xref: /openbmc/linux/net/ipv4/udp.c (revision a6377d90)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 /* IPCB reference means this can not be used from early demux */
129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
132 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
133 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
134 		return true;
135 #endif
136 	return false;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_hslot *hslot, *hslot2;
241 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
242 	int    error = 1;
243 	struct net *net = sock_net(sk);
244 
245 	if (!snum) {
246 		int low, high, remaining;
247 		unsigned int rand;
248 		unsigned short first, last;
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 
251 		inet_get_local_port_range(net, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = prandom_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif, bool exact_dif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	score += 4;
401 
402 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
403 		score++;
404 	return score;
405 }
406 
407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
408 		       const __u16 lport, const __be32 faddr,
409 		       const __be16 fport)
410 {
411 	static u32 udp_ehash_secret __read_mostly;
412 
413 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
414 
415 	return __inet_ehashfn(laddr, lport, faddr, fport,
416 			      udp_ehash_secret + net_hash_mix(net));
417 }
418 
419 /* called with rcu_read_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 				     __be32 saddr, __be16 sport,
422 				     __be32 daddr, unsigned int hnum,
423 				     int dif, int sdif, bool exact_dif,
424 				     struct udp_hslot *hslot2,
425 				     struct sk_buff *skb)
426 {
427 	struct sock *sk, *result;
428 	int score, badness;
429 	u32 hash = 0;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif, exact_dif);
436 		if (score > badness) {
437 			if (sk->sk_reuseport) {
438 				hash = udp_ehashfn(net, daddr, hnum,
439 						   saddr, sport);
440 				result = reuseport_select_sock(sk, hash, skb,
441 							sizeof(struct udphdr));
442 				if (result)
443 					return result;
444 			}
445 			badness = score;
446 			result = sk;
447 		}
448 	}
449 	return result;
450 }
451 
452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
453  * harder than this. -DaveM
454  */
455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
456 		__be16 sport, __be32 daddr, __be16 dport, int dif,
457 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
458 {
459 	struct sock *result;
460 	unsigned short hnum = ntohs(dport);
461 	unsigned int hash2, slot2;
462 	struct udp_hslot *hslot2;
463 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
464 
465 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
466 	slot2 = hash2 & udptable->mask;
467 	hslot2 = &udptable->hash2[slot2];
468 
469 	result = udp4_lib_lookup2(net, saddr, sport,
470 				  daddr, hnum, dif, sdif,
471 				  exact_dif, hslot2, skb);
472 	if (!result) {
473 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 		slot2 = hash2 & udptable->mask;
475 		hslot2 = &udptable->hash2[slot2];
476 
477 		result = udp4_lib_lookup2(net, saddr, sport,
478 					  htonl(INADDR_ANY), hnum, dif, sdif,
479 					  exact_dif, hslot2, skb);
480 	}
481 	if (unlikely(IS_ERR(result)))
482 		return NULL;
483 	return result;
484 }
485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
486 
487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
488 						 __be16 sport, __be16 dport,
489 						 struct udp_table *udptable)
490 {
491 	const struct iphdr *iph = ip_hdr(skb);
492 
493 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
494 				 iph->daddr, dport, inet_iif(skb),
495 				 inet_sdif(skb), udptable, skb);
496 }
497 
498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
499 				 __be16 sport, __be16 dport)
500 {
501 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
502 }
503 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
504 
505 /* Must be called under rcu_read_lock().
506  * Does increment socket refcount.
507  */
508 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
509 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
510 			     __be32 daddr, __be16 dport, int dif)
511 {
512 	struct sock *sk;
513 
514 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
515 			       dif, 0, &udp_table, NULL);
516 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
517 		sk = NULL;
518 	return sk;
519 }
520 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
521 #endif
522 
523 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
524 				       __be16 loc_port, __be32 loc_addr,
525 				       __be16 rmt_port, __be32 rmt_addr,
526 				       int dif, int sdif, unsigned short hnum)
527 {
528 	struct inet_sock *inet = inet_sk(sk);
529 
530 	if (!net_eq(sock_net(sk), net) ||
531 	    udp_sk(sk)->udp_port_hash != hnum ||
532 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
533 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
534 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
535 	    ipv6_only_sock(sk) ||
536 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
537 	     sk->sk_bound_dev_if != sdif))
538 		return false;
539 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
540 		return false;
541 	return true;
542 }
543 
544 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
545 void udp_encap_enable(void)
546 {
547 	static_branch_inc(&udp_encap_needed_key);
548 }
549 EXPORT_SYMBOL(udp_encap_enable);
550 
551 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
552  * through error handlers in encapsulations looking for a match.
553  */
554 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
555 {
556 	int i;
557 
558 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
559 		int (*handler)(struct sk_buff *skb, u32 info);
560 		const struct ip_tunnel_encap_ops *encap;
561 
562 		encap = rcu_dereference(iptun_encaps[i]);
563 		if (!encap)
564 			continue;
565 		handler = encap->err_handler;
566 		if (handler && !handler(skb, info))
567 			return 0;
568 	}
569 
570 	return -ENOENT;
571 }
572 
573 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
574  * reversing source and destination port: this will match tunnels that force the
575  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
576  * lwtunnels might actually break this assumption by being configured with
577  * different destination ports on endpoints, in this case we won't be able to
578  * trace ICMP messages back to them.
579  *
580  * If this doesn't match any socket, probe tunnels with arbitrary destination
581  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
582  * we've sent packets to won't necessarily match the local destination port.
583  *
584  * Then ask the tunnel implementation to match the error against a valid
585  * association.
586  *
587  * Return an error if we can't find a match, the socket if we need further
588  * processing, zero otherwise.
589  */
590 static struct sock *__udp4_lib_err_encap(struct net *net,
591 					 const struct iphdr *iph,
592 					 struct udphdr *uh,
593 					 struct udp_table *udptable,
594 					 struct sk_buff *skb, u32 info)
595 {
596 	int network_offset, transport_offset;
597 	struct sock *sk;
598 
599 	network_offset = skb_network_offset(skb);
600 	transport_offset = skb_transport_offset(skb);
601 
602 	/* Network header needs to point to the outer IPv4 header inside ICMP */
603 	skb_reset_network_header(skb);
604 
605 	/* Transport header needs to point to the UDP header */
606 	skb_set_transport_header(skb, iph->ihl << 2);
607 
608 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
609 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
610 			       udptable, NULL);
611 	if (sk) {
612 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
613 		struct udp_sock *up = udp_sk(sk);
614 
615 		lookup = READ_ONCE(up->encap_err_lookup);
616 		if (!lookup || lookup(sk, skb))
617 			sk = NULL;
618 	}
619 
620 	if (!sk)
621 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
622 
623 	skb_set_transport_header(skb, transport_offset);
624 	skb_set_network_header(skb, network_offset);
625 
626 	return sk;
627 }
628 
629 /*
630  * This routine is called by the ICMP module when it gets some
631  * sort of error condition.  If err < 0 then the socket should
632  * be closed and the error returned to the user.  If err > 0
633  * it's just the icmp type << 8 | icmp code.
634  * Header points to the ip header of the error packet. We move
635  * on past this. Then (as it used to claim before adjustment)
636  * header points to the first 8 bytes of the udp header.  We need
637  * to find the appropriate port.
638  */
639 
640 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
641 {
642 	struct inet_sock *inet;
643 	const struct iphdr *iph = (const struct iphdr *)skb->data;
644 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
645 	const int type = icmp_hdr(skb)->type;
646 	const int code = icmp_hdr(skb)->code;
647 	bool tunnel = false;
648 	struct sock *sk;
649 	int harderr;
650 	int err;
651 	struct net *net = dev_net(skb->dev);
652 
653 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
654 			       iph->saddr, uh->source, skb->dev->ifindex,
655 			       inet_sdif(skb), udptable, NULL);
656 	if (!sk) {
657 		/* No socket for error: try tunnels before discarding */
658 		sk = ERR_PTR(-ENOENT);
659 		if (static_branch_unlikely(&udp_encap_needed_key)) {
660 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
661 						  info);
662 			if (!sk)
663 				return 0;
664 		}
665 
666 		if (IS_ERR(sk)) {
667 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
668 			return PTR_ERR(sk);
669 		}
670 
671 		tunnel = true;
672 	}
673 
674 	err = 0;
675 	harderr = 0;
676 	inet = inet_sk(sk);
677 
678 	switch (type) {
679 	default:
680 	case ICMP_TIME_EXCEEDED:
681 		err = EHOSTUNREACH;
682 		break;
683 	case ICMP_SOURCE_QUENCH:
684 		goto out;
685 	case ICMP_PARAMETERPROB:
686 		err = EPROTO;
687 		harderr = 1;
688 		break;
689 	case ICMP_DEST_UNREACH:
690 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
691 			ipv4_sk_update_pmtu(skb, sk, info);
692 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
693 				err = EMSGSIZE;
694 				harderr = 1;
695 				break;
696 			}
697 			goto out;
698 		}
699 		err = EHOSTUNREACH;
700 		if (code <= NR_ICMP_UNREACH) {
701 			harderr = icmp_err_convert[code].fatal;
702 			err = icmp_err_convert[code].errno;
703 		}
704 		break;
705 	case ICMP_REDIRECT:
706 		ipv4_sk_redirect(skb, sk);
707 		goto out;
708 	}
709 
710 	/*
711 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
712 	 *	4.1.3.3.
713 	 */
714 	if (tunnel) {
715 		/* ...not for tunnels though: we don't have a sending socket */
716 		goto out;
717 	}
718 	if (!inet->recverr) {
719 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
720 			goto out;
721 	} else
722 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
723 
724 	sk->sk_err = err;
725 	sk->sk_error_report(sk);
726 out:
727 	return 0;
728 }
729 
730 int udp_err(struct sk_buff *skb, u32 info)
731 {
732 	return __udp4_lib_err(skb, info, &udp_table);
733 }
734 
735 /*
736  * Throw away all pending data and cancel the corking. Socket is locked.
