xref: /openbmc/linux/net/ipv4/udp.c (revision a1e58bbd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *	James Chapman		:	Add L2TP encapsulation type.
74  *
75  *
76  *		This program is free software; you can redistribute it and/or
77  *		modify it under the terms of the GNU General Public License
78  *		as published by the Free Software Foundation; either version
79  *		2 of the License, or (at your option) any later version.
80  */
81 
82 #include <asm/system.h>
83 #include <asm/uaccess.h>
84 #include <asm/ioctls.h>
85 #include <linux/bootmem.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 /*
110  *	Snmp MIB for the UDP layer
111  */
112 
113 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
114 EXPORT_SYMBOL(udp_statistics);
115 
116 DEFINE_SNMP_STAT(struct udp_mib, udp_stats_in6) __read_mostly;
117 EXPORT_SYMBOL(udp_stats_in6);
118 
119 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
120 DEFINE_RWLOCK(udp_hash_lock);
121 
122 int sysctl_udp_mem[3] __read_mostly;
123 int sysctl_udp_rmem_min __read_mostly;
124 int sysctl_udp_wmem_min __read_mostly;
125 
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 EXPORT_SYMBOL(sysctl_udp_rmem_min);
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 static inline int __udp_lib_lport_inuse(struct net *net, __u16 num,
134 					const struct hlist_head udptable[])
135 {
136 	struct sock *sk;
137 	struct hlist_node *node;
138 
139 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
140 		if (sk->sk_net == net && sk->sk_hash == num)
141 			return 1;
142 	return 0;
143 }
144 
145 /**
146  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
147  *
148  *  @sk:          socket struct in question
149  *  @snum:        port number to look up
150  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
151  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
152  */
153 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
154 		       struct hlist_head udptable[],
155 		       int (*saddr_comp)(const struct sock *sk1,
156 					 const struct sock *sk2 )    )
157 {
158 	struct hlist_node *node;
159 	struct hlist_head *head;
160 	struct sock *sk2;
161 	int    error = 1;
162 	struct net *net = sk->sk_net;
163 
164 	write_lock_bh(&udp_hash_lock);
165 
166 	if (!snum) {
167 		int i, low, high, remaining;
168 		unsigned rover, best, best_size_so_far;
169 
170 		inet_get_local_port_range(&low, &high);
171 		remaining = (high - low) + 1;
172 
173 		best_size_so_far = UINT_MAX;
174 		best = rover = net_random() % remaining + low;
175 
176 		/* 1st pass: look for empty (or shortest) hash chain */
177 		for (i = 0; i < UDP_HTABLE_SIZE; i++) {
178 			int size = 0;
179 
180 			head = &udptable[rover & (UDP_HTABLE_SIZE - 1)];
181 			if (hlist_empty(head))
182 				goto gotit;
183 
184 			sk_for_each(sk2, node, head) {
185 				if (++size >= best_size_so_far)
186 					goto next;
187 			}
188 			best_size_so_far = size;
189 			best = rover;
190 		next:
191 			/* fold back if end of range */
192 			if (++rover > high)
193 				rover = low + ((rover - low)
194 					       & (UDP_HTABLE_SIZE - 1));
195 
196 
197 		}
198 
199 		/* 2nd pass: find hole in shortest hash chain */
200 		rover = best;
201 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
202 			if (! __udp_lib_lport_inuse(net, rover, udptable))
203 				goto gotit;
204 			rover += UDP_HTABLE_SIZE;
205 			if (rover > high)
206 				rover = low + ((rover - low)
207 					       & (UDP_HTABLE_SIZE - 1));
208 		}
209 
210 
211 		/* All ports in use! */
212 		goto fail;
213 
214 gotit:
215 		snum = rover;
216 	} else {
217 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
218 
219 		sk_for_each(sk2, node, head)
220 			if (sk2->sk_hash == snum                             &&
221 			    sk2 != sk                                        &&
222 			    sk2->sk_net == net				     &&
223 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
224 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
225 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
226 			    (*saddr_comp)(sk, sk2)                             )
227 				goto fail;
228 	}
229 
230 	inet_sk(sk)->num = snum;
231 	sk->sk_hash = snum;
232 	if (sk_unhashed(sk)) {
233 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
234 		sk_add_node(sk, head);
235 		sock_prot_inuse_add(sk->sk_prot, 1);
236 	}
237 	error = 0;
238 fail:
239 	write_unlock_bh(&udp_hash_lock);
240 	return error;
241 }
242 
243 int udp_get_port(struct sock *sk, unsigned short snum,
244 			int (*scmp)(const struct sock *, const struct sock *))
245 {
246 	return  __udp_lib_get_port(sk, snum, udp_hash, scmp);
247 }
248 
249 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
250 {
251 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
252 
253 	return 	( !ipv6_only_sock(sk2)  &&
254 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
255 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
256 }
257 
258 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
259 {
260 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
261 }
262 
263 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
264  * harder than this. -DaveM
265  */
266 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
267 		__be16 sport, __be32 daddr, __be16 dport,
268 		int dif, struct hlist_head udptable[])
269 {
270 	struct sock *sk, *result = NULL;
271 	struct hlist_node *node;
272 	unsigned short hnum = ntohs(dport);
273 	int badness = -1;
274 
275 	read_lock(&udp_hash_lock);
276 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
277 		struct inet_sock *inet = inet_sk(sk);
278 
279 		if (sk->sk_net == net && sk->sk_hash == hnum &&
280 				!ipv6_only_sock(sk)) {
281 			int score = (sk->sk_family == PF_INET ? 1 : 0);
282 			if (inet->rcv_saddr) {
283 				if (inet->rcv_saddr != daddr)
284 					continue;
285 				score+=2;
286 			}
287 			if (inet->daddr) {
288 				if (inet->daddr != saddr)
289 					continue;
290 				score+=2;
291 			}
292 			if (inet->dport) {
293 				if (inet->dport != sport)
294 					continue;
295 				score+=2;
296 			}
297 			if (sk->sk_bound_dev_if) {
298 				if (sk->sk_bound_dev_if != dif)
299 					continue;
300 				score+=2;
301 			}
302 			if (score == 9) {
303 				result = sk;
304 				break;
305 			} else if (score > badness) {
306 				result = sk;
307 				badness = score;
308 			}
309 		}
310 	}
311 	if (result)
312 		sock_hold(result);
313 	read_unlock(&udp_hash_lock);
314 	return result;
315 }
316 
317 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
318 					     __be16 loc_port, __be32 loc_addr,
319 					     __be16 rmt_port, __be32 rmt_addr,
320 					     int dif)
321 {
322 	struct hlist_node *node;
323 	struct sock *s = sk;
324 	unsigned short hnum = ntohs(loc_port);
325 
326 	sk_for_each_from(s, node) {
327 		struct inet_sock *inet = inet_sk(s);
328 
329 		if (s->sk_hash != hnum					||
330 		    (inet->daddr && inet->daddr != rmt_addr)		||
331 		    (inet->dport != rmt_port && inet->dport)		||
332 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
333 		    ipv6_only_sock(s)					||
334 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
335 			continue;
336 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
337 			continue;
338 		goto found;
339 	}
340 	s = NULL;
341 found:
342 	return s;
343 }
344 
345 /*
346  * This routine is called by the ICMP module when it gets some
347  * sort of error condition.  If err < 0 then the socket should
348  * be closed and the error returned to the user.  If err > 0
349  * it's just the icmp type << 8 | icmp code.
