xref: /openbmc/linux/net/ipv4/udp.c (revision ae213c44)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/memblock.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/ip_tunnels.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 #include <net/sock_reuseport.h>
118 #include <net/addrconf.h>
119 #include <net/udp_tunnel.h>
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 
133 /* IPCB reference means this can not be used from early demux */
134 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
135 {
136 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
137 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
138 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
139 		return true;
140 #endif
141 	return false;
142 }
143 
144 static int udp_lib_lport_inuse(struct net *net, __u16 num,
145 			       const struct udp_hslot *hslot,
146 			       unsigned long *bitmap,
147 			       struct sock *sk, unsigned int log)
148 {
149 	struct sock *sk2;
150 	kuid_t uid = sock_i_uid(sk);
151 
152 	sk_for_each(sk2, &hslot->head) {
153 		if (net_eq(sock_net(sk2), net) &&
154 		    sk2 != sk &&
155 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
156 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
157 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
158 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
159 		    inet_rcv_saddr_equal(sk, sk2, true)) {
160 			if (sk2->sk_reuseport && sk->sk_reuseport &&
161 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
162 			    uid_eq(uid, sock_i_uid(sk2))) {
163 				if (!bitmap)
164 					return 0;
165 			} else {
166 				if (!bitmap)
167 					return 1;
168 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
169 					  bitmap);
170 			}
171 		}
172 	}
173 	return 0;
174 }
175 
176 /*
177  * Note: we still hold spinlock of primary hash chain, so no other writer
178  * can insert/delete a socket with local_port == num
179  */
180 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
181 				struct udp_hslot *hslot2,
182 				struct sock *sk)
183 {
184 	struct sock *sk2;
185 	kuid_t uid = sock_i_uid(sk);
186 	int res = 0;
187 
188 	spin_lock(&hslot2->lock);
189 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
190 		if (net_eq(sock_net(sk2), net) &&
191 		    sk2 != sk &&
192 		    (udp_sk(sk2)->udp_port_hash == num) &&
193 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
194 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
195 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
196 		    inet_rcv_saddr_equal(sk, sk2, true)) {
197 			if (sk2->sk_reuseport && sk->sk_reuseport &&
198 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
199 			    uid_eq(uid, sock_i_uid(sk2))) {
200 				res = 0;
201 			} else {
202 				res = 1;
203 			}
204 			break;
205 		}
206 	}
207 	spin_unlock(&hslot2->lock);
208 	return res;
209 }
210 
211 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
212 {
213 	struct net *net = sock_net(sk);
214 	kuid_t uid = sock_i_uid(sk);
215 	struct sock *sk2;
216 
217 	sk_for_each(sk2, &hslot->head) {
218 		if (net_eq(sock_net(sk2), net) &&
219 		    sk2 != sk &&
220 		    sk2->sk_family == sk->sk_family &&
221 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
222 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
223 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
224 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
225 		    inet_rcv_saddr_equal(sk, sk2, false)) {
226 			return reuseport_add_sock(sk, sk2,
227 						  inet_rcv_saddr_any(sk));
228 		}
229 	}
230 
231 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
232 }
233 
234 /**
235  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
236  *
237  *  @sk:          socket struct in question
238  *  @snum:        port number to look up
239  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240  *                   with NULL address
241  */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 			cond_resched();
288 		} while (++first != last);
289 		goto fail;
290 	} else {
291 		hslot = udp_hashslot(udptable, net, snum);
292 		spin_lock_bh(&hslot->lock);
293 		if (hslot->count > 10) {
294 			int exist;
295 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296 
297 			slot2          &= udptable->mask;
298 			hash2_nulladdr &= udptable->mask;
299 
300 			hslot2 = udp_hashslot2(udptable, slot2);
301 			if (hslot->count < hslot2->count)
302 				goto scan_primary_hash;
303 
304 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
317 			goto fail_unlock;
318 	}
319 found:
320 	inet_sk(sk)->inet_num = snum;
321 	udp_sk(sk)->udp_port_hash = snum;
322 	udp_sk(sk)->udp_portaddr_hash ^= snum;
323 	if (sk_unhashed(sk)) {
324 		if (sk->sk_reuseport &&
325 		    udp_reuseport_add_sock(sk, hslot)) {
326 			inet_sk(sk)->inet_num = 0;
327 			udp_sk(sk)->udp_port_hash = 0;
328 			udp_sk(sk)->udp_portaddr_hash ^= snum;
329 			goto fail_unlock;
330 		}
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 	sock_set_flag(sk, SOCK_RCU_FREE);
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif, bool exact_dif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	score += 4;
406 
407 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
413 		       const __u16 lport, const __be32 faddr,
414 		       const __be16 fport)
415 {
416 	static u32 udp_ehash_secret __read_mostly;
417 
418 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419 
420 	return __inet_ehashfn(laddr, lport, faddr, fport,
421 			      udp_ehash_secret + net_hash_mix(net));
422 }
423 
424 /* called with rcu_read_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 				     __be32 saddr, __be16 sport,
427 				     __be32 daddr, unsigned int hnum,
428 				     int dif, int sdif, bool exact_dif,
429 				     struct udp_hslot *hslot2,
430 				     struct sk_buff *skb)
431 {
432 	struct sock *sk, *result;
433 	int score, badness;
434 	u32 hash = 0;
435 
436 	result = NULL;
437 	badness = 0;
438 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
439 		score = compute_score(sk, net, saddr, sport,
440 				      daddr, hnum, dif, sdif, exact_dif);
441 		if (score > badness) {
442 			if (sk->sk_reuseport) {
443 				hash = udp_ehashfn(net, daddr, hnum,
444 						   saddr, sport);
445 				result = reuseport_select_sock(sk, hash, skb,
446 							sizeof(struct udphdr));
447 				if (result)
448 					return result;
449 			}
450 			badness = score;
451 			result = sk;
452 		}
453 	}
454 	return result;
455 }
456 
457 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
458  * harder than this. -DaveM
459  */
460 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
461 		__be16 sport, __be32 daddr, __be16 dport, int dif,
462 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
463 {
464 	struct sock *result;
465 	unsigned short hnum = ntohs(dport);
466 	unsigned int hash2, slot2;
467 	struct udp_hslot *hslot2;
468 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
469 
470 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
471 	slot2 = hash2 & udptable->mask;
472 	hslot2 = &udptable->hash2[slot2];
473 
474 	result = udp4_lib_lookup2(net, saddr, sport,
475 				  daddr, hnum, dif, sdif,
476 				  exact_dif, hslot2, skb);
477 	if (!result) {
478 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
479 		slot2 = hash2 & udptable->mask;
480 		hslot2 = &udptable->hash2[slot2];
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  htonl(INADDR_ANY), hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 	}
486 	if (unlikely(IS_ERR(result)))
487 		return NULL;
488 	return result;
489 }
490 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
491 
492 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
493 						 __be16 sport, __be16 dport,
494 						 struct udp_table *udptable)
495 {
496 	const struct iphdr *iph = ip_hdr(skb);
497 
498 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
499 				 iph->daddr, dport, inet_iif(skb),
500 				 inet_sdif(skb), udptable, skb);
501 }
502 
503 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
504 				 __be16 sport, __be16 dport)
505 {
506 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
507 }
508 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
509 
510 /* Must be called under rcu_read_lock().
511  * Does increment socket refcount.
512  */
513 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
514 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
515 			     __be32 daddr, __be16 dport, int dif)
516 {
517 	struct sock *sk;
518 
519 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
520 			       dif, 0, &udp_table, NULL);
521 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
522 		sk = NULL;
523 	return sk;
524 }
525 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
526 #endif
527 
528 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
529 				       __be16 loc_port, __be32 loc_addr,
530 				       __be16 rmt_port, __be32 rmt_addr,
531 				       int dif, int sdif, unsigned short hnum)
532 {
533 	struct inet_sock *inet = inet_sk(sk);
534 
535 	if (!net_eq(sock_net(sk), net) ||
536 	    udp_sk(sk)->udp_port_hash != hnum ||
537 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
538 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
539 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
540 	    ipv6_only_sock(sk) ||
541 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
542 	     sk->sk_bound_dev_if != sdif))
543 		return false;
544 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
545 		return false;
546 	return true;
547 }
548 
549 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
550 void udp_encap_enable(void)
551 {
552 	static_branch_inc(&udp_encap_needed_key);
553 }
554 EXPORT_SYMBOL(udp_encap_enable);
555 
556 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
557  * through error handlers in encapsulations looking for a match.
558  */
559 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
560 {
561 	int i;
562 
563 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
564 		int (*handler)(struct sk_buff *skb, u32 info);
565 		const struct ip_tunnel_encap_ops *encap;
566 
567 		encap = rcu_dereference(iptun_encaps[i]);
568 		if (!encap)
569 			continue;
570 		handler = encap->err_handler;
571 		if (handler && !handler(skb, info))
572 			return 0;
573 	}
574 
575 	return -ENOENT;
576 }
577 
578 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
579  * reversing source and destination port: this will match tunnels that force the
580  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
581  * lwtunnels might actually break this assumption by being configured with
582  * different destination ports on endpoints, in this case we won't be able to
583  * trace ICMP messages back to them.
584  *
585  * If this doesn't match any socket, probe tunnels with arbitrary destination
586  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
587  * we've sent packets to won't necessarily match the local destination port.
588  *
589  * Then ask the tunnel implementation to match the error against a valid
590  * association.
591  *
592  * Return an error if we can't find a match, the socket if we need further
593  * processing, zero otherwise.
594  */
595 static struct sock *__udp4_lib_err_encap(struct net *net,
596 					 const struct iphdr *iph,
597 					 struct udphdr *uh,
598 					 struct udp_table *udptable,
599 					 struct sk_buff *skb, u32 info)
600 {
601 	int network_offset, transport_offset;
602 	struct sock *sk;
603 
604 	network_offset = skb_network_offset(skb);
605 	transport_offset = skb_transport_offset(skb);
606 
607 	/* Network header needs to point to the outer IPv4 header inside ICMP */
608 	skb_reset_network_header(skb);
609 
610 	/* Transport header needs to point to the UDP header */
611 	skb_set_transport_header(skb, iph->ihl << 2);
612 
613 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
614 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
615 			       udptable, NULL);
616 	if (sk) {
617 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
618 		struct udp_sock *up = udp_sk(sk);
619 
620 		lookup = READ_ONCE(up->encap_err_lookup);
621 		if (!lookup || lookup(sk, skb))
622 			sk = NULL;
623 	}
624 
625 	if (!sk)
626 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
627 
628 	skb_set_transport_header(skb, transport_offset);
629 	skb_set_network_header(skb, network_offset);
630 
631 	return sk;
632 }
633 
634 /*
635  * This routine is called by the ICMP module when it gets some
636  * sort of error condition.  If err < 0 then the socket should
637  * be closed and the error returned to the user.  If err > 0
638  * it's just the icmp type << 8 | icmp code.