737  */
738 void udp_flush_pending_frames(struct sock *sk)
739 {
740 	struct udp_sock *up = udp_sk(sk);
741 
742 	if (up->pending) {
743 		up->len = 0;
744 		up->pending = 0;
745 		ip_flush_pending_frames(sk);
746 	}
747 }
748 EXPORT_SYMBOL(udp_flush_pending_frames);
749 
750 /**
751  * 	udp4_hwcsum  -  handle outgoing HW checksumming
752  * 	@skb: 	sk_buff containing the filled-in UDP header
753  * 	        (checksum field must be zeroed out)
754  *	@src:	source IP address
755  *	@dst:	destination IP address
756  */
757 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
758 {
759 	struct udphdr *uh = udp_hdr(skb);
760 	int offset = skb_transport_offset(skb);
761 	int len = skb->len - offset;
762 	int hlen = len;
763 	__wsum csum = 0;
764 
765 	if (!skb_has_frag_list(skb)) {
766 		/*
767 		 * Only one fragment on the socket.
768 		 */
769 		skb->csum_start = skb_transport_header(skb) - skb->head;
770 		skb->csum_offset = offsetof(struct udphdr, check);
771 		uh->check = ~csum_tcpudp_magic(src, dst, len,
772 					       IPPROTO_UDP, 0);
773 	} else {
774 		struct sk_buff *frags;
775 
776 		/*
777 		 * HW-checksum won't work as there are two or more
778 		 * fragments on the socket so that all csums of sk_buffs
779 		 * should be together
780 		 */
781 		skb_walk_frags(skb, frags) {
782 			csum = csum_add(csum, frags->csum);
783 			hlen -= frags->len;
784 		}
785 
786 		csum = skb_checksum(skb, offset, hlen, csum);
787 		skb->ip_summed = CHECKSUM_NONE;
788 
789 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
790 		if (uh->check == 0)
791 			uh->check = CSUM_MANGLED_0;
792 	}
793 }
794 EXPORT_SYMBOL_GPL(udp4_hwcsum);
795 
796 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
797  * for the simple case like when setting the checksum for a UDP tunnel.
798  */
799 void udp_set_csum(bool nocheck, struct sk_buff *skb,
800 		  __be32 saddr, __be32 daddr, int len)
801 {
802 	struct udphdr *uh = udp_hdr(skb);
803 
804 	if (nocheck) {
805 		uh->check = 0;
806 	} else if (skb_is_gso(skb)) {
807 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
808 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
809 		uh->check = 0;
810 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
811 		if (uh->check == 0)
812 			uh->check = CSUM_MANGLED_0;
813 	} else {
814 		skb->ip_summed = CHECKSUM_PARTIAL;
815 		skb->csum_start = skb_transport_header(skb) - skb->head;
816 		skb->csum_offset = offsetof(struct udphdr, check);
817 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
818 	}
819 }
820 EXPORT_SYMBOL(udp_set_csum);
821 
822 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
823 			struct inet_cork *cork)
824 {
825 	struct sock *sk = skb->sk;
826 	struct inet_sock *inet = inet_sk(sk);
827 	struct udphdr *uh;
828 	int err = 0;
829 	int is_udplite = IS_UDPLITE(sk);
830 	int offset = skb_transport_offset(skb);
831 	int len = skb->len - offset;
832 	__wsum csum = 0;
833 
834 	/*
835 	 * Create a UDP header
836 	 */
837 	uh = udp_hdr(skb);
838 	uh->source = inet->inet_sport;
839 	uh->dest = fl4->fl4_dport;
840 	uh->len = htons(len);
841 	uh->check = 0;
842 
843 	if (cork->gso_size) {
844 		const int hlen = skb_network_header_len(skb) +
845 				 sizeof(struct udphdr);
846 
847 		if (hlen + cork->gso_size > cork->fragsize) {
848 			kfree_skb(skb);
849 			return -EINVAL;
850 		}
851 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
852 			kfree_skb(skb);
853 			return -EINVAL;
854 		}
855 		if (sk->sk_no_check_tx) {
856 			kfree_skb(skb);
857 			return -EINVAL;
858 		}
859 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
860 		    dst_xfrm(skb_dst(skb))) {
861 			kfree_skb(skb);
862 			return -EIO;
863 		}
864 
865 		skb_shinfo(skb)->gso_size = cork->gso_size;
866 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
867 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
868 							 cork->gso_size);
869 		goto csum_partial;
870 	}
871 
872 	if (is_udplite)  				 /*     UDP-Lite      */
873 		csum = udplite_csum(skb);
874 
875 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
876 
877 		skb->ip_summed = CHECKSUM_NONE;
878 		goto send;
879 
880 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
881 csum_partial:
882 
883 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
884 		goto send;
885 
886 	} else
887 		csum = udp_csum(skb);
888 
889 	/* add protocol-dependent pseudo-header */
890 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
891 				      sk->sk_protocol, csum);
892 	if (uh->check == 0)
893 		uh->check = CSUM_MANGLED_0;
894 
895 send:
896 	err = ip_send_skb(sock_net(sk), skb);
897 	if (err) {
898 		if (err == -ENOBUFS && !inet->recverr) {
899 			UDP_INC_STATS(sock_net(sk),
900 				      UDP_MIB_SNDBUFERRORS, is_udplite);
901 			err = 0;
902 		}
903 	} else
904 		UDP_INC_STATS(sock_net(sk),
905 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
906 	return err;
907 }
908 
909 /*
910  * Push out all pending data as one UDP datagram. Socket is locked.
911  */
912 int udp_push_pending_frames(struct sock *sk)
913 {
914 	struct udp_sock  *up = udp_sk(sk);
915 	struct inet_sock *inet = inet_sk(sk);
916 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
917 	struct sk_buff *skb;
918 	int err = 0;
919 
920 	skb = ip_finish_skb(sk, fl4);
921 	if (!skb)
922 		goto out;
923 
924 	err = udp_send_skb(skb, fl4, &inet->cork.base);
925 
926 out:
927 	up->len = 0;
928 	up->pending = 0;
929 	return err;
930 }
931 EXPORT_SYMBOL(udp_push_pending_frames);
932 
933 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
934 {
935 	switch (cmsg->cmsg_type) {
936 	case UDP_SEGMENT:
937 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
938 			return -EINVAL;
939 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
940 		return 0;
941 	default:
942 		return -EINVAL;
943 	}
944 }
945 
946 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
947 {
948 	struct cmsghdr *cmsg;
949 	bool need_ip = false;
950 	int err;
951 
952 	for_each_cmsghdr(cmsg, msg) {
953 		if (!CMSG_OK(msg, cmsg))
954 			return -EINVAL;
955 
956 		if (cmsg->cmsg_level != SOL_UDP) {
957 			need_ip = true;
958 			continue;
959 		}
960 
961 		err = __udp_cmsg_send(cmsg, gso_size);
962 		if (err)
963 			return err;
964 	}
965 
966 	return need_ip;
967 }
968 EXPORT_SYMBOL_GPL(udp_cmsg_send);
969 
970 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
971 {
972 	struct inet_sock *inet = inet_sk(sk);
973 	struct udp_sock *up = udp_sk(sk);
974 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
975 	struct flowi4 fl4_stack;
976 	struct flowi4 *fl4;
977 	int ulen = len;
978 	struct ipcm_cookie ipc;
979 	struct rtable *rt = NULL;
980 	int free = 0;
981 	int connected = 0;
982 	__be32 daddr, faddr, saddr;
983 	__be16 dport;
984 	u8  tos;
985 	int err, is_udplite = IS_UDPLITE(sk);
986 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
987 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
988 	struct sk_buff *skb;
989 	struct ip_options_data opt_copy;
990 
991 	if (len > 0xFFFF)
992 		return -EMSGSIZE;
993 
994 	/*
995 	 *	Check the flags.
996 	 */
997 
998 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
999 		return -EOPNOTSUPP;
1000 
1001 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1002 
1003 	fl4 = &inet->cork.fl.u.ip4;
1004 	if (up->pending) {
1005 		/*
1006 		 * There are pending frames.
1007 		 * The socket lock must be held while it's corked.
1008 		 */
1009 		lock_sock(sk);
1010 		if (likely(up->pending)) {
1011 			if (unlikely(up->pending != AF_INET)) {
1012 				release_sock(sk);
1013 				return -EINVAL;
1014 			}
1015 			goto do_append_data;
1016 		}
1017 		release_sock(sk);
1018 	}
1019 	ulen += sizeof(struct udphdr);
1020 
1021 	/*
1022 	 *	Get and verify the address.
1023 	 */
1024 	if (usin) {
1025 		if (msg->msg_namelen < sizeof(*usin))
1026 			return -EINVAL;
1027 		if (usin->sin_family != AF_INET) {
1028 			if (usin->sin_family != AF_UNSPEC)
1029 				return -EAFNOSUPPORT;
1030 		}
1031 
1032 		daddr = usin->sin_addr.s_addr;
1033 		dport = usin->sin_port;
1034 		if (dport == 0)
1035 			return -EINVAL;
1036 	} else {
1037 		if (sk->sk_state != TCP_ESTABLISHED)
1038 			return -EDESTADDRREQ;
1039 		daddr = inet->inet_daddr;
1040 		dport = inet->inet_dport;
1041 		/* Open fast path for connected socket.