350  * Header points to the ip header of the error packet. We move
351  * on past this. Then (as it used to claim before adjustment)
352  * header points to the first 8 bytes of the udp header.  We need
353  * to find the appropriate port.
354  */
355 
356 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
357 {
358 	struct inet_sock *inet;
359 	struct iphdr *iph = (struct iphdr*)skb->data;
360 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
361 	const int type = icmp_hdr(skb)->type;
362 	const int code = icmp_hdr(skb)->code;
363 	struct sock *sk;
364 	int harderr;
365 	int err;
366 
367 	sk = __udp4_lib_lookup(skb->dev->nd_net, iph->daddr, uh->dest,
368 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
369 	if (sk == NULL) {
370 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
371 		return;	/* No socket for error */
372 	}
373 
374 	err = 0;
375 	harderr = 0;
376 	inet = inet_sk(sk);
377 
378 	switch (type) {
379 	default:
380 	case ICMP_TIME_EXCEEDED:
381 		err = EHOSTUNREACH;
382 		break;
383 	case ICMP_SOURCE_QUENCH:
384 		goto out;
385 	case ICMP_PARAMETERPROB:
386 		err = EPROTO;
387 		harderr = 1;
388 		break;
389 	case ICMP_DEST_UNREACH:
390 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
391 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
392 				err = EMSGSIZE;
393 				harderr = 1;
394 				break;
395 			}
396 			goto out;
397 		}
398 		err = EHOSTUNREACH;
399 		if (code <= NR_ICMP_UNREACH) {
400 			harderr = icmp_err_convert[code].fatal;
401 			err = icmp_err_convert[code].errno;
402 		}
403 		break;
404 	}
405 
406 	/*
407 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
408 	 *	4.1.3.3.
409 	 */
410 	if (!inet->recverr) {
411 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
412 			goto out;
413 	} else {
414 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
415 	}
416 	sk->sk_err = err;
417 	sk->sk_error_report(sk);
418 out:
419 	sock_put(sk);
420 }
421 
422 void udp_err(struct sk_buff *skb, u32 info)
423 {
424 	__udp4_lib_err(skb, info, udp_hash);
425 }
426 
427 /*
428  * Throw away all pending data and cancel the corking. Socket is locked.
429  */
430 static void udp_flush_pending_frames(struct sock *sk)
431 {
432 	struct udp_sock *up = udp_sk(sk);
433 
434 	if (up->pending) {
435 		up->len = 0;
436 		up->pending = 0;
437 		ip_flush_pending_frames(sk);
438 	}
439 }
440 
441 /**
442  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
443  * 	@sk: 	socket we are sending on
444  * 	@skb: 	sk_buff containing the filled-in UDP header
445  * 	        (checksum field must be zeroed out)
446  */
447 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
448 				 __be32 src, __be32 dst, int len      )
449 {
450 	unsigned int offset;
451 	struct udphdr *uh = udp_hdr(skb);
452 	__wsum csum = 0;
453 
454 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
455 		/*
456 		 * Only one fragment on the socket.
457 		 */
458 		skb->csum_start = skb_transport_header(skb) - skb->head;
459 		skb->csum_offset = offsetof(struct udphdr, check);
460 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
461 	} else {
462 		/*
463 		 * HW-checksum won't work as there are two or more
464 		 * fragments on the socket so that all csums of sk_buffs
465 		 * should be together
466 		 */
467 		offset = skb_transport_offset(skb);
468 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
469 
470 		skb->ip_summed = CHECKSUM_NONE;
471 
472 		skb_queue_walk(&sk->sk_write_queue, skb) {
473 			csum = csum_add(csum, skb->csum);
474 		}
475 
476 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
477 		if (uh->check == 0)
478 			uh->check = CSUM_MANGLED_0;
479 	}
480 }
481 
482 /*
483  * Push out all pending data as one UDP datagram. Socket is locked.
