xref: /openbmc/linux/net/ipv4/udp.c (revision a17922de)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (!dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
548 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
549 			     __be32 daddr, __be16 dport, int dif)
550 {
551 	struct sock *sk;
552 
553 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
554 			       dif, 0, &udp_table, NULL);
555 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
556 		sk = NULL;
557 	return sk;
558 }
559 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
560 #endif
561 
562 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
563 				       __be16 loc_port, __be32 loc_addr,
564 				       __be16 rmt_port, __be32 rmt_addr,
565 				       int dif, int sdif, unsigned short hnum)
566 {
567 	struct inet_sock *inet = inet_sk(sk);
568 
569 	if (!net_eq(sock_net(sk), net) ||
570 	    udp_sk(sk)->udp_port_hash != hnum ||
571 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
572 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
573 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
574 	    ipv6_only_sock(sk) ||
575 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
576 	     sk->sk_bound_dev_if != sdif))
577 		return false;
578 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
579 		return false;
580 	return true;
581 }
582 
583 /*
584  * This routine is called by the ICMP module when it gets some
585  * sort of error condition.  If err < 0 then the socket should
586  * be closed and the error returned to the user.  If err > 0
587  * it's just the icmp type << 8 | icmp code.
588  * Header points to the ip header of the error packet. We move
589  * on past this. Then (as it used to claim before adjustment)
590  * header points to the first 8 bytes of the udp header.  We need
591  * to find the appropriate port.
592  */
593 
594 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
595 {
596 	struct inet_sock *inet;
597 	const struct iphdr *iph = (const struct iphdr *)skb->data;
598 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
599 	const int type = icmp_hdr(skb)->type;
600 	const int code = icmp_hdr(skb)->code;
601 	struct sock *sk;
602 	int harderr;
603 	int err;
604 	struct net *net = dev_net(skb->dev);
605 
606 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
607 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
608 			       udptable, NULL);
609 	if (!sk) {
610 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
611 		return;	/* No socket for error */
612 	}
613 
614 	err = 0;
615 	harderr = 0;
616 	inet = inet_sk(sk);
617 
618 	switch (type) {
619 	default:
620 	case ICMP_TIME_EXCEEDED:
621 		err = EHOSTUNREACH;
622 		break;
623 	case ICMP_SOURCE_QUENCH:
624 		goto out;
625 	case ICMP_PARAMETERPROB:
626 		err = EPROTO;
627 		harderr = 1;
628 		break;
629 	case ICMP_DEST_UNREACH:
630 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
631 			ipv4_sk_update_pmtu(skb, sk, info);
632 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
633 				err = EMSGSIZE;
634 				harderr = 1;
635 				break;
636 			}
637 			goto out;
638 		}
639 		err = EHOSTUNREACH;
640 		if (code <= NR_ICMP_UNREACH) {
641 			harderr = icmp_err_convert[code].fatal;
642 			err = icmp_err_convert[code].errno;
643 		}
644 		break;
645 	case ICMP_REDIRECT:
646 		ipv4_sk_redirect(skb, sk);
647 		goto out;
648 	}
649 
650 	/*
651 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
652 	 *	4.1.3.3.
653 	 */
654 	if (!inet->recverr) {
655 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
656 			goto out;
657 	} else
658 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
659 
660 	sk->sk_err = err;
661 	sk->sk_error_report(sk);
662 out:
663 	return;
664 }
665 
666 void udp_err(struct sk_buff *skb, u32 info)
667 {
668 	__udp4_lib_err(skb, info, &udp_table);
669 }
670 
671 /*
672  * Throw away all pending data and cancel the corking. Socket is locked.
673  */
674 void udp_flush_pending_frames(struct sock *sk)
675 {
676 	struct udp_sock *up = udp_sk(sk);
677 
678 	if (up->pending) {
679 		up->len = 0;
680 		up->pending = 0;
681 		ip_flush_pending_frames(sk);
682 	}
683 }
684 EXPORT_SYMBOL(udp_flush_pending_frames);
685 
686 /**
687  * 	udp4_hwcsum  -  handle outgoing HW checksumming
688  * 	@skb: 	sk_buff containing the filled-in UDP header
689  * 	        (checksum field must be zeroed out)
690  *	@src:	source IP address
691  *	@dst:	destination IP address
692  */
693 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
694 {
695 	struct udphdr *uh = udp_hdr(skb);
696 	int offset = skb_transport_offset(skb);
697 	int len = skb->len - offset;
698 	int hlen = len;
699 	__wsum csum = 0;
700 
701 	if (!skb_has_frag_list(skb)) {
702 		/*
703 		 * Only one fragment on the socket.