1042 		   Route will not be used, if at least one option is set.
1043 		 */
1044 		connected = 1;
1045 	}
1046 
1047 	ipcm_init_sk(&ipc, inet);
1048 	ipc.gso_size = up->gso_size;
1049 
1050 	if (msg->msg_controllen) {
1051 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1052 		if (err > 0)
1053 			err = ip_cmsg_send(sk, msg, &ipc,
1054 					   sk->sk_family == AF_INET6);
1055 		if (unlikely(err < 0)) {
1056 			kfree(ipc.opt);
1057 			return err;
1058 		}
1059 		if (ipc.opt)
1060 			free = 1;
1061 		connected = 0;
1062 	}
1063 	if (!ipc.opt) {
1064 		struct ip_options_rcu *inet_opt;
1065 
1066 		rcu_read_lock();
1067 		inet_opt = rcu_dereference(inet->inet_opt);
1068 		if (inet_opt) {
1069 			memcpy(&opt_copy, inet_opt,
1070 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1071 			ipc.opt = &opt_copy.opt;
1072 		}
1073 		rcu_read_unlock();
1074 	}
1075 
1076 	if (cgroup_bpf_enabled && !connected) {
1077 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1078 					    (struct sockaddr *)usin, &ipc.addr);
1079 		if (err)
1080 			goto out_free;
1081 		if (usin) {
1082 			if (usin->sin_port == 0) {
1083 				/* BPF program set invalid port. Reject it. */
1084 				err = -EINVAL;
1085 				goto out_free;
1086 			}
1087 			daddr = usin->sin_addr.s_addr;
1088 			dport = usin->sin_port;
1089 		}
1090 	}
1091 
1092 	saddr = ipc.addr;
1093 	ipc.addr = faddr = daddr;
1094 
1095 	if (ipc.opt && ipc.opt->opt.srr) {
1096 		if (!daddr) {
1097 			err = -EINVAL;
1098 			goto out_free;
1099 		}
1100 		faddr = ipc.opt->opt.faddr;
1101 		connected = 0;
1102 	}
1103 	tos = get_rttos(&ipc, inet);
1104 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1105 	    (msg->msg_flags & MSG_DONTROUTE) ||
1106 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1107 		tos |= RTO_ONLINK;
1108 		connected = 0;
1109 	}
1110 
1111 	if (ipv4_is_multicast(daddr)) {
1112 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1113 			ipc.oif = inet->mc_index;
1114 		if (!saddr)
1115 			saddr = inet->mc_addr;
1116 		connected = 0;
1117 	} else if (!ipc.oif) {
1118 		ipc.oif = inet->uc_index;
1119 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1120 		/* oif is set, packet is to local broadcast and
1121 		 * and uc_index is set. oif is most likely set
1122 		 * by sk_bound_dev_if. If uc_index != oif check if the
1123 		 * oif is an L3 master and uc_index is an L3 slave.
1124 		 * If so, we want to allow the send using the uc_index.
1125 		 */
1126 		if (ipc.oif != inet->uc_index &&
1127 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1128 							      inet->uc_index)) {
1129 			ipc.oif = inet->uc_index;
1130 		}
1131 	}
1132 
1133 	if (connected)
1134 		rt = (struct rtable *)sk_dst_check(sk, 0);
1135 
1136 	if (!rt) {
1137 		struct net *net = sock_net(sk);
1138 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1139 
1140 		fl4 = &fl4_stack;
1141 
1142 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1143 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1144 				   flow_flags,
1145 				   faddr, saddr, dport, inet->inet_sport,
1146 				   sk->sk_uid);
1147 
1148 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1149 		rt = ip_route_output_flow(net, fl4, sk);
1150 		if (IS_ERR(rt)) {
1151 			err = PTR_ERR(rt);
1152 			rt = NULL;
1153 			if (err == -ENETUNREACH)
1154 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1155 			goto out;
1156 		}
1157 
1158 		err = -EACCES;
1159 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1160 		    !sock_flag(sk, SOCK_BROADCAST))
1161 			goto out;
1162 		if (connected)
1163 			sk_dst_set(sk, dst_clone(&rt->dst));
1164 	}
1165 
1166 	if (msg->msg_flags&MSG_CONFIRM)
1167 		goto do_confirm;
1168 back_from_confirm:
1169 
1170 	saddr = fl4->saddr;
1171 	if (!ipc.addr)
1172 		daddr = ipc.addr = fl4->daddr;
1173 
1174 	/* Lockless fast path for the non-corking case. */
1175 	if (!corkreq) {
1176 		struct inet_cork cork;
1177 
1178 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1179 				  sizeof(struct udphdr), &ipc, &rt,
1180 				  &cork, msg->msg_flags);
1181 		err = PTR_ERR(skb);
1182 		if (!IS_ERR_OR_NULL(skb))
1183 			err = udp_send_skb(skb, fl4, &cork);
1184 		goto out;
1185 	}
1186 
1187 	lock_sock(sk);
1188 	if (unlikely(up->pending)) {
1189 		/* The socket is already corked while preparing it. */
1190 		/* ... which is an evident application bug. --ANK */
1191 		release_sock(sk);
1192 
1193 		net_dbg_ratelimited("socket already corked\n");
1194 		err = -EINVAL;
1195 		goto out;
1196 	}
1197 	/*
1198 	 *	Now cork the socket to pend data.
1199 	 */
1200 	fl4 = &inet->cork.fl.u.ip4;
1201 	fl4->daddr = daddr;
1202 	fl4->saddr = saddr;
1203 	fl4->fl4_dport = dport;
1204 	fl4->fl4_sport = inet->inet_sport;
1205 	up->pending = AF_INET;
1206 
1207 do_append_data:
1208 	up->len += ulen;
1209 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1210 			     sizeof(struct udphdr), &ipc, &rt,
1211 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1212 	if (err)
1213 		udp_flush_pending_frames(sk);
1214 	else if (!corkreq)
1215 		err = udp_push_pending_frames(sk);
1216 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1217 		up->pending = 0;
1218 	release_sock(sk);
1219 
1220 out:
1221 	ip_rt_put(rt);
1222 out_free:
1223 	if (free)
1224 		kfree(ipc.opt);
1225 	if (!err)
1226 		return len;
1227 	/*
1228 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1229 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1230 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1231 	 * things).  We could add another new stat but at least for now that
1232 	 * seems like overkill.
1233 	 */
1234 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1235 		UDP_INC_STATS(sock_net(sk),
1236 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1237 	}
1238 	return err;
1239 
1240 do_confirm:
1241 	if (msg->msg_flags & MSG_PROBE)
1242 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1243 	if (!(msg->msg_flags&MSG_PROBE) || len)
1244 		goto back_from_confirm;
1245 	err = 0;
1246 	goto out;
1247 }
1248 EXPORT_SYMBOL(udp_sendmsg);
1249 
1250 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1251 		 size_t size, int flags)
1252 {
1253 	struct inet_sock *inet = inet_sk(sk);
1254 	struct udp_sock *up = udp_sk(sk);
1255 	int ret;
1256 
1257 	if (flags & MSG_SENDPAGE_NOTLAST)
1258 		flags |= MSG_MORE;
1259 
1260 	if (!up->pending) {
1261 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1262 
1263 		/* Call udp_sendmsg to specify destination address which
1264 		 * sendpage interface can't pass.
1265 		 * This will succeed only when the socket is connected.
1266 		 */
1267 		ret = udp_sendmsg(sk, &msg, 0);
1268 		if (ret < 0)
1269 			return ret;
1270 	}
1271 
1272 	lock_sock(sk);
1273 
1274 	if (unlikely(!up->pending)) {
1275 		release_sock(sk);
1276 
1277 		net_dbg_ratelimited("cork failed\n");
1278 		return -EINVAL;
1279 	}
1280 
1281 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1282 			     page, offset, size, flags);
1283 	if (ret == -EOPNOTSUPP) {
1284 		release_sock(sk);
1285 		return sock_no_sendpage(sk->sk_socket, page, offset,
1286 					size, flags);
1287 	}
1288 	if (ret < 0) {
1289 		udp_flush_pending_frames(sk);
1290 		goto out;
1291 	}
1292 
1293 	up->len += size;
1294 	if (!(up->corkflag || (flags&MSG_MORE)))
1295 		ret = udp_push_pending_frames(sk);
1296 	if (!ret)
1297 		ret = size;
1298 out:
1299 	release_sock(sk);
1300 	return ret;
1301 }
1302 
1303 #define UDP_SKB_IS_STATELESS 0x80000000
1304 
1305 static void udp_set_dev_scratch(struct sk_buff *skb)
1306 {
1307 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1308 
1309 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1310 	scratch->_tsize_state = skb->truesize;
1311 #if BITS_PER_LONG == 64
1312 	scratch->len = skb->len;
1313 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1314 	scratch->is_linear = !skb_is_nonlinear(skb);
1315 #endif
1316 	/* all head states execept sp (dst, sk, nf) are always cleared by
1317 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1318 	 * process IP_CMSG_PASSSEC at recvmsg() time
1319 	 */
1320 	if (likely(!skb_sec_path(skb)))
1321 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1322 }
1323 
1324 static int udp_skb_truesize(struct sk_buff *skb)
1325 {
1326 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1327 }
1328 
1329 static bool udp_skb_has_head_state(struct sk_buff *skb)
1330 {
1331 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1332 }
1333 
1334 /* fully reclaim rmem/fwd memory allocated for skb */
1335 static void udp_rmem_release(struct sock *sk, int size, int partial,
1336 			     bool rx_queue_lock_held)
1337 {
1338 	struct udp_sock *up = udp_sk(sk);
1339 	struct sk_buff_head *sk_queue;
1340 	int amt;
1341 
1342 	if (likely(partial)) {
1343 		up->forward_deficit += size;
1344 		size = up->forward_deficit;
1345 		if (size < (sk->sk_rcvbuf >> 2))
1346 			return;
1347 	} else {
1348 		size += up->forward_deficit;
1349 	}
1350 	up->forward_deficit = 0;
1351 
1352 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1353 	 * if the called don't held it already
1354 	 */
1355 	sk_queue = &sk->sk_receive_queue;
1356 	if (!rx_queue_lock_held)
1357 		spin_lock(&sk_queue->lock);
1358 
1359 
1360 	sk->sk_forward_alloc += size;
1361 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1362 	sk->sk_forward_alloc -= amt;
1363 
1364 	if (amt)
1365 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1366 
1367 	atomic_sub(size, &sk->sk_rmem_alloc);
1368 
1369 	/* this can save us from acquiring the rx queue lock on next receive */
1370 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1371 
1372 	if (!rx_queue_lock_held)
1373 		spin_unlock(&sk_queue->lock);
1374 }
1375 
1376 /* Note: called with reader_queue.lock held.
1377  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1378  * This avoids a cache line miss while receive_queue lock is held.
1379  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1380  */
1381 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	prefetch(&skb->data);
1384 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1385 }
1386 EXPORT_SYMBOL(udp_skb_destructor);
1387 
1388 /* as above, but the caller held the rx queue lock, too */
1389 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1390 {
1391 	prefetch(&skb->data);
1392 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1393 }
1394 
1395 /* Idea of busylocks is to let producers grab an extra spinlock
1396  * to relieve pressure on the receive_queue spinlock shared by consumer.
1397  * Under flood, this means that only one producer can be in line
1398  * trying to acquire the receive_queue spinlock.