484  */
485 static int udp_push_pending_frames(struct sock *sk)
486 {
487 	struct udp_sock  *up = udp_sk(sk);
488 	struct inet_sock *inet = inet_sk(sk);
489 	struct flowi *fl = &inet->cork.fl;
490 	struct sk_buff *skb;
491 	struct udphdr *uh;
492 	int err = 0;
493 	int is_udplite = IS_UDPLITE(sk);
494 	__wsum csum = 0;
495 
496 	/* Grab the skbuff where UDP header space exists. */
497 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
498 		goto out;
499 
500 	/*
501 	 * Create a UDP header
502 	 */
503 	uh = udp_hdr(skb);
504 	uh->source = fl->fl_ip_sport;
505 	uh->dest = fl->fl_ip_dport;
506 	uh->len = htons(up->len);
507 	uh->check = 0;
508 
509 	if (is_udplite)  				 /*     UDP-Lite      */
510 		csum  = udplite_csum_outgoing(sk, skb);
511 
512 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
513 
514 		skb->ip_summed = CHECKSUM_NONE;
515 		goto send;
516 
517 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
518 
519 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
520 		goto send;
521 
522 	} else						 /*   `normal' UDP    */
523 		csum = udp_csum_outgoing(sk, skb);
524 
525 	/* add protocol-dependent pseudo-header */
526 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
527 				      sk->sk_protocol, csum             );
528 	if (uh->check == 0)
529 		uh->check = CSUM_MANGLED_0;
530 
531 send:
532 	err = ip_push_pending_frames(sk);
533 out:
534 	up->len = 0;
535 	up->pending = 0;
536 	if (!err)
537 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
538 	return err;
539 }
540 
541 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
542 		size_t len)
543 {
544 	struct inet_sock *inet = inet_sk(sk);
545 	struct udp_sock *up = udp_sk(sk);
546 	int ulen = len;
547 	struct ipcm_cookie ipc;
548 	struct rtable *rt = NULL;
549 	int free = 0;
550 	int connected = 0;
551 	__be32 daddr, faddr, saddr;
552 	__be16 dport;
553 	u8  tos;
554 	int err, is_udplite = IS_UDPLITE(sk);
555 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
556 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
557 
558 	if (len > 0xFFFF)
559 		return -EMSGSIZE;
560 
561 	/*
562 	 *	Check the flags.
563 	 */
564 
565 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
566 		return -EOPNOTSUPP;
567 
568 	ipc.opt = NULL;
569 
570 	if (up->pending) {
571 		/*
572 		 * There are pending frames.
573 		 * The socket lock must be held while it's corked.
574 		 */
575 		lock_sock(sk);
576 		if (likely(up->pending)) {
577 			if (unlikely(up->pending != AF_INET)) {
578 				release_sock(sk);
579 				return -EINVAL;
580 			}
581 			goto do_append_data;
582 		}
583 		release_sock(sk);
584 	}
585 	ulen += sizeof(struct udphdr);
586 
587 	/*
588 	 *	Get and verify the address.
589 	 */
590 	if (msg->msg_name) {
591 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
592 		if (msg->msg_namelen < sizeof(*usin))
593 			return -EINVAL;
594 		if (usin->sin_family != AF_INET) {
595 			if (usin->sin_family != AF_UNSPEC)
596 				return -EAFNOSUPPORT;
597 		}
598 
599 		daddr = usin->sin_addr.s_addr;
600 		dport = usin->sin_port;
601 		if (dport == 0)
602 			return -EINVAL;
603 	} else {
604 		if (sk->sk_state != TCP_ESTABLISHED)
605 			return -EDESTADDRREQ;
606 		daddr = inet->daddr;
607 		dport = inet->dport;
608 		/* Open fast path for connected socket.
609 		   Route will not be used, if at least one option is set.
610 		 */
611 		connected = 1;
612 	}
613 	ipc.addr = inet->saddr;
614 
615 	ipc.oif = sk->sk_bound_dev_if;
616 	if (msg->msg_controllen) {
617 		err = ip_cmsg_send(msg, &ipc);
618 		if (err)
619 			return err;
620 		if (ipc.opt)
621 			free = 1;
622 		connected = 0;
623 	}
624 	if (!ipc.opt)
625 		ipc.opt = inet->opt;
626 
627 	saddr = ipc.addr;
628 	ipc.addr = faddr = daddr;
629 
630 	if (ipc.opt && ipc.opt->srr) {
631 		if (!daddr)
632 			return -EINVAL;
633 		faddr = ipc.opt->faddr;
634 		connected = 0;
635 	}
636 	tos = RT_TOS(inet->tos);
637 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
638 	    (msg->msg_flags & MSG_DONTROUTE) ||
639 	    (ipc.opt && ipc.opt->is_strictroute)) {
640 		tos |= RTO_ONLINK;
641 		connected = 0;
642 	}
643 
644 	if (ipv4_is_multicast(daddr)) {
645 		if (!ipc.oif)
646 			ipc.oif = inet->mc_index;
647 		if (!saddr)
648 			saddr = inet->mc_addr;
649 		connected = 0;
650 	}
651 
652 	if (connected)
653 		rt = (struct rtable*)sk_dst_check(sk, 0);
654 
655 	if (rt == NULL) {
656 		struct flowi fl = { .oif = ipc.oif,
657 				    .nl_u = { .ip4_u =
658 					      { .daddr = faddr,
659 						.saddr = saddr,
660 						.tos = tos } },
661 				    .proto = sk->sk_protocol,
662 				    .uli_u = { .ports =
663 					       { .sport = inet->sport,
664 						 .dport = dport } } };
665 		security_sk_classify_flow(sk, &fl);
666 		err = ip_route_output_flow(&init_net, &rt, &fl, sk, 1);
667 		if (err) {
668 			if (err == -ENETUNREACH)
669 				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
670 			goto out;
671 		}
672 
673 		err = -EACCES;
674 		if ((rt->rt_flags & RTCF_BROADCAST) &&
675 		    !sock_flag(sk, SOCK_BROADCAST))
676 			goto out;
677 		if (connected)
678 			sk_dst_set(sk, dst_clone(&rt->u.dst));
679 	}
680 
681 	if (msg->msg_flags&MSG_CONFIRM)
682 		goto do_confirm;
683 back_from_confirm:
684 
685 	saddr = rt->rt_src;
686 	if (!ipc.addr)
687 		daddr = ipc.addr = rt->rt_dst;
688 
689 	lock_sock(sk);
690 	if (unlikely(up->pending)) {
691 		/* The socket is already corked while preparing it. */
692 		/* ... which is an evident application bug. --ANK */
693 		release_sock(sk);
694 
695 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
696 		err = -EINVAL;
697 		goto out;
698 	}
699 	/*
700 	 *	Now cork the socket to pend data.
701 	 */
702 	inet->cork.fl.fl4_dst = daddr;
703 	inet->cork.fl.fl_ip_dport = dport;
704 	inet->cork.fl.fl4_src = saddr;
705 	inet->cork.fl.fl_ip_sport = inet->sport;
706 	up->pending = AF_INET;
707 
708 do_append_data:
709 	up->len += ulen;
710 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
711 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
712 			sizeof(struct udphdr), &ipc, rt,
713 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
714 	if (err)
715 		udp_flush_pending_frames(sk);
716 	else if (!corkreq)
717 		err = udp_push_pending_frames(sk);
718 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
719 		up->pending = 0;
720 	release_sock(sk);
721 
722 out:
723 	ip_rt_put(rt);
724 	if (free)
725 		kfree(ipc.opt);
726 	if (!err)
727 		return len;
728 	/*
729 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
730 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
731 	 * we don't have a good statistic (IpOutDiscards but it can be too many
732 	 * things).  We could add another new stat but at least for now that
733 	 * seems like overkill.