639  * Header points to the ip header of the error packet. We move
640  * on past this. Then (as it used to claim before adjustment)
641  * header points to the first 8 bytes of the udp header.  We need
642  * to find the appropriate port.
643  */
644 
645 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
646 {
647 	struct inet_sock *inet;
648 	const struct iphdr *iph = (const struct iphdr *)skb->data;
649 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
650 	const int type = icmp_hdr(skb)->type;
651 	const int code = icmp_hdr(skb)->code;
652 	bool tunnel = false;
653 	struct sock *sk;
654 	int harderr;
655 	int err;
656 	struct net *net = dev_net(skb->dev);
657 
658 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
659 			       iph->saddr, uh->source, skb->dev->ifindex,
660 			       inet_sdif(skb), udptable, NULL);
661 	if (!sk) {
662 		/* No socket for error: try tunnels before discarding */
663 		sk = ERR_PTR(-ENOENT);
664 		if (static_branch_unlikely(&udp_encap_needed_key)) {
665 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
666 						  info);
667 			if (!sk)
668 				return 0;
669 		}
670 
671 		if (IS_ERR(sk)) {
672 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
673 			return PTR_ERR(sk);
674 		}
675 
676 		tunnel = true;
677 	}
678 
679 	err = 0;
680 	harderr = 0;
681 	inet = inet_sk(sk);
682 
683 	switch (type) {
684 	default:
685 	case ICMP_TIME_EXCEEDED:
686 		err = EHOSTUNREACH;
687 		break;
688 	case ICMP_SOURCE_QUENCH:
689 		goto out;
690 	case ICMP_PARAMETERPROB:
691 		err = EPROTO;
692 		harderr = 1;
693 		break;
694 	case ICMP_DEST_UNREACH:
695 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
696 			ipv4_sk_update_pmtu(skb, sk, info);
697 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
698 				err = EMSGSIZE;
699 				harderr = 1;
700 				break;
701 			}
702 			goto out;
703 		}
704 		err = EHOSTUNREACH;
705 		if (code <= NR_ICMP_UNREACH) {
706 			harderr = icmp_err_convert[code].fatal;
707 			err = icmp_err_convert[code].errno;
708 		}
709 		break;
710 	case ICMP_REDIRECT:
711 		ipv4_sk_redirect(skb, sk);
712 		goto out;
713 	}
714 
715 	/*
716 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
717 	 *	4.1.3.3.
718 	 */
719 	if (tunnel) {
720 		/* ...not for tunnels though: we don't have a sending socket */
721 		goto out;
722 	}
723 	if (!inet->recverr) {
724 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
725 			goto out;
726 	} else
727 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
728 
729 	sk->sk_err = err;
730 	sk->sk_error_report(sk);
731 out:
732 	return 0;
733 }
734 
735 int udp_err(struct sk_buff *skb, u32 info)
736 {
737 	return __udp4_lib_err(skb, info, &udp_table);
738 }
739 
740 /*
741  * Throw away all pending data and cancel the corking. Socket is locked.
742  */
743 void udp_flush_pending_frames(struct sock *sk)
744 {
745 	struct udp_sock *up = udp_sk(sk);
746 
747 	if (up->pending) {
748 		up->len = 0;
749 		up->pending = 0;
750 		ip_flush_pending_frames(sk);
751 	}
752 }
753 EXPORT_SYMBOL(udp_flush_pending_frames);
754 
755 /**
756  * 	udp4_hwcsum  -  handle outgoing HW checksumming
757  * 	@skb: 	sk_buff containing the filled-in UDP header
758  * 	        (checksum field must be zeroed out)
759  *	@src:	source IP address
760  *	@dst:	destination IP address
761  */
762 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
763 {
764 	struct udphdr *uh = udp_hdr(skb);
765 	int offset = skb_transport_offset(skb);
766 	int len = skb->len - offset;
767 	int hlen = len;
768 	__wsum csum = 0;
769 
770 	if (!skb_has_frag_list(skb)) {
771 		/*
772 		 * Only one fragment on the socket.
773 		 */
774 		skb->csum_start = skb_transport_header(skb) - skb->head;
775 		skb->csum_offset = offsetof(struct udphdr, check);
776 		uh->check = ~csum_tcpudp_magic(src, dst, len,
777 					       IPPROTO_UDP, 0);
778 	} else {
779 		struct sk_buff *frags;
780 
781 		/*
782 		 * HW-checksum won't work as there are two or more
783 		 * fragments on the socket so that all csums of sk_buffs
784 		 * should be together
785 		 */
786 		skb_walk_frags(skb, frags) {
787 			csum = csum_add(csum, frags->csum);
788 			hlen -= frags->len;
789 		}
790 
791 		csum = skb_checksum(skb, offset, hlen, csum);
792 		skb->ip_summed = CHECKSUM_NONE;
793 
794 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
795 		if (uh->check == 0)
796 			uh->check = CSUM_MANGLED_0;
797 	}
798 }
799 EXPORT_SYMBOL_GPL(udp4_hwcsum);
800 
801 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
802  * for the simple case like when setting the checksum for a UDP tunnel.
803  */
804 void udp_set_csum(bool nocheck, struct sk_buff *skb,
805 		  __be32 saddr, __be32 daddr, int len)
806 {
807 	struct udphdr *uh = udp_hdr(skb);
808 
809 	if (nocheck) {
810 		uh->check = 0;
811 	} else if (skb_is_gso(skb)) {
812 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
813 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
814 		uh->check = 0;
815 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
816 		if (uh->check == 0)
817 			uh->check = CSUM_MANGLED_0;
818 	} else {
819 		skb->ip_summed = CHECKSUM_PARTIAL;
820 		skb->csum_start = skb_transport_header(skb) - skb->head;
821 		skb->csum_offset = offsetof(struct udphdr, check);
822 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
823 	}
824 }
825 EXPORT_SYMBOL(udp_set_csum);
826 
827 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
828 			struct inet_cork *cork)
829 {
830 	struct sock *sk = skb->sk;
831 	struct inet_sock *inet = inet_sk(sk);
832 	struct udphdr *uh;
833 	int err = 0;
834 	int is_udplite = IS_UDPLITE(sk);
835 	int offset = skb_transport_offset(skb);
836 	int len = skb->len - offset;
837 	__wsum csum = 0;
838 
839 	/*
840 	 * Create a UDP header
841 	 */
842 	uh = udp_hdr(skb);
843 	uh->source = inet->inet_sport;
844 	uh->dest = fl4->fl4_dport;
845 	uh->len = htons(len);
846 	uh->check = 0;
847 
848 	if (cork->gso_size) {
849 		const int hlen = skb_network_header_len(skb) +
850 				 sizeof(struct udphdr);
851 
852 		if (hlen + cork->gso_size > cork->fragsize) {
853 			kfree_skb(skb);
854 			return -EINVAL;
855 		}
856 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
857 			kfree_skb(skb);
858 			return -EINVAL;
859 		}
860 		if (sk->sk_no_check_tx) {
861 			kfree_skb(skb);
862 			return -EINVAL;
863 		}
864 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
865 		    dst_xfrm(skb_dst(skb))) {
866 			kfree_skb(skb);
867 			return -EIO;
868 		}
869 
870 		skb_shinfo(skb)->gso_size = cork->gso_size;
871 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
872 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
873 							 cork->gso_size);
874 		goto csum_partial;
875 	}
876 
877 	if (is_udplite)  				 /*     UDP-Lite      */
878 		csum = udplite_csum(skb);
879 
880 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
881 
882 		skb->ip_summed = CHECKSUM_NONE;
883 		goto send;
884 
885 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
886 csum_partial:
887 
888 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
889 		goto send;
890 
891 	} else
892 		csum = udp_csum(skb);
893 
894 	/* add protocol-dependent pseudo-header */
895 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
896 				      sk->sk_protocol, csum);
897 	if (uh->check == 0)
898 		uh->check = CSUM_MANGLED_0;
899 
900 send:
901 	err = ip_send_skb(sock_net(sk), skb);
902 	if (err) {
903 		if (err == -ENOBUFS && !inet->recverr) {
904 			UDP_INC_STATS(sock_net(sk),
905 				      UDP_MIB_SNDBUFERRORS, is_udplite);
906 			err = 0;
907 		}
908 	} else
909 		UDP_INC_STATS(sock_net(sk),
910 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
911 	return err;
912 }
913 
914 /*
915  * Push out all pending data as one UDP datagram. Socket is locked.
916  */
917 int udp_push_pending_frames(struct sock *sk)
918 {
919 	struct udp_sock  *up = udp_sk(sk);
920 	struct inet_sock *inet = inet_sk(sk);
921 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
922 	struct sk_buff *skb;
923 	int err = 0;
924 
925 	skb = ip_finish_skb(sk, fl4);
926 	if (!skb)
927 		goto out;
928 
929 	err = udp_send_skb(skb, fl4, &inet->cork.base);
930 
931 out:
932 	up->len = 0;
933 	up->pending = 0;
934 	return err;
935 }
936 EXPORT_SYMBOL(udp_push_pending_frames);
937 
938 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
939 {
940 	switch (cmsg->cmsg_type) {
941 	case UDP_SEGMENT:
942 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
943 			return -EINVAL;
944 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
945 		return 0;
946 	default:
947 		return -EINVAL;
948 	}
949 }
950 
951 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
952 {
953 	struct cmsghdr *cmsg;
954 	bool need_ip = false;
955 	int err;
956 
957 	for_each_cmsghdr(cmsg, msg) {
958 		if (!CMSG_OK(msg, cmsg))
959 			return -EINVAL;
960 
961 		if (cmsg->cmsg_level != SOL_UDP) {
962 			need_ip = true;
963 			continue;
964 		}
965 
966 		err = __udp_cmsg_send(cmsg, gso_size);
967 		if (err)
968 			return err;
969 	}
970 
971 	return need_ip;
972 }
973 EXPORT_SYMBOL_GPL(udp_cmsg_send);
974 
975 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
976 {
977 	struct inet_sock *inet = inet_sk(sk);
978 	struct udp_sock *up = udp_sk(sk);
979 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
980 	struct flowi4 fl4_stack;
981 	struct flowi4 *fl4;
982 	int ulen = len;
983 	struct ipcm_cookie ipc;
984 	struct rtable *rt = NULL;
985 	int free = 0;
986 	int connected = 0;
987 	__be32 daddr, faddr, saddr;
988 	__be16 dport;
989 	u8  tos;
990 	int err, is_udplite = IS_UDPLITE(sk);
991 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
992 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
993 	struct sk_buff *skb;
994 	struct ip_options_data opt_copy;
995 
996 	if (len > 0xFFFF)
997 		return -EMSGSIZE;
998 
999 	/*
1000 	 *	Check the flags.