1399  * These busylock can be allocated on a per cpu manner, instead of a
1400  * per socket one (that would consume a cache line per socket)
1401  */
1402 static int udp_busylocks_log __read_mostly;
1403 static spinlock_t *udp_busylocks __read_mostly;
1404 
1405 static spinlock_t *busylock_acquire(void *ptr)
1406 {
1407 	spinlock_t *busy;
1408 
1409 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1410 	spin_lock(busy);
1411 	return busy;
1412 }
1413 
1414 static void busylock_release(spinlock_t *busy)
1415 {
1416 	if (busy)
1417 		spin_unlock(busy);
1418 }
1419 
1420 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1421 {
1422 	struct sk_buff_head *list = &sk->sk_receive_queue;
1423 	int rmem, delta, amt, err = -ENOMEM;
1424 	spinlock_t *busy = NULL;
1425 	int size;
1426 
1427 	/* try to avoid the costly atomic add/sub pair when the receive
1428 	 * queue is full; always allow at least a packet
1429 	 */
1430 	rmem = atomic_read(&sk->sk_rmem_alloc);
1431 	if (rmem > sk->sk_rcvbuf)
1432 		goto drop;
1433 
1434 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1435 	 * having linear skbs :
1436 	 * - Reduce memory overhead and thus increase receive queue capacity
1437 	 * - Less cache line misses at copyout() time
1438 	 * - Less work at consume_skb() (less alien page frag freeing)
1439 	 */
1440 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1441 		skb_condense(skb);
1442 
1443 		busy = busylock_acquire(sk);
1444 	}
1445 	size = skb->truesize;
1446 	udp_set_dev_scratch(skb);
1447 
1448 	/* we drop only if the receive buf is full and the receive
1449 	 * queue contains some other skb
1450 	 */
1451 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1452 	if (rmem > (size + sk->sk_rcvbuf))
1453 		goto uncharge_drop;
1454 
1455 	spin_lock(&list->lock);
1456 	if (size >= sk->sk_forward_alloc) {
1457 		amt = sk_mem_pages(size);
1458 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1459 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1460 			err = -ENOBUFS;
1461 			spin_unlock(&list->lock);
1462 			goto uncharge_drop;
1463 		}
1464 
1465 		sk->sk_forward_alloc += delta;
1466 	}
1467 
1468 	sk->sk_forward_alloc -= size;
1469 
1470 	/* no need to setup a destructor, we will explicitly release the
1471 	 * forward allocated memory on dequeue
1472 	 */
1473 	sock_skb_set_dropcount(sk, skb);
1474 
1475 	__skb_queue_tail(list, skb);
1476 	spin_unlock(&list->lock);
1477 
1478 	if (!sock_flag(sk, SOCK_DEAD))
1479 		sk->sk_data_ready(sk);
1480 
1481 	busylock_release(busy);
1482 	return 0;
1483 
1484 uncharge_drop:
1485 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1486 
1487 drop:
1488 	atomic_inc(&sk->sk_drops);
1489 	busylock_release(busy);
1490 	return err;
1491 }
1492 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1493 
1494 void udp_destruct_sock(struct sock *sk)
1495 {
1496 	/* reclaim completely the forward allocated memory */
1497 	struct udp_sock *up = udp_sk(sk);
1498 	unsigned int total = 0;
1499 	struct sk_buff *skb;
1500 
1501 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1502 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1503 		total += skb->truesize;
1504 		kfree_skb(skb);
1505 	}
1506 	udp_rmem_release(sk, total, 0, true);
1507 
1508 	inet_sock_destruct(sk);
1509 }
1510 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1511 
1512 int udp_init_sock(struct sock *sk)
1513 {
1514 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1515 	sk->sk_destruct = udp_destruct_sock;
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(udp_init_sock);
1519 
1520 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1521 {
1522 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1523 		bool slow = lock_sock_fast(sk);
1524 
1525 		sk_peek_offset_bwd(sk, len);
1526 		unlock_sock_fast(sk, slow);
1527 	}
1528 
1529 	if (!skb_unref(skb))
1530 		return;
1531 
1532 	/* In the more common cases we cleared the head states previously,
1533 	 * see __udp_queue_rcv_skb().
1534 	 */
1535 	if (unlikely(udp_skb_has_head_state(skb)))
1536 		skb_release_head_state(skb);
1537 	__consume_stateless_skb(skb);
1538 }
1539 EXPORT_SYMBOL_GPL(skb_consume_udp);
1540 
1541 static struct sk_buff *__first_packet_length(struct sock *sk,
1542 					     struct sk_buff_head *rcvq,
1543 					     int *total)
1544 {
1545 	struct sk_buff *skb;
1546 
1547 	while ((skb = skb_peek(rcvq)) != NULL) {
1548 		if (udp_lib_checksum_complete(skb)) {
1549 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1550 					IS_UDPLITE(sk));
1551 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1552 					IS_UDPLITE(sk));
1553 			atomic_inc(&sk->sk_drops);
1554 			__skb_unlink(skb, rcvq);
1555 			*total += skb->truesize;
1556 			kfree_skb(skb);
1557 		} else {
1558 			/* the csum related bits could be changed, refresh
1559 			 * the scratch area
1560 			 */
1561 			udp_set_dev_scratch(skb);
1562 			break;
1563 		}
1564 	}
1565 	return skb;
1566 }
1567 
1568 /**
1569  *	first_packet_length	- return length of first packet in receive queue
1570  *	@sk: socket
1571  *
1572  *	Drops all bad checksum frames, until a valid one is found.
1573  *	Returns the length of found skb, or -1 if none is found.
1574  */
1575 static int first_packet_length(struct sock *sk)
1576 {
1577 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1578 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1579 	struct sk_buff *skb;
1580 	int total = 0;
1581 	int res;
1582 
1583 	spin_lock_bh(&rcvq->lock);
1584 	skb = __first_packet_length(sk, rcvq, &total);
1585 	if (!skb && !skb_queue_empty(sk_queue)) {
1586 		spin_lock(&sk_queue->lock);
1587 		skb_queue_splice_tail_init(sk_queue, rcvq);
1588 		spin_unlock(&sk_queue->lock);
1589 
1590 		skb = __first_packet_length(sk, rcvq, &total);
1591 	}
1592 	res = skb ? skb->len : -1;
1593 	if (total)
1594 		udp_rmem_release(sk, total, 1, false);
1595 	spin_unlock_bh(&rcvq->lock);
1596 	return res;
1597 }
1598 
1599 /*
1600  *	IOCTL requests applicable to the UDP protocol
1601  */
1602 
1603 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1604 {
1605 	switch (cmd) {
1606 	case SIOCOUTQ:
1607 	{
1608 		int amount = sk_wmem_alloc_get(sk);
1609 
1610 		return put_user(amount, (int __user *)arg);
1611 	}
1612 
1613 	case SIOCINQ:
1614 	{
1615 		int amount = max_t(int, 0, first_packet_length(sk));
1616 
1617 		return put_user(amount, (int __user *)arg);
1618 	}
1619 
1620 	default:
1621 		return -ENOIOCTLCMD;
1622 	}
1623 
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL(udp_ioctl);
1627 
1628 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1629 			       int noblock, int *off, int *err)
1630 {
1631 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1632 	struct sk_buff_head *queue;
1633 	struct sk_buff *last;
1634 	long timeo;
1635 	int error;
1636 
1637 	queue = &udp_sk(sk)->reader_queue;
1638 	flags |= noblock ? MSG_DONTWAIT : 0;
1639 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1640 	do {
1641 		struct sk_buff *skb;
1642 
1643 		error = sock_error(sk);
1644 		if (error)
1645 			break;
1646 
1647 		error = -EAGAIN;
1648 		do {
1649 			spin_lock_bh(&queue->lock);
1650 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1651 							udp_skb_destructor,
1652 							off, err, &last);
1653 			if (skb) {
1654 				spin_unlock_bh(&queue->lock);
1655 				return skb;
1656 			}
1657 
1658 			if (skb_queue_empty(sk_queue)) {
1659 				spin_unlock_bh(&queue->lock);
1660 				goto busy_check;
1661 			}
1662 
1663 			/* refill the reader queue and walk it again
1664 			 * keep both queues locked to avoid re-acquiring
1665 			 * the sk_receive_queue lock if fwd memory scheduling
1666 			 * is needed.
1667 			 */
1668 			spin_lock(&sk_queue->lock);
1669 			skb_queue_splice_tail_init(sk_queue, queue);
1670 
1671 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1672 							udp_skb_dtor_locked,
1673 							off, err, &last);
1674 			spin_unlock(&sk_queue->lock);
1675 			spin_unlock_bh(&queue->lock);
1676 			if (skb)
1677 				return skb;
1678 
1679 busy_check:
1680 			if (!sk_can_busy_loop(sk))
1681 				break;
1682 
1683 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1684 		} while (!skb_queue_empty(sk_queue));
1685 
1686 		/* sk_queue is empty, reader_queue may contain peeked packets */
1687 	} while (timeo &&
1688 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1689 					      (struct sk_buff *)sk_queue));
1690 
1691 	*err = error;
1692 	return NULL;
1693 }
1694 EXPORT_SYMBOL(__skb_recv_udp);
1695 
1696 /*
1697  * 	This should be easy, if there is something there we
1698  * 	return it, otherwise we block.
1699  */
1700 
1701 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1702 		int flags, int *addr_len)
1703 {
1704 	struct inet_sock *inet = inet_sk(sk);
1705 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1706 	struct sk_buff *skb;
1707 	unsigned int ulen, copied;
1708 	int off, err, peeking = flags & MSG_PEEK;
1709 	int is_udplite = IS_UDPLITE(sk);
1710 	bool checksum_valid = false;
1711 
1712 	if (flags & MSG_ERRQUEUE)
1713 		return ip_recv_error(sk, msg, len, addr_len);
1714 
1715 try_again:
1716 	off = sk_peek_offset(sk, flags);
1717 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1718 	if (!skb)
1719 		return err;
1720 
1721 	ulen = udp_skb_len(skb);
1722 	copied = len;
1723 	if (copied > ulen - off)
1724 		copied = ulen - off;
1725 	else if (copied < ulen)
1726 		msg->msg_flags |= MSG_TRUNC;
1727 
1728 	/*
1729 	 * If checksum is needed at all, try to do it while copying the
1730 	 * data.  If the data is truncated, or if we only want a partial
1731 	 * coverage checksum (UDP-Lite), do it before the copy.