704 		 */
705 		skb->csum_start = skb_transport_header(skb) - skb->head;
706 		skb->csum_offset = offsetof(struct udphdr, check);
707 		uh->check = ~csum_tcpudp_magic(src, dst, len,
708 					       IPPROTO_UDP, 0);
709 	} else {
710 		struct sk_buff *frags;
711 
712 		/*
713 		 * HW-checksum won't work as there are two or more
714 		 * fragments on the socket so that all csums of sk_buffs
715 		 * should be together
716 		 */
717 		skb_walk_frags(skb, frags) {
718 			csum = csum_add(csum, frags->csum);
719 			hlen -= frags->len;
720 		}
721 
722 		csum = skb_checksum(skb, offset, hlen, csum);
723 		skb->ip_summed = CHECKSUM_NONE;
724 
725 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
726 		if (uh->check == 0)
727 			uh->check = CSUM_MANGLED_0;
728 	}
729 }
730 EXPORT_SYMBOL_GPL(udp4_hwcsum);
731 
732 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
733  * for the simple case like when setting the checksum for a UDP tunnel.
734  */
735 void udp_set_csum(bool nocheck, struct sk_buff *skb,
736 		  __be32 saddr, __be32 daddr, int len)
737 {
738 	struct udphdr *uh = udp_hdr(skb);
739 
740 	if (nocheck) {
741 		uh->check = 0;
742 	} else if (skb_is_gso(skb)) {
743 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
744 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
745 		uh->check = 0;
746 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
747 		if (uh->check == 0)
748 			uh->check = CSUM_MANGLED_0;
749 	} else {
750 		skb->ip_summed = CHECKSUM_PARTIAL;
751 		skb->csum_start = skb_transport_header(skb) - skb->head;
752 		skb->csum_offset = offsetof(struct udphdr, check);
753 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
754 	}
755 }
756 EXPORT_SYMBOL(udp_set_csum);
757 
758 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
759 			struct inet_cork *cork)
760 {
761 	struct sock *sk = skb->sk;
762 	struct inet_sock *inet = inet_sk(sk);
763 	struct udphdr *uh;
764 	int err = 0;
765 	int is_udplite = IS_UDPLITE(sk);
766 	int offset = skb_transport_offset(skb);
767 	int len = skb->len - offset;
768 	__wsum csum = 0;
769 
770 	/*
771 	 * Create a UDP header
772 	 */
773 	uh = udp_hdr(skb);
774 	uh->source = inet->inet_sport;
775 	uh->dest = fl4->fl4_dport;
776 	uh->len = htons(len);
777 	uh->check = 0;
778 
779 	if (cork->gso_size) {
780 		const int hlen = skb_network_header_len(skb) +
781 				 sizeof(struct udphdr);
782 
783 		if (hlen + cork->gso_size > cork->fragsize)
784 			return -EINVAL;
785 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
786 			return -EINVAL;
787 		if (sk->sk_no_check_tx)
788 			return -EINVAL;
789 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
790 		    dst_xfrm(skb_dst(skb)))
791 			return -EIO;
792 
793 		skb_shinfo(skb)->gso_size = cork->gso_size;
794 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
795 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
796 							 cork->gso_size);
797 		goto csum_partial;
798 	}
799 
800 	if (is_udplite)  				 /*     UDP-Lite      */
801 		csum = udplite_csum(skb);
802 
803 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
804 
805 		skb->ip_summed = CHECKSUM_NONE;
806 		goto send;
807 
808 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
809 csum_partial:
810 
811 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
812 		goto send;
813 
814 	} else
815 		csum = udp_csum(skb);
816 
817 	/* add protocol-dependent pseudo-header */
818 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
819 				      sk->sk_protocol, csum);
820 	if (uh->check == 0)
821 		uh->check = CSUM_MANGLED_0;
822 
823 send:
824 	err = ip_send_skb(sock_net(sk), skb);
825 	if (err) {
826 		if (err == -ENOBUFS && !inet->recverr) {
827 			UDP_INC_STATS(sock_net(sk),
828 				      UDP_MIB_SNDBUFERRORS, is_udplite);
829 			err = 0;
830 		}
831 	} else
832 		UDP_INC_STATS(sock_net(sk),
833 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
834 	return err;
835 }
836 
837 /*
838  * Push out all pending data as one UDP datagram. Socket is locked.