1001 	 */
1002 
1003 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1004 		return -EOPNOTSUPP;
1005 
1006 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1007 
1008 	fl4 = &inet->cork.fl.u.ip4;
1009 	if (up->pending) {
1010 		/*
1011 		 * There are pending frames.
1012 		 * The socket lock must be held while it's corked.
1013 		 */
1014 		lock_sock(sk);
1015 		if (likely(up->pending)) {
1016 			if (unlikely(up->pending != AF_INET)) {
1017 				release_sock(sk);
1018 				return -EINVAL;
1019 			}
1020 			goto do_append_data;
1021 		}
1022 		release_sock(sk);
1023 	}
1024 	ulen += sizeof(struct udphdr);
1025 
1026 	/*
1027 	 *	Get and verify the address.
1028 	 */
1029 	if (usin) {
1030 		if (msg->msg_namelen < sizeof(*usin))
1031 			return -EINVAL;
1032 		if (usin->sin_family != AF_INET) {
1033 			if (usin->sin_family != AF_UNSPEC)
1034 				return -EAFNOSUPPORT;
1035 		}
1036 
1037 		daddr = usin->sin_addr.s_addr;
1038 		dport = usin->sin_port;
1039 		if (dport == 0)
1040 			return -EINVAL;
1041 	} else {
1042 		if (sk->sk_state != TCP_ESTABLISHED)
1043 			return -EDESTADDRREQ;
1044 		daddr = inet->inet_daddr;
1045 		dport = inet->inet_dport;
1046 		/* Open fast path for connected socket.
1047 		   Route will not be used, if at least one option is set.
1048 		 */
1049 		connected = 1;
1050 	}
1051 
1052 	ipcm_init_sk(&ipc, inet);
1053 	ipc.gso_size = up->gso_size;
1054 
1055 	if (msg->msg_controllen) {
1056 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1057 		if (err > 0)
1058 			err = ip_cmsg_send(sk, msg, &ipc,
1059 					   sk->sk_family == AF_INET6);
1060 		if (unlikely(err < 0)) {
1061 			kfree(ipc.opt);
1062 			return err;
1063 		}
1064 		if (ipc.opt)
1065 			free = 1;
1066 		connected = 0;
1067 	}
1068 	if (!ipc.opt) {
1069 		struct ip_options_rcu *inet_opt;
1070 
1071 		rcu_read_lock();
1072 		inet_opt = rcu_dereference(inet->inet_opt);
1073 		if (inet_opt) {
1074 			memcpy(&opt_copy, inet_opt,
1075 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1076 			ipc.opt = &opt_copy.opt;
1077 		}
1078 		rcu_read_unlock();
1079 	}
1080 
1081 	if (cgroup_bpf_enabled && !connected) {
1082 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1083 					    (struct sockaddr *)usin, &ipc.addr);
1084 		if (err)
1085 			goto out_free;
1086 		if (usin) {
1087 			if (usin->sin_port == 0) {
1088 				/* BPF program set invalid port. Reject it. */
1089 				err = -EINVAL;
1090 				goto out_free;
1091 			}
1092 			daddr = usin->sin_addr.s_addr;
1093 			dport = usin->sin_port;
1094 		}
1095 	}
1096 
1097 	saddr = ipc.addr;
1098 	ipc.addr = faddr = daddr;
1099 
1100 	if (ipc.opt && ipc.opt->opt.srr) {
1101 		if (!daddr) {
1102 			err = -EINVAL;
1103 			goto out_free;
1104 		}
1105 		faddr = ipc.opt->opt.faddr;
1106 		connected = 0;
1107 	}
1108 	tos = get_rttos(&ipc, inet);
1109 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1110 	    (msg->msg_flags & MSG_DONTROUTE) ||
1111 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1112 		tos |= RTO_ONLINK;
1113 		connected = 0;
1114 	}
1115 
1116 	if (ipv4_is_multicast(daddr)) {
1117 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1118 			ipc.oif = inet->mc_index;
1119 		if (!saddr)
1120 			saddr = inet->mc_addr;
1121 		connected = 0;
1122 	} else if (!ipc.oif) {
1123 		ipc.oif = inet->uc_index;
1124 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1125 		/* oif is set, packet is to local broadcast and
1126 		 * and uc_index is set. oif is most likely set
1127 		 * by sk_bound_dev_if. If uc_index != oif check if the
1128 		 * oif is an L3 master and uc_index is an L3 slave.
1129 		 * If so, we want to allow the send using the uc_index.
1130 		 */
1131 		if (ipc.oif != inet->uc_index &&
1132 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1133 							      inet->uc_index)) {
1134 			ipc.oif = inet->uc_index;
1135 		}
1136 	}
1137 
1138 	if (connected)
1139 		rt = (struct rtable *)sk_dst_check(sk, 0);
1140 
1141 	if (!rt) {
1142 		struct net *net = sock_net(sk);
1143 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1144 
1145 		fl4 = &fl4_stack;
1146 
1147 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1148 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1149 				   flow_flags,
1150 				   faddr, saddr, dport, inet->inet_sport,
1151 				   sk->sk_uid);
1152 
1153 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1154 		rt = ip_route_output_flow(net, fl4, sk);
1155 		if (IS_ERR(rt)) {
1156 			err = PTR_ERR(rt);
1157 			rt = NULL;
1158 			if (err == -ENETUNREACH)
1159 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1160 			goto out;
1161 		}
1162 
1163 		err = -EACCES;
1164 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1165 		    !sock_flag(sk, SOCK_BROADCAST))
1166 			goto out;
1167 		if (connected)
1168 			sk_dst_set(sk, dst_clone(&rt->dst));
1169 	}
1170 
1171 	if (msg->msg_flags&MSG_CONFIRM)
1172 		goto do_confirm;
1173 back_from_confirm:
1174 
1175 	saddr = fl4->saddr;
1176 	if (!ipc.addr)
1177 		daddr = ipc.addr = fl4->daddr;
1178 
1179 	/* Lockless fast path for the non-corking case. */
1180 	if (!corkreq) {
1181 		struct inet_cork cork;
1182 
1183 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1184 				  sizeof(struct udphdr), &ipc, &rt,
1185 				  &cork, msg->msg_flags);
1186 		err = PTR_ERR(skb);
1187 		if (!IS_ERR_OR_NULL(skb))
1188 			err = udp_send_skb(skb, fl4, &cork);
1189 		goto out;
1190 	}
1191 
1192 	lock_sock(sk);
1193 	if (unlikely(up->pending)) {
1194 		/* The socket is already corked while preparing it. */
1195 		/* ... which is an evident application bug. --ANK */
1196 		release_sock(sk);
1197 
1198 		net_dbg_ratelimited("socket already corked\n");
1199 		err = -EINVAL;
1200 		goto out;
1201 	}
1202 	/*
1203 	 *	Now cork the socket to pend data.
1204 	 */
1205 	fl4 = &inet->cork.fl.u.ip4;
1206 	fl4->daddr = daddr;
1207 	fl4->saddr = saddr;
1208 	fl4->fl4_dport = dport;
1209 	fl4->fl4_sport = inet->inet_sport;
1210 	up->pending = AF_INET;
1211 
1212 do_append_data:
1213 	up->len += ulen;
1214 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1215 			     sizeof(struct udphdr), &ipc, &rt,
1216 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1217 	if (err)
1218 		udp_flush_pending_frames(sk);
1219 	else if (!corkreq)
1220 		err = udp_push_pending_frames(sk);
1221 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1222 		up->pending = 0;
1223 	release_sock(sk);
1224 
1225 out:
1226 	ip_rt_put(rt);
1227 out_free:
1228 	if (free)
1229 		kfree(ipc.opt);
1230 	if (!err)
1231 		return len;
1232 	/*
1233 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1234 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1235 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1236 	 * things).  We could add another new stat but at least for now that
1237 	 * seems like overkill.
1238 	 */
1239 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1240 		UDP_INC_STATS(sock_net(sk),
1241 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1242 	}
1243 	return err;
1244 
1245 do_confirm:
1246 	if (msg->msg_flags & MSG_PROBE)
1247 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1248 	if (!(msg->msg_flags&MSG_PROBE) || len)
1249 		goto back_from_confirm;
1250 	err = 0;
1251 	goto out;
1252 }
1253 EXPORT_SYMBOL(udp_sendmsg);
1254 
1255 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1256 		 size_t size, int flags)
1257 {
1258 	struct inet_sock *inet = inet_sk(sk);
1259 	struct udp_sock *up = udp_sk(sk);
1260 	int ret;
1261 
1262 	if (flags & MSG_SENDPAGE_NOTLAST)
1263 		flags |= MSG_MORE;
1264 
1265 	if (!up->pending) {
1266 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1267 
1268 		/* Call udp_sendmsg to specify destination address which
1269 		 * sendpage interface can't pass.
1270 		 * This will succeed only when the socket is connected.