1732 	 */
1733 
1734 	if (copied < ulen || peeking ||
1735 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1736 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1737 				!__udp_lib_checksum_complete(skb);
1738 		if (!checksum_valid)
1739 			goto csum_copy_err;
1740 	}
1741 
1742 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1743 		if (udp_skb_is_linear(skb))
1744 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1745 		else
1746 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1747 	} else {
1748 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1749 
1750 		if (err == -EINVAL)
1751 			goto csum_copy_err;
1752 	}
1753 
1754 	if (unlikely(err)) {
1755 		if (!peeking) {
1756 			atomic_inc(&sk->sk_drops);
1757 			UDP_INC_STATS(sock_net(sk),
1758 				      UDP_MIB_INERRORS, is_udplite);
1759 		}
1760 		kfree_skb(skb);
1761 		return err;
1762 	}
1763 
1764 	if (!peeking)
1765 		UDP_INC_STATS(sock_net(sk),
1766 			      UDP_MIB_INDATAGRAMS, is_udplite);
1767 
1768 	sock_recv_ts_and_drops(msg, sk, skb);
1769 
1770 	/* Copy the address. */
1771 	if (sin) {
1772 		sin->sin_family = AF_INET;
1773 		sin->sin_port = udp_hdr(skb)->source;
1774 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1775 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1776 		*addr_len = sizeof(*sin);
1777 	}
1778 
1779 	if (udp_sk(sk)->gro_enabled)
1780 		udp_cmsg_recv(msg, sk, skb);
1781 
1782 	if (inet->cmsg_flags)
1783 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1784 
1785 	err = copied;
1786 	if (flags & MSG_TRUNC)
1787 		err = ulen;
1788 
1789 	skb_consume_udp(sk, skb, peeking ? -err : err);
1790 	return err;
1791 
1792 csum_copy_err:
1793 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1794 				 udp_skb_destructor)) {
1795 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1796 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1797 	}
1798 	kfree_skb(skb);
1799 
1800 	/* starting over for a new packet, but check if we need to yield */
1801 	cond_resched();
1802 	msg->msg_flags &= ~MSG_TRUNC;
1803 	goto try_again;
1804 }
1805 
1806 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1807 {
1808 	/* This check is replicated from __ip4_datagram_connect() and
1809 	 * intended to prevent BPF program called below from accessing bytes
1810 	 * that are out of the bound specified by user in addr_len.
1811 	 */
1812 	if (addr_len < sizeof(struct sockaddr_in))
1813 		return -EINVAL;
1814 
1815 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1816 }
1817 EXPORT_SYMBOL(udp_pre_connect);
1818 
1819 int __udp_disconnect(struct sock *sk, int flags)
1820 {
1821 	struct inet_sock *inet = inet_sk(sk);
1822 	/*
1823 	 *	1003.1g - break association.
1824 	 */
1825 
1826 	sk->sk_state = TCP_CLOSE;
1827 	inet->inet_daddr = 0;
1828 	inet->inet_dport = 0;
1829 	sock_rps_reset_rxhash(sk);
1830 	sk->sk_bound_dev_if = 0;
1831 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1832 		inet_reset_saddr(sk);
1833 
1834 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1835 		sk->sk_prot->unhash(sk);
1836 		inet->inet_sport = 0;
1837 	}
1838 	sk_dst_reset(sk);
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(__udp_disconnect);
1842 
1843 int udp_disconnect(struct sock *sk, int flags)
1844 {
1845 	lock_sock(sk);
1846 	__udp_disconnect(sk, flags);
1847 	release_sock(sk);
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(udp_disconnect);
1851 
1852 void udp_lib_unhash(struct sock *sk)
1853 {
1854 	if (sk_hashed(sk)) {
1855 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1856 		struct udp_hslot *hslot, *hslot2;
1857 
1858 		hslot  = udp_hashslot(udptable, sock_net(sk),
1859 				      udp_sk(sk)->udp_port_hash);
1860 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1861 
1862 		spin_lock_bh(&hslot->lock);
1863 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1864 			reuseport_detach_sock(sk);
1865 		if (sk_del_node_init_rcu(sk)) {
1866 			hslot->count--;
1867 			inet_sk(sk)->inet_num = 0;
1868 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1869 
1870 			spin_lock(&hslot2->lock);
1871 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1872 			hslot2->count--;
1873 			spin_unlock(&hslot2->lock);
1874 		}
1875 		spin_unlock_bh(&hslot->lock);
1876 	}
1877 }
1878 EXPORT_SYMBOL(udp_lib_unhash);
1879 
1880 /*
1881  * inet_rcv_saddr was changed, we must rehash secondary hash
1882  */
1883 void udp_lib_rehash(struct sock *sk, u16 newhash)
1884 {
1885 	if (sk_hashed(sk)) {
1886 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1887 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1888 
1889 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1890 		nhslot2 = udp_hashslot2(udptable, newhash);
1891 		udp_sk(sk)->udp_portaddr_hash = newhash;
1892 
1893 		if (hslot2 != nhslot2 ||
1894 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1895 			hslot = udp_hashslot(udptable, sock_net(sk),
1896 					     udp_sk(sk)->udp_port_hash);
1897 			/* we must lock primary chain too */
1898 			spin_lock_bh(&hslot->lock);
1899 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1900 				reuseport_detach_sock(sk);
1901 
1902 			if (hslot2 != nhslot2) {
1903 				spin_lock(&hslot2->lock);
1904 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1905 				hslot2->count--;
1906 				spin_unlock(&hslot2->lock);
1907 
1908 				spin_lock(&nhslot2->lock);
1909 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1910 							 &nhslot2->head);
1911 				nhslot2->count++;
1912 				spin_unlock(&nhslot2->lock);
1913 			}
1914 
1915 			spin_unlock_bh(&hslot->lock);
1916 		}
1917 	}
1918 }
1919 EXPORT_SYMBOL(udp_lib_rehash);
1920 
1921 void udp_v4_rehash(struct sock *sk)
1922 {
1923 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1924 					  inet_sk(sk)->inet_rcv_saddr,
1925 					  inet_sk(sk)->inet_num);
1926 	udp_lib_rehash(sk, new_hash);
1927 }
1928 
1929 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1930 {
1931 	int rc;
1932 
1933 	if (inet_sk(sk)->inet_daddr) {
1934 		sock_rps_save_rxhash(sk, skb);
1935 		sk_mark_napi_id(sk, skb);
1936 		sk_incoming_cpu_update(sk);
1937 	} else {
1938 		sk_mark_napi_id_once(sk, skb);
1939 	}
1940 
1941 	rc = __udp_enqueue_schedule_skb(sk, skb);
1942 	if (rc < 0) {
1943 		int is_udplite = IS_UDPLITE(sk);
1944 
1945 		/* Note that an ENOMEM error is charged twice */
1946 		if (rc == -ENOMEM)
1947 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1948 					is_udplite);
1949 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1950 		kfree_skb(skb);
1951 		trace_udp_fail_queue_rcv_skb(rc, sk);
1952 		return -1;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 /* returns:
1959  *  -1: error
1960  *   0: success
1961  *  >0: "udp encap" protocol resubmission
1962  *
1963  * Note that in the success and error cases, the skb is assumed to
1964  * have either been requeued or freed.
1965  */
1966 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1967 {
1968 	struct udp_sock *up = udp_sk(sk);
1969 	int is_udplite = IS_UDPLITE(sk);
1970 
1971 	/*
1972 	 *	Charge it to the socket, dropping if the queue is full.
1973 	 */
1974 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1975 		goto drop;
1976 	nf_reset(skb);
1977 
1978 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1979 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1980 
1981 		/*
1982 		 * This is an encapsulation socket so pass the skb to
1983 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1984 		 * fall through and pass this up the UDP socket.
1985 		 * up->encap_rcv() returns the following value:
1986 		 * =0 if skb was successfully passed to the encap
1987 		 *    handler or was discarded by it.
1988 		 * >0 if skb should be passed on to UDP.
1989 		 * <0 if skb should be resubmitted as proto -N
1990 		 */
1991 
1992 		/* if we're overly short, let UDP handle it */
1993 		encap_rcv = READ_ONCE(up->encap_rcv);
1994 		if (encap_rcv) {
1995 			int ret;
1996 
1997 			/* Verify checksum before giving to encap */
1998 			if (udp_lib_checksum_complete(skb))
1999 				goto csum_error;
2000 
2001 			ret = encap_rcv(sk, skb);
2002 			if (ret <= 0) {
2003 				__UDP_INC_STATS(sock_net(sk),
2004 						UDP_MIB_INDATAGRAMS,
2005 						is_udplite);
2006 				return -ret;
2007 			}
2008 		}
2009 
2010 		/* FALLTHROUGH -- it's a UDP Packet */
2011 	}
2012 
2013 	/*
2014 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2015 	 */
2016 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2017 
2018 		/*
2019 		 * MIB statistics other than incrementing the error count are
2020 		 * disabled for the following two types of errors: these depend
2021 		 * on the application settings, not on the functioning of the
2022 		 * protocol stack as such.
2023 		 *
2024 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2025 		 * way ... to ... at least let the receiving application block
2026 		 * delivery of packets with coverage values less than a value
2027 		 * provided by the application."
2028 		 */
2029 		if (up->pcrlen == 0) {          /* full coverage was set  */
2030 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2031 					    UDP_SKB_CB(skb)->cscov, skb->len);
2032 			goto drop;
2033 		}
2034 		/* The next case involves violating the min. coverage requested
2035 		 * by the receiver. This is subtle: if receiver wants x and x is
2036 		 * greater than the buffersize/MTU then receiver will complain
2037 		 * that it wants x while sender emits packets of smaller size y.
2038 		 * Therefore the above ...()->partial_cov statement is essential.
