_iter_state *state = seq->private;
2240 	struct net *net = seq_file_net(seq);
2241 
2242 	do {
2243 		sk = sk_nulls_next(sk);
2244 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2245 
2246 	if (!sk) {
2247 		if (state->bucket <= state->udp_table->mask)
2248 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2249 		return udp_get_first(seq, state->bucket + 1);
2250 	}
2251 	return sk;
2252 }
2253 
2254 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2255 {
2256 	struct sock *sk = udp_get_first(seq, 0);
2257 
2258 	if (sk)
2259 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2260 			--pos;
2261 	return pos ? NULL : sk;
2262 }
2263 
2264 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2265 {
2266 	struct udp_iter_state *state = seq->private;
2267 	state->bucket = MAX_UDP_PORTS;
2268 
2269 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2270 }
2271 
2272 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 {
2274 	struct sock *sk;
2275 
2276 	if (v == SEQ_START_TOKEN)
2277 		sk = udp_get_idx(seq, 0);
2278 	else
2279 		sk = udp_get_next(seq, v);
2280 
2281 	++*pos;
2282 	return sk;
2283 }
2284 
2285 static void udp_seq_stop(struct seq_file *seq, void *v)
2286 {
2287 	struct udp_iter_state *state = seq->private;
2288 
2289 	if (state->bucket <= state->udp_table->mask)
2290 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 }
2292 
2293 int udp_seq_open(struct inode *inode, struct file *file)
2294 {
2295 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2296 	struct udp_iter_state *s;
2297 	int err;
2298 
2299 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2300 			   sizeof(struct udp_iter_state));
2301 	if (err < 0)
2302 		return err;
2303 
2304 	s = ((struct seq_file *)file->private_data)->private;
2305 	s->family		= afinfo->family;
2306 	s->udp_table		= afinfo->udp_table;
2307 	return err;
2308 }
2309 EXPORT_SYMBOL(udp_seq_open);
2310 
2311 /* ------------------------------------------------------------------------ */
2312 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2313 {
2314 	struct proc_dir_entry *p;
2315 	int rc = 0;
2316 
2317 	afinfo->seq_ops.start		= udp_seq_start;
2318 	afinfo->seq_ops.next		= udp_seq_next;
2319 	afinfo->seq_ops.stop		= udp_seq_stop;
2320 
2321 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2322 			     afinfo->seq_fops, afinfo);
2323 	if (!p)
2324 		rc = -ENOMEM;
2325 	return rc;
2326 }
2327 EXPORT_SYMBOL(udp_proc_register);
2328 
2329 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2330 {
2331 	remove_proc_entry(afinfo->name, net->proc_net);
2332 }
2333 EXPORT_SYMBOL(udp_proc_unregister);
2334 
2335 /* ------------------------------------------------------------------------ */
2336 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2337 		int bucket)
2338 {
2339 	struct inet_sock *inet = inet_sk(sp);
2340 	__be32 dest = inet->inet_daddr;
2341 	__be32 src  = inet->inet_rcv_saddr;
2342 	__u16 destp	  = ntohs(inet->inet_dport);
2343 	__u16 srcp	  = ntohs(inet->inet_sport);
2344 
2345 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2346 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2347 		bucket, src, srcp, dest, destp, sp->sk_state,
2348 		sk_wmem_alloc_get(sp),
2349 		sk_rmem_alloc_get(sp),
2350 		0, 0L, 0,
2351 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2352 		0, sock_i_ino(sp),
2353 		atomic_read(&sp->sk_refcnt), sp,
2354 		atomic_read(&sp->sk_drops));
2355 }
2356 
2357 int udp4_seq_show(struct seq_file *seq, void *v)
2358 {
2359 	seq_setwidth(seq, 127);
2360 	if (v == SEQ_START_TOKEN)
2361 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2362 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2363 			   "inode ref pointer drops");
2364 	else {
2365 		struct udp_iter_state *state = seq->private;
2366 
2367 		udp4_format_sock(v, seq, state->bucket);
2368 	}
2369 	seq_pad(seq, '\n');
2370 	return 0;
2371 }
2372 
2373 static const struct file_operations udp_afinfo_seq_fops = {
2374 	.owner    = THIS_MODULE,
2375 	.open     = udp_seq_open,
2376 	.read     = seq_read,
2377 	.llseek   = seq_lseek,
2378 	.release  = seq_release_net
2379 };
2380 
2381 /* ------------------------------------------------------------------------ */
2382 static struct udp_seq_afinfo udp4_seq_afinfo = {
2383 	.name		= "udp",
2384 	.family		= AF_INET,
2385 	.udp_table	= &udp_table,
2386 	.seq_fops	= &udp_afinfo_seq_fops,
2387 	.seq_ops	= {
2388 		.show		= udp4_seq_show,
2389 	},
2390 };
2391 
2392 static int __net_init udp4_proc_init_net(struct net *net)
2393 {
2394 	return udp_proc_register(net, &udp4_seq_afinfo);
2395 }
2396 
2397 static void __net_exit udp4_proc_exit_net(struct net *net)
2398 {
2399 	udp_proc_unregister(net, &udp4_seq_afinfo);
2400 }
2401 
