xref: /openbmc/linux/net/ipv4/udp.c (revision b2441318)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	return reuseport_alloc(sk);
235 }
236 
237 /**
238  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
239  *
240  *  @sk:          socket struct in question
241  *  @snum:        port number to look up
242  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243  *                   with NULL address
244  */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 			cond_resched();
291 		} while (++first != last);
292 		goto fail;
293 	} else {
294 		hslot = udp_hashslot(udptable, net, snum);
295 		spin_lock_bh(&hslot->lock);
296 		if (hslot->count > 10) {
297 			int exist;
298 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299 
300 			slot2          &= udptable->mask;
301 			hash2_nulladdr &= udptable->mask;
302 
303 			hslot2 = udp_hashslot2(udptable, slot2);
304 			if (hslot->count < hslot2->count)
305 				goto scan_primary_hash;
306 
307 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 			goto fail_unlock;
321 	}
322 found:
323 	inet_sk(sk)->inet_num = snum;
324 	udp_sk(sk)->udp_port_hash = snum;
325 	udp_sk(sk)->udp_portaddr_hash ^= snum;
326 	if (sk_unhashed(sk)) {
327 		if (sk->sk_reuseport &&
328 		    udp_reuseport_add_sock(sk, hslot)) {
329 			inet_sk(sk)->inet_num = 0;
330 			udp_sk(sk)->udp_port_hash = 0;
331 			udp_sk(sk)->udp_portaddr_hash ^= snum;
332 			goto fail_unlock;
333 		}
334 
335 		sk_add_node_rcu(sk, &hslot->head);
336 		hslot->count++;
337 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338 
339 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 		spin_lock(&hslot2->lock);
341 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 		    sk->sk_family == AF_INET6)
343 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		else
346 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		hslot2->count++;
349 		spin_unlock(&hslot2->lock);
350 	}
351 	sock_set_flag(sk, SOCK_RCU_FREE);
352 	error = 0;
353 fail_unlock:
354 	spin_unlock_bh(&hslot->lock);
355 fail:
356 	return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359 
360 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
361 			      unsigned int port)
362 {
363 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
364 }
365 
366 int udp_v4_get_port(struct sock *sk, unsigned short snum)
367 {
368 	unsigned int hash2_nulladdr =
369 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
370 	unsigned int hash2_partial =
371 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
372 
373 	/* precompute partial secondary hash */
374 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
375 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
376 }
377 
378 static int compute_score(struct sock *sk, struct net *net,
379 			 __be32 saddr, __be16 sport,
380 			 __be32 daddr, unsigned short hnum,
381 			 int dif, int sdif, bool exact_dif)
382 {
383 	int score;
384 	struct inet_sock *inet;
385 
386 	if (!net_eq(sock_net(sk), net) ||
387 	    udp_sk(sk)->udp_port_hash != hnum ||
388 	    ipv6_only_sock(sk))
389 		return -1;
390 
391 	score = (sk->sk_family == PF_INET) ? 2 : 1;
392 	inet = inet_sk(sk);
393 
394 	if (inet->inet_rcv_saddr) {
395 		if (inet->inet_rcv_saddr != daddr)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (inet->inet_daddr) {
401 		if (inet->inet_daddr != saddr)
402 			return -1;
403 		score += 4;
404 	}
405 
406 	if (inet->inet_dport) {
407 		if (inet->inet_dport != sport)
408 			return -1;
409 		score += 4;
410 	}
411 
412 	if (sk->sk_bound_dev_if || exact_dif) {
413 		bool dev_match = (sk->sk_bound_dev_if == dif ||
414 				  sk->sk_bound_dev_if == sdif);
415 
416 		if (exact_dif && !dev_match)
417 			return -1;
418 		if (sk->sk_bound_dev_if && dev_match)
419 			score += 4;
420 	}
421 
422 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 		score++;
424 	return score;
425 }
426 
427 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
428 		       const __u16 lport, const __be32 faddr,
429 		       const __be16 fport)
430 {
431 	static u32 udp_ehash_secret __read_mostly;
432 
433 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
434 
435 	return __inet_ehashfn(laddr, lport, faddr, fport,
436 			      udp_ehash_secret + net_hash_mix(net));
437 }
438 
439 /* called with rcu_read_lock() */
440 static struct sock *udp4_lib_lookup2(struct net *net,
441 				     __be32 saddr, __be16 sport,
442 				     __be32 daddr, unsigned int hnum,
443 				     int dif, int sdif, bool exact_dif,
444 				     struct udp_hslot *hslot2,
445 				     struct sk_buff *skb)
446 {
447 	struct sock *sk, *result;
448 	int score, badness, matches = 0, reuseport = 0;
449 	u32 hash = 0;
450 
451 	result = NULL;
452 	badness = 0;
453 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
454 		score = compute_score(sk, net, saddr, sport,
455 				      daddr, hnum, dif, sdif, exact_dif);
456 		if (score > badness) {
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				result = reuseport_select_sock(sk, hash, skb,
462 							sizeof(struct udphdr));
463 				if (result)
464 					return result;
465 				matches = 1;
466 			}
467 			badness = score;
468 			result = sk;
469 		} else if (score == badness && reuseport) {
470 			matches++;
471 			if (reciprocal_scale(hash, matches) == 0)
472 				result = sk;
473 			hash = next_pseudo_random32(hash);
474 		}
475 	}
476 	return result;
477 }
478 
479 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
480  * harder than this. -DaveM
481  */
482 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
483 		__be16 sport, __be32 daddr, __be16 dport, int dif,
484 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
485 {
486 	struct sock *sk, *result;
487 	unsigned short hnum = ntohs(dport);
488 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
489 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
490 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
491 	int score, badness, matches = 0, reuseport = 0;
492 	u32 hash = 0;
493 
494 	if (hslot->count > 10) {
495 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
496 		slot2 = hash2 & udptable->mask;
497 		hslot2 = &udptable->hash2[slot2];
498 		if (hslot->count < hslot2->count)
499 			goto begin;
500 
501 		result = udp4_lib_lookup2(net, saddr, sport,
502 					  daddr, hnum, dif, sdif,
503 					  exact_dif, hslot2, skb);
504 		if (!result) {
505 			unsigned int old_slot2 = slot2;
506 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
507 			slot2 = hash2 & udptable->mask;
508 			/* avoid searching the same slot again. */
509 			if (unlikely(slot2 == old_slot2))
510 				return result;
511 
512 			hslot2 = &udptable->hash2[slot2];
513 			if (hslot->count < hslot2->count)
514 				goto begin;
515 
516 			result = udp4_lib_lookup2(net, saddr, sport,
517 						  daddr, hnum, dif, sdif,
518 						  exact_dif, hslot2, skb);
519 		}
520 		return result;
521 	}
522 begin:
523 	result = NULL;
524 	badness = 0;
525 	sk_for_each_rcu(sk, &hslot->head) {
526 		score = compute_score(sk, net, saddr, sport,
527 				      daddr, hnum, dif, sdif, exact_dif);
528 		if (score > badness) {
529 			reuseport = sk->sk_reuseport;
530 			if (reuseport) {
531 				hash = udp_ehashfn(net, daddr, hnum,
532 						   saddr, sport);
533 				result = reuseport_select_sock(sk, hash, skb,
534 							sizeof(struct udphdr));
535 				if (result)
536 					return result;
537 				matches = 1;
538 			}
539 			result = sk;
540 			badness = score;
541 		} else if (score == badness && reuseport) {
542 			matches++;
543 			if (reciprocal_scale(hash, matches) == 0)
544 				result = sk;
545 			hash = next_pseudo_random32(hash);
546 		}
547 	}
548 	return result;
549 }
550 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
551 
552 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
553 						 __be16 sport, __be16 dport,
554 						 struct udp_table *udptable)
555 {
556 	const struct iphdr *iph = ip_hdr(skb);
557 
558 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
559 				 iph->daddr, dport, inet_iif(skb),
560 				 inet_sdif(skb), udptable, skb);
561 }
562 
563 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
564 				 __be16 sport, __be16 dport)
565 {
566 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
567 }
568 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
569 
570 /* Must be called under rcu_read_lock().
571  * Does increment socket refcount.
572  */
573 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
574     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
575     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
576 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
577 			     __be32 daddr, __be16 dport, int dif)
578 {
579 	struct sock *sk;
580 
581 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
582 			       dif, 0, &udp_table, NULL);
583 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
584 		sk = NULL;
585 	return sk;
586 }
587 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
588 #endif
589 
590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
591 				       __be16 loc_port, __be32 loc_addr,
592 				       __be16 rmt_port, __be32 rmt_addr,
593 				       int dif, int sdif, unsigned short hnum)
594 {
595 	struct inet_sock *inet = inet_sk(sk);
596 
597 	if (!net_eq(sock_net(sk), net) ||
598 	    udp_sk(sk)->udp_port_hash != hnum ||
599 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
600 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
601 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
602 	    ipv6_only_sock(sk) ||
603 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
604 	     sk->sk_bound_dev_if != sdif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
636 			       udptable, NULL);
637 	if (!sk) {
638 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
639 		return;	/* No socket for error */
640 	}
641 
642 	err = 0;
643 	harderr = 0;
644 	inet = inet_sk(sk);
645 
646 	switch (type) {
647 	default:
648 	case ICMP_TIME_EXCEEDED:
649 		err = EHOSTUNREACH;
650 		break;
651 	case ICMP_SOURCE_QUENCH:
652 		goto out;
653 	case ICMP_PARAMETERPROB:
654 		err = EPROTO;
655 		harderr = 1;
656 		break;
657 	case ICMP_DEST_UNREACH:
658 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
659 			ipv4_sk_update_pmtu(skb, sk, info);
660 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
661 				err = EMSGSIZE;
662 				harderr = 1;
663 				break;
664 			}
665 			goto out;
666 		}
667 		err = EHOSTUNREACH;
668 		if (code <= NR_ICMP_UNREACH) {
669 			harderr = icmp_err_convert[code].fatal;
670 			err = icmp_err_convert[code].errno;
671 		}
672 		break;
673 	case ICMP_REDIRECT:
674 		ipv4_sk_redirect(skb, sk);
675 		goto out;
676 	}
677 
678 	/*
679 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
680 	 *	4.1.3.3.