1271 		 */
1272 		ret = udp_sendmsg(sk, &msg, 0);
1273 		if (ret < 0)
1274 			return ret;
1275 	}
1276 
1277 	lock_sock(sk);
1278 
1279 	if (unlikely(!up->pending)) {
1280 		release_sock(sk);
1281 
1282 		net_dbg_ratelimited("cork failed\n");
1283 		return -EINVAL;
1284 	}
1285 
1286 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1287 			     page, offset, size, flags);
1288 	if (ret == -EOPNOTSUPP) {
1289 		release_sock(sk);
1290 		return sock_no_sendpage(sk->sk_socket, page, offset,
1291 					size, flags);
1292 	}
1293 	if (ret < 0) {
1294 		udp_flush_pending_frames(sk);
1295 		goto out;
1296 	}
1297 
1298 	up->len += size;
1299 	if (!(up->corkflag || (flags&MSG_MORE)))
1300 		ret = udp_push_pending_frames(sk);
1301 	if (!ret)
1302 		ret = size;
1303 out:
1304 	release_sock(sk);
1305 	return ret;
1306 }
1307 
1308 #define UDP_SKB_IS_STATELESS 0x80000000
1309 
1310 static void udp_set_dev_scratch(struct sk_buff *skb)
1311 {
1312 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1313 
1314 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1315 	scratch->_tsize_state = skb->truesize;
1316 #if BITS_PER_LONG == 64
1317 	scratch->len = skb->len;
1318 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1319 	scratch->is_linear = !skb_is_nonlinear(skb);
1320 #endif
1321 	/* all head states execept sp (dst, sk, nf) are always cleared by
1322 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1323 	 * process IP_CMSG_PASSSEC at recvmsg() time
1324 	 */
1325 	if (likely(!skb_sec_path(skb)))
1326 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1327 }
1328 
1329 static int udp_skb_truesize(struct sk_buff *skb)
1330 {
1331 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1332 }
1333 
1334 static bool udp_skb_has_head_state(struct sk_buff *skb)
1335 {
1336 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1337 }
1338 
1339 /* fully reclaim rmem/fwd memory allocated for skb */
1340 static void udp_rmem_release(struct sock *sk, int size, int partial,
1341 			     bool rx_queue_lock_held)
1342 {
1343 	struct udp_sock *up = udp_sk(sk);
1344 	struct sk_buff_head *sk_queue;
1345 	int amt;
1346 
1347 	if (likely(partial)) {
1348 		up->forward_deficit += size;
1349 		size = up->forward_deficit;
1350 		if (size < (sk->sk_rcvbuf >> 2))
1351 			return;
1352 	} else {
1353 		size += up->forward_deficit;
1354 	}
1355 	up->forward_deficit = 0;
1356 
1357 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1358 	 * if the called don't held it already
1359 	 */
1360 	sk_queue = &sk->sk_receive_queue;
1361 	if (!rx_queue_lock_held)
1362 		spin_lock(&sk_queue->lock);
1363 
1364 
1365 	sk->sk_forward_alloc += size;
1366 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1367 	sk->sk_forward_alloc -= amt;
1368 
1369 	if (amt)
1370 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1371 
1372 	atomic_sub(size, &sk->sk_rmem_alloc);
1373 
1374 	/* this can save us from acquiring the rx queue lock on next receive */
1375 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1376 
1377 	if (!rx_queue_lock_held)
1378 		spin_unlock(&sk_queue->lock);
1379 }
1380 
1381 /* Note: called with reader_queue.lock held.
1382  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1383  * This avoids a cache line miss while receive_queue lock is held.
1384  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1385  */
1386 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1387 {
1388 	prefetch(&skb->data);
1389 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1390 }
1391 EXPORT_SYMBOL(udp_skb_destructor);
1392 
1393 /* as above, but the caller held the rx queue lock, too */
1394 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1395 {
1396 	prefetch(&skb->data);
1397 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1398 }
1399 
1400 /* Idea of busylocks is to let producers grab an extra spinlock
1401  * to relieve pressure on the receive_queue spinlock shared by consumer.
1402  * Under flood, this means that only one producer can be in line
1403  * trying to acquire the receive_queue spinlock.
1404  * These busylock can be allocated on a per cpu manner, instead of a
1405  * per socket one (that would consume a cache line per socket)
1406  */
1407 static int udp_busylocks_log __read_mostly;
1408 static spinlock_t *udp_busylocks __read_mostly;
1409 
1410 static spinlock_t *busylock_acquire(void *ptr)
1411 {
1412 	spinlock_t *busy;
1413 
1414 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1415 	spin_lock(busy);
1416 	return busy;
1417 }
1418 
1419 static void busylock_release(spinlock_t *busy)
1420 {
1421 	if (busy)
1422 		spin_unlock(busy);
1423 }
1424 
1425 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1426 {
1427 	struct sk_buff_head *list = &sk->sk_receive_queue;
1428 	int rmem, delta, amt, err = -ENOMEM;
1429 	spinlock_t *busy = NULL;
1430 	int size;
1431 
1432 	/* try to avoid the costly atomic add/sub pair when the receive
1433 	 * queue is full; always allow at least a packet
1434 	 */
1435 	rmem = atomic_read(&sk->sk_rmem_alloc);
1436 	if (rmem > sk->sk_rcvbuf)
1437 		goto drop;
1438 
1439 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1440 	 * having linear skbs :
1441 	 * - Reduce memory overhead and thus increase receive queue capacity
1442 	 * - Less cache line misses at copyout() time
1443 	 * - Less work at consume_skb() (less alien page frag freeing)
1444 	 */
1445 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1446 		skb_condense(skb);
1447 
1448 		busy = busylock_acquire(sk);
1449 	}
1450 	size = skb->truesize;
1451 	udp_set_dev_scratch(skb);
1452 
1453 	/* we drop only if the receive buf is full and the receive
1454 	 * queue contains some other skb
1455 	 */
1456 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1457 	if (rmem > (size + sk->sk_rcvbuf))
1458 		goto uncharge_drop;
1459 
1460 	spin_lock(&list->lock);
1461 	if (size >= sk->sk_forward_alloc) {
1462 		amt = sk_mem_pages(size);
1463 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1464 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1465 			err = -ENOBUFS;
1466 			spin_unlock(&list->lock);
1467 			goto uncharge_drop;
1468 		}
1469 
1470 		sk->sk_forward_alloc += delta;
1471 	}
1472 
1473 	sk->sk_forward_alloc -= size;
1474 
1475 	/* no need to setup a destructor, we will explicitly release the
1476 	 * forward allocated memory on dequeue
1477 	 */
1478 	sock_skb_set_dropcount(sk, skb);
1479 
1480 	__skb_queue_tail(list, skb);
1481 	spin_unlock(&list->lock);
1482 
1483 	if (!sock_flag(sk, SOCK_DEAD))
1484 		sk->sk_data_ready(sk);
1485 
1486 	busylock_release(busy);
1487 	return 0;
1488 
1489 uncharge_drop:
1490 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1491 
1492 drop:
1493 	atomic_inc(&sk->sk_drops);
1494 	busylock_release(busy);
1495 	return err;
1496 }
1497 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1498 
1499 void udp_destruct_sock(struct sock *sk)
1500 {
1501 	/* reclaim completely the forward allocated memory */
1502 	struct udp_sock *up = udp_sk(sk);
1503 	unsigned int total = 0;
1504 	struct sk_buff *skb;
1505 
1506 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1507 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1508 		total += skb->truesize;
1509 		kfree_skb(skb);
1510 	}
1511 	udp_rmem_release(sk, total, 0, true);
1512 
1513 	inet_sock_destruct(sk);
1514 }
1515 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1516 
1517 int udp_init_sock(struct sock *sk)
1518 {
1519 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1520 	sk->sk_destruct = udp_destruct_sock;
1521 	return 0;
1522 }
1523 EXPORT_SYMBOL_GPL(udp_init_sock);
1524 
1525 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1526 {
1527 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1528 		bool slow = lock_sock_fast(sk);
1529 
1530 		sk_peek_offset_bwd(sk, len);
1531 		unlock_sock_fast(sk, slow);
1532 	}
1533 
1534 	if (!skb_unref(skb))
1535 		return;
1536 
1537 	/* In the more common cases we cleared the head states previously,
1538 	 * see __udp_queue_rcv_skb().
1539 	 */
1540 	if (unlikely(udp_skb_has_head_state(skb)))
1541 		skb_release_head_state(skb);
1542 	__consume_stateless_skb(skb);
1543 }
1544 EXPORT_SYMBOL_GPL(skb_consume_udp);
1545 
1546 static struct sk_buff *__first_packet_length(struct sock *sk,
1547 					     struct sk_buff_head *rcvq,
1548 					     int *total)
1549 {
1550 	struct sk_buff *skb;
1551 
1552 	while ((skb = skb_peek(rcvq)) != NULL) {
1553 		if (udp_lib_checksum_complete(skb)) {
1554 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1555 					IS_UDPLITE(sk));
1556 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1557 					IS_UDPLITE(sk));
1558 			atomic_inc(&sk->sk_drops);
1559 			__skb_unlink(skb, rcvq);
1560 			*total += skb->truesize;
1561 			kfree_skb(skb);
1562 		} else {
1563 			/* the csum related bits could be changed, refresh
1564 			 * the scratch area
1565 			 */
1566 			udp_set_dev_scratch(skb);
1567 			break;
1568 		}
1569 	}
1570 	return skb;
1571 }
1572 
1573 /**
1574  *	first_packet_length	- return length of first packet in receive queue
1575  *	@sk: socket
1576  *
1577  *	Drops all bad checksum frames, until a valid one is found.
1578  *	Returns the length of found skb, or -1 if none is found.
1579  */
1580 static int first_packet_length(struct sock *sk)
1581 {
1582 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1583 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1584 	struct sk_buff *skb;
1585 	int total = 0;
1586 	int res;
1587 
1588 	spin_lock_bh(&rcvq->lock);
1589 	skb = __first_packet_length(sk, rcvq, &total);
1590 	if (!skb && !skb_queue_empty(sk_queue)) {
1591 		spin_lock(&sk_queue->lock);
1592 		skb_queue_splice_tail_init(sk_queue, rcvq);
1593 		spin_unlock(&sk_queue->lock);
1594 
1595 		skb = __first_packet_length(sk, rcvq, &total);
1596 	}
1597 	res = skb ? skb->len : -1;
1598 	if (total)
1599 		udp_rmem_release(sk, total, 1, false);
1600 	spin_unlock_bh(&rcvq->lock);
1601 	return res;
1602 }
1603 
1604 /*
1605  *	IOCTL requests applicable to the UDP protocol
1606  */
1607 
1608 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1609 {
1610 	switch (cmd) {
1611 	case SIOCOUTQ:
1612 	{
1613 		int amount = sk_wmem_alloc_get(sk);
1614 
1615 		return put_user(amount, (int __user *)arg);
1616 	}
1617 
1618 	case SIOCINQ:
1619 	{
1620 		int amount = max_t(int, 0, first_packet_length(sk));
1621 
1622 		return put_user(amount, (int __user *)arg);
1623 	}
1624 
1625 	default:
1626 		return -ENOIOCTLCMD;
1627 	}
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(udp_ioctl);
1632 
1633 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1634 			       int noblock, int *off, int *err)
1635 {
1636 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1637 	struct sk_buff_head *queue;
1638 	struct sk_buff *last;
1639 	long timeo;
1640 	int error;
1641 
1642 	queue = &udp_sk(sk)->reader_queue;
1643 	flags |= noblock ? MSG_DONTWAIT : 0;
1644 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1645 	do {
1646 		struct sk_buff *skb;
1647 
1648 		error = sock_error(sk);
1649 		if (error)
1650 			break;
1651 
1652 		error = -EAGAIN;
1653 		do {
1654 			spin_lock_bh(&queue->lock);
1655 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1656 							udp_skb_destructor,
1657 							off, err, &last);
1658 			if (skb) {
1659 				spin_unlock_bh(&queue->lock);
1660 				return skb;
1661 			}
1662 
1663 			if (skb_queue_empty(sk_queue)) {
1664 				spin_unlock_bh(&queue->lock);
1665 				goto busy_check;
1666 			}
1667 
1668 			/* refill the reader queue and walk it again
1669 			 * keep both queues locked to avoid re-acquiring
1670 			 * the sk_receive_queue lock if fwd memory scheduling
1671 			 * is needed.