839  */
840 int udp_push_pending_frames(struct sock *sk)
841 {
842 	struct udp_sock  *up = udp_sk(sk);
843 	struct inet_sock *inet = inet_sk(sk);
844 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
845 	struct sk_buff *skb;
846 	int err = 0;
847 
848 	skb = ip_finish_skb(sk, fl4);
849 	if (!skb)
850 		goto out;
851 
852 	err = udp_send_skb(skb, fl4, &inet->cork.base);
853 
854 out:
855 	up->len = 0;
856 	up->pending = 0;
857 	return err;
858 }
859 EXPORT_SYMBOL(udp_push_pending_frames);
860 
861 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
862 {
863 	switch (cmsg->cmsg_type) {
864 	case UDP_SEGMENT:
865 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
866 			return -EINVAL;
867 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
868 		return 0;
869 	default:
870 		return -EINVAL;
871 	}
872 }
873 
874 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
875 {
876 	struct cmsghdr *cmsg;
877 	bool need_ip = false;
878 	int err;
879 
880 	for_each_cmsghdr(cmsg, msg) {
881 		if (!CMSG_OK(msg, cmsg))
882 			return -EINVAL;
883 
884 		if (cmsg->cmsg_level != SOL_UDP) {
885 			need_ip = true;
886 			continue;
887 		}
888 
889 		err = __udp_cmsg_send(cmsg, gso_size);
890 		if (err)
891 			return err;
892 	}
893 
894 	return need_ip;
895 }
896 EXPORT_SYMBOL_GPL(udp_cmsg_send);
897 
898 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
899 {
900 	struct inet_sock *inet = inet_sk(sk);
901 	struct udp_sock *up = udp_sk(sk);
902 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
903 	struct flowi4 fl4_stack;
904 	struct flowi4 *fl4;
905 	int ulen = len;
906 	struct ipcm_cookie ipc;
907 	struct rtable *rt = NULL;
908 	int free = 0;
909 	int connected = 0;
910 	__be32 daddr, faddr, saddr;
911 	__be16 dport;
912 	u8  tos;
913 	int err, is_udplite = IS_UDPLITE(sk);
914 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
915 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
916 	struct sk_buff *skb;
917 	struct ip_options_data opt_copy;
918 
919 	if (len > 0xFFFF)
920 		return -EMSGSIZE;
921 
922 	/*
923 	 *	Check the flags.
924 	 */
925 
926 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
927 		return -EOPNOTSUPP;
928 
929 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
930 
931 	fl4 = &inet->cork.fl.u.ip4;
932 	if (up->pending) {
933 		/*
934 		 * There are pending frames.
935 		 * The socket lock must be held while it's corked.
936 		 */
937 		lock_sock(sk);
938 		if (likely(up->pending)) {
939 			if (unlikely(up->pending != AF_INET)) {
940 				release_sock(sk);
941 				return -EINVAL;
942 			}
943 			goto do_append_data;
944 		}
945 		release_sock(sk);
946 	}
947 	ulen += sizeof(struct udphdr);
948 
949 	/*
950 	 *	Get and verify the address.
951 	 */
952 	if (usin) {
953 		if (msg->msg_namelen < sizeof(*usin))
954 			return -EINVAL;
955 		if (usin->sin_family != AF_INET) {
956 			if (usin->sin_family != AF_UNSPEC)
957 				return -EAFNOSUPPORT;
958 		}
959 
960 		daddr = usin->sin_addr.s_addr;
961 		dport = usin->sin_port;
962 		if (dport == 0)
963 			return -EINVAL;
964 	} else {
965 		if (sk->sk_state != TCP_ESTABLISHED)
966 			return -EDESTADDRREQ;
967 		daddr = inet->inet_daddr;
968 		dport = inet->inet_dport;
969 		/* Open fast path for connected socket.
970 		   Route will not be used, if at least one option is set.
971 		 */
972 		connected = 1;
973 	}
974 
975 	ipcm_init_sk(&ipc, inet);
976 	ipc.gso_size = up->gso_size;
977 
978 	if (msg->msg_controllen) {
979 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
980 		if (err > 0)
981 			err = ip_cmsg_send(sk, msg, &ipc,
982 					   sk->sk_family == AF_INET6);
983 		if (unlikely(err < 0)) {
984 			kfree(ipc.opt);
985 			return err;
986 		}
987 		if (ipc.opt)
988 			free = 1;
989 		connected = 0;
990 	}
991 	if (!ipc.opt) {
992 		struct ip_options_rcu *inet_opt;
993 
994 		rcu_read_lock();
995 		inet_opt = rcu_dereference(inet->inet_opt);
996 		if (inet_opt) {
997 			memcpy(&opt_copy, inet_opt,
998 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
999 			ipc.opt = &opt_copy.opt;
1000 		}
1001 		rcu_read_unlock();
1002 	}
1003 
1004 	if (cgroup_bpf_enabled && !connected) {
1005 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1006 					    (struct sockaddr *)usin, &ipc.addr);
1007 		if (err)
1008 			goto out_free;
1009 		if (usin) {
1010 			if (usin->sin_port == 0) {
1011 				/* BPF program set invalid port. Reject it. */
1012 				err = -EINVAL;
1013 				goto out_free;
1014 			}
1015 			daddr = usin->sin_addr.s_addr;
1016 			dport = usin->sin_port;
1017 		}
1018 	}
1019 
1020 	saddr = ipc.addr;
1021 	ipc.addr = faddr = daddr;
1022 
1023 	if (ipc.opt && ipc.opt->opt.srr) {
1024 		if (!daddr) {
1025 			err = -EINVAL;
1026 			goto out_free;
1027 		}
1028 		faddr = ipc.opt->opt.faddr;
1029 		connected = 0;
1030 	}
1031 	tos = get_rttos(&ipc, inet);
1032 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1033 	    (msg->msg_flags & MSG_DONTROUTE) ||
1034 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1035 		tos |= RTO_ONLINK;
1036 		connected = 0;
1037 	}
1038 
1039 	if (ipv4_is_multicast(daddr)) {
1040 		if (!ipc.oif)
1041 			ipc.oif = inet->mc_index;
1042 		if (!saddr)
1043 			saddr = inet->mc_addr;
1044 		connected = 0;
1045 	} else if (!ipc.oif) {
1046 		ipc.oif = inet->uc_index;
1047 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1048 		/* oif is set, packet is to local broadcast and
1049 		 * and uc_index is set. oif is most likely set
1050 		 * by sk_bound_dev_if. If uc_index != oif check if the
1051 		 * oif is an L3 master and uc_index is an L3 slave.