681 	 */
682 	if (!inet->recverr) {
683 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
684 			goto out;
685 	} else
686 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
687 
688 	sk->sk_err = err;
689 	sk->sk_error_report(sk);
690 out:
691 	return;
692 }
693 
694 void udp_err(struct sk_buff *skb, u32 info)
695 {
696 	__udp4_lib_err(skb, info, &udp_table);
697 }
698 
699 /*
700  * Throw away all pending data and cancel the corking. Socket is locked.
701  */
702 void udp_flush_pending_frames(struct sock *sk)
703 {
704 	struct udp_sock *up = udp_sk(sk);
705 
706 	if (up->pending) {
707 		up->len = 0;
708 		up->pending = 0;
709 		ip_flush_pending_frames(sk);
710 	}
711 }
712 EXPORT_SYMBOL(udp_flush_pending_frames);
713 
714 /**
715  * 	udp4_hwcsum  -  handle outgoing HW checksumming
716  * 	@skb: 	sk_buff containing the filled-in UDP header
717  * 	        (checksum field must be zeroed out)
718  *	@src:	source IP address
719  *	@dst:	destination IP address
720  */
721 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
722 {
723 	struct udphdr *uh = udp_hdr(skb);
724 	int offset = skb_transport_offset(skb);
725 	int len = skb->len - offset;
726 	int hlen = len;
727 	__wsum csum = 0;
728 
729 	if (!skb_has_frag_list(skb)) {
730 		/*
731 		 * Only one fragment on the socket.
732 		 */
733 		skb->csum_start = skb_transport_header(skb) - skb->head;
734 		skb->csum_offset = offsetof(struct udphdr, check);
735 		uh->check = ~csum_tcpudp_magic(src, dst, len,
736 					       IPPROTO_UDP, 0);
737 	} else {
738 		struct sk_buff *frags;
739 
740 		/*
741 		 * HW-checksum won't work as there are two or more
742 		 * fragments on the socket so that all csums of sk_buffs
743 		 * should be together
744 		 */
745 		skb_walk_frags(skb, frags) {
746 			csum = csum_add(csum, frags->csum);
747 			hlen -= frags->len;
748 		}
749 
750 		csum = skb_checksum(skb, offset, hlen, csum);
751 		skb->ip_summed = CHECKSUM_NONE;
752 
753 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
754 		if (uh->check == 0)
755 			uh->check = CSUM_MANGLED_0;
756 	}
757 }
758 EXPORT_SYMBOL_GPL(udp4_hwcsum);
759 
760 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
761  * for the simple case like when setting the checksum for a UDP tunnel.
762  */
763 void udp_set_csum(bool nocheck, struct sk_buff *skb,
764 		  __be32 saddr, __be32 daddr, int len)
765 {
766 	struct udphdr *uh = udp_hdr(skb);
767 
768 	if (nocheck) {
769 		uh->check = 0;
770 	} else if (skb_is_gso(skb)) {
771 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
772 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
773 		uh->check = 0;
774 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
775 		if (uh->check == 0)
776 			uh->check = CSUM_MANGLED_0;
777 	} else {
778 		skb->ip_summed = CHECKSUM_PARTIAL;
779 		skb->csum_start = skb_transport_header(skb) - skb->head;
780 		skb->csum_offset = offsetof(struct udphdr, check);
781 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
782 	}
783 }
784 EXPORT_SYMBOL(udp_set_csum);
785 
786 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
787 {
788 	struct sock *sk = skb->sk;
789 	struct inet_sock *inet = inet_sk(sk);
790 	struct udphdr *uh;
791 	int err = 0;
792 	int is_udplite = IS_UDPLITE(sk);
793 	int offset = skb_transport_offset(skb);
794 	int len = skb->len - offset;
795 	__wsum csum = 0;
796 
797 	/*
798 	 * Create a UDP header
799 	 */
800 	uh = udp_hdr(skb);
801 	uh->source = inet->inet_sport;
802 	uh->dest = fl4->fl4_dport;
803 	uh->len = htons(len);
804 	uh->check = 0;
805 
806 	if (is_udplite)  				 /*     UDP-Lite      */
807 		csum = udplite_csum(skb);
808 
809 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
810 
811 		skb->ip_summed = CHECKSUM_NONE;
812 		goto send;
813 
814 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
815 
816 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
817 		goto send;
818 
819 	} else
820 		csum = udp_csum(skb);
821 
822 	/* add protocol-dependent pseudo-header */
823 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
824 				      sk->sk_protocol, csum);
825 	if (uh->check == 0)
826 		uh->check = CSUM_MANGLED_0;
827 
828 send:
829 	err = ip_send_skb(sock_net(sk), skb);
830 	if (err) {
831 		if (err == -ENOBUFS && !inet->recverr) {
832 			UDP_INC_STATS(sock_net(sk),
833 				      UDP_MIB_SNDBUFERRORS, is_udplite);
834 			err = 0;
835 		}
836 	} else
837 		UDP_INC_STATS(sock_net(sk),
838 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
839 	return err;
840 }
841 
842 /*
843  * Push out all pending data as one UDP datagram. Socket is locked.
844  */
845 int udp_push_pending_frames(struct sock *sk)
846 {
847 	struct udp_sock  *up = udp_sk(sk);
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
850 	struct sk_buff *skb;
851 	int err = 0;
852 
853 	skb = ip_finish_skb(sk, fl4);
854 	if (!skb)
855 		goto out;
856 
857 	err = udp_send_skb(skb, fl4);
858 
859 out:
860 	up->len = 0;
861 	up->pending = 0;
862 	return err;
863 }
864 EXPORT_SYMBOL(udp_push_pending_frames);
865 
866 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
867 {
868 	struct inet_sock *inet = inet_sk(sk);
869 	struct udp_sock *up = udp_sk(sk);
870 	struct flowi4 fl4_stack;
871 	struct flowi4 *fl4;
872 	int ulen = len;
873 	struct ipcm_cookie ipc;
874 	struct rtable *rt = NULL;
875 	int free = 0;
876 	int connected = 0;
877 	__be32 daddr, faddr, saddr;
878 	__be16 dport;
879 	u8  tos;
880 	int err, is_udplite = IS_UDPLITE(sk);
881 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
882 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
883 	struct sk_buff *skb;
884 	struct ip_options_data opt_copy;
885 
886 	if (len > 0xFFFF)
887 		return -EMSGSIZE;
888 
889 	/*
890 	 *	Check the flags.
891 	 */
892 
893 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
894 		return -EOPNOTSUPP;
895 
896 	ipc.opt = NULL;
897 	ipc.tx_flags = 0;
898 	ipc.ttl = 0;
899 	ipc.tos = -1;
900 
901 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
902 
903 	fl4 = &inet->cork.fl.u.ip4;
904 	if (up->pending) {
905 		/*
906 		 * There are pending frames.
907 		 * The socket lock must be held while it's corked.
908 		 */
909 		lock_sock(sk);
910 		if (likely(up->pending)) {
911 			if (unlikely(up->pending != AF_INET)) {
912 				release_sock(sk);
913 				return -EINVAL;
914 			}
915 			goto do_append_data;
916 		}
917 		release_sock(sk);
918 	}
919 	ulen += sizeof(struct udphdr);
920 
921 	/*
922 	 *	Get and verify the address.
923 	 */
924 	if (msg->msg_name) {
925 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
926 		if (msg->msg_namelen < sizeof(*usin))
927 			return -EINVAL;
928 		if (usin->sin_family != AF_INET) {
929 			if (usin->sin_family != AF_UNSPEC)
930 				return -EAFNOSUPPORT;
931 		}
932 
933 		daddr = usin->sin_addr.s_addr;
934 		dport = usin->sin_port;
935 		if (dport == 0)
936 			return -EINVAL;
937 	} else {
938 		if (sk->sk_state != TCP_ESTABLISHED)
939 			return -EDESTADDRREQ;
940 		daddr = inet->inet_daddr;
941 		dport = inet->inet_dport;
942 		/* Open fast path for connected socket.