1672 			 */
1673 			spin_lock(&sk_queue->lock);
1674 			skb_queue_splice_tail_init(sk_queue, queue);
1675 
1676 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1677 							udp_skb_dtor_locked,
1678 							off, err, &last);
1679 			spin_unlock(&sk_queue->lock);
1680 			spin_unlock_bh(&queue->lock);
1681 			if (skb)
1682 				return skb;
1683 
1684 busy_check:
1685 			if (!sk_can_busy_loop(sk))
1686 				break;
1687 
1688 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1689 		} while (!skb_queue_empty(sk_queue));
1690 
1691 		/* sk_queue is empty, reader_queue may contain peeked packets */
1692 	} while (timeo &&
1693 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1694 					      (struct sk_buff *)sk_queue));
1695 
1696 	*err = error;
1697 	return NULL;
1698 }
1699 EXPORT_SYMBOL(__skb_recv_udp);
1700 
1701 /*
1702  * 	This should be easy, if there is something there we
1703  * 	return it, otherwise we block.
1704  */
1705 
1706 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1707 		int flags, int *addr_len)
1708 {
1709 	struct inet_sock *inet = inet_sk(sk);
1710 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1711 	struct sk_buff *skb;
1712 	unsigned int ulen, copied;
1713 	int off, err, peeking = flags & MSG_PEEK;
1714 	int is_udplite = IS_UDPLITE(sk);
1715 	bool checksum_valid = false;
1716 
1717 	if (flags & MSG_ERRQUEUE)
1718 		return ip_recv_error(sk, msg, len, addr_len);
1719 
1720 try_again:
1721 	off = sk_peek_offset(sk, flags);
1722 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1723 	if (!skb)
1724 		return err;
1725 
1726 	ulen = udp_skb_len(skb);
1727 	copied = len;
1728 	if (copied > ulen - off)
1729 		copied = ulen - off;
1730 	else if (copied < ulen)
1731 		msg->msg_flags |= MSG_TRUNC;
1732 
1733 	/*
1734 	 * If checksum is needed at all, try to do it while copying the
1735 	 * data.  If the data is truncated, or if we only want a partial
1736 	 * coverage checksum (UDP-Lite), do it before the copy.
1737 	 */
1738 
1739 	if (copied < ulen || peeking ||
1740 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1741 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1742 				!__udp_lib_checksum_complete(skb);
1743 		if (!checksum_valid)
1744 			goto csum_copy_err;
1745 	}
1746 
1747 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1748 		if (udp_skb_is_linear(skb))
1749 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1750 		else
1751 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1752 	} else {
1753 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1754 
1755 		if (err == -EINVAL)
1756 			goto csum_copy_err;
1757 	}
1758 
1759 	if (unlikely(err)) {
1760 		if (!peeking) {
1761 			atomic_inc(&sk->sk_drops);
1762 			UDP_INC_STATS(sock_net(sk),
1763 				      UDP_MIB_INERRORS, is_udplite);
1764 		}
1765 		kfree_skb(skb);
1766 		return err;
1767 	}
1768 
1769 	if (!peeking)
1770 		UDP_INC_STATS(sock_net(sk),
1771 			      UDP_MIB_INDATAGRAMS, is_udplite);
1772 
1773 	sock_recv_ts_and_drops(msg, sk, skb);
1774 
1775 	/* Copy the address. */
1776 	if (sin) {
1777 		sin->sin_family = AF_INET;
1778 		sin->sin_port = udp_hdr(skb)->source;
1779 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1780 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1781 		*addr_len = sizeof(*sin);
1782 	}
1783 
1784 	if (udp_sk(sk)->gro_enabled)
1785 		udp_cmsg_recv(msg, sk, skb);
1786 
1787 	if (inet->cmsg_flags)
1788 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1789 
1790 	err = copied;
1791 	if (flags & MSG_TRUNC)
1792 		err = ulen;
1793 
1794 	skb_consume_udp(sk, skb, peeking ? -err : err);
1795 	return err;
1796 
1797 csum_copy_err:
1798 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1799 				 udp_skb_destructor)) {
1800 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1801 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1802 	}
1803 	kfree_skb(skb);
1804 
1805 	/* starting over for a new packet, but check if we need to yield */
1806 	cond_resched();
1807 	msg->msg_flags &= ~MSG_TRUNC;
1808 	goto try_again;
1809 }
1810 
1811 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1812 {
1813 	/* This check is replicated from __ip4_datagram_connect() and
1814 	 * intended to prevent BPF program called below from accessing bytes
1815 	 * that are out of the bound specified by user in addr_len.
1816 	 */
1817 	if (addr_len < sizeof(struct sockaddr_in))
1818 		return -EINVAL;
1819 
1820 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1821 }
1822 EXPORT_SYMBOL(udp_pre_connect);
1823 
1824 int __udp_disconnect(struct sock *sk, int flags)
1825 {
1826 	struct inet_sock *inet = inet_sk(sk);
1827 	/*
1828 	 *	1003.1g - break association.
1829 	 */
1830 
1831 	sk->sk_state = TCP_CLOSE;
1832 	inet->inet_daddr = 0;
1833 	inet->inet_dport = 0;
1834 	sock_rps_reset_rxhash(sk);
1835 	sk->sk_bound_dev_if = 0;
1836 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1837 		inet_reset_saddr(sk);
1838 
1839 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1840 		sk->sk_prot->unhash(sk);
1841 		inet->inet_sport = 0;
1842 	}
1843 	sk_dst_reset(sk);
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL(__udp_disconnect);
1847 
1848 int udp_disconnect(struct sock *sk, int flags)
1849 {
1850 	lock_sock(sk);
1851 	__udp_disconnect(sk, flags);
1852 	release_sock(sk);
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(udp_disconnect);
1856 
1857 void udp_lib_unhash(struct sock *sk)
1858 {
1859 	if (sk_hashed(sk)) {
1860 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1861 		struct udp_hslot *hslot, *hslot2;
1862 
1863 		hslot  = udp_hashslot(udptable, sock_net(sk),
1864 				      udp_sk(sk)->udp_port_hash);
1865 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1866 
1867 		spin_lock_bh(&hslot->lock);
1868 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1869 			reuseport_detach_sock(sk);
1870 		if (sk_del_node_init_rcu(sk)) {
1871 			hslot->count--;
1872 			inet_sk(sk)->inet_num = 0;
1873 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1874 
1875 			spin_lock(&hslot2->lock);
1876 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1877 			hslot2->count--;
1878 			spin_unlock(&hslot2->lock);
1879 		}
1880 		spin_unlock_bh(&hslot->lock);
1881 	}
1882 }
1883 EXPORT_SYMBOL(udp_lib_unhash);
1884 
1885 /*
1886  * inet_rcv_saddr was changed, we must rehash secondary hash
1887  */
1888 void udp_lib_rehash(struct sock *sk, u16 newhash)
1889 {
1890 	if (sk_hashed(sk)) {
1891 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1892 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1893 
1894 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1895 		nhslot2 = udp_hashslot2(udptable, newhash);
1896 		udp_sk(sk)->udp_portaddr_hash = newhash;
1897 
1898 		if (hslot2 != nhslot2 ||
1899 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1900 			hslot = udp_hashslot(udptable, sock_net(sk),
1901 					     udp_sk(sk)->udp_port_hash);
1902 			/* we must lock primary chain too */
1903 			spin_lock_bh(&hslot->lock);
1904 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1905 				reuseport_detach_sock(sk);
1906 
1907 			if (hslot2 != nhslot2) {
1908 				spin_lock(&hslot2->lock);
1909 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1910 				hslot2->count--;
1911 				spin_unlock(&hslot2->lock);
1912 
1913 				spin_lock(&nhslot2->lock);
1914 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1915 							 &nhslot2->head);
1916 				nhslot2->count++;
1917 				spin_unlock(&nhslot2->lock);
1918 			}
1919 
1920 			spin_unlock_bh(&hslot->lock);
1921 		}
1922 	}
1923 }
1924 EXPORT_SYMBOL(udp_lib_rehash);
1925 
1926 void udp_v4_rehash(struct sock *sk)
1927 {
1928 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1929 					  inet_sk(sk)->inet_rcv_saddr,
1930 					  inet_sk(sk)->inet_num);
1931 	udp_lib_rehash(sk, new_hash);
1932 }
1933 
1934 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1935 {
1936 	int rc;
1937 
1938 	if (inet_sk(sk)->inet_daddr) {
1939 		sock_rps_save_rxhash(sk, skb);
1940 		sk_mark_napi_id(sk, skb);
1941 		sk_incoming_cpu_update(sk);
1942 	} else {
1943 		sk_mark_napi_id_once(sk, skb);
1944 	}
1945 
1946 	rc = __udp_enqueue_schedule_skb(sk, skb);
1947 	if (rc < 0) {
1948 		int is_udplite = IS_UDPLITE(sk);
1949 
1950 		/* Note that an ENOMEM error is charged twice */
1951 		if (rc == -ENOMEM)
1952 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1953 					is_udplite);
1954 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1955 		kfree_skb(skb);
1956 		trace_udp_fail_queue_rcv_skb(rc, sk);
1957 		return -1;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 /* returns:
1964  *  -1: error
1965  *   0: success
1966  *  >0: "udp encap" protocol resubmission
1967  *
1968  * Note that in the success and error cases, the skb is assumed to
1969  * have either been requeued or freed.
1970  */
1971 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1972 {
1973 	struct udp_sock *up = udp_sk(sk);
1974 	int is_udplite = IS_UDPLITE(sk);
1975 
1976 	/*
1977 	 *	Charge it to the socket, dropping if the queue is full.
1978 	 */
1979 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1980 		goto drop;
1981 	nf_reset(skb);
1982 
1983 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1984 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1985 
1986 		/*
1987 		 * This is an encapsulation socket so pass the skb to
1988 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1989 		 * fall through and pass this up the UDP socket.
1990 		 * up->encap_rcv() returns the following value:
1991 		 * =0 if skb was successfully passed to the encap
1992 		 *    handler or was discarded by it.
1993 		 * >0 if skb should be passed on to UDP.