734 	 */
735 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
736 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
737 	}
738 	return err;
739 
740 do_confirm:
741 	dst_confirm(&rt->u.dst);
742 	if (!(msg->msg_flags&MSG_PROBE) || len)
743 		goto back_from_confirm;
744 	err = 0;
745 	goto out;
746 }
747 
748 int udp_sendpage(struct sock *sk, struct page *page, int offset,
749 		 size_t size, int flags)
750 {
751 	struct udp_sock *up = udp_sk(sk);
752 	int ret;
753 
754 	if (!up->pending) {
755 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
756 
757 		/* Call udp_sendmsg to specify destination address which
758 		 * sendpage interface can't pass.
759 		 * This will succeed only when the socket is connected.
760 		 */
761 		ret = udp_sendmsg(NULL, sk, &msg, 0);
762 		if (ret < 0)
763 			return ret;
764 	}
765 
766 	lock_sock(sk);
767 
768 	if (unlikely(!up->pending)) {
769 		release_sock(sk);
770 
771 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
772 		return -EINVAL;
773 	}
774 
775 	ret = ip_append_page(sk, page, offset, size, flags);
776 	if (ret == -EOPNOTSUPP) {
777 		release_sock(sk);
778 		return sock_no_sendpage(sk->sk_socket, page, offset,
779 					size, flags);
780 	}
781 	if (ret < 0) {
782 		udp_flush_pending_frames(sk);
783 		goto out;
784 	}
785 
786 	up->len += size;
787 	if (!(up->corkflag || (flags&MSG_MORE)))
788 		ret = udp_push_pending_frames(sk);
789 	if (!ret)
790 		ret = size;
791 out:
792 	release_sock(sk);
793 	return ret;
794 }
795 
796 /*
797  *	IOCTL requests applicable to the UDP protocol
798  */
799 
800 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
801 {
802 	switch (cmd) {
803 	case SIOCOUTQ:
804 	{
805 		int amount = atomic_read(&sk->sk_wmem_alloc);
806 		return put_user(amount, (int __user *)arg);
807 	}
808 
809 	case SIOCINQ:
810 	{
811 		struct sk_buff *skb;
812 		unsigned long amount;
813 
814 		amount = 0;
815 		spin_lock_bh(&sk->sk_receive_queue.lock);
816 		skb = skb_peek(&sk->sk_receive_queue);
817 		if (skb != NULL) {
818 			/*
819 			 * We will only return the amount
820 			 * of this packet since that is all
821 			 * that will be read.
822 			 */
823 			amount = skb->len - sizeof(struct udphdr);
824 		}
825 		spin_unlock_bh(&sk->sk_receive_queue.lock);
826 		return put_user(amount, (int __user *)arg);
827 	}
828 
829 	default:
830 		return -ENOIOCTLCMD;
831 	}
832 
833 	return 0;
834 }
835 
836 /*
837  * 	This should be easy, if there is something there we
838  * 	return it, otherwise we block.
839  */
840 
841 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
842 		size_t len, int noblock, int flags, int *addr_len)
843 {
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
846 	struct sk_buff *skb;
847 	unsigned int ulen, copied;
848 	int peeked;
849 	int err;
850 	int is_udplite = IS_UDPLITE(sk);
851 
852 	/*
853 	 *	Check any passed addresses
854 	 */
855 	if (addr_len)
856 		*addr_len=sizeof(*sin);
857 
858 	if (flags & MSG_ERRQUEUE)
859 		return ip_recv_error(sk, msg, len);
860 
861 try_again:
862 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
863 				  &peeked, &err);
864 	if (!skb)
865 		goto out;
866 
867 	ulen = skb->len - sizeof(struct udphdr);
868 	copied = len;
869 	if (copied > ulen)
870 		copied = ulen;
871 	else if (copied < ulen)
872 		msg->msg_flags |= MSG_TRUNC;
873 
874 	/*
875 	 * If checksum is needed at all, try to do it while copying the
876 	 * data.  If the data is truncated, or if we only want a partial
877 	 * coverage checksum (UDP-Lite), do it before the copy.
878 	 */
879 
880 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
881 		if (udp_lib_checksum_complete(skb))
882 			goto csum_copy_err;
883 	}
884 
885 	if (skb_csum_unnecessary(skb))
886 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
887 					      msg->msg_iov, copied       );
888 	else {
889 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
890 
891 		if (err == -EINVAL)
892 			goto csum_copy_err;
893 	}
894 
895 	if (err)
896 		goto out_free;
897 
898 	if (!peeked)
899 		UDP_INC_STATS_USER(UDP_MIB_INDATAGRAMS, is_udplite);
900 
901 	sock_recv_timestamp(msg, sk, skb);
902 
903 	/* Copy the address. */
904 	if (sin)
905 	{
906 		sin->sin_family = AF_INET;
907 		sin->sin_port = udp_hdr(skb)->source;
908 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
909 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
910 	}
911 	if (inet->cmsg_flags)
912 		ip_cmsg_recv(msg, skb);
913 
914 	err = copied;
915 	if (flags & MSG_TRUNC)
916 		err = ulen;
917 
918 out_free:
919 	lock_sock(sk);
920 	skb_free_datagram(sk, skb);
921 	release_sock(sk);
922 out:
923 	return err;
924 
925 csum_copy_err:
926 	lock_sock(sk);
927 	if (!skb_kill_datagram(sk, skb, flags))
928 		UDP_INC_STATS_USER(UDP_MIB_INERRORS, is_udplite);
929 	release_sock(sk);
930 
931 	if (noblock)
932 		return -EAGAIN;
933 	goto try_again;
934 }
935 
936 
937 int udp_disconnect(struct sock *sk, int flags)
938 {
939 	struct inet_sock *inet = inet_sk(sk);
940 	/*
941 	 *	1003.1g - break association.