2039 		 */
2040 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2041 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2042 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2043 			goto drop;
2044 		}
2045 	}
2046 
2047 	prefetch(&sk->sk_rmem_alloc);
2048 	if (rcu_access_pointer(sk->sk_filter) &&
2049 	    udp_lib_checksum_complete(skb))
2050 			goto csum_error;
2051 
2052 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2053 		goto drop;
2054 
2055 	udp_csum_pull_header(skb);
2056 
2057 	ipv4_pktinfo_prepare(sk, skb);
2058 	return __udp_queue_rcv_skb(sk, skb);
2059 
2060 csum_error:
2061 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2062 drop:
2063 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2064 	atomic_inc(&sk->sk_drops);
2065 	kfree_skb(skb);
2066 	return -1;
2067 }
2068 
2069 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2070 {
2071 	struct sk_buff *next, *segs;
2072 	int ret;
2073 
2074 	if (likely(!udp_unexpected_gso(sk, skb)))
2075 		return udp_queue_rcv_one_skb(sk, skb);
2076 
2077 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2078 	__skb_push(skb, -skb_mac_offset(skb));
2079 	segs = udp_rcv_segment(sk, skb, true);
2080 	for (skb = segs; skb; skb = next) {
2081 		next = skb->next;
2082 		__skb_pull(skb, skb_transport_offset(skb));
2083 		ret = udp_queue_rcv_one_skb(sk, skb);
2084 		if (ret > 0)
2085 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2086 	}
2087 	return 0;
2088 }
2089 
2090 /* For TCP sockets, sk_rx_dst is protected by socket lock
2091  * For UDP, we use xchg() to guard against concurrent changes.
2092  */
2093 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2094 {
2095 	struct dst_entry *old;
2096 
2097 	if (dst_hold_safe(dst)) {
2098 		old = xchg(&sk->sk_rx_dst, dst);
2099 		dst_release(old);
2100 		return old != dst;
2101 	}
2102 	return false;
2103 }
2104 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2105 
2106 /*
2107  *	Multicasts and broadcasts go to each listener.
2108  *
2109  *	Note: called only from the BH handler context.
2110  */
2111 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2112 				    struct udphdr  *uh,
2113 				    __be32 saddr, __be32 daddr,
2114 				    struct udp_table *udptable,
2115 				    int proto)
2116 {
2117 	struct sock *sk, *first = NULL;
2118 	unsigned short hnum = ntohs(uh->dest);
2119 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2120 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2121 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2122 	int dif = skb->dev->ifindex;
2123 	int sdif = inet_sdif(skb);
2124 	struct hlist_node *node;
2125 	struct sk_buff *nskb;
2126 
2127 	if (use_hash2) {
2128 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2129 			    udptable->mask;
2130 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2131 start_lookup:
2132 		hslot = &udptable->hash2[hash2];
2133 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2134 	}
2135 
2136 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2137 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2138 					 uh->source, saddr, dif, sdif, hnum))
2139 			continue;
2140 
2141 		if (!first) {
2142 			first = sk;
2143 			continue;
2144 		}
2145 		nskb = skb_clone(skb, GFP_ATOMIC);
2146 
2147 		if (unlikely(!nskb)) {
2148 			atomic_inc(&sk->sk_drops);
2149 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2150 					IS_UDPLITE(sk));
2151 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2152 					IS_UDPLITE(sk));
2153 			continue;
2154 		}
2155 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2156 			consume_skb(nskb);
2157 	}
2158 
2159 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2160 	if (use_hash2 && hash2 != hash2_any) {
2161 		hash2 = hash2_any;
2162 		goto start_lookup;
2163 	}
2164 
2165 	if (first) {
2166 		if (udp_queue_rcv_skb(first, skb) > 0)
2167 			consume_skb(skb);
2168 	} else {
2169 		kfree_skb(skb);
2170 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2171 				proto == IPPROTO_UDPLITE);
2172 	}
2173 	return 0;
2174 }
2175 
2176 /* Initialize UDP checksum. If exited with zero value (success),
2177  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2178  * Otherwise, csum completion requires chacksumming packet body,
2179  * including udp header and folding it to skb->csum.
2180  */
2181 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2182 				 int proto)
2183 {
2184 	int err;
2185 
2186 	UDP_SKB_CB(skb)->partial_cov = 0;
2187 	UDP_SKB_CB(skb)->cscov = skb->len;
2188 
2189 	if (proto == IPPROTO_UDPLITE) {
2190 		err = udplite_checksum_init(skb, uh);
2191 		if (err)
2192 			return err;
2193 
2194 		if (UDP_SKB_CB(skb)->partial_cov) {
2195 			skb->csum = inet_compute_pseudo(skb, proto);
2196 			return 0;
2197 		}
2198 	}
2199 
2200 	/* Note, we are only interested in != 0 or == 0, thus the
2201 	 * force to int.
2202 	 */
2203 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2204 							inet_compute_pseudo);
2205 	if (err)
2206 		return err;
2207 
2208 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2209 		/* If SW calculated the value, we know it's bad */
2210 		if (skb->csum_complete_sw)
2211 			return 1;
2212 
2213 		/* HW says the value is bad. Let's validate that.
2214 		 * skb->csum is no longer the full packet checksum,
2215 		 * so don't treat it as such.
2216 		 */
2217 		skb_checksum_complete_unset(skb);
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2224  * return code conversion for ip layer consumption
2225  */
2226 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2227 			       struct udphdr *uh)
2228 {
2229 	int ret;
2230 
2231 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2232 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2233 					 inet_compute_pseudo);
2234 
2235 	ret = udp_queue_rcv_skb(sk, skb);
2236 
2237 	/* a return value > 0 means to resubmit the input, but
2238 	 * it wants the return to be -protocol, or 0
2239 	 */
2240 	if (ret > 0)
2241 		return -ret;
2242 	return 0;
2243 }
2244 
2245 /*
2246  *	All we need to do is get the socket, and then do a checksum.
2247  */
2248 
2249 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2250 		   int proto)
2251 {
2252 	struct sock *sk;
2253 	struct udphdr *uh;
2254 	unsigned short ulen;
2255 	struct rtable *rt = skb_rtable(skb);
2256 	__be32 saddr, daddr;
2257 	struct net *net = dev_net(skb->dev);
2258 
2259 	/*
2260 	 *  Validate the packet.
2261 	 */
2262 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2263 		goto drop;		/* No space for header. */
2264 
2265 	uh   = udp_hdr(skb);
2266 	ulen = ntohs(uh->len);
2267 	saddr = ip_hdr(skb)->saddr;
2268 	daddr = ip_hdr(skb)->daddr;
2269 
2270 	if (ulen > skb->len)
2271 		goto short_packet;
2272 
2273 	if (proto == IPPROTO_UDP) {
2274 		/* UDP validates ulen. */
2275 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2276 			goto short_packet;
2277 		uh = udp_hdr(skb);
2278 	}
2279 
2280 	if (udp4_csum_init(skb, uh, proto))
2281 		goto csum_error;
2282 
2283 	sk = skb_steal_sock(skb);
2284 	if (sk) {
2285 		struct dst_entry *dst = skb_dst(skb);
2286 		int ret;
2287 
2288 		if (unlikely(sk->sk_rx_dst != dst))
2289 			udp_sk_rx_dst_set(sk, dst);
2290 
2291 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2292 		sock_put(sk);
2293 		return ret;
2294 	}
2295 
2296 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2297 		return __udp4_lib_mcast_deliver(net, skb, uh,
2298 						saddr, daddr, udptable, proto);
2299 
2300 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2301 	if (sk)
2302 		return udp_unicast_rcv_skb(sk, skb, uh);
2303 
2304 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2305 		goto drop;
2306 	nf_reset(skb);
2307 
2308 	/* No socket. Drop packet silently, if checksum is wrong */
2309 	if (udp_lib_checksum_complete(skb))
2310 		goto csum_error;
2311 
2312 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2313 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2314 
2315 	/*
2316 	 * Hmm.  We got an UDP packet to a port to which we
2317 	 * don't wanna listen.  Ignore it.
2318 	 */
2319 	kfree_skb(skb);
2320 	return 0;
2321 
2322 short_packet:
2323 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2324 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2325 			    &saddr, ntohs(uh->source),
2326 			    ulen, skb->len,
2327 			    &daddr, ntohs(uh->dest));
2328 	goto drop;
2329 
2330 csum_error:
2331 	/*
2332 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2333 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2334 	 */
2335 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2336 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2337 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2338 			    ulen);
2339 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2340 drop:
2341 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2342 	kfree_skb(skb);
2343 	return 0;
2344 }
2345 
2346 /* We can only early demux multicast if there is a single matching socket.
2347  * If more than one socket found returns NULL
2348  */
2349 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2350 						  __be16 loc_port, __be32 loc_addr,
2351 						  __be16 rmt_port, __be32 rmt_addr,
2352 						  int dif, int sdif)
2353 {
2354 	struct sock *sk, *result;
2355 	unsigned short hnum = ntohs(loc_port);
2356 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2357 	struct udp_hslot *hslot = &udp_table.hash[slot];
2358 
2359 	/* Do not bother scanning a too big list */
2360 	if (hslot->count > 10)
2361 		return NULL;
2362 
2363 	result = NULL;
2364 	sk_for_each_rcu(sk, &hslot->head) {
2365 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2366 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2367 			if (result)
2368 				return NULL;
2369 			result = sk;
2370 		}
2371 	}
2372 
2373 	return result;
2374 }
2375 
2376 /* For unicast we should only early demux connected sockets or we can
2377  * break forwarding setups.  The chains here can be long so only check
2378  * if the first socket is an exact match and if not move on.