2402 static struct pernet_operations udp4_net_ops = {
2403 	.init = udp4_proc_init_net,
2404 	.exit = udp4_proc_exit_net,
2405 };
2406 
2407 int __init udp4_proc_init(void)
2408 {
2409 	return register_pernet_subsys(&udp4_net_ops);
2410 }
2411 
2412 void udp4_proc_exit(void)
2413 {
2414 	unregister_pernet_subsys(&udp4_net_ops);
2415 }
2416 #endif /* CONFIG_PROC_FS */
2417 
2418 static __initdata unsigned long uhash_entries;
2419 static int __init set_uhash_entries(char *str)
2420 {
2421 	ssize_t ret;
2422 
2423 	if (!str)
2424 		return 0;
2425 
2426 	ret = kstrtoul(str, 0, &uhash_entries);
2427 	if (ret)
2428 		return 0;
2429 
2430 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2431 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2432 	return 1;
2433 }
2434 __setup("uhash_entries=", set_uhash_entries);
2435 
2436 void __init udp_table_init(struct udp_table *table, const char *name)
2437 {
2438 	unsigned int i;
2439 
2440 	table->hash = alloc_large_system_hash(name,
2441 					      2 * sizeof(struct udp_hslot),
2442 					      uhash_entries,
2443 					      21, /* one slot per 2 MB */
2444 					      0,
2445 					      &table->log,
2446 					      &table->mask,
2447 					      UDP_HTABLE_SIZE_MIN,
2448 					      64 * 1024);
2449 
2450 	table->hash2 = table->hash + (table->mask + 1);
2451 	for (i = 0; i <= table->mask; i++) {
2452 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2453 		table->hash[i].count = 0;
2454 		spin_lock_init(&table->hash[i].lock);
2455 	}
2456 	for (i = 0; i <= table->mask; i++) {
2457 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2458 		table->hash2[i].count = 0;
2459 		spin_lock_init(&table->hash2[i].lock);
2460 	}
2461 }
2462 
2463 void __init udp_init(void)
2464 {
2465 	unsigned long limit;
2466 
2467 	udp_table_init(&udp_table, "UDP");
2468 	limit = nr_free_buffer_pages() / 8;
2469 	limit = max(limit, 128UL);
2470 	sysctl_udp_mem[0] = limit / 4 * 3;
2471 	sysctl_udp_mem[1] = limit;
2472 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2473 
2474 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2475 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2476 }
2477 
2478 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2479 				       netdev_features_t features)
2480 {
2481 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2482 	u16 mac_offset = skb->mac_header;
2483 	int mac_len = skb->mac_len;
2484 	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2485 	__be16 protocol = skb->protocol;
2486 	netdev_features_t enc_features;
2487 	int outer_hlen;
2488 
2489 	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2490 		goto out;
2491 
2492 	skb->encapsulation = 0;
2493 	__skb_pull(skb, tnl_hlen);
2494 	skb_reset_mac_header(skb);
2495 	skb_set_network_header(skb, skb_inner_network_offset(skb));
2496 	skb->mac_len = skb_inner_network_offset(skb);
2497 	skb->protocol = htons(ETH_P_TEB);
2498 
2499 	/* segment inner packet. */
2500 	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2501 	segs = skb_mac_gso_segment(skb, enc_features);
2502 	if (!segs || IS_ERR(segs)) {
2503 		skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
2504 				     mac_len);
2505 		goto out;
2506 	}
2507 
2508 	outer_hlen = skb_tnl_header_len(skb);
2509 	skb = segs;
2510 	do {
2511 		struct udphdr *uh;
2512 		int udp_offset = outer_hlen - tnl_hlen;
2513 
2514 		skb_reset_inner_headers(skb);
2515 		skb->encapsulation = 1;
2516 
2517 		skb->mac_len = mac_len;
2518 
2519 		skb_push(skb, outer_hlen);
2520 		skb_reset_mac_header(skb);
2521 		skb_set_network_header(skb, mac_len);
2522 		skb_set_transport_header(skb, udp_offset);
2523 		uh = udp_hdr(skb);
2524 		uh->len = htons(skb->len - udp_offset);
2525 
2526 		/* csum segment if tunnel sets skb with csum. */
2527 		if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2528 			struct iphdr *iph = ip_hdr(skb);
2529 
2530 			uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2531 						       skb->len - udp_offset,
2532 						       IPPROTO_UDP, 0);
2533 			uh->check = csum_fold(skb_checksum(skb, udp_offset,
2534 							   skb->len - udp_offset, 0));
2535 			if (uh->check == 0)
2536 				uh->check = CSUM_MANGLED_0;
2537 
2538 		} else if (protocol == htons(ETH_P_IPV6)) {
2539 			struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2540 			u32 len = skb->len - udp_offset;
2541 
2542 			uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2543 						     len, IPPROTO_UDP, 0);
2544 			uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2545 			if (uh->check == 0)
2546 				uh->check = CSUM_MANGLED_0;
2547 			skb->ip_summed = CHECKSUM_NONE;
2548 		}
2549 
2550 		skb->protocol = protocol;
2551 	} while ((skb = skb->next));
2552 out:
2553 	return segs;
2554 }
2555