943 		   Route will not be used, if at least one option is set.
944 		 */
945 		connected = 1;
946 	}
947 
948 	ipc.sockc.tsflags = sk->sk_tsflags;
949 	ipc.addr = inet->inet_saddr;
950 	ipc.oif = sk->sk_bound_dev_if;
951 
952 	if (msg->msg_controllen) {
953 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
954 		if (unlikely(err)) {
955 			kfree(ipc.opt);
956 			return err;
957 		}
958 		if (ipc.opt)
959 			free = 1;
960 		connected = 0;
961 	}
962 	if (!ipc.opt) {
963 		struct ip_options_rcu *inet_opt;
964 
965 		rcu_read_lock();
966 		inet_opt = rcu_dereference(inet->inet_opt);
967 		if (inet_opt) {
968 			memcpy(&opt_copy, inet_opt,
969 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
970 			ipc.opt = &opt_copy.opt;
971 		}
972 		rcu_read_unlock();
973 	}
974 
975 	saddr = ipc.addr;
976 	ipc.addr = faddr = daddr;
977 
978 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
979 
980 	if (ipc.opt && ipc.opt->opt.srr) {
981 		if (!daddr)
982 			return -EINVAL;
983 		faddr = ipc.opt->opt.faddr;
984 		connected = 0;
985 	}
986 	tos = get_rttos(&ipc, inet);
987 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
988 	    (msg->msg_flags & MSG_DONTROUTE) ||
989 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
990 		tos |= RTO_ONLINK;
991 		connected = 0;
992 	}
993 
994 	if (ipv4_is_multicast(daddr)) {
995 		if (!ipc.oif)
996 			ipc.oif = inet->mc_index;
997 		if (!saddr)
998 			saddr = inet->mc_addr;
999 		connected = 0;
1000 	} else if (!ipc.oif)
1001 		ipc.oif = inet->uc_index;
1002 
1003 	if (connected)
1004 		rt = (struct rtable *)sk_dst_check(sk, 0);
1005 
1006 	if (!rt) {
1007 		struct net *net = sock_net(sk);
1008 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1009 
1010 		fl4 = &fl4_stack;
1011 
1012 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1013 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1014 				   flow_flags,
1015 				   faddr, saddr, dport, inet->inet_sport,
1016 				   sk->sk_uid);
1017 
1018 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1019 		rt = ip_route_output_flow(net, fl4, sk);
1020 		if (IS_ERR(rt)) {
1021 			err = PTR_ERR(rt);
1022 			rt = NULL;
1023 			if (err == -ENETUNREACH)
1024 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1025 			goto out;
1026 		}
1027 
1028 		err = -EACCES;
1029 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1030 		    !sock_flag(sk, SOCK_BROADCAST))
1031 			goto out;
1032 		if (connected)
1033 			sk_dst_set(sk, dst_clone(&rt->dst));
1034 	}
1035 
1036 	if (msg->msg_flags&MSG_CONFIRM)
1037 		goto do_confirm;
1038 back_from_confirm:
1039 
1040 	saddr = fl4->saddr;
1041 	if (!ipc.addr)
1042 		daddr = ipc.addr = fl4->daddr;
1043 
1044 	/* Lockless fast path for the non-corking case. */
1045 	if (!corkreq) {
1046 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1047 				  sizeof(struct udphdr), &ipc, &rt,
1048 				  msg->msg_flags);
1049 		err = PTR_ERR(skb);
1050 		if (!IS_ERR_OR_NULL(skb))
1051 			err = udp_send_skb(skb, fl4);
1052 		goto out;
1053 	}
1054 
1055 	lock_sock(sk);
1056 	if (unlikely(up->pending)) {
1057 		/* The socket is already corked while preparing it. */
1058 		/* ... which is an evident application bug. --ANK */
1059 		release_sock(sk);
1060 
1061 		net_dbg_ratelimited("socket already corked\n");
1062 		err = -EINVAL;
1063 		goto out;
1064 	}
1065 	/*
1066 	 *	Now cork the socket to pend data.
1067 	 */
1068 	fl4 = &inet->cork.fl.u.ip4;
1069 	fl4->daddr = daddr;
1070 	fl4->saddr = saddr;
1071 	fl4->fl4_dport = dport;
1072 	fl4->fl4_sport = inet->inet_sport;
1073 	up->pending = AF_INET;
1074 
1075 do_append_data:
1076 	up->len += ulen;
1077 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1078 			     sizeof(struct udphdr), &ipc, &rt,
1079 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1080 	if (err)
1081 		udp_flush_pending_frames(sk);
1082 	else if (!corkreq)
1083 		err = udp_push_pending_frames(sk);
1084 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1085 		up->pending = 0;
1086 	release_sock(sk);
1087 
1088 out:
1089 	ip_rt_put(rt);
1090 	if (free)
1091 		kfree(ipc.opt);
1092 	if (!err)
1093 		return len;
1094 	/*
1095 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1096 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1097 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1098 	 * things).  We could add another new stat but at least for now that
1099 	 * seems like overkill.
1100 	 */
1101 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1102 		UDP_INC_STATS(sock_net(sk),
1103 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1104 	}
1105 	return err;
1106 
1107 do_confirm:
1108 	if (msg->msg_flags & MSG_PROBE)
1109 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1110 	if (!(msg->msg_flags&MSG_PROBE) || len)
1111 		goto back_from_confirm;
1112 	err = 0;
1113 	goto out;
1114 }
1115 EXPORT_SYMBOL(udp_sendmsg);
1116 
1117 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1118 		 size_t size, int flags)
1119 {
1120 	struct inet_sock *inet = inet_sk(sk);
1121 	struct udp_sock *up = udp_sk(sk);
1122 	int ret;
1123 
1124 	if (flags & MSG_SENDPAGE_NOTLAST)
1125 		flags |= MSG_MORE;
1126 
1127 	if (!up->pending) {
1128 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1129 
1130 		/* Call udp_sendmsg to specify destination address which
1131 		 * sendpage interface can't pass.
1132 		 * This will succeed only when the socket is connected.
1133 		 */
1134 		ret = udp_sendmsg(sk, &msg, 0);
1135 		if (ret < 0)
1136 			return ret;
1137 	}
1138 
1139 	lock_sock(sk);
1140 
1141 	if (unlikely(!up->pending)) {
1142 		release_sock(sk);
1143 
1144 		net_dbg_ratelimited("cork failed\n");
1145 		return -EINVAL;
1146 	}
1147 
1148 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1149 			     page, offset, size, flags);
1150 	if (ret == -EOPNOTSUPP) {
1151 		release_sock(sk);
1152 		return sock_no_sendpage(sk->sk_socket, page, offset,
1153 					size, flags);
1154 	}
1155 	if (ret < 0) {
1156 		udp_flush_pending_frames(sk);
1157 		goto out;
1158 	}
1159 
1160 	up->len += size;
1161 	if (!(up->corkflag || (flags&MSG_MORE)))
1162 		ret = udp_push_pending_frames(sk);
1163 	if (!ret)
1164 		ret = size;
1165 out:
1166 	release_sock(sk);
1167 	return ret;
1168 }
1169 
1170 #define UDP_SKB_IS_STATELESS 0x80000000
1171 
1172 static void udp_set_dev_scratch(struct sk_buff *skb)
1173 {
1174 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1175 
1176 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1177 	scratch->_tsize_state = skb->truesize;
1178 #if BITS_PER_LONG == 64
1179 	scratch->len = skb->len;
1180 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1181 	scratch->is_linear = !skb_is_nonlinear(skb);
1182 #endif
1183 	/* all head states execept sp (dst, sk, nf) are always cleared by
1184 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1185 	 * process IP_CMSG_PASSSEC at recvmsg() time
1186 	 */
1187 	if (likely(!skb_sec_path(skb)))
1188 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1189 }
1190 
1191 static int udp_skb_truesize(struct sk_buff *skb)
1192 {
1193 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1194 }
1195 
1196 static bool udp_skb_has_head_state(struct sk_buff *skb)
1197 {
1198 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1199 }
1200 
1201 /* fully reclaim rmem/fwd memory allocated for skb */
1202 static void udp_rmem_release(struct sock *sk, int size, int partial,
1203 			     bool rx_queue_lock_held)
1204 {
1205 	struct udp_sock *up = udp_sk(sk);
1206 	struct sk_buff_head *sk_queue;
1207 	int amt;
1208 
1209 	if (likely(partial)) {
1210 		up->forward_deficit += size;
1211 		size = up->forward_deficit;
1212 		if (size < (sk->sk_rcvbuf >> 2) &&
1213 		    !skb_queue_empty(&up->reader_queue))
1214 			return;
1215 	} else {
1216 		size += up->forward_deficit;
1217 	}
1218 	up->forward_deficit = 0;
1219 
1220 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1221 	 * if the called don't held it already
1222 	 */
1223 	sk_queue = &sk->sk_receive_queue;
1224 	if (!rx_queue_lock_held)
1225 		spin_lock(&sk_queue->lock);
1226 
1227 
1228 	sk->sk_forward_alloc += size;
1229 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1230 	sk->sk_forward_alloc -= amt;
1231 
1232 	if (amt)
1233 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1234 
1235 	atomic_sub(size, &sk->sk_rmem_alloc);
1236 
1237 	/* this can save us from acquiring the rx queue lock on next receive */
1238 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1239 
1240 	if (!rx_queue_lock_held)
1241 		spin_unlock(&sk_queue->lock);
1242 }
1243 
1244 /* Note: called with reader_queue.lock held.
1245  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1246  * This avoids a cache line miss while receive_queue lock is held.
1247  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1248  */
1249 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1250 {
1251 	prefetch(&skb->data);
1252 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1253 }
1254 EXPORT_SYMBOL(udp_skb_destructor);
1255 
1256 /* as above, but the caller held the rx queue lock, too */
1257 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1258 {
1259 	prefetch(&skb->data);
1260 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1261 }
1262 
1263 /* Idea of busylocks is to let producers grab an extra spinlock
1264  * to relieve pressure on the receive_queue spinlock shared by consumer.
1265  * Under flood, this means that only one producer can be in line
1266  * trying to acquire the receive_queue spinlock.