2379  */
2380 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2381 					    __be16 loc_port, __be32 loc_addr,
2382 					    __be16 rmt_port, __be32 rmt_addr,
2383 					    int dif, int sdif)
2384 {
2385 	unsigned short hnum = ntohs(loc_port);
2386 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2387 	unsigned int slot2 = hash2 & udp_table.mask;
2388 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2389 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2390 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2391 	struct sock *sk;
2392 
2393 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2394 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2395 			       loc_addr, ports, dif, sdif))
2396 			return sk;
2397 		/* Only check first socket in chain */
2398 		break;
2399 	}
2400 	return NULL;
2401 }
2402 
2403 int udp_v4_early_demux(struct sk_buff *skb)
2404 {
2405 	struct net *net = dev_net(skb->dev);
2406 	struct in_device *in_dev = NULL;
2407 	const struct iphdr *iph;
2408 	const struct udphdr *uh;
2409 	struct sock *sk = NULL;
2410 	struct dst_entry *dst;
2411 	int dif = skb->dev->ifindex;
2412 	int sdif = inet_sdif(skb);
2413 	int ours;
2414 
2415 	/* validate the packet */
2416 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2417 		return 0;
2418 
2419 	iph = ip_hdr(skb);
2420 	uh = udp_hdr(skb);
2421 
2422 	if (skb->pkt_type == PACKET_MULTICAST) {
2423 		in_dev = __in_dev_get_rcu(skb->dev);
2424 
2425 		if (!in_dev)
2426 			return 0;
2427 
2428 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2429 				       iph->protocol);
2430 		if (!ours)
2431 			return 0;
2432 
2433 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2434 						   uh->source, iph->saddr,
2435 						   dif, sdif);
2436 	} else if (skb->pkt_type == PACKET_HOST) {
2437 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2438 					     uh->source, iph->saddr, dif, sdif);
2439 	}
2440 
2441 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2442 		return 0;
2443 
2444 	skb->sk = sk;
2445 	skb->destructor = sock_efree;
2446 	dst = READ_ONCE(sk->sk_rx_dst);
2447 
2448 	if (dst)
2449 		dst = dst_check(dst, 0);
2450 	if (dst) {
2451 		u32 itag = 0;
2452 
2453 		/* set noref for now.
2454 		 * any place which wants to hold dst has to call
2455 		 * dst_hold_safe()
2456 		 */
2457 		skb_dst_set_noref(skb, dst);
2458 
2459 		/* for unconnected multicast sockets we need to validate
2460 		 * the source on each packet
2461 		 */
2462 		if (!inet_sk(sk)->inet_daddr && in_dev)
2463 			return ip_mc_validate_source(skb, iph->daddr,
2464 						     iph->saddr, iph->tos,
2465 						     skb->dev, in_dev, &itag);
2466 	}
2467 	return 0;
2468 }
2469 
2470 int udp_rcv(struct sk_buff *skb)
2471 {
2472 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2473 }
2474 
2475 void udp_destroy_sock(struct sock *sk)
2476 {
2477 	struct udp_sock *up = udp_sk(sk);
2478 	bool slow = lock_sock_fast(sk);
2479 	udp_flush_pending_frames(sk);
2480 	unlock_sock_fast(sk, slow);
2481 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2482 		if (up->encap_type) {
2483 			void (*encap_destroy)(struct sock *sk);
2484 			encap_destroy = READ_ONCE(up->encap_destroy);
2485 			if (encap_destroy)
2486 				encap_destroy(sk);
2487 		}
2488 		if (up->encap_enabled)
2489 			static_branch_dec(&udp_encap_needed_key);
2490 	}
2491 }
2492 
2493 /*
2494  *	Socket option code for UDP
2495  */
2496 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2497 		       char __user *optval, unsigned int optlen,
2498 		       int (*push_pending_frames)(struct sock *))
2499 {
2500 	struct udp_sock *up = udp_sk(sk);
2501 	int val, valbool;
2502 	int err = 0;
2503 	int is_udplite = IS_UDPLITE(sk);
2504 
2505 	if (optlen < sizeof(int))
2506 		return -EINVAL;
2507 
2508 	if (get_user(val, (int __user *)optval))
2509 		return -EFAULT;
2510 
2511 	valbool = val ? 1 : 0;
2512 
2513 	switch (optname) {
2514 	case UDP_CORK:
2515 		if (val != 0) {
2516 			up->corkflag = 1;
2517 		} else {
2518 			up->corkflag = 0;
2519 			lock_sock(sk);
2520 			push_pending_frames(sk);
2521 			release_sock(sk);
2522 		}
2523 		break;
2524 
2525 	case UDP_ENCAP:
2526 		switch (val) {
2527 		case 0:
2528 		case UDP_ENCAP_ESPINUDP:
2529 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2530 			up->encap_rcv = xfrm4_udp_encap_rcv;
2531 			/* FALLTHROUGH */
2532 		case UDP_ENCAP_L2TPINUDP:
2533 			up->encap_type = val;
2534 			lock_sock(sk);
2535 			udp_tunnel_encap_enable(sk->sk_socket);
2536 			release_sock(sk);
2537 			break;
2538 		default:
2539 			err = -ENOPROTOOPT;
2540 			break;
2541 		}
2542 		break;
2543 
2544 	case UDP_NO_CHECK6_TX:
2545 		up->no_check6_tx = valbool;
2546 		break;
2547 
2548 	case UDP_NO_CHECK6_RX:
2549 		up->no_check6_rx = valbool;
2550 		break;
2551 
2552 	case UDP_SEGMENT:
2553 		if (val < 0 || val > USHRT_MAX)
2554 			return -EINVAL;
2555 		up->gso_size = val;
2556 		break;
2557 
2558 	case UDP_GRO:
2559 		lock_sock(sk);
2560 		if (valbool)
2561 			udp_tunnel_encap_enable(sk->sk_socket);
2562 		up->gro_enabled = valbool;
2563 		release_sock(sk);
2564 		break;
2565 
2566 	/*
2567 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2568 	 */
2569 	/* The sender sets actual checksum coverage length via this option.
2570 	 * The case coverage > packet length is handled by send module. */
2571 	case UDPLITE_SEND_CSCOV:
2572 		if (!is_udplite)         /* Disable the option on UDP sockets */
2573 			return -ENOPROTOOPT;
2574 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2575 			val = 8;
2576 		else if (val > USHRT_MAX)
2577 			val = USHRT_MAX;
2578 		up->pcslen = val;
2579 		up->pcflag |= UDPLITE_SEND_CC;
2580 		break;
2581 
2582 	/* The receiver specifies a minimum checksum coverage value. To make
2583 	 * sense, this should be set to at least 8 (as done below). If zero is
2584 	 * used, this again means full checksum coverage.                     */
2585 	case UDPLITE_RECV_CSCOV:
2586 		if (!is_udplite)         /* Disable the option on UDP sockets */
2587 			return -ENOPROTOOPT;
2588 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2589 			val = 8;
2590 		else if (val > USHRT_MAX)
2591 			val = USHRT_MAX;
2592 		up->pcrlen = val;
2593 		up->pcflag |= UDPLITE_RECV_CC;
2594 		break;
2595 
2596 	default:
2597 		err = -ENOPROTOOPT;
2598 		break;
2599 	}
2600 
2601 	return err;
2602 }
2603 EXPORT_SYMBOL(udp_lib_setsockopt);
2604 
2605 int udp_setsockopt(struct sock *sk, int level, int optname,
2606 		   char __user *optval, unsigned int optlen)
2607 {
2608 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2609 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2610 					  udp_push_pending_frames);
2611 	return ip_setsockopt(sk, level, optname, optval, optlen);
2612 }
2613 
2614 #ifdef CONFIG_COMPAT
2615 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2616 			  char __user *optval, unsigned int optlen)
2617 {
2618 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2619 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2620 					  udp_push_pending_frames);
2621 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2622 }
2623 #endif
2624 
2625 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2626 		       char __user *optval, int __user *optlen)
2627 {
2628 	struct udp_sock *up = udp_sk(sk);
2629 	int val, len;
2630 
2631 	if (get_user(len, optlen))
2632 		return -EFAULT;
2633 
2634 	len = min_t(unsigned int, len, sizeof(int));
2635 
2636 	if (len < 0)
2637 		return -EINVAL;
2638 
2639 	switch (optname) {
2640 	case UDP_CORK:
2641 		val = up->corkflag;
2642 		break;
2643 
2644 	case UDP_ENCAP:
2645 		val = up->encap_type;
2646 		break;
2647 
2648 	case UDP_NO_CHECK6_TX:
2649 		val = up->no_check6_tx;
2650 		break;
2651 
2652 	case UDP_NO_CHECK6_RX:
2653 		val = up->no_check6_rx;
2654 		break;
2655 
2656 	case UDP_SEGMENT:
2657 		val = up->gso_size;
2658 		break;
2659 
2660 	/* The following two cannot be changed on UDP sockets, the return is
2661 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2662 	case UDPLITE_SEND_CSCOV:
2663 		val = up->pcslen;
2664 		break;
2665 
2666 	case UDPLITE_RECV_CSCOV:
2667 		val = up->pcrlen;
2668 		break;
2669 
2670 	default:
2671 		return -ENOPROTOOPT;
2672 	}
2673 
2674 	if (put_user(len, optlen))
2675 		return -EFAULT;
2676 	if (copy_to_user(optval, &val, len))
2677 		return -EFAULT;
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL(udp_lib_getsockopt);
2681 
2682 int udp_getsockopt(struct sock *sk, int level, int optname,
2683 		   char __user *optval, int __user *optlen)
2684 {
2685 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2686 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2687 	return ip_getsockopt(sk, level, optname, optval, optlen);
2688 }
2689 
2690 #ifdef CONFIG_COMPAT
2691 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2692 				 char __user *optval, int __user *optlen)
2693 {
2694 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2695 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2696 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2697 }
2698 #endif
2699 /**
2700  * 	udp_poll - wait for a UDP event.
2701  *	@file - file struct
2702  *	@sock - socket
2703  *	@wait - poll table
2704  *
2705  *	This is same as datagram poll, except for the special case of
2706  *	blocking sockets. If application is using a blocking fd
2707  *	and a packet with checksum error is in the queue;
2708  *	then it could get return from select indicating data available
2709  *	but then block when reading it. Add special case code
2710  *	to work around these arguably broken applications.