942 	 */
943 
944 	sk->sk_state = TCP_CLOSE;
945 	inet->daddr = 0;
946 	inet->dport = 0;
947 	sk->sk_bound_dev_if = 0;
948 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
949 		inet_reset_saddr(sk);
950 
951 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
952 		sk->sk_prot->unhash(sk);
953 		inet->sport = 0;
954 	}
955 	sk_dst_reset(sk);
956 	return 0;
957 }
958 
959 /* returns:
960  *  -1: error
961  *   0: success
962  *  >0: "udp encap" protocol resubmission
963  *
964  * Note that in the success and error cases, the skb is assumed to
965  * have either been requeued or freed.
966  */
967 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
968 {
969 	struct udp_sock *up = udp_sk(sk);
970 	int rc;
971 	int is_udplite = IS_UDPLITE(sk);
972 
973 	/*
974 	 *	Charge it to the socket, dropping if the queue is full.
975 	 */
976 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
977 		goto drop;
978 	nf_reset(skb);
979 
980 	if (up->encap_type) {
981 		/*
982 		 * This is an encapsulation socket so pass the skb to
983 		 * the socket's udp_encap_rcv() hook. Otherwise, just
984 		 * fall through and pass this up the UDP socket.
985 		 * up->encap_rcv() returns the following value:
986 		 * =0 if skb was successfully passed to the encap
987 		 *    handler or was discarded by it.
988 		 * >0 if skb should be passed on to UDP.
989 		 * <0 if skb should be resubmitted as proto -N
990 		 */
991 
992 		/* if we're overly short, let UDP handle it */
993 		if (skb->len > sizeof(struct udphdr) &&
994 		    up->encap_rcv != NULL) {
995 			int ret;
996 
997 			ret = (*up->encap_rcv)(sk, skb);
998 			if (ret <= 0) {
999 				UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS,
1000 						 is_udplite);
1001 				return -ret;
1002 			}
1003 		}
1004 
1005 		/* FALLTHROUGH -- it's a UDP Packet */
1006 	}
1007 
1008 	/*
1009 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1010 	 */
1011 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1012 
1013 		/*
1014 		 * MIB statistics other than incrementing the error count are
1015 		 * disabled for the following two types of errors: these depend
1016 		 * on the application settings, not on the functioning of the
1017 		 * protocol stack as such.
1018 		 *
1019 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1020 		 * way ... to ... at least let the receiving application block
1021 		 * delivery of packets with coverage values less than a value
1022 		 * provided by the application."
1023 		 */
1024 		if (up->pcrlen == 0) {          /* full coverage was set  */
1025 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1026 				"%d while full coverage %d requested\n",
1027 				UDP_SKB_CB(skb)->cscov, skb->len);
1028 			goto drop;
1029 		}
1030 		/* The next case involves violating the min. coverage requested
1031 		 * by the receiver. This is subtle: if receiver wants x and x is
1032 		 * greater than the buffersize/MTU then receiver will complain
1033 		 * that it wants x while sender emits packets of smaller size y.
1034 		 * Therefore the above ...()->partial_cov statement is essential.
1035 		 */
1036 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1037 			LIMIT_NETDEBUG(KERN_WARNING
1038 				"UDPLITE: coverage %d too small, need min %d\n",
1039 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1040 			goto drop;
1041 		}
1042 	}
1043 
1044 	if (sk->sk_filter) {
1045 		if (udp_lib_checksum_complete(skb))
1046 			goto drop;
1047 	}
1048 
1049 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1050 		/* Note that an ENOMEM error is charged twice */
1051 		if (rc == -ENOMEM)
1052 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, is_udplite);
1053 		goto drop;
1054 	}
1055 
1056 	return 0;
1057 
1058 drop:
1059 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1060 	kfree_skb(skb);
1061 	return -1;
1062 }
1063 
1064 /*
1065  *	Multicasts and broadcasts go to each listener.
1066  *
1067  *	Note: called only from the BH handler context,
1068  *	so we don't need to lock the hashes.
1069  */
1070 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1071 				    struct udphdr  *uh,
1072 				    __be32 saddr, __be32 daddr,
1073 				    struct hlist_head udptable[])
1074 {
1075 	struct sock *sk;
1076 	int dif;
1077 
1078 	read_lock(&udp_hash_lock);
1079 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1080 	dif = skb->dev->ifindex;
1081 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1082 	if (sk) {
1083 		struct sock *sknext = NULL;
1084 
1085 		do {
1086 			struct sk_buff *skb1 = skb;
1087 
1088 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1089 						   uh->source, saddr, dif);
1090 			if (sknext)
1091 				skb1 = skb_clone(skb, GFP_ATOMIC);
1092 
1093 			if (skb1) {
1094 				int ret = 0;
1095 
1096 				bh_lock_sock_nested(sk);
1097 				if (!sock_owned_by_user(sk))
1098 					ret = udp_queue_rcv_skb(sk, skb1);
1099 				else
1100 					sk_add_backlog(sk, skb1);
1101 				bh_unlock_sock(sk);
1102 
1103 				if (ret > 0)
1104 					/* we should probably re-process instead
1105 					 * of dropping packets here. */
1106 					kfree_skb(skb1);
1107 			}
1108 			sk = sknext;
1109 		} while (sknext);
1110 	} else
1111 		kfree_skb(skb);
1112 	read_unlock(&udp_hash_lock);
1113 	return 0;
1114 }
1115 
1116 /* Initialize UDP checksum. If exited with zero value (success),
1117  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1118  * Otherwise, csum completion requires chacksumming packet body,
1119  * including udp header and folding it to skb->csum.
1120  */
1121 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1122 				 int proto)
1123 {
1124 	const struct iphdr *iph;
1125 	int err;
1126 
1127 	UDP_SKB_CB(skb)->partial_cov = 0;
1128 	UDP_SKB_CB(skb)->cscov = skb->len;
1129 
1130 	if (proto == IPPROTO_UDPLITE) {
1131 		err = udplite_checksum_init(skb, uh);
1132 		if (err)
1133 			return err;
1134 	}
1135 
1136 	iph = ip_hdr(skb);
1137 	if (uh->check == 0) {
1138 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1139 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1140 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1141 				      proto, skb->csum))
1142 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1143 	}
1144 	if (!skb_csum_unnecessary(skb))
1145 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1146 					       skb->len, proto, 0);
1147 	/* Probably, we should checksum udp header (it should be in cache
1148 	 * in any case) and data in tiny packets (< rx copybreak).