1267  * These busylock can be allocated on a per cpu manner, instead of a
1268  * per socket one (that would consume a cache line per socket)
1269  */
1270 static int udp_busylocks_log __read_mostly;
1271 static spinlock_t *udp_busylocks __read_mostly;
1272 
1273 static spinlock_t *busylock_acquire(void *ptr)
1274 {
1275 	spinlock_t *busy;
1276 
1277 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1278 	spin_lock(busy);
1279 	return busy;
1280 }
1281 
1282 static void busylock_release(spinlock_t *busy)
1283 {
1284 	if (busy)
1285 		spin_unlock(busy);
1286 }
1287 
1288 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1289 {
1290 	struct sk_buff_head *list = &sk->sk_receive_queue;
1291 	int rmem, delta, amt, err = -ENOMEM;
1292 	spinlock_t *busy = NULL;
1293 	int size;
1294 
1295 	/* try to avoid the costly atomic add/sub pair when the receive
1296 	 * queue is full; always allow at least a packet
1297 	 */
1298 	rmem = atomic_read(&sk->sk_rmem_alloc);
1299 	if (rmem > sk->sk_rcvbuf)
1300 		goto drop;
1301 
1302 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1303 	 * having linear skbs :
1304 	 * - Reduce memory overhead and thus increase receive queue capacity
1305 	 * - Less cache line misses at copyout() time
1306 	 * - Less work at consume_skb() (less alien page frag freeing)
1307 	 */
1308 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1309 		skb_condense(skb);
1310 
1311 		busy = busylock_acquire(sk);
1312 	}
1313 	size = skb->truesize;
1314 	udp_set_dev_scratch(skb);
1315 
1316 	/* we drop only if the receive buf is full and the receive
1317 	 * queue contains some other skb
1318 	 */
1319 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1320 	if (rmem > (size + sk->sk_rcvbuf))
1321 		goto uncharge_drop;
1322 
1323 	spin_lock(&list->lock);
1324 	if (size >= sk->sk_forward_alloc) {
1325 		amt = sk_mem_pages(size);
1326 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1327 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1328 			err = -ENOBUFS;
1329 			spin_unlock(&list->lock);
1330 			goto uncharge_drop;
1331 		}
1332 
1333 		sk->sk_forward_alloc += delta;
1334 	}
1335 
1336 	sk->sk_forward_alloc -= size;
1337 
1338 	/* no need to setup a destructor, we will explicitly release the
1339 	 * forward allocated memory on dequeue
1340 	 */
1341 	sock_skb_set_dropcount(sk, skb);
1342 
1343 	__skb_queue_tail(list, skb);
1344 	spin_unlock(&list->lock);
1345 
1346 	if (!sock_flag(sk, SOCK_DEAD))
1347 		sk->sk_data_ready(sk);
1348 
1349 	busylock_release(busy);
1350 	return 0;
1351 
1352 uncharge_drop:
1353 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1354 
1355 drop:
1356 	atomic_inc(&sk->sk_drops);
1357 	busylock_release(busy);
1358 	return err;
1359 }
1360 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1361 
1362 void udp_destruct_sock(struct sock *sk)
1363 {
1364 	/* reclaim completely the forward allocated memory */
1365 	struct udp_sock *up = udp_sk(sk);
1366 	unsigned int total = 0;
1367 	struct sk_buff *skb;
1368 
1369 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1370 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1371 		total += skb->truesize;
1372 		kfree_skb(skb);
1373 	}
1374 	udp_rmem_release(sk, total, 0, true);
1375 
1376 	inet_sock_destruct(sk);
1377 }
1378 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1379 
1380 int udp_init_sock(struct sock *sk)
1381 {
1382 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1383 	sk->sk_destruct = udp_destruct_sock;
1384 	return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(udp_init_sock);
1387 
1388 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1389 {
1390 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1391 		bool slow = lock_sock_fast(sk);
1392 
1393 		sk_peek_offset_bwd(sk, len);
1394 		unlock_sock_fast(sk, slow);
1395 	}
1396 
1397 	if (!skb_unref(skb))
1398 		return;
1399 
1400 	/* In the more common cases we cleared the head states previously,
1401 	 * see __udp_queue_rcv_skb().
1402 	 */
1403 	if (unlikely(udp_skb_has_head_state(skb)))
1404 		skb_release_head_state(skb);
1405 	__consume_stateless_skb(skb);
1406 }
1407 EXPORT_SYMBOL_GPL(skb_consume_udp);
1408 
1409 static struct sk_buff *__first_packet_length(struct sock *sk,
1410 					     struct sk_buff_head *rcvq,
1411 					     int *total)
1412 {
1413 	struct sk_buff *skb;
1414 
1415 	while ((skb = skb_peek(rcvq)) != NULL) {
1416 		if (udp_lib_checksum_complete(skb)) {
1417 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1418 					IS_UDPLITE(sk));
1419 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1420 					IS_UDPLITE(sk));
1421 			atomic_inc(&sk->sk_drops);
1422 			__skb_unlink(skb, rcvq);
1423 			*total += skb->truesize;
1424 			kfree_skb(skb);
1425 		} else {
1426 			/* the csum related bits could be changed, refresh
1427 			 * the scratch area
1428 			 */
1429 			udp_set_dev_scratch(skb);
1430 			break;
1431 		}
1432 	}
1433 	return skb;
1434 }
1435 
1436 /**
1437  *	first_packet_length	- return length of first packet in receive queue
1438  *	@sk: socket
1439  *
1440  *	Drops all bad checksum frames, until a valid one is found.
1441  *	Returns the length of found skb, or -1 if none is found.
1442  */
1443 static int first_packet_length(struct sock *sk)
1444 {
1445 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1446 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1447 	struct sk_buff *skb;
1448 	int total = 0;
1449 	int res;
1450 
1451 	spin_lock_bh(&rcvq->lock);
1452 	skb = __first_packet_length(sk, rcvq, &total);
1453 	if (!skb && !skb_queue_empty(sk_queue)) {
1454 		spin_lock(&sk_queue->lock);
1455 		skb_queue_splice_tail_init(sk_queue, rcvq);
1456 		spin_unlock(&sk_queue->lock);
1457 
1458 		skb = __first_packet_length(sk, rcvq, &total);
1459 	}
1460 	res = skb ? skb->len : -1;
1461 	if (total)
1462 		udp_rmem_release(sk, total, 1, false);
1463 	spin_unlock_bh(&rcvq->lock);
1464 	return res;
1465 }
1466 
1467 /*
1468  *	IOCTL requests applicable to the UDP protocol
1469  */
1470 
1471 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1472 {
1473 	switch (cmd) {
1474 	case SIOCOUTQ:
1475 	{
1476 		int amount = sk_wmem_alloc_get(sk);
1477 
1478 		return put_user(amount, (int __user *)arg);
1479 	}
1480 
1481 	case SIOCINQ:
1482 	{
1483 		int amount = max_t(int, 0, first_packet_length(sk));
1484 
1485 		return put_user(amount, (int __user *)arg);
1486 	}
1487 
1488 	default:
1489 		return -ENOIOCTLCMD;
1490 	}
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(udp_ioctl);
1495 
1496 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1497 			       int noblock, int *peeked, int *off, int *err)
1498 {
1499 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1500 	struct sk_buff_head *queue;
1501 	struct sk_buff *last;
1502 	long timeo;
1503 	int error;
1504 
1505 	queue = &udp_sk(sk)->reader_queue;
1506 	flags |= noblock ? MSG_DONTWAIT : 0;
1507 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1508 	do {
1509 		struct sk_buff *skb;
1510 
1511 		error = sock_error(sk);
1512 		if (error)
1513 			break;
1514 
1515 		error = -EAGAIN;
1516 		*peeked = 0;
1517 		do {
1518 			spin_lock_bh(&queue->lock);
1519 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1520 							udp_skb_destructor,
1521 							peeked, off, err,
1522 							&last);
1523 			if (skb) {
1524 				spin_unlock_bh(&queue->lock);
1525 				return skb;
1526 			}
1527 
1528 			if (skb_queue_empty(sk_queue)) {
1529 				spin_unlock_bh(&queue->lock);
1530 				goto busy_check;
1531 			}
1532 
1533 			/* refill the reader queue and walk it again
1534 			 * keep both queues locked to avoid re-acquiring
1535 			 * the sk_receive_queue lock if fwd memory scheduling
1536 			 * is needed.
1537 			 */
1538 			spin_lock(&sk_queue->lock);
1539 			skb_queue_splice_tail_init(sk_queue, queue);
1540 
1541 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1542 							udp_skb_dtor_locked,
1543 							peeked, off, err,
1544 							&last);
1545 			spin_unlock(&sk_queue->lock);
1546 			spin_unlock_bh(&queue->lock);
1547 			if (skb)
1548 				return skb;
1549 
1550 busy_check:
1551 			if (!sk_can_busy_loop(sk))
1552 				break;
1553 
1554 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1555 		} while (!skb_queue_empty(sk_queue));
1556 
1557 		/* sk_queue is empty, reader_queue may contain peeked packets */
1558 	} while (timeo &&
1559 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1560 					      (struct sk_buff *)sk_queue));
1561 
1562 	*err = error;
1563 	return NULL;
1564 }
1565 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1566 
1567 /*
1568  * 	This should be easy, if there is something there we
1569  * 	return it, otherwise we block.
1570  */
1571 
1572 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1573 		int flags, int *addr_len)
1574 {
1575 	struct inet_sock *inet = inet_sk(sk);
1576 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1577 	struct sk_buff *skb;
1578 	unsigned int ulen, copied;
1579 	int peeked, peeking, off;
1580 	int err;
1581 	int is_udplite = IS_UDPLITE(sk);
1582 	bool checksum_valid = false;
1583 
1584 	if (flags & MSG_ERRQUEUE)
1585 		return ip_recv_error(sk, msg, len, addr_len);
1586 
1587 try_again:
1588 	peeking = flags & MSG_PEEK;
1589 	off = sk_peek_offset(sk, flags);
1590 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1591 	if (!skb)
1592 		return err;
1593 
1594 	ulen = udp_skb_len(skb);
1595 	copied = len;
1596 	if (copied > ulen - off)
1597 		copied = ulen - off;
1598 	else if (copied < ulen)
1599 		msg->msg_flags |= MSG_TRUNC;
1600 
1601 	/*
1602 	 * If checksum is needed at all, try to do it while copying the
1603 	 * data.  If the data is truncated, or if we only want a partial
1604 	 * coverage checksum (UDP-Lite), do it before the copy.