2711  */
2712 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2713 {
2714 	__poll_t mask = datagram_poll(file, sock, wait);
2715 	struct sock *sk = sock->sk;
2716 
2717 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2718 		mask |= EPOLLIN | EPOLLRDNORM;
2719 
2720 	/* Check for false positives due to checksum errors */
2721 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2722 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2723 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2724 
2725 	return mask;
2726 
2727 }
2728 EXPORT_SYMBOL(udp_poll);
2729 
2730 int udp_abort(struct sock *sk, int err)
2731 {
2732 	lock_sock(sk);
2733 
2734 	sk->sk_err = err;
2735 	sk->sk_error_report(sk);
2736 	__udp_disconnect(sk, 0);
2737 
2738 	release_sock(sk);
2739 
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(udp_abort);
2743 
2744 struct proto udp_prot = {
2745 	.name			= "UDP",
2746 	.owner			= THIS_MODULE,
2747 	.close			= udp_lib_close,
2748 	.pre_connect		= udp_pre_connect,
2749 	.connect		= ip4_datagram_connect,
2750 	.disconnect		= udp_disconnect,
2751 	.ioctl			= udp_ioctl,
2752 	.init			= udp_init_sock,
2753 	.destroy		= udp_destroy_sock,
2754 	.setsockopt		= udp_setsockopt,
2755 	.getsockopt		= udp_getsockopt,
2756 	.sendmsg		= udp_sendmsg,
2757 	.recvmsg		= udp_recvmsg,
2758 	.sendpage		= udp_sendpage,
2759 	.release_cb		= ip4_datagram_release_cb,
2760 	.hash			= udp_lib_hash,
2761 	.unhash			= udp_lib_unhash,
2762 	.rehash			= udp_v4_rehash,
2763 	.get_port		= udp_v4_get_port,
2764 	.memory_allocated	= &udp_memory_allocated,
2765 	.sysctl_mem		= sysctl_udp_mem,
2766 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2767 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2768 	.obj_size		= sizeof(struct udp_sock),
2769 	.h.udp_table		= &udp_table,
2770 #ifdef CONFIG_COMPAT
2771 	.compat_setsockopt	= compat_udp_setsockopt,
2772 	.compat_getsockopt	= compat_udp_getsockopt,
2773 #endif
2774 	.diag_destroy		= udp_abort,
2775 };
2776 EXPORT_SYMBOL(udp_prot);
2777 
2778 /* ------------------------------------------------------------------------ */
2779 #ifdef CONFIG_PROC_FS
2780 
2781 static struct sock *udp_get_first(struct seq_file *seq, int start)
2782 {
2783 	struct sock *sk;
2784 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2785 	struct udp_iter_state *state = seq->private;
2786 	struct net *net = seq_file_net(seq);
2787 
2788 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2789 	     ++state->bucket) {
2790 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2791 
2792 		if (hlist_empty(&hslot->head))
2793 			continue;
2794 
2795 		spin_lock_bh(&hslot->lock);
2796 		sk_for_each(sk, &hslot->head) {
2797 			if (!net_eq(sock_net(sk), net))
2798 				continue;
2799 			if (sk->sk_family == afinfo->family)
2800 				goto found;
2801 		}
2802 		spin_unlock_bh(&hslot->lock);
2803 	}
2804 	sk = NULL;
2805 found:
2806 	return sk;
2807 }
2808 
2809 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2810 {
2811 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2812 	struct udp_iter_state *state = seq->private;
2813 	struct net *net = seq_file_net(seq);
2814 
2815 	do {
2816 		sk = sk_next(sk);
2817 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2818 
2819 	if (!sk) {
2820 		if (state->bucket <= afinfo->udp_table->mask)
2821 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2822 		return udp_get_first(seq, state->bucket + 1);
2823 	}
2824 	return sk;
2825 }
2826 
2827 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2828 {
2829 	struct sock *sk = udp_get_first(seq, 0);
2830 
2831 	if (sk)
2832 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2833 			--pos;
2834 	return pos ? NULL : sk;
2835 }
2836 
2837 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2838 {
2839 	struct udp_iter_state *state = seq->private;
2840 	state->bucket = MAX_UDP_PORTS;
2841 
2842 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2843 }
2844 EXPORT_SYMBOL(udp_seq_start);
2845 
2846 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2847 {
2848 	struct sock *sk;
2849 
2850 	if (v == SEQ_START_TOKEN)
2851 		sk = udp_get_idx(seq, 0);
2852 	else
2853 		sk = udp_get_next(seq, v);
2854 
2855 	++*pos;
2856 	return sk;
2857 }
2858 EXPORT_SYMBOL(udp_seq_next);
2859 
2860 void udp_seq_stop(struct seq_file *seq, void *v)
2861 {
2862 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2863 	struct udp_iter_state *state = seq->private;
2864 
2865 	if (state->bucket <= afinfo->udp_table->mask)
2866 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2867 }
2868 EXPORT_SYMBOL(udp_seq_stop);
2869 
2870 /* ------------------------------------------------------------------------ */
2871 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2872 		int bucket)
2873 {
2874 	struct inet_sock *inet = inet_sk(sp);
2875 	__be32 dest = inet->inet_daddr;
2876 	__be32 src  = inet->inet_rcv_saddr;
2877 	__u16 destp	  = ntohs(inet->inet_dport);
2878 	__u16 srcp	  = ntohs(inet->inet_sport);
2879 
2880 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2881 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2882 		bucket, src, srcp, dest, destp, sp->sk_state,
2883 		sk_wmem_alloc_get(sp),
2884 		udp_rqueue_get(sp),
2885 		0, 0L, 0,
2886 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2887 		0, sock_i_ino(sp),
2888 		refcount_read(&sp->sk_refcnt), sp,
2889 		atomic_read(&sp->sk_drops));
2890 }
2891 
2892 int udp4_seq_show(struct seq_file *seq, void *v)
2893 {
2894 	seq_setwidth(seq, 127);
2895 	if (v == SEQ_START_TOKEN)
2896 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2897 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2898 			   "inode ref pointer drops");
2899 	else {
2900 		struct udp_iter_state *state = seq->private;
2901 
2902 		udp4_format_sock(v, seq, state->bucket);
2903 	}
2904 	seq_pad(seq, '\n');
2905 	return 0;
2906 }
2907 
2908 const struct seq_operations udp_seq_ops = {
2909 	.start		= udp_seq_start,
2910 	.next		= udp_seq_next,
2911 	.stop		= udp_seq_stop,
2912 	.show		= udp4_seq_show,
2913 };
2914 EXPORT_SYMBOL(udp_seq_ops);
2915 
2916 static struct udp_seq_afinfo udp4_seq_afinfo = {
2917 	.family		= AF_INET,
2918 	.udp_table	= &udp_table,
2919 };
2920 
2921 static int __net_init udp4_proc_init_net(struct net *net)
2922 {
2923 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2924 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2925 		return -ENOMEM;
2926 	return 0;
2927 }
2928 
2929 static void __net_exit udp4_proc_exit_net(struct net *net)
2930 {
2931 	remove_proc_entry("udp", net->proc_net);
2932 }
2933 
2934 static struct pernet_operations udp4_net_ops = {
2935 	.init = udp4_proc_init_net,
2936 	.exit = udp4_proc_exit_net,
2937 };
2938 
2939 int __init udp4_proc_init(void)
2940 {
2941 	return register_pernet_subsys(&udp4_net_ops);
2942 }
2943 
2944 void udp4_proc_exit(void)
2945 {
2946 	unregister_pernet_subsys(&udp4_net_ops);
2947 }
2948 #endif /* CONFIG_PROC_FS */
2949 
2950 static __initdata unsigned long uhash_entries;
2951 static int __init set_uhash_entries(char *str)
2952 {
2953 	ssize_t ret;
2954 
2955 	if (!str)
2956 		return 0;
2957 
2958 	ret = kstrtoul(str, 0, &uhash_entries);
2959 	if (ret)
2960 		return 0;
2961 
2962 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2963 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2964 	return 1;
2965 }
2966 __setup("uhash_entries=", set_uhash_entries);
2967 
2968 void __init udp_table_init(struct udp_table *table, const char *name)
2969 {
2970 	unsigned int i;
2971 
2972 	table->hash = alloc_large_system_hash(name,
2973 					      2 * sizeof(struct udp_hslot),
2974 					      uhash_entries,
2975 					      21, /* one slot per 2 MB */
2976 					      0,
2977 					      &table->log,
2978 					      &table->mask,
2979 					      UDP_HTABLE_SIZE_MIN,
2980 					      64 * 1024);
2981 
2982 	table->hash2 = table->hash + (table->mask + 1);
2983 	for (i = 0; i <= table->mask; i++) {
2984 		INIT_HLIST_HEAD(&table->hash[i].head);
2985 		table->hash[i].count = 0;
2986 		spin_lock_init(&table->hash[i].lock);
2987 	}
2988 	for (i = 0; i <= table->mask; i++) {
2989 		INIT_HLIST_HEAD(&table->hash2[i].head);
2990 		table->hash2[i].count = 0;
2991 		spin_lock_init(&table->hash2[i].lock);
2992 	}
2993 }
2994 
2995 u32 udp_flow_hashrnd(void)
2996 {
2997 	static u32 hashrnd __read_mostly;
2998 
2999 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3000 
3001 	return hashrnd;
3002 }
3003 EXPORT_SYMBOL(udp_flow_hashrnd);
3004 
3005 static void __udp_sysctl_init(struct net *net)
3006 {
3007 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3008 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3009 
3010 #ifdef CONFIG_NET_L3_MASTER_DEV
3011 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3012 #endif
3013 }
3014 
3015 static int __net_init udp_sysctl_init(struct net *net)
3016 {
3017 	__udp_sysctl_init(net);
3018 	return 0;
3019 }
3020 
3021 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3022 	.init	= udp_sysctl_init,
3023 };
3024 
3025 void __init udp_init(void)
3026 {
3027 	unsigned long limit;
3028 	unsigned int i;
3029 
3030 	udp_table_init(&udp_table, "UDP");
3031 	limit = nr_free_buffer_pages() / 8;
3032 	limit = max(limit, 128UL);
3033 	sysctl_udp_mem[0] = limit / 4 * 3;
3034 	sysctl_udp_mem[1] = limit;
3035 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3036 
3037 	__udp_sysctl_init(&init_net);
3038 
3039 	/* 16 spinlocks per cpu */
3040 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3041 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3042 				GFP_KERNEL);
3043 	if (!udp_busylocks)
3044 		panic("UDP: failed to alloc udp_busylocks\n");
3045 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3046 		spin_lock_init(udp_busylocks + i);
3047 
3048 	if (register_pernet_subsys(&udp_sysctl_ops))
3049 		panic("UDP: failed to init sysctl parameters.\n");
3050 }
3051