1149 	 */
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  *	All we need to do is get the socket, and then do a checksum.
1156  */
1157 
1158 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1159 		   int proto)
1160 {
1161 	struct sock *sk;
1162 	struct udphdr *uh = udp_hdr(skb);
1163 	unsigned short ulen;
1164 	struct rtable *rt = (struct rtable*)skb->dst;
1165 	__be32 saddr = ip_hdr(skb)->saddr;
1166 	__be32 daddr = ip_hdr(skb)->daddr;
1167 
1168 	/*
1169 	 *  Validate the packet.
1170 	 */
1171 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1172 		goto drop;		/* No space for header. */
1173 
1174 	ulen = ntohs(uh->len);
1175 	if (ulen > skb->len)
1176 		goto short_packet;
1177 
1178 	if (proto == IPPROTO_UDP) {
1179 		/* UDP validates ulen. */
1180 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1181 			goto short_packet;
1182 		uh = udp_hdr(skb);
1183 	}
1184 
1185 	if (udp4_csum_init(skb, uh, proto))
1186 		goto csum_error;
1187 
1188 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1189 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1190 
1191 	sk = __udp4_lib_lookup(skb->dev->nd_net, saddr, uh->source, daddr,
1192 			uh->dest, inet_iif(skb), udptable);
1193 
1194 	if (sk != NULL) {
1195 		int ret = 0;
1196 		bh_lock_sock_nested(sk);
1197 		if (!sock_owned_by_user(sk))
1198 			ret = udp_queue_rcv_skb(sk, skb);
1199 		else
1200 			sk_add_backlog(sk, skb);
1201 		bh_unlock_sock(sk);
1202 		sock_put(sk);
1203 
1204 		/* a return value > 0 means to resubmit the input, but
1205 		 * it wants the return to be -protocol, or 0
1206 		 */
1207 		if (ret > 0)
1208 			return -ret;
1209 		return 0;
1210 	}
1211 
1212 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1213 		goto drop;
1214 	nf_reset(skb);
1215 
1216 	/* No socket. Drop packet silently, if checksum is wrong */
1217 	if (udp_lib_checksum_complete(skb))
1218 		goto csum_error;
1219 
1220 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1221 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1222 
1223 	/*
1224 	 * Hmm.  We got an UDP packet to a port to which we
1225 	 * don't wanna listen.  Ignore it.
1226 	 */
1227 	kfree_skb(skb);
1228 	return 0;
1229 
1230 short_packet:
1231 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1232 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1233 		       NIPQUAD(saddr),
1234 		       ntohs(uh->source),
1235 		       ulen,
1236 		       skb->len,
1237 		       NIPQUAD(daddr),
1238 		       ntohs(uh->dest));
1239 	goto drop;
1240 
1241 csum_error:
1242 	/*
1243 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1244 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1245 	 */
1246 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1247 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1248 		       NIPQUAD(saddr),
1249 		       ntohs(uh->source),
1250 		       NIPQUAD(daddr),
1251 		       ntohs(uh->dest),
1252 		       ulen);
1253 drop:
1254 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1255 	kfree_skb(skb);
1256 	return 0;
1257 }
1258 
1259 int udp_rcv(struct sk_buff *skb)
1260 {
1261 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1262 }
1263 
1264 int udp_destroy_sock(struct sock *sk)
1265 {
1266 	lock_sock(sk);
1267 	udp_flush_pending_frames(sk);
1268 	release_sock(sk);
1269 	return 0;
1270 }
1271 
1272 /*
1273  *	Socket option code for UDP
1274  */
1275 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1276 		       char __user *optval, int optlen,
1277 		       int (*push_pending_frames)(struct sock *))
1278 {
1279 	struct udp_sock *up = udp_sk(sk);
1280 	int val;
1281 	int err = 0;
1282 	int is_udplite = IS_UDPLITE(sk);
1283 
1284 	if (optlen<sizeof(int))
1285 		return -EINVAL;
1286 
1287 	if (get_user(val, (int __user *)optval))
1288 		return -EFAULT;
1289 
1290 	switch (optname) {
1291 	case UDP_CORK:
1292 		if (val != 0) {
1293 			up->corkflag = 1;
1294 		} else {
1295 			up->corkflag = 0;
1296 			lock_sock(sk);
1297 			(*push_pending_frames)(sk);
1298 			release_sock(sk);
1299 		}
1300 		break;
1301 
1302 	case UDP_ENCAP:
1303 		switch (val) {
1304 		case 0:
1305 		case UDP_ENCAP_ESPINUDP:
1306 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1307 			up->encap_rcv = xfrm4_udp_encap_rcv;
1308 			/* FALLTHROUGH */
1309 		case UDP_ENCAP_L2TPINUDP:
1310 			up->encap_type = val;
1311 			break;
1312 		default:
1313 			err = -ENOPROTOOPT;
1314 			break;
1315 		}
1316 		break;
1317 
1318 	/*
1319 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1320 	 */
1321 	/* The sender sets actual checksum coverage length via this option.