1605 	 */
1606 
1607 	if (copied < ulen || peeking ||
1608 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1609 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1610 				!__udp_lib_checksum_complete(skb);
1611 		if (!checksum_valid)
1612 			goto csum_copy_err;
1613 	}
1614 
1615 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1616 		if (udp_skb_is_linear(skb))
1617 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1618 		else
1619 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1620 	} else {
1621 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1622 
1623 		if (err == -EINVAL)
1624 			goto csum_copy_err;
1625 	}
1626 
1627 	if (unlikely(err)) {
1628 		if (!peeked) {
1629 			atomic_inc(&sk->sk_drops);
1630 			UDP_INC_STATS(sock_net(sk),
1631 				      UDP_MIB_INERRORS, is_udplite);
1632 		}
1633 		kfree_skb(skb);
1634 		return err;
1635 	}
1636 
1637 	if (!peeked)
1638 		UDP_INC_STATS(sock_net(sk),
1639 			      UDP_MIB_INDATAGRAMS, is_udplite);
1640 
1641 	sock_recv_ts_and_drops(msg, sk, skb);
1642 
1643 	/* Copy the address. */
1644 	if (sin) {
1645 		sin->sin_family = AF_INET;
1646 		sin->sin_port = udp_hdr(skb)->source;
1647 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1648 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1649 		*addr_len = sizeof(*sin);
1650 	}
1651 	if (inet->cmsg_flags)
1652 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1653 
1654 	err = copied;
1655 	if (flags & MSG_TRUNC)
1656 		err = ulen;
1657 
1658 	skb_consume_udp(sk, skb, peeking ? -err : err);
1659 	return err;
1660 
1661 csum_copy_err:
1662 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1663 				 udp_skb_destructor)) {
1664 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1665 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1666 	}
1667 	kfree_skb(skb);
1668 
1669 	/* starting over for a new packet, but check if we need to yield */
1670 	cond_resched();
1671 	msg->msg_flags &= ~MSG_TRUNC;
1672 	goto try_again;
1673 }
1674 
1675 int __udp_disconnect(struct sock *sk, int flags)
1676 {
1677 	struct inet_sock *inet = inet_sk(sk);
1678 	/*
1679 	 *	1003.1g - break association.
1680 	 */
1681 
1682 	sk->sk_state = TCP_CLOSE;
1683 	inet->inet_daddr = 0;
1684 	inet->inet_dport = 0;
1685 	sock_rps_reset_rxhash(sk);
1686 	sk->sk_bound_dev_if = 0;
1687 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1688 		inet_reset_saddr(sk);
1689 
1690 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1691 		sk->sk_prot->unhash(sk);
1692 		inet->inet_sport = 0;
1693 	}
1694 	sk_dst_reset(sk);
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(__udp_disconnect);
1698 
1699 int udp_disconnect(struct sock *sk, int flags)
1700 {
1701 	lock_sock(sk);
1702 	__udp_disconnect(sk, flags);
1703 	release_sock(sk);
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(udp_disconnect);
1707 
1708 void udp_lib_unhash(struct sock *sk)
1709 {
1710 	if (sk_hashed(sk)) {
1711 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1712 		struct udp_hslot *hslot, *hslot2;
1713 
1714 		hslot  = udp_hashslot(udptable, sock_net(sk),
1715 				      udp_sk(sk)->udp_port_hash);
1716 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1717 
1718 		spin_lock_bh(&hslot->lock);
1719 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1720 			reuseport_detach_sock(sk);
1721 		if (sk_del_node_init_rcu(sk)) {
1722 			hslot->count--;
1723 			inet_sk(sk)->inet_num = 0;
1724 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1725 
1726 			spin_lock(&hslot2->lock);
1727 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1728 			hslot2->count--;
1729 			spin_unlock(&hslot2->lock);
1730 		}
1731 		spin_unlock_bh(&hslot->lock);
1732 	}
1733 }
1734 EXPORT_SYMBOL(udp_lib_unhash);
1735 
1736 /*
1737  * inet_rcv_saddr was changed, we must rehash secondary hash
1738  */
1739 void udp_lib_rehash(struct sock *sk, u16 newhash)
1740 {
1741 	if (sk_hashed(sk)) {
1742 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1743 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1744 
1745 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1746 		nhslot2 = udp_hashslot2(udptable, newhash);
1747 		udp_sk(sk)->udp_portaddr_hash = newhash;
1748 
1749 		if (hslot2 != nhslot2 ||
1750 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1751 			hslot = udp_hashslot(udptable, sock_net(sk),
1752 					     udp_sk(sk)->udp_port_hash);
1753 			/* we must lock primary chain too */
1754 			spin_lock_bh(&hslot->lock);
1755 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1756 				reuseport_detach_sock(sk);
1757 
1758 			if (hslot2 != nhslot2) {
1759 				spin_lock(&hslot2->lock);
1760 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1761 				hslot2->count--;
1762 				spin_unlock(&hslot2->lock);
1763 
1764 				spin_lock(&nhslot2->lock);
1765 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1766 							 &nhslot2->head);
1767 				nhslot2->count++;
1768 				spin_unlock(&nhslot2->lock);
1769 			}
1770 
1771 			spin_unlock_bh(&hslot->lock);
1772 		}
1773 	}
1774 }
1775 EXPORT_SYMBOL(udp_lib_rehash);
1776 
1777 static void udp_v4_rehash(struct sock *sk)
1778 {
1779 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1780 					  inet_sk(sk)->inet_rcv_saddr,
1781 					  inet_sk(sk)->inet_num);
1782 	udp_lib_rehash(sk, new_hash);
1783 }
1784 
1785 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1786 {
1787 	int rc;
1788 
1789 	if (inet_sk(sk)->inet_daddr) {
1790 		sock_rps_save_rxhash(sk, skb);
1791 		sk_mark_napi_id(sk, skb);
1792 		sk_incoming_cpu_update(sk);
1793 	} else {
1794 		sk_mark_napi_id_once(sk, skb);
1795 	}
1796 
1797 	rc = __udp_enqueue_schedule_skb(sk, skb);
1798 	if (rc < 0) {
1799 		int is_udplite = IS_UDPLITE(sk);
1800 
1801 		/* Note that an ENOMEM error is charged twice */
1802 		if (rc == -ENOMEM)
1803 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1804 					is_udplite);
1805 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1806 		kfree_skb(skb);
1807 		trace_udp_fail_queue_rcv_skb(rc, sk);
1808 		return -1;
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 static struct static_key udp_encap_needed __read_mostly;
1815 void udp_encap_enable(void)
1816 {
1817 	static_key_enable(&udp_encap_needed);
1818 }
1819 EXPORT_SYMBOL(udp_encap_enable);
1820 
1821 /* returns:
1822  *  -1: error
1823  *   0: success
1824  *  >0: "udp encap" protocol resubmission
1825  *
1826  * Note that in the success and error cases, the skb is assumed to
1827  * have either been requeued or freed.
1828  */
1829 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1830 {
1831 	struct udp_sock *up = udp_sk(sk);
1832 	int is_udplite = IS_UDPLITE(sk);
1833 
1834 	/*
1835 	 *	Charge it to the socket, dropping if the queue is full.
1836 	 */
1837 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1838 		goto drop;
1839 	nf_reset(skb);
1840 
1841 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1842 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1843 
1844 		/*
1845 		 * This is an encapsulation socket so pass the skb to
1846 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1847 		 * fall through and pass this up the UDP socket.
1848 		 * up->encap_rcv() returns the following value:
1849 		 * =0 if skb was successfully passed to the encap
1850 		 *    handler or was discarded by it.
1851 		 * >0 if skb should be passed on to UDP.
1852 		 * <0 if skb should be resubmitted as proto -N
1853 		 */
1854 
1855 		/* if we're overly short, let UDP handle it */
1856 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1857 		if (encap_rcv) {
1858 			int ret;
1859 
1860 			/* Verify checksum before giving to encap */
1861 			if (udp_lib_checksum_complete(skb))
1862 				goto csum_error;
1863 
1864 			ret = encap_rcv(sk, skb);
1865 			if (ret <= 0) {
1866 				__UDP_INC_STATS(sock_net(sk),
1867 						UDP_MIB_INDATAGRAMS,
1868 						is_udplite);
1869 				return -ret;
1870 			}
1871 		}
1872 
1873 		/* FALLTHROUGH -- it's a UDP Packet */
1874 	}
1875 
1876 	/*
1877 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1878 	 */
1879 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1880 
1881 		/*
1882 		 * MIB statistics other than incrementing the error count are
1883 		 * disabled for the following two types of errors: these depend
1884 		 * on the application settings, not on the functioning of the
1885 		 * protocol stack as such.
1886 		 *
1887 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1888 		 * way ... to ... at least let the receiving application block
1889 		 * delivery of packets with coverage values less than a value
1890 		 * provided by the application."
1891 		 */
1892 		if (up->pcrlen == 0) {          /* full coverage was set  */
1893 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1894 					    UDP_SKB_CB(skb)->cscov, skb->len);
1895 			goto drop;
1896 		}
1897 		/* The next case involves violating the min. coverage requested
1898 		 * by the receiver. This is subtle: if receiver wants x and x is
1899 		 * greater than the buffersize/MTU then receiver will complain
1900 		 * that it wants x while sender emits packets of smaller size y.
1901 		 * Therefore the above ...()->partial_cov statement is essential.