1994 		 * <0 if skb should be resubmitted as proto -N
1995 		 */
1996 
1997 		/* if we're overly short, let UDP handle it */
1998 		encap_rcv = READ_ONCE(up->encap_rcv);
1999 		if (encap_rcv) {
2000 			int ret;
2001 
2002 			/* Verify checksum before giving to encap */
2003 			if (udp_lib_checksum_complete(skb))
2004 				goto csum_error;
2005 
2006 			ret = encap_rcv(sk, skb);
2007 			if (ret <= 0) {
2008 				__UDP_INC_STATS(sock_net(sk),
2009 						UDP_MIB_INDATAGRAMS,
2010 						is_udplite);
2011 				return -ret;
2012 			}
2013 		}
2014 
2015 		/* FALLTHROUGH -- it's a UDP Packet */
2016 	}
2017 
2018 	/*
2019 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2020 	 */
2021 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2022 
2023 		/*
2024 		 * MIB statistics other than incrementing the error count are
2025 		 * disabled for the following two types of errors: these depend
2026 		 * on the application settings, not on the functioning of the
2027 		 * protocol stack as such.
2028 		 *
2029 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2030 		 * way ... to ... at least let the receiving application block
2031 		 * delivery of packets with coverage values less than a value
2032 		 * provided by the application."
2033 		 */
2034 		if (up->pcrlen == 0) {          /* full coverage was set  */
2035 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2036 					    UDP_SKB_CB(skb)->cscov, skb->len);
2037 			goto drop;
2038 		}
2039 		/* The next case involves violating the min. coverage requested
2040 		 * by the receiver. This is subtle: if receiver wants x and x is
2041 		 * greater than the buffersize/MTU then receiver will complain
2042 		 * that it wants x while sender emits packets of smaller size y.
2043 		 * Therefore the above ...()->partial_cov statement is essential.
2044 		 */
2045 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2046 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2047 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2048 			goto drop;
2049 		}
2050 	}
2051 
2052 	prefetch(&sk->sk_rmem_alloc);
2053 	if (rcu_access_pointer(sk->sk_filter) &&
2054 	    udp_lib_checksum_complete(skb))
2055 			goto csum_error;
2056 
2057 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2058 		goto drop;
2059 
2060 	udp_csum_pull_header(skb);
2061 
2062 	ipv4_pktinfo_prepare(sk, skb);
2063 	return __udp_queue_rcv_skb(sk, skb);
2064 
2065 csum_error:
2066 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2067 drop:
2068 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2069 	atomic_inc(&sk->sk_drops);
2070 	kfree_skb(skb);
2071 	return -1;
2072 }
2073 
2074 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2075 {
2076 	struct sk_buff *next, *segs;
2077 	int ret;
2078 
2079 	if (likely(!udp_unexpected_gso(sk, skb)))
2080 		return udp_queue_rcv_one_skb(sk, skb);
2081 
2082 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2083 	__skb_push(skb, -skb_mac_offset(skb));
2084 	segs = udp_rcv_segment(sk, skb, true);
2085 	for (skb = segs; skb; skb = next) {
2086 		next = skb->next;
2087 		__skb_pull(skb, skb_transport_offset(skb));
2088 		ret = udp_queue_rcv_one_skb(sk, skb);
2089 		if (ret > 0)
2090 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2091 	}
2092 	return 0;
2093 }
2094 
2095 /* For TCP sockets, sk_rx_dst is protected by socket lock
2096  * For UDP, we use xchg() to guard against concurrent changes.
2097  */
2098 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2099 {
2100 	struct dst_entry *old;
2101 
2102 	if (dst_hold_safe(dst)) {
2103 		old = xchg(&sk->sk_rx_dst, dst);
2104 		dst_release(old);
2105 		return old != dst;
2106 	}
2107 	return false;
2108 }
2109 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2110 
2111 /*
2112  *	Multicasts and broadcasts go to each listener.
2113  *
2114  *	Note: called only from the BH handler context.
2115  */
2116 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2117 				    struct udphdr  *uh,
2118 				    __be32 saddr, __be32 daddr,
2119 				    struct udp_table *udptable,
2120 				    int proto)
2121 {
2122 	struct sock *sk, *first = NULL;
2123 	unsigned short hnum = ntohs(uh->dest);
2124 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2125 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2126 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2127 	int dif = skb->dev->ifindex;
2128 	int sdif = inet_sdif(skb);
2129 	struct hlist_node *node;
2130 	struct sk_buff *nskb;
2131 
2132 	if (use_hash2) {
2133 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2134 			    udptable->mask;
2135 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2136 start_lookup:
2137 		hslot = &udptable->hash2[hash2];
2138 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2139 	}
2140 
2141 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2142 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2143 					 uh->source, saddr, dif, sdif, hnum))
2144 			continue;
2145 
2146 		if (!first) {
2147 			first = sk;
2148 			continue;
2149 		}
2150 		nskb = skb_clone(skb, GFP_ATOMIC);
2151 
2152 		if (unlikely(!nskb)) {
2153 			atomic_inc(&sk->sk_drops);
2154 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2155 					IS_UDPLITE(sk));
2156 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2157 					IS_UDPLITE(sk));
2158 			continue;
2159 		}
2160 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2161 			consume_skb(nskb);
2162 	}
2163 
2164 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2165 	if (use_hash2 && hash2 != hash2_any) {
2166 		hash2 = hash2_any;
2167 		goto start_lookup;
2168 	}
2169 
2170 	if (first) {
2171 		if (udp_queue_rcv_skb(first, skb) > 0)
2172 			consume_skb(skb);
2173 	} else {
2174 		kfree_skb(skb);
2175 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2176 				proto == IPPROTO_UDPLITE);
2177 	}
2178 	return 0;
2179 }
2180 
2181 /* Initialize UDP checksum. If exited with zero value (success),
2182  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2183  * Otherwise, csum completion requires chacksumming packet body,
2184  * including udp header and folding it to skb->csum.
2185  */
2186 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2187 				 int proto)
2188 {
2189 	int err;
2190 
2191 	UDP_SKB_CB(skb)->partial_cov = 0;
2192 	UDP_SKB_CB(skb)->cscov = skb->len;
2193 
2194 	if (proto == IPPROTO_UDPLITE) {
2195 		err = udplite_checksum_init(skb, uh);
2196 		if (err)
2197 			return err;
2198 
2199 		if (UDP_SKB_CB(skb)->partial_cov) {
2200 			skb->csum = inet_compute_pseudo(skb, proto);
2201 			return 0;
2202 		}
2203 	}
2204 
2205 	/* Note, we are only interested in != 0 or == 0, thus the
2206 	 * force to int.
2207 	 */
2208 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2209 							inet_compute_pseudo);
2210 	if (err)
2211 		return err;
2212 
2213 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2214 		/* If SW calculated the value, we know it's bad */
2215 		if (skb->csum_complete_sw)
2216 			return 1;
2217 
2218 		/* HW says the value is bad. Let's validate that.
2219 		 * skb->csum is no longer the full packet checksum,
2220 		 * so don't treat it as such.
2221 		 */
2222 		skb_checksum_complete_unset(skb);
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2229  * return code conversion for ip layer consumption
2230  */
2231 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2232 			       struct udphdr *uh)
2233 {
2234 	int ret;
2235 
2236 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2237 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2238 					 inet_compute_pseudo);
2239 
2240 	ret = udp_queue_rcv_skb(sk, skb);
2241 
2242 	/* a return value > 0 means to resubmit the input, but
2243 	 * it wants the return to be -protocol, or 0
2244 	 */
2245 	if (ret > 0)
2246 		return -ret;
2247 	return 0;
2248 }
2249 
2250 /*
2251  *	All we need to do is get the socket, and then do a checksum.
2252  */
2253 
2254 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2255 		   int proto)
2256 {
2257 	struct sock *sk;
2258 	struct udphdr *uh;
2259 	unsigned short ulen;
2260 	struct rtable *rt = skb_rtable(skb);
2261 	__be32 saddr, daddr;
2262 	struct net *net = dev_net(skb->dev);
2263 
2264 	/*
2265 	 *  Validate the packet.
2266 	 */
2267 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2268 		goto drop;		/* No space for header. */
2269 
2270 	uh   = udp_hdr(skb);
2271 	ulen = ntohs(uh->len);
2272 	saddr = ip_hdr(skb)->saddr;
2273 	daddr = ip_hdr(skb)->daddr;
2274 
2275 	if (ulen > skb->len)
2276 		goto short_packet;
2277 
2278 	if (proto == IPPROTO_UDP) {
2279 		/* UDP validates ulen. */
2280 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2281 			goto short_packet;
2282 		uh = udp_hdr(skb);
2283 	}
2284 
2285 	if (udp4_csum_init(skb, uh, proto))
2286 		goto csum_error;
2287 
2288 	sk = skb_steal_sock(skb);
2289 	if (sk) {
2290 		struct dst_entry *dst = skb_dst(skb);
2291 		int ret;
2292 
2293 		if (unlikely(sk->sk_rx_dst != dst))
2294 			udp_sk_rx_dst_set(sk, dst);
2295 
2296 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2297 		sock_put(sk);
2298 		return ret;
2299 	}
2300 
2301 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2302 		return __udp4_lib_mcast_deliver(net, skb, uh,
2303 						saddr, daddr, udptable, proto);
2304 
2305 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2306 	if (sk)
2307 		return udp_unicast_rcv_skb(sk, skb, uh);
2308 
2309 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2310 		goto drop;
2311 	nf_reset(skb);
2312 
2313 	/* No socket. Drop packet silently, if checksum is wrong */
2314 	if (udp_lib_checksum_complete(skb))
2315 		goto csum_error;
2316 
2317 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2318 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2319 
2320 	/*
2321 	 * Hmm.  We got an UDP packet to a port to which we
2322 	 * don't wanna listen.  Ignore it.
2323 	 */
2324 	kfree_skb(skb);
2325 	return 0;
2326 
2327 short_packet:
2328 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2329 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2330 			    &saddr, ntohs(uh->source),
2331 			    ulen, skb->len,
2332 			    &daddr, ntohs(uh->dest));
2333 	goto drop;
2334 
2335 csum_error:
2336 	/*
2337 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2338 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2339 	 */
2340 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2341 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2342 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2343 			    ulen);
2344 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2345 drop:
2346 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2347 	kfree_skb(skb);
2348 	return 0;
2349 }
2350 
2351 /* We can only early demux multicast if there is a single matching socket.
2352  * If more than one socket found returns NULL
2353  */
2354 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2355 						  __be16 loc_port, __be32 loc_addr,
2356 						  __be16 rmt_port, __be32 rmt_addr,
2357 						  int dif, int sdif)
2358 {
2359 	struct sock *sk, *result;
2360 	unsigned short hnum = ntohs(loc_port);
2361 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2362 	struct udp_hslot *hslot = &udp_table.hash[slot];
2363 
2364 	/* Do not bother scanning a too big list */
2365 	if (hslot->count > 10)
2366 		return NULL;
2367 
2368 	result = NULL;
2369 	sk_for_each_rcu(sk, &hslot->head) {
2370 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2371 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2372 			if (result)
2373 				return NULL;
2374 			result = sk;
2375 		}
2376 	}
2377 
2378 	return result;
2379 }
2380 
2381 /* For unicast we should only early demux connected sockets or we can
2382  * break forwarding setups.  The chains here can be long so only check
2383  * if the first socket is an exact match and if not move on.