1322 	 * The case coverage > packet length is handled by send module. */
1323 	case UDPLITE_SEND_CSCOV:
1324 		if (!is_udplite)         /* Disable the option on UDP sockets */
1325 			return -ENOPROTOOPT;
1326 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1327 			val = 8;
1328 		up->pcslen = val;
1329 		up->pcflag |= UDPLITE_SEND_CC;
1330 		break;
1331 
1332 	/* The receiver specifies a minimum checksum coverage value. To make
1333 	 * sense, this should be set to at least 8 (as done below). If zero is
1334 	 * used, this again means full checksum coverage.                     */
1335 	case UDPLITE_RECV_CSCOV:
1336 		if (!is_udplite)         /* Disable the option on UDP sockets */
1337 			return -ENOPROTOOPT;
1338 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1339 			val = 8;
1340 		up->pcrlen = val;
1341 		up->pcflag |= UDPLITE_RECV_CC;
1342 		break;
1343 
1344 	default:
1345 		err = -ENOPROTOOPT;
1346 		break;
1347 	}
1348 
1349 	return err;
1350 }
1351 
1352 int udp_setsockopt(struct sock *sk, int level, int optname,
1353 		   char __user *optval, int optlen)
1354 {
1355 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1356 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1357 					  udp_push_pending_frames);
1358 	return ip_setsockopt(sk, level, optname, optval, optlen);
1359 }
1360 
1361 #ifdef CONFIG_COMPAT
1362 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1363 			  char __user *optval, int optlen)
1364 {
1365 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1366 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1367 					  udp_push_pending_frames);
1368 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1369 }
1370 #endif
1371 
1372 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1373 		       char __user *optval, int __user *optlen)
1374 {
1375 	struct udp_sock *up = udp_sk(sk);
1376 	int val, len;
1377 
1378 	if (get_user(len,optlen))
1379 		return -EFAULT;
1380 
1381 	len = min_t(unsigned int, len, sizeof(int));
1382 
1383 	if (len < 0)
1384 		return -EINVAL;
1385 
1386 	switch (optname) {
1387 	case UDP_CORK:
1388 		val = up->corkflag;
1389 		break;
1390 
1391 	case UDP_ENCAP:
1392 		val = up->encap_type;
1393 		break;
1394 
1395 	/* The following two cannot be changed on UDP sockets, the return is
1396 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1397 	case UDPLITE_SEND_CSCOV:
1398 		val = up->pcslen;
1399 		break;
1400 
1401 	case UDPLITE_RECV_CSCOV:
1402 		val = up->pcrlen;
1403 		break;
1404 
1405 	default:
1406 		return -ENOPROTOOPT;
1407 	}
1408 
1409 	if (put_user(len, optlen))
1410 		return -EFAULT;
1411 	if (copy_to_user(optval, &val,len))
1412 		return -EFAULT;
1413 	return 0;
1414 }
1415 
1416 int udp_getsockopt(struct sock *sk, int level, int optname,
1417 		   char __user *optval, int __user *optlen)
1418 {
1419 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1420 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1421 	return ip_getsockopt(sk, level, optname, optval, optlen);
1422 }
1423 
1424 #ifdef CONFIG_COMPAT
1425 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1426 				 char __user *optval, int __user *optlen)
1427 {
1428 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1429 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1430 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1431 }
1432 #endif
1433 /**
1434  * 	udp_poll - wait for a UDP event.
1435  *	@file - file struct
1436  *	@sock - socket
1437  *	@wait - poll table
1438  *
1439  *	This is same as datagram poll, except for the special case of
1440  *	blocking sockets. If application is using a blocking fd
1441  *	and a packet with checksum error is in the queue;
1442  *	then it could get return from select indicating data available
1443  *	but then block when reading it. Add special case code
1444  *	to work around these arguably broken applications.
1445  */
1446 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1447 {
1448 	unsigned int mask = datagram_poll(file, sock, wait);
1449 	struct sock *sk = sock->sk;
1450 	int 	is_lite = IS_UDPLITE(sk);
1451 
1452 	/* Check for false positives due to checksum errors */
1453 	if ( (mask & POLLRDNORM) &&
1454 	     !(file->f_flags & O_NONBLOCK) &&
1455 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1456 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1457 		struct sk_buff *skb;
1458 
1459 		spin_lock_bh(&rcvq->lock);
1460 		while ((skb = skb_peek(rcvq)) != NULL &&
1461 		       udp_lib_checksum_complete(skb)) {
1462 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1463 			__skb_unlink(skb, rcvq);
1464 			kfree_skb(skb);
1465 		}
1466 		spin_unlock_bh(&rcvq->lock);
1467 
1468 		/* nothing to see, move along */
1469 		if (skb == NULL)
1470 			mask &= ~(POLLIN | POLLRDNORM);
1471 	}
1472 
1473 	return mask;
1474 
1475 }
1476 
1477 DEFINE_PROTO_INUSE(udp)
1478 
1479 struct proto udp_prot = {
1480 	.name		   = "UDP",
1481 	.owner		   = THIS_MODULE,
1482 	.close		   = udp_lib_close,
1483 	.connect	   = ip4_datagram_connect,
1484 	.disconnect	   = udp_disconnect,
1485 	.ioctl		   = udp_ioctl,
1486 	.destroy	   = udp_destroy_sock,
1487 	.setsockopt	   = udp_setsockopt,
1488 	.getsockopt	   = udp_getsockopt,
1489 	.sendmsg	   = udp_sendmsg,
1490 	.recvmsg	   = udp_recvmsg,
1491 	.sendpage	   = udp_sendpage,
1492 	.backlog_rcv	   = udp_queue_rcv_skb,
1493 	.hash		   = udp_lib_hash,
1494 	.unhash		   = udp_lib_unhash,
1495 	.get_port	   = udp_v4_get_port,
1496 	.memory_allocated  = &udp_memory_allocated,
1497 	.sysctl_mem	   = sysctl_udp_mem,
1498 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1499 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1500 	.obj_size	   = sizeof(struct udp_sock),
1501 #ifdef CONFIG_COMPAT
1502 	.compat_setsockopt = compat_udp_setsockopt,
1503 	.compat_getsockopt = compat_udp_getsockopt,
1504 #endif
1505 	REF_PROTO_INUSE(udp)
1506 };
1507 
1508 /* ------------------------------------------------------------------------ */
1509 #ifdef CONFIG_PROC_FS
1510 
1511 static struct sock *udp_get_first(struct seq_file *seq)
1512 {
1513 	struct sock *sk;
1514 	struct udp_iter_state *state = seq->private;
1515 