1902 		 */
1903 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1904 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1905 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1906 			goto drop;
1907 		}
1908 	}
1909 
1910 	prefetch(&sk->sk_rmem_alloc);
1911 	if (rcu_access_pointer(sk->sk_filter) &&
1912 	    udp_lib_checksum_complete(skb))
1913 			goto csum_error;
1914 
1915 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1916 		goto drop;
1917 
1918 	udp_csum_pull_header(skb);
1919 
1920 	ipv4_pktinfo_prepare(sk, skb);
1921 	return __udp_queue_rcv_skb(sk, skb);
1922 
1923 csum_error:
1924 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1925 drop:
1926 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1927 	atomic_inc(&sk->sk_drops);
1928 	kfree_skb(skb);
1929 	return -1;
1930 }
1931 
1932 /* For TCP sockets, sk_rx_dst is protected by socket lock
1933  * For UDP, we use xchg() to guard against concurrent changes.
1934  */
1935 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1936 {
1937 	struct dst_entry *old;
1938 
1939 	if (dst_hold_safe(dst)) {
1940 		old = xchg(&sk->sk_rx_dst, dst);
1941 		dst_release(old);
1942 		return old != dst;
1943 	}
1944 	return false;
1945 }
1946 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1947 
1948 /*
1949  *	Multicasts and broadcasts go to each listener.
1950  *
1951  *	Note: called only from the BH handler context.
1952  */
1953 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1954 				    struct udphdr  *uh,
1955 				    __be32 saddr, __be32 daddr,
1956 				    struct udp_table *udptable,
1957 				    int proto)
1958 {
1959 	struct sock *sk, *first = NULL;
1960 	unsigned short hnum = ntohs(uh->dest);
1961 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1962 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1963 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1964 	int dif = skb->dev->ifindex;
1965 	int sdif = inet_sdif(skb);
1966 	struct hlist_node *node;
1967 	struct sk_buff *nskb;
1968 
1969 	if (use_hash2) {
1970 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1971 			    udptable->mask;
1972 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1973 start_lookup:
1974 		hslot = &udptable->hash2[hash2];
1975 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1976 	}
1977 
1978 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1979 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1980 					 uh->source, saddr, dif, sdif, hnum))
1981 			continue;
1982 
1983 		if (!first) {
1984 			first = sk;
1985 			continue;
1986 		}
1987 		nskb = skb_clone(skb, GFP_ATOMIC);
1988 
1989 		if (unlikely(!nskb)) {
1990 			atomic_inc(&sk->sk_drops);
1991 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1992 					IS_UDPLITE(sk));
1993 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1994 					IS_UDPLITE(sk));
1995 			continue;
1996 		}
1997 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1998 			consume_skb(nskb);
1999 	}
2000 
2001 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2002 	if (use_hash2 && hash2 != hash2_any) {
2003 		hash2 = hash2_any;
2004 		goto start_lookup;
2005 	}
2006 
2007 	if (first) {
2008 		if (udp_queue_rcv_skb(first, skb) > 0)
2009 			consume_skb(skb);
2010 	} else {
2011 		kfree_skb(skb);
2012 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2013 				proto == IPPROTO_UDPLITE);
2014 	}
2015 	return 0;
2016 }
2017 
2018 /* Initialize UDP checksum. If exited with zero value (success),
2019  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2020  * Otherwise, csum completion requires chacksumming packet body,
2021  * including udp header and folding it to skb->csum.
2022  */
2023 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2024 				 int proto)
2025 {
2026 	int err;
2027 
2028 	UDP_SKB_CB(skb)->partial_cov = 0;
2029 	UDP_SKB_CB(skb)->cscov = skb->len;
2030 
2031 	if (proto == IPPROTO_UDPLITE) {
2032 		err = udplite_checksum_init(skb, uh);
2033 		if (err)
2034 			return err;
2035 	}
2036 
2037 	/* Note, we are only interested in != 0 or == 0, thus the
2038 	 * force to int.
2039 	 */
2040 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2041 							 inet_compute_pseudo);
2042 }
2043 
2044 /*
2045  *	All we need to do is get the socket, and then do a checksum.
2046  */
2047 
2048 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2049 		   int proto)
2050 {
2051 	struct sock *sk;
2052 	struct udphdr *uh;
2053 	unsigned short ulen;
2054 	struct rtable *rt = skb_rtable(skb);
2055 	__be32 saddr, daddr;
2056 	struct net *net = dev_net(skb->dev);
2057 
2058 	/*
2059 	 *  Validate the packet.
2060 	 */
2061 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2062 		goto drop;		/* No space for header. */
2063 
2064 	uh   = udp_hdr(skb);
2065 	ulen = ntohs(uh->len);
2066 	saddr = ip_hdr(skb)->saddr;
2067 	daddr = ip_hdr(skb)->daddr;
2068 
2069 	if (ulen > skb->len)
2070 		goto short_packet;
2071 
2072 	if (proto == IPPROTO_UDP) {
2073 		/* UDP validates ulen. */
2074 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2075 			goto short_packet;
2076 		uh = udp_hdr(skb);
2077 	}
2078 
2079 	if (udp4_csum_init(skb, uh, proto))
2080 		goto csum_error;
2081 
2082 	sk = skb_steal_sock(skb);
2083 	if (sk) {
2084 		struct dst_entry *dst = skb_dst(skb);
2085 		int ret;
2086 
2087 		if (unlikely(sk->sk_rx_dst != dst))
2088 			udp_sk_rx_dst_set(sk, dst);
2089 
2090 		ret = udp_queue_rcv_skb(sk, skb);
2091 		sock_put(sk);
2092 		/* a return value > 0 means to resubmit the input, but
2093 		 * it wants the return to be -protocol, or 0
2094 		 */
2095 		if (ret > 0)
2096 			return -ret;
2097 		return 0;
2098 	}
2099 
2100 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2101 		return __udp4_lib_mcast_deliver(net, skb, uh,
2102 						saddr, daddr, udptable, proto);
2103 
2104 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2105 	if (sk) {
2106 		int ret;
2107 
2108 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2109 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2110 						 inet_compute_pseudo);
2111 
2112 		ret = udp_queue_rcv_skb(sk, skb);
2113 
2114 		/* a return value > 0 means to resubmit the input, but
2115 		 * it wants the return to be -protocol, or 0
2116 		 */
2117 		if (ret > 0)
2118 			return -ret;
2119 		return 0;
2120 	}
2121 
2122 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2123 		goto drop;
2124 	nf_reset(skb);
2125 
2126 	/* No socket. Drop packet silently, if checksum is wrong */
2127 	if (udp_lib_checksum_complete(skb))
2128 		goto csum_error;
2129 
2130 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2131 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2132 
2133 	/*
2134 	 * Hmm.  We got an UDP packet to a port to which we
2135 	 * don't wanna listen.  Ignore it.
2136 	 */
2137 	kfree_skb(skb);
2138 	return 0;
2139 
2140 short_packet:
2141 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2142 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2143 			    &saddr, ntohs(uh->source),
2144 			    ulen, skb->len,
2145 			    &daddr, ntohs(uh->dest));
2146 	goto drop;
2147 
2148 csum_error:
2149 	/*
2150 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2151 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2152 	 */
2153 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2154 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2155 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2156 			    ulen);
2157 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2158 drop:
2159 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2160 	kfree_skb(skb);
2161 	return 0;
2162 }
2163 
2164 /* We can only early demux multicast if there is a single matching socket.
2165  * If more than one socket found returns NULL
2166  */
2167 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2168 						  __be16 loc_port, __be32 loc_addr,
2169 						  __be16 rmt_port, __be32 rmt_addr,
2170 						  int dif, int sdif)
2171 {
2172 	struct sock *sk, *result;
2173 	unsigned short hnum = ntohs(loc_port);
2174 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2175 	struct udp_hslot *hslot = &udp_table.hash[slot];
2176 
2177 	/* Do not bother scanning a too big list */
2178 	if (hslot->count > 10)
2179 		return NULL;
2180 
2181 	result = NULL;
2182 	sk_for_each_rcu(sk, &hslot->head) {
2183 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2184 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2185 			if (result)
2186 				return NULL;
2187 			result = sk;
2188 		}
2189 	}
2190 
2191 	return result;
2192 }
2193 
2194 /* For unicast we should only early demux connected sockets or we can
2195  * break forwarding setups.  The chains here can be long so only check
2196  * if the first socket is an exact match and if not move on.
2197  */
2198 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2199 					    __be16 loc_port, __be32 loc_addr,
2200 					    __be16 rmt_port, __be32 rmt_addr,
2201 					    int dif, int sdif)
2202 {
2203 	unsigned short hnum = ntohs(loc_port);
2204 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2205 	unsigned int slot2 = hash2 & udp_table.mask;
2206 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2207 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2208 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2209 	struct sock *sk;
2210 
2211 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2212 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2213 			       loc_addr, ports, dif, sdif))
2214 			return sk;
2215 		/* Only check first socket in chain */
2216 		break;
2217 	}
2218 	return NULL;
2219 }
2220 
2221 int udp_v4_early_demux(struct sk_buff *skb)
2222 {
2223 	struct net *net = dev_net(skb->dev);
2224 	struct in_device *in_dev = NULL;
2225 	const struct iphdr *iph;
2226 	const struct udphdr *uh;
2227 	struct sock *sk = NULL;
2228 	struct dst_entry *dst;
2229 	int dif = skb->dev->ifindex;
2230 	int sdif = inet_sdif(skb);
2231 	int ours;
2232 
2233 	/* validate the packet */
2234 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2235 		return 0;
2236 
2237 	iph = ip_hdr(skb);
2238 	uh = udp_hdr(skb);
2239 
2240 	if (skb->pkt_type == PACKET_MULTICAST) {
2241 		in_dev = __in_dev_get_rcu(skb->dev);
2242 
2243 		if (!in_dev)
2244 			return 0;
2245 
2246 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2247 				       iph->protocol);
2248 		if (!ours)
2249 			return 0;
2250 
2251 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2252 						   uh->source, iph->saddr,
2253 						   dif, sdif);
2254 	} else if (skb->pkt_type == PACKET_HOST) {
2255 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2256 					     uh->source, iph->saddr, dif, sdif);
2257 	}
2258 
2259 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2260 		return 0;
2261 
2262 	skb->sk = sk;
2263 	skb->destructor = sock_efree;
2264 	dst = READ_ONCE(sk->sk_rx_dst);
2265 
2266 	if (dst)
2267 		dst = dst_check(dst, 0);
2268 	if (dst) {
2269 		u32 itag = 0;
2270 
2271 		/* set noref for now.