2384  */
2385 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2386 					    __be16 loc_port, __be32 loc_addr,
2387 					    __be16 rmt_port, __be32 rmt_addr,
2388 					    int dif, int sdif)
2389 {
2390 	unsigned short hnum = ntohs(loc_port);
2391 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2392 	unsigned int slot2 = hash2 & udp_table.mask;
2393 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2394 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2395 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2396 	struct sock *sk;
2397 
2398 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2399 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2400 			       loc_addr, ports, dif, sdif))
2401 			return sk;
2402 		/* Only check first socket in chain */
2403 		break;
2404 	}
2405 	return NULL;
2406 }
2407 
2408 int udp_v4_early_demux(struct sk_buff *skb)
2409 {
2410 	struct net *net = dev_net(skb->dev);
2411 	struct in_device *in_dev = NULL;
2412 	const struct iphdr *iph;
2413 	const struct udphdr *uh;
2414 	struct sock *sk = NULL;
2415 	struct dst_entry *dst;
2416 	int dif = skb->dev->ifindex;
2417 	int sdif = inet_sdif(skb);
2418 	int ours;
2419 
2420 	/* validate the packet */
2421 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2422 		return 0;
2423 
2424 	iph = ip_hdr(skb);
2425 	uh = udp_hdr(skb);
2426 
2427 	if (skb->pkt_type == PACKET_MULTICAST) {
2428 		in_dev = __in_dev_get_rcu(skb->dev);
2429 
2430 		if (!in_dev)
2431 			return 0;
2432 
2433 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2434 				       iph->protocol);
2435 		if (!ours)
2436 			return 0;
2437 
2438 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2439 						   uh->source, iph->saddr,
2440 						   dif, sdif);
2441 	} else if (skb->pkt_type == PACKET_HOST) {
2442 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2443 					     uh->source, iph->saddr, dif, sdif);
2444 	}
2445 
2446 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2447 		return 0;
2448 
2449 	skb->sk = sk;
2450 	skb->destructor = sock_efree;
2451 	dst = READ_ONCE(sk->sk_rx_dst);
2452 
2453 	if (dst)
2454 		dst = dst_check(dst, 0);
2455 	if (dst) {
2456 		u32 itag = 0;
2457 
2458 		/* set noref for now.
2459 		 * any place which wants to hold dst has to call
2460 		 * dst_hold_safe()
2461 		 */
2462 		skb_dst_set_noref(skb, dst);
2463 
2464 		/* for unconnected multicast sockets we need to validate
2465 		 * the source on each packet
2466 		 */
2467 		if (!inet_sk(sk)->inet_daddr && in_dev)
2468 			return ip_mc_validate_source(skb, iph->daddr,
2469 						     iph->saddr, iph->tos,
2470 						     skb->dev, in_dev, &itag);
2471 	}
2472 	return 0;
2473 }
2474 
2475 int udp_rcv(struct sk_buff *skb)
2476 {
2477 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2478 }
2479 
2480 void udp_destroy_sock(struct sock *sk)
2481 {
2482 	struct udp_sock *up = udp_sk(sk);
2483 	bool slow = lock_sock_fast(sk);
2484 	udp_flush_pending_frames(sk);
2485 	unlock_sock_fast(sk, slow);
2486 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2487 		if (up->encap_type) {
2488 			void (*encap_destroy)(struct sock *sk);
2489 			encap_destroy = READ_ONCE(up->encap_destroy);
2490 			if (encap_destroy)
2491 				encap_destroy(sk);
2492 		}
2493 		if (up->encap_enabled)
2494 			static_branch_dec(&udp_encap_needed_key);
2495 	}
2496 }
2497 
2498 /*
2499  *	Socket option code for UDP
2500  */
2501 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2502 		       char __user *optval, unsigned int optlen,
2503 		       int (*push_pending_frames)(struct sock *))
2504 {
2505 	struct udp_sock *up = udp_sk(sk);
2506 	int val, valbool;
2507 	int err = 0;
2508 	int is_udplite = IS_UDPLITE(sk);
2509 
2510 	if (optlen < sizeof(int))
2511 		return -EINVAL;
2512 
2513 	if (get_user(val, (int __user *)optval))
2514 		return -EFAULT;
2515 
2516 	valbool = val ? 1 : 0;
2517 
2518 	switch (optname) {
2519 	case UDP_CORK:
2520 		if (val != 0) {
2521 			up->corkflag = 1;
2522 		} else {
2523 			up->corkflag = 0;
2524 			lock_sock(sk);
2525 			push_pending_frames(sk);
2526 			release_sock(sk);
2527 		}
2528 		break;
2529 
2530 	case UDP_ENCAP:
2531 		switch (val) {
2532 		case 0:
2533 		case UDP_ENCAP_ESPINUDP:
2534 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2535 			up->encap_rcv = xfrm4_udp_encap_rcv;
2536 			/* FALLTHROUGH */
2537 		case UDP_ENCAP_L2TPINUDP:
2538 			up->encap_type = val;
2539 			lock_sock(sk);
2540 			udp_tunnel_encap_enable(sk->sk_socket);
2541 			release_sock(sk);
2542 			break;
2543 		default:
2544 			err = -ENOPROTOOPT;
2545 			break;
2546 		}
2547 		break;
2548 
2549 	case UDP_NO_CHECK6_TX:
2550 		up->no_check6_tx = valbool;
2551 		break;
2552 
2553 	case UDP_NO_CHECK6_RX:
2554 		up->no_check6_rx = valbool;
2555 		break;
2556 
2557 	case UDP_SEGMENT:
2558 		if (val < 0 || val > USHRT_MAX)
2559 			return -EINVAL;
2560 		up->gso_size = val;
2561 		break;
2562 
2563 	case UDP_GRO:
2564 		lock_sock(sk);
2565 		if (valbool)
2566 			udp_tunnel_encap_enable(sk->sk_socket);
2567 		up->gro_enabled = valbool;
2568 		release_sock(sk);
2569 		break;
2570 
2571 	/*
2572 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2573 	 */
2574 	/* The sender sets actual checksum coverage length via this option.
2575 	 * The case coverage > packet length is handled by send module. */
2576 	case UDPLITE_SEND_CSCOV:
2577 		if (!is_udplite)         /* Disable the option on UDP sockets */
2578 			return -ENOPROTOOPT;
2579 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2580 			val = 8;
2581 		else if (val > USHRT_MAX)
2582 			val = USHRT_MAX;
2583 		up->pcslen = val;
2584 		up->pcflag |= UDPLITE_SEND_CC;
2585 		break;
2586 
2587 	/* The receiver specifies a minimum checksum coverage value. To make
2588 	 * sense, this should be set to at least 8 (as done below). If zero is
2589 	 * used, this again means full checksum coverage.                     */
2590 	case UDPLITE_RECV_CSCOV:
2591 		if (!is_udplite)         /* Disable the option on UDP sockets */
2592 			return -ENOPROTOOPT;
2593 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2594 			val = 8;
2595 		else if (val > USHRT_MAX)
2596 			val = USHRT_MAX;
2597 		up->pcrlen = val;
2598 		up->pcflag |= UDPLITE_RECV_CC;
2599 		break;
2600 
2601 	default:
2602 		err = -ENOPROTOOPT;
2603 		break;
2604 	}
2605 
2606 	return err;
2607 }
2608 EXPORT_SYMBOL(udp_lib_setsockopt);
2609 
2610 int udp_setsockopt(struct sock *sk, int level, int optname,
2611 		   char __user *optval, unsigned int optlen)
2612 {
2613 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2614 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2615 					  udp_push_pending_frames);
2616 	return ip_setsockopt(sk, level, optname, optval, optlen);
2617 }
2618 
2619 #ifdef CONFIG_COMPAT
2620 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2621 			  char __user *optval, unsigned int optlen)
2622 {
2623 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2624 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2625 					  udp_push_pending_frames);
2626 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2627 }
2628 #endif
2629 
2630 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2631 		       char __user *optval, int __user *optlen)
2632 {
2633 	struct udp_sock *up = udp_sk(sk);
2634 	int val, len;
2635 
2636 	if (get_user(len, optlen))
2637 		return -EFAULT;
2638 
2639 	len = min_t(unsigned int, len, sizeof(int));
2640 
2641 	if (len < 0)
2642 		return -EINVAL;
2643 
2644 	switch (optname) {
2645 	case UDP_CORK:
2646 		val = up->corkflag;
2647 		break;
2648 
2649 	case UDP_ENCAP:
2650 		val = up->encap_type;
2651 		break;
2652 
2653 	case UDP_NO_CHECK6_TX:
2654 		val = up->no_check6_tx;
2655 		break;
2656 
2657 	case UDP_NO_CHECK6_RX:
2658 		val = up->no_check6_rx;
2659 		break;
2660 
2661 	case UDP_SEGMENT:
2662 		val = up->gso_size;
2663 		break;
2664 
2665 	/* The following two cannot be changed on UDP sockets, the return is
2666 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2667 	case UDPLITE_SEND_CSCOV:
2668 		val = up->pcslen;
2669 		break;
2670 
2671 	case UDPLITE_RECV_CSCOV:
2672 		val = up->pcrlen;
2673 		break;
2674 
2675 	default:
2676 		return -ENOPROTOOPT;
2677 	}
2678 
2679 	if (put_user(len, optlen))
2680 		return -EFAULT;
2681 	if (copy_to_user(optval, &val, len))
2682 		return -EFAULT;
2683 	return 0;
2684 }
2685 EXPORT_SYMBOL(udp_lib_getsockopt);
2686 
2687 int udp_getsockopt(struct sock *sk, int level, int optname,
2688 		   char __user *optval, int __user *optlen)
2689 {
2690 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2691 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2692 	return ip_getsockopt(sk, level, optname, optval, optlen);
2693 }
2694 
2695 #ifdef CONFIG_COMPAT
2696 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2697 				 char __user *optval, int __user *optlen)
2698 {
2699 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2700 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2701 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2702 }
2703 #endif
2704 /**
2705  * 	udp_poll - wait for a UDP event.
2706  *	@file - file struct
2707  *	@sock - socket
2708  *	@wait - poll table
2709  *
2710  *	This is same as datagram poll, except for the special case of
2711  *	blocking sockets. If application is using a blocking fd
2712  *	and a packet with checksum error is in the queue;
2713  *	then it could get return from select indicating data available
2714  *	but then block when reading it. Add special case code
2715  *	to work around these arguably broken applications.