1516 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1517 		struct hlist_node *node;
1518 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1519 			if (sk->sk_family == state->family)
1520 				goto found;
1521 		}
1522 	}
1523 	sk = NULL;
1524 found:
1525 	return sk;
1526 }
1527 
1528 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1529 {
1530 	struct udp_iter_state *state = seq->private;
1531 
1532 	do {
1533 		sk = sk_next(sk);
1534 try_again:
1535 		;
1536 	} while (sk && sk->sk_family != state->family);
1537 
1538 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1539 		sk = sk_head(state->hashtable + state->bucket);
1540 		goto try_again;
1541 	}
1542 	return sk;
1543 }
1544 
1545 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1546 {
1547 	struct sock *sk = udp_get_first(seq);
1548 
1549 	if (sk)
1550 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1551 			--pos;
1552 	return pos ? NULL : sk;
1553 }
1554 
1555 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1556 	__acquires(udp_hash_lock)
1557 {
1558 	read_lock(&udp_hash_lock);
1559 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1560 }
1561 
1562 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1563 {
1564 	struct sock *sk;
1565 
1566 	if (v == SEQ_START_TOKEN)
1567 		sk = udp_get_idx(seq, 0);
1568 	else
1569 		sk = udp_get_next(seq, v);
1570 
1571 	++*pos;
1572 	return sk;
1573 }
1574 
1575 static void udp_seq_stop(struct seq_file *seq, void *v)
1576 	__releases(udp_hash_lock)
1577 {
1578 	read_unlock(&udp_hash_lock);
1579 }
1580 
1581 static int udp_seq_open(struct inode *inode, struct file *file)
1582 {
1583 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1584 	struct seq_file *seq;
1585 	int rc = -ENOMEM;
1586 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1587 
1588 	if (!s)
1589 		goto out;
1590 	s->family		= afinfo->family;
1591 	s->hashtable		= afinfo->hashtable;
1592 	s->seq_ops.start	= udp_seq_start;
1593 	s->seq_ops.next		= udp_seq_next;
1594 	s->seq_ops.show		= afinfo->seq_show;
1595 	s->seq_ops.stop		= udp_seq_stop;
1596 
1597 	rc = seq_open(file, &s->seq_ops);
1598 	if (rc)
1599 		goto out_kfree;
1600 
1601 	seq	     = file->private_data;
1602 	seq->private = s;
1603 out:
1604 	return rc;
1605 out_kfree:
1606 	kfree(s);
1607 	goto out;
1608 }
1609 
1610 /* ------------------------------------------------------------------------ */
1611 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1612 {
1613 	struct proc_dir_entry *p;
1614 	int rc = 0;
1615 
1616 	if (!afinfo)
1617 		return -EINVAL;
1618 	afinfo->seq_fops->owner		= afinfo->owner;
1619 	afinfo->seq_fops->open		= udp_seq_open;
1620 	afinfo->seq_fops->read		= seq_read;
1621 	afinfo->seq_fops->llseek	= seq_lseek;
1622 	afinfo->seq_fops->release	= seq_release_private;
1623 
1624 	p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops);
1625 	if (p)
1626 		p->data = afinfo;
1627 	else
1628 		rc = -ENOMEM;
1629 	return rc;
1630 }
1631 
1632 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1633 {
1634 	if (!afinfo)
1635 		return;
1636 	proc_net_remove(&init_net, afinfo->name);
1637 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1638 }
1639 
1640 /* ------------------------------------------------------------------------ */
1641 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1642 {
1643 	struct inet_sock *inet = inet_sk(sp);
1644 	__be32 dest = inet->daddr;
1645 	__be32 src  = inet->rcv_saddr;
1646 	__u16 destp	  = ntohs(inet->dport);
1647 	__u16 srcp	  = ntohs(inet->sport);
1648 
1649 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1650 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1651 		bucket, src, srcp, dest, destp, sp->sk_state,
1652 		atomic_read(&sp->sk_wmem_alloc),
1653 		atomic_read(&sp->sk_rmem_alloc),
1654 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1655 		atomic_read(&sp->sk_refcnt), sp);
1656 }
1657 
1658 int udp4_seq_show(struct seq_file *seq, void *v)
1659 {
1660 	if (v == SEQ_START_TOKEN)
1661 		seq_printf(seq, "%-127s\n",
1662 			   "  sl  local_address rem_address   st tx_queue "
1663 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1664 			   "inode");
1665 	else {
1666 		char tmpbuf[129];
1667 		struct udp_iter_state *state = seq->private;
1668 
1669 		udp4_format_sock(v, tmpbuf, state->bucket);
1670 		seq_printf(seq, "%-127s\n", tmpbuf);
1671 	}
1672 	return 0;
1673 }
1674 
1675 /* ------------------------------------------------------------------------ */
1676 static struct file_operations udp4_seq_fops;
1677 static struct udp_seq_afinfo udp4_seq_afinfo = {
1678 	.owner		= THIS_MODULE,
1679 	.name		= "udp",
1680 	.family		= AF_INET,
1681 	.hashtable	= udp_hash,
1682 	.seq_show	= udp4_seq_show,
1683 	.seq_fops	= &udp4_seq_fops,
1684 };
1685 
1686 int __init udp4_proc_init(void)
1687 {
1688 	return udp_proc_register(&udp4_seq_afinfo);
1689 }
1690 
1691 void udp4_proc_exit(void)
1692 {
1693 	udp_proc_unregister(&udp4_seq_afinfo);
1694 }
1695 #endif /* CONFIG_PROC_FS */
1696 
1697 void __init udp_init(void)
1698 {
1699 	unsigned long limit;
1700 
1701 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1702 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1703 	 * toward zero with the amount of memory, with a floor of 128 pages.
1704 	 */
1705 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1706 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1707 	limit = max(limit, 128UL);
1708 	sysctl_udp_mem[0] = limit / 4 * 3;
1709 	sysctl_udp_mem[1] = limit;
1710 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1711 
1712 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1713 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1714 }
1715 
1716 EXPORT_SYMBOL(udp_disconnect);
1717 EXPORT_SYMBOL(udp_hash);
1718 EXPORT_SYMBOL(udp_hash_lock);
1719 EXPORT_SYMBOL(udp_ioctl);
1720 EXPORT_SYMBOL(udp_get_port);
1721 EXPORT_SYMBOL(udp_prot);
1722 EXPORT_SYMBOL(udp_sendmsg);
1723 EXPORT_SYMBOL(udp_lib_getsockopt);
1724 EXPORT_SYMBOL(udp_lib_setsockopt);
1725 EXPORT_SYMBOL(udp_poll);
1726 
1727 #ifdef CONFIG_PROC_FS
1728 EXPORT_SYMBOL(udp_proc_register);
1729 EXPORT_SYMBOL(udp_proc_unregister);
1730 #endif
1731