2272 		 * any place which wants to hold dst has to call
2273 		 * dst_hold_safe()
2274 		 */
2275 		skb_dst_set_noref(skb, dst);
2276 
2277 		/* for unconnected multicast sockets we need to validate
2278 		 * the source on each packet
2279 		 */
2280 		if (!inet_sk(sk)->inet_daddr && in_dev)
2281 			return ip_mc_validate_source(skb, iph->daddr,
2282 						     iph->saddr, iph->tos,
2283 						     skb->dev, in_dev, &itag);
2284 	}
2285 	return 0;
2286 }
2287 
2288 int udp_rcv(struct sk_buff *skb)
2289 {
2290 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2291 }
2292 
2293 void udp_destroy_sock(struct sock *sk)
2294 {
2295 	struct udp_sock *up = udp_sk(sk);
2296 	bool slow = lock_sock_fast(sk);
2297 	udp_flush_pending_frames(sk);
2298 	unlock_sock_fast(sk, slow);
2299 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2300 		void (*encap_destroy)(struct sock *sk);
2301 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2302 		if (encap_destroy)
2303 			encap_destroy(sk);
2304 	}
2305 }
2306 
2307 /*
2308  *	Socket option code for UDP
2309  */
2310 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2311 		       char __user *optval, unsigned int optlen,
2312 		       int (*push_pending_frames)(struct sock *))
2313 {
2314 	struct udp_sock *up = udp_sk(sk);
2315 	int val, valbool;
2316 	int err = 0;
2317 	int is_udplite = IS_UDPLITE(sk);
2318 
2319 	if (optlen < sizeof(int))
2320 		return -EINVAL;
2321 
2322 	if (get_user(val, (int __user *)optval))
2323 		return -EFAULT;
2324 
2325 	valbool = val ? 1 : 0;
2326 
2327 	switch (optname) {
2328 	case UDP_CORK:
2329 		if (val != 0) {
2330 			up->corkflag = 1;
2331 		} else {
2332 			up->corkflag = 0;
2333 			lock_sock(sk);
2334 			push_pending_frames(sk);
2335 			release_sock(sk);
2336 		}
2337 		break;
2338 
2339 	case UDP_ENCAP:
2340 		switch (val) {
2341 		case 0:
2342 		case UDP_ENCAP_ESPINUDP:
2343 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2344 			up->encap_rcv = xfrm4_udp_encap_rcv;
2345 			/* FALLTHROUGH */
2346 		case UDP_ENCAP_L2TPINUDP:
2347 			up->encap_type = val;
2348 			udp_encap_enable();
2349 			break;
2350 		default:
2351 			err = -ENOPROTOOPT;
2352 			break;
2353 		}
2354 		break;
2355 
2356 	case UDP_NO_CHECK6_TX:
2357 		up->no_check6_tx = valbool;
2358 		break;
2359 
2360 	case UDP_NO_CHECK6_RX:
2361 		up->no_check6_rx = valbool;
2362 		break;
2363 
2364 	/*
2365 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2366 	 */
2367 	/* The sender sets actual checksum coverage length via this option.
2368 	 * The case coverage > packet length is handled by send module. */
2369 	case UDPLITE_SEND_CSCOV:
2370 		if (!is_udplite)         /* Disable the option on UDP sockets */
2371 			return -ENOPROTOOPT;
2372 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2373 			val = 8;
2374 		else if (val > USHRT_MAX)
2375 			val = USHRT_MAX;
2376 		up->pcslen = val;
2377 		up->pcflag |= UDPLITE_SEND_CC;
2378 		break;
2379 
2380 	/* The receiver specifies a minimum checksum coverage value. To make
2381 	 * sense, this should be set to at least 8 (as done below). If zero is
2382 	 * used, this again means full checksum coverage.                     */
2383 	case UDPLITE_RECV_CSCOV:
2384 		if (!is_udplite)         /* Disable the option on UDP sockets */
2385 			return -ENOPROTOOPT;
2386 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2387 			val = 8;
2388 		else if (val > USHRT_MAX)
2389 			val = USHRT_MAX;
2390 		up->pcrlen = val;
2391 		up->pcflag |= UDPLITE_RECV_CC;
2392 		break;
2393 
2394 	default:
2395 		err = -ENOPROTOOPT;
2396 		break;
2397 	}
2398 
2399 	return err;
2400 }
2401 EXPORT_SYMBOL(udp_lib_setsockopt);
2402 
2403 int udp_setsockopt(struct sock *sk, int level, int optname,
2404 		   char __user *optval, unsigned int optlen)
2405 {
2406 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2407 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2408 					  udp_push_pending_frames);
2409 	return ip_setsockopt(sk, level, optname, optval, optlen);
2410 }
2411 
2412 #ifdef CONFIG_COMPAT
2413 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2414 			  char __user *optval, unsigned int optlen)
2415 {
2416 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2417 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2418 					  udp_push_pending_frames);
2419 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2420 }
2421 #endif
2422 
2423 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2424 		       char __user *optval, int __user *optlen)
2425 {
2426 	struct udp_sock *up = udp_sk(sk);
2427 	int val, len;
2428 
2429 	if (get_user(len, optlen))
2430 		return -EFAULT;
2431 
2432 	len = min_t(unsigned int, len, sizeof(int));
2433 
2434 	if (len < 0)
2435 		return -EINVAL;
2436 
2437 	switch (optname) {
2438 	case UDP_CORK:
2439 		val = up->corkflag;
2440 		break;
2441 
2442 	case UDP_ENCAP:
2443 		val = up->encap_type;
2444 		break;
2445 
2446 	case UDP_NO_CHECK6_TX:
2447 		val = up->no_check6_tx;
2448 		break;
2449 
2450 	case UDP_NO_CHECK6_RX:
2451 		val = up->no_check6_rx;
2452 		break;
2453 
2454 	/* The following two cannot be changed on UDP sockets, the return is
2455 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2456 	case UDPLITE_SEND_CSCOV:
2457 		val = up->pcslen;
2458 		break;
2459 
2460 	case UDPLITE_RECV_CSCOV:
2461 		val = up->pcrlen;
2462 		break;
2463 
2464 	default:
2465 		return -ENOPROTOOPT;
2466 	}
2467 
2468 	if (put_user(len, optlen))
2469 		return -EFAULT;
2470 	if (copy_to_user(optval, &val, len))
2471 		return -EFAULT;
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL(udp_lib_getsockopt);
2475 
2476 int udp_getsockopt(struct sock *sk, int level, int optname,
2477 		   char __user *optval, int __user *optlen)
2478 {
2479 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2480 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2481 	return ip_getsockopt(sk, level, optname, optval, optlen);
2482 }
2483 
2484 #ifdef CONFIG_COMPAT
2485 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2486 				 char __user *optval, int __user *optlen)
2487 {
2488 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2489 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2490 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2491 }
2492 #endif
2493 /**
2494  * 	udp_poll - wait for a UDP event.
2495  *	@file - file struct
2496  *	@sock - socket
2497  *	@wait - poll table
2498  *
2499  *	This is same as datagram poll, except for the special case of
2500  *	blocking sockets. If application is using a blocking fd
2501  *	and a packet with checksum error is in the queue;
2502  *	then it could get return from select indicating data available
2503  *	but then block when reading it. Add special case code
2504  *	to work around these arguably broken applications.