2716  */
2717 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2718 {
2719 	__poll_t mask = datagram_poll(file, sock, wait);
2720 	struct sock *sk = sock->sk;
2721 
2722 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2723 		mask |= EPOLLIN | EPOLLRDNORM;
2724 
2725 	/* Check for false positives due to checksum errors */
2726 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2727 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2728 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2729 
2730 	return mask;
2731 
2732 }
2733 EXPORT_SYMBOL(udp_poll);
2734 
2735 int udp_abort(struct sock *sk, int err)
2736 {
2737 	lock_sock(sk);
2738 
2739 	sk->sk_err = err;
2740 	sk->sk_error_report(sk);
2741 	__udp_disconnect(sk, 0);
2742 
2743 	release_sock(sk);
2744 
2745 	return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(udp_abort);
2748 
2749 struct proto udp_prot = {
2750 	.name			= "UDP",
2751 	.owner			= THIS_MODULE,
2752 	.close			= udp_lib_close,
2753 	.pre_connect		= udp_pre_connect,
2754 	.connect		= ip4_datagram_connect,
2755 	.disconnect		= udp_disconnect,
2756 	.ioctl			= udp_ioctl,
2757 	.init			= udp_init_sock,
2758 	.destroy		= udp_destroy_sock,
2759 	.setsockopt		= udp_setsockopt,
2760 	.getsockopt		= udp_getsockopt,
2761 	.sendmsg		= udp_sendmsg,
2762 	.recvmsg		= udp_recvmsg,
2763 	.sendpage		= udp_sendpage,
2764 	.release_cb		= ip4_datagram_release_cb,
2765 	.hash			= udp_lib_hash,
2766 	.unhash			= udp_lib_unhash,
2767 	.rehash			= udp_v4_rehash,
2768 	.get_port		= udp_v4_get_port,
2769 	.memory_allocated	= &udp_memory_allocated,
2770 	.sysctl_mem		= sysctl_udp_mem,
2771 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2772 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2773 	.obj_size		= sizeof(struct udp_sock),
2774 	.h.udp_table		= &udp_table,
2775 #ifdef CONFIG_COMPAT
2776 	.compat_setsockopt	= compat_udp_setsockopt,
2777 	.compat_getsockopt	= compat_udp_getsockopt,
2778 #endif
2779 	.diag_destroy		= udp_abort,
2780 };
2781 EXPORT_SYMBOL(udp_prot);
2782 
2783 /* ------------------------------------------------------------------------ */
2784 #ifdef CONFIG_PROC_FS
2785 
2786 static struct sock *udp_get_first(struct seq_file *seq, int start)
2787 {
2788 	struct sock *sk;
2789 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2790 	struct udp_iter_state *state = seq->private;
2791 	struct net *net = seq_file_net(seq);
2792 
2793 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2794 	     ++state->bucket) {
2795 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2796 
2797 		if (hlist_empty(&hslot->head))
2798 			continue;
2799 
2800 		spin_lock_bh(&hslot->lock);
2801 		sk_for_each(sk, &hslot->head) {
2802 			if (!net_eq(sock_net(sk), net))
2803 				continue;
2804 			if (sk->sk_family == afinfo->family)
2805 				goto found;
2806 		}
2807 		spin_unlock_bh(&hslot->lock);
2808 	}
2809 	sk = NULL;
2810 found:
2811 	return sk;
2812 }
2813 
2814 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2815 {
2816 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2817 	struct udp_iter_state *state = seq->private;
2818 	struct net *net = seq_file_net(seq);
2819 
2820 	do {
2821 		sk = sk_next(sk);
2822 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2823 
2824 	if (!sk) {
2825 		if (state->bucket <= afinfo->udp_table->mask)
2826 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2827 		return udp_get_first(seq, state->bucket + 1);
2828 	}
2829 	return sk;
2830 }
2831 
2832 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2833 {
2834 	struct sock *sk = udp_get_first(seq, 0);
2835 
2836 	if (sk)
2837 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2838 			--pos;
2839 	return pos ? NULL : sk;
2840 }
2841 
2842 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2843 {
2844 	struct udp_iter_state *state = seq->private;
2845 	state->bucket = MAX_UDP_PORTS;
2846 
2847 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2848 }
2849 EXPORT_SYMBOL(udp_seq_start);
2850 
2851 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2852 {
2853 	struct sock *sk;
2854 
2855 	if (v == SEQ_START_TOKEN)
2856 		sk = udp_get_idx(seq, 0);
2857 	else
2858 		sk = udp_get_next(seq, v);
2859 
2860 	++*pos;
2861 	return sk;
2862 }
2863 EXPORT_SYMBOL(udp_seq_next);
2864 
2865 void udp_seq_stop(struct seq_file *seq, void *v)
2866 {
2867 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2868 	struct udp_iter_state *state = seq->private;
2869 
2870 	if (state->bucket <= afinfo->udp_table->mask)
2871 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2872 }
2873 EXPORT_SYMBOL(udp_seq_stop);
2874 
2875 /* ------------------------------------------------------------------------ */
2876 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2877 		int bucket)
2878 {
2879 	struct inet_sock *inet = inet_sk(sp);
2880 	__be32 dest = inet->inet_daddr;
2881 	__be32 src  = inet->inet_rcv_saddr;
2882 	__u16 destp	  = ntohs(inet->inet_dport);
2883 	__u16 srcp	  = ntohs(inet->inet_sport);
2884 
2885 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2886 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2887 		bucket, src, srcp, dest, destp, sp->sk_state,
2888 		sk_wmem_alloc_get(sp),
2889 		udp_rqueue_get(sp),
2890 		0, 0L, 0,
2891 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2892 		0, sock_i_ino(sp),
2893 		refcount_read(&sp->sk_refcnt), sp,
2894 		atomic_read(&sp->sk_drops));
2895 }
2896 
2897 int udp4_seq_show(struct seq_file *seq, void *v)
2898 {
2899 	seq_setwidth(seq, 127);
2900 	if (v == SEQ_START_TOKEN)
2901 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2902 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2903 			   "inode ref pointer drops");
2904 	else {
2905 		struct udp_iter_state *state = seq->private;
2906 
2907 		udp4_format_sock(v, seq, state->bucket);
2908 	}
2909 	seq_pad(seq, '\n');
2910 	return 0;
2911 }
2912 
2913 const struct seq_operations udp_seq_ops = {
2914 	.start		= udp_seq_start,
2915 	.next		= udp_seq_next,
2916 	.stop		= udp_seq_stop,
2917 	.show		= udp4_seq_show,
2918 };
2919 EXPORT_SYMBOL(udp_seq_ops);
2920 
2921 static struct udp_seq_afinfo udp4_seq_afinfo = {
2922 	.family		= AF_INET,
2923 	.udp_table	= &udp_table,
2924 };
2925 
2926 static int __net_init udp4_proc_init_net(struct net *net)
2927 {
2928 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2929 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2930 		return -ENOMEM;
2931 	return 0;
2932 }
2933 
2934 static void __net_exit udp4_proc_exit_net(struct net *net)
2935 {
2936 	remove_proc_entry("udp", net->proc_net);
2937 }
2938 
2939 static struct pernet_operations udp4_net_ops = {
2940 	.init = udp4_proc_init_net,
2941 	.exit = udp4_proc_exit_net,
2942 };
2943 
2944 int __init udp4_proc_init(void)
2945 {
2946 	return register_pernet_subsys(&udp4_net_ops);
2947 }
2948 
2949 void udp4_proc_exit(void)
2950 {
2951 	unregister_pernet_subsys(&udp4_net_ops);
2952 }
2953 #endif /* CONFIG_PROC_FS */
2954 
2955 static __initdata unsigned long uhash_entries;
2956 static int __init set_uhash_entries(char *str)
2957 {
2958 	ssize_t ret;
2959 
2960 	if (!str)
2961 		return 0;
2962 
2963 	ret = kstrtoul(str, 0, &uhash_entries);
2964 	if (ret)
2965 		return 0;
2966 
2967 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2968 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2969 	return 1;
2970 }
2971 __setup("uhash_entries=", set_uhash_entries);
2972 
2973 void __init udp_table_init(struct udp_table *table, const char *name)
2974 {
2975 	unsigned int i;
2976 
2977 	table->hash = alloc_large_system_hash(name,
2978 					      2 * sizeof(struct udp_hslot),
2979 					      uhash_entries,
2980 					      21, /* one slot per 2 MB */
2981 					      0,
2982 					      &table->log,
2983 					      &table->mask,
2984 					      UDP_HTABLE_SIZE_MIN,
2985 					      64 * 1024);
2986 
2987 	table->hash2 = table->hash + (table->mask + 1);
2988 	for (i = 0; i <= table->mask; i++) {
2989 		INIT_HLIST_HEAD(&table->hash[i].head);
2990 		table->hash[i].count = 0;
2991 		spin_lock_init(&table->hash[i].lock);
2992 	}
2993 	for (i = 0; i <= table->mask; i++) {
2994 		INIT_HLIST_HEAD(&table->hash2[i].head);
2995 		table->hash2[i].count = 0;
2996 		spin_lock_init(&table->hash2[i].lock);
2997 	}
2998 }
2999 
3000 u32 udp_flow_hashrnd(void)
3001 {
3002 	static u32 hashrnd __read_mostly;
3003 
3004 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3005 
3006 	return hashrnd;
3007 }
3008 EXPORT_SYMBOL(udp_flow_hashrnd);
3009 
3010 static void __udp_sysctl_init(struct net *net)
3011 {
3012 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3013 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3014 
3015 #ifdef CONFIG_NET_L3_MASTER_DEV
3016 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3017 #endif
3018 }
3019 
3020 static int __net_init udp_sysctl_init(struct net *net)
3021 {
3022 	__udp_sysctl_init(net);
3023 	return 0;
3024 }
3025 
3026 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3027 	.init	= udp_sysctl_init,
3028 };
3029 
3030 void __init udp_init(void)
3031 {
3032 	unsigned long limit;
3033 	unsigned int i;
3034 
3035 	udp_table_init(&udp_table, "UDP");
3036 	limit = nr_free_buffer_pages() / 8;
3037 	limit = max(limit, 128UL);
3038 	sysctl_udp_mem[0] = limit / 4 * 3;
3039 	sysctl_udp_mem[1] = limit;
3040 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3041 
3042 	__udp_sysctl_init(&init_net);
3043 
3044 	/* 16 spinlocks per cpu */
3045 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3046 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3047 				GFP_KERNEL);
3048 	if (!udp_busylocks)
3049 		panic("UDP: failed to alloc udp_busylocks\n");
3050 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3051 		spin_lock_init(udp_busylocks + i);
3052 
3053 	if (register_pernet_subsys(&udp_sysctl_ops))
3054 		panic("UDP: failed to init sysctl parameters.\n");
3055 }
3056