2505  */
2506 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2507 {
2508 	unsigned int mask = datagram_poll(file, sock, wait);
2509 	struct sock *sk = sock->sk;
2510 
2511 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2512 		mask |= POLLIN | POLLRDNORM;
2513 
2514 	sock_rps_record_flow(sk);
2515 
2516 	/* Check for false positives due to checksum errors */
2517 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2518 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2519 		mask &= ~(POLLIN | POLLRDNORM);
2520 
2521 	return mask;
2522 
2523 }
2524 EXPORT_SYMBOL(udp_poll);
2525 
2526 int udp_abort(struct sock *sk, int err)
2527 {
2528 	lock_sock(sk);
2529 
2530 	sk->sk_err = err;
2531 	sk->sk_error_report(sk);
2532 	__udp_disconnect(sk, 0);
2533 
2534 	release_sock(sk);
2535 
2536 	return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(udp_abort);
2539 
2540 struct proto udp_prot = {
2541 	.name		   = "UDP",
2542 	.owner		   = THIS_MODULE,
2543 	.close		   = udp_lib_close,
2544 	.connect	   = ip4_datagram_connect,
2545 	.disconnect	   = udp_disconnect,
2546 	.ioctl		   = udp_ioctl,
2547 	.init		   = udp_init_sock,
2548 	.destroy	   = udp_destroy_sock,
2549 	.setsockopt	   = udp_setsockopt,
2550 	.getsockopt	   = udp_getsockopt,
2551 	.sendmsg	   = udp_sendmsg,
2552 	.recvmsg	   = udp_recvmsg,
2553 	.sendpage	   = udp_sendpage,
2554 	.release_cb	   = ip4_datagram_release_cb,
2555 	.hash		   = udp_lib_hash,
2556 	.unhash		   = udp_lib_unhash,
2557 	.rehash		   = udp_v4_rehash,
2558 	.get_port	   = udp_v4_get_port,
2559 	.memory_allocated  = &udp_memory_allocated,
2560 	.sysctl_mem	   = sysctl_udp_mem,
2561 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2562 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2563 	.obj_size	   = sizeof(struct udp_sock),
2564 	.h.udp_table	   = &udp_table,
2565 #ifdef CONFIG_COMPAT
2566 	.compat_setsockopt = compat_udp_setsockopt,
2567 	.compat_getsockopt = compat_udp_getsockopt,
2568 #endif
2569 	.diag_destroy	   = udp_abort,
2570 };
2571 EXPORT_SYMBOL(udp_prot);
2572 
2573 /* ------------------------------------------------------------------------ */
2574 #ifdef CONFIG_PROC_FS
2575 
2576 static struct sock *udp_get_first(struct seq_file *seq, int start)
2577 {
2578 	struct sock *sk;
2579 	struct udp_iter_state *state = seq->private;
2580 	struct net *net = seq_file_net(seq);
2581 
2582 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2583 	     ++state->bucket) {
2584 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2585 
2586 		if (hlist_empty(&hslot->head))
2587 			continue;
2588 
2589 		spin_lock_bh(&hslot->lock);
2590 		sk_for_each(sk, &hslot->head) {
2591 			if (!net_eq(sock_net(sk), net))
2592 				continue;
2593 			if (sk->sk_family == state->family)
2594 				goto found;
2595 		}
2596 		spin_unlock_bh(&hslot->lock);
2597 	}
2598 	sk = NULL;
2599 found:
2600 	return sk;
2601 }
2602 
2603 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2604 {
2605 	struct udp_iter_state *state = seq->private;
2606 	struct net *net = seq_file_net(seq);
2607 
2608 	do {
2609 		sk = sk_next(sk);
2610 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2611 
2612 	if (!sk) {
2613 		if (state->bucket <= state->udp_table->mask)
2614 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2615 		return udp_get_first(seq, state->bucket + 1);
2616 	}
2617 	return sk;
2618 }
2619 
2620 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2621 {
2622 	struct sock *sk = udp_get_first(seq, 0);
2623 
2624 	if (sk)
2625 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2626 			--pos;
2627 	return pos ? NULL : sk;
2628 }
2629 
2630 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2631 {
2632 	struct udp_iter_state *state = seq->private;
2633 	state->bucket = MAX_UDP_PORTS;
2634 
2635 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2636 }
2637 
2638 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2639 {
2640 	struct sock *sk;
2641 
2642 	if (v == SEQ_START_TOKEN)
2643 		sk = udp_get_idx(seq, 0);
2644 	else
2645 		sk = udp_get_next(seq, v);
2646 
2647 	++*pos;
2648 	return sk;
2649 }
2650 
2651 static void udp_seq_stop(struct seq_file *seq, void *v)
2652 {
2653 	struct udp_iter_state *state = seq->private;
2654 
2655 	if (state->bucket <= state->udp_table->mask)
2656 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2657 }
2658 
2659 int udp_seq_open(struct inode *inode, struct file *file)
2660 {
2661 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2662 	struct udp_iter_state *s;
2663 	int err;
2664 
2665 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2666 			   sizeof(struct udp_iter_state));
2667 	if (err < 0)
2668 		return err;
2669 
2670 	s = ((struct seq_file *)file->private_data)->private;
2671 	s->family		= afinfo->family;
2672 	s->udp_table		= afinfo->udp_table;
2673 	return err;
2674 }
2675 EXPORT_SYMBOL(udp_seq_open);
2676 
2677 /* ------------------------------------------------------------------------ */
2678 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2679 {
2680 	struct proc_dir_entry *p;
2681 	int rc = 0;
2682 
2683 	afinfo->seq_ops.start		= udp_seq_start;
2684 	afinfo->seq_ops.next		= udp_seq_next;
2685 	afinfo->seq_ops.stop		= udp_seq_stop;
2686 
2687 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2688 			     afinfo->seq_fops, afinfo);
2689 	if (!p)
2690 		rc = -ENOMEM;
2691 	return rc;
2692 }
2693 EXPORT_SYMBOL(udp_proc_register);
2694 
2695 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2696 {
2697 	remove_proc_entry(afinfo->name, net->proc_net);
2698 }
2699 EXPORT_SYMBOL(udp_proc_unregister);
2700 
2701 /* ------------------------------------------------------------------------ */
2702 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2703 		int bucket)
2704 {
2705 	struct inet_sock *inet = inet_sk(sp);
2706 	__be32 dest = inet->inet_daddr;
2707 	__be32 src  = inet->inet_rcv_saddr;
2708 	__u16 destp	  = ntohs(inet->inet_dport);
2709 	__u16 srcp	  = ntohs(inet->inet_sport);
2710 
2711 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2712 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2713 		bucket, src, srcp, dest, destp, sp->sk_state,
2714 		sk_wmem_alloc_get(sp),
2715 		sk_rmem_alloc_get(sp),
2716 		0, 0L, 0,
2717 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2718 		0, sock_i_ino(sp),
2719 		refcount_read(&sp->sk_refcnt), sp,
2720 		atomic_read(&sp->sk_drops));
2721 }
2722 
2723 int udp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725 	seq_setwidth(seq, 127);
2726 	if (v == SEQ_START_TOKEN)
2727 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2728 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2729 			   "inode ref pointer drops");
2730 	else {
2731 		struct udp_iter_state *state = seq->private;
2732 
2733 		udp4_format_sock(v, seq, state->bucket);
2734 	}
2735 	seq_pad(seq, '\n');
2736 	return 0;
2737 }
2738 
2739 static const struct file_operations udp_afinfo_seq_fops = {
2740 	.owner    = THIS_MODULE,
2741 	.open     = udp_seq_open,
2742 	.read     = seq_read,
2743 	.llseek   = seq_lseek,
2744 	.release  = seq_release_net
2745 };
2746 
2747 /* ------------------------------------------------------------------------ */
2748 static struct udp_seq_afinfo udp4_seq_afinfo = {
2749 	.name		= "udp",
2750 	.family		= AF_INET,
2751 	.udp_table	= &udp_table,
2752 	.seq_fops	= &udp_afinfo_seq_fops,
2753 	.seq_ops	= {
2754 		.show		= udp4_seq_show,
2755 	},
2756 };
2757 
2758 static int __net_init udp4_proc_init_net(struct net *net)
2759 {
2760 	return udp_proc_register(net, &udp4_seq_afinfo);
2761 }
2762 
2763 static void __net_exit udp4_proc_exit_net(struct net *net)
2764 {
2765 	udp_proc_unregister(net, &udp4_seq_afinfo);
2766 }
2767 
2768 static struct pernet_operations udp4_net_ops = {
2769 	.init = udp4_proc_init_net,
2770 	.exit = udp4_proc_exit_net,
2771 };
2772 
2773 int __init udp4_proc_init(void)
2774 {
2775 	return register_pernet_subsys(&udp4_net_ops);
2776 }
2777 
2778 void udp4_proc_exit(void)
2779 {
2780 	unregister_pernet_subsys(&udp4_net_ops);
2781 }
2782 #endif /* CONFIG_PROC_FS */
2783 
2784 static __initdata unsigned long uhash_entries;
2785 static int __init set_uhash_entries(char *str)
2786 {
2787 	ssize_t ret;
2788 
2789 	if (!str)
2790 		return 0;
2791 
2792 	ret = kstrtoul(str, 0, &uhash_entries);
2793 	if (ret)
2794 		return 0;
2795 
2796 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2797 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2798 	return 1;
2799 }
2800 __setup("uhash_entries=", set_uhash_entries);
2801 
2802 void __init udp_table_init(struct udp_table *table, const char *name)
2803 {
2804 	unsigned int i;
2805 
2806 	table->hash = alloc_large_system_hash(name,
2807 					      2 * sizeof(struct udp_hslot),
2808 					      uhash_entries,
2809 					      21, /* one slot per 2 MB */
2810 					      0,
2811 					      &table->log,
2812 					      &table->mask,
2813 					      UDP_HTABLE_SIZE_MIN,
2814 					      64 * 1024);
2815 
2816 	table->hash2 = table->hash + (table->mask + 1);
2817 	for (i = 0; i <= table->mask; i++) {
2818 		INIT_HLIST_HEAD(&table->hash[i].head);
2819 		table->hash[i].count = 0;
2820 		spin_lock_init(&table->hash[i].lock);
2821 	}
2822 	for (i = 0; i <= table->mask; i++) {
2823 		INIT_HLIST_HEAD(&table->hash2[i].head);
2824 		table->hash2[i].count = 0;
2825 		spin_lock_init(&table->hash2[i].lock);
2826 	}
2827 }
2828 
2829 u32 udp_flow_hashrnd(void)
2830 {
2831 	static u32 hashrnd __read_mostly;
2832 
2833 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2834 
2835 	return hashrnd;
2836 }
2837 EXPORT_SYMBOL(udp_flow_hashrnd);
2838 
2839 void __init udp_init(void)
2840 {
2841 	unsigned long limit;
2842 	unsigned int i;
2843 
2844 	udp_table_init(&udp_table, "UDP");
2845 	limit = nr_free_buffer_pages() / 8;
2846 	limit = max(limit, 128UL);
2847 	sysctl_udp_mem[0] = limit / 4 * 3;
2848 	sysctl_udp_mem[1] = limit;
2849 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2850 
2851 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2852 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2853 
2854 	/* 16 spinlocks per cpu */
2855 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2856 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2857 				GFP_KERNEL);
2858 	if (!udp_busylocks)
2859 		panic("UDP: failed to alloc udp_busylocks\n");
2860 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2861 		spin_lock_init(udp_busylocks + i);
2862 }
2863