1052 		 * If so, we want to allow the send using the uc_index.
1053 		 */
1054 		if (ipc.oif != inet->uc_index &&
1055 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1056 							      inet->uc_index)) {
1057 			ipc.oif = inet->uc_index;
1058 		}
1059 	}
1060 
1061 	if (connected)
1062 		rt = (struct rtable *)sk_dst_check(sk, 0);
1063 
1064 	if (!rt) {
1065 		struct net *net = sock_net(sk);
1066 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1067 
1068 		fl4 = &fl4_stack;
1069 
1070 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1071 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1072 				   flow_flags,
1073 				   faddr, saddr, dport, inet->inet_sport,
1074 				   sk->sk_uid);
1075 
1076 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1077 		rt = ip_route_output_flow(net, fl4, sk);
1078 		if (IS_ERR(rt)) {
1079 			err = PTR_ERR(rt);
1080 			rt = NULL;
1081 			if (err == -ENETUNREACH)
1082 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1083 			goto out;
1084 		}
1085 
1086 		err = -EACCES;
1087 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1088 		    !sock_flag(sk, SOCK_BROADCAST))
1089 			goto out;
1090 		if (connected)
1091 			sk_dst_set(sk, dst_clone(&rt->dst));
1092 	}
1093 
1094 	if (msg->msg_flags&MSG_CONFIRM)
1095 		goto do_confirm;
1096 back_from_confirm:
1097 
1098 	saddr = fl4->saddr;
1099 	if (!ipc.addr)
1100 		daddr = ipc.addr = fl4->daddr;
1101 
1102 	/* Lockless fast path for the non-corking case. */
1103 	if (!corkreq) {
1104 		struct inet_cork cork;
1105 
1106 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1107 				  sizeof(struct udphdr), &ipc, &rt,
1108 				  &cork, msg->msg_flags);
1109 		err = PTR_ERR(skb);
1110 		if (!IS_ERR_OR_NULL(skb))
1111 			err = udp_send_skb(skb, fl4, &cork);
1112 		goto out;
1113 	}
1114 
1115 	lock_sock(sk);
1116 	if (unlikely(up->pending)) {
1117 		/* The socket is already corked while preparing it. */
1118 		/* ... which is an evident application bug. --ANK */
1119 		release_sock(sk);
1120 
1121 		net_dbg_ratelimited("socket already corked\n");
1122 		err = -EINVAL;
1123 		goto out;
1124 	}
1125 	/*
1126 	 *	Now cork the socket to pend data.
1127 	 */
1128 	fl4 = &inet->cork.fl.u.ip4;
1129 	fl4->daddr = daddr;
1130 	fl4->saddr = saddr;
1131 	fl4->fl4_dport = dport;
1132 	fl4->fl4_sport = inet->inet_sport;
1133 	up->pending = AF_INET;
1134 
1135 do_append_data:
1136 	up->len += ulen;
1137 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1138 			     sizeof(struct udphdr), &ipc, &rt,
1139 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1140 	if (err)
1141 		udp_flush_pending_frames(sk);
1142 	else if (!corkreq)
1143 		err = udp_push_pending_frames(sk);
1144 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1145 		up->pending = 0;
1146 	release_sock(sk);
1147 
1148 out:
1149 	ip_rt_put(rt);
1150 out_free:
1151 	if (free)
1152 		kfree(ipc.opt);
1153 	if (!err)
1154 		return len;
1155 	/*
1156 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1157 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1158 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1159 	 * things).  We could add another new stat but at least for now that
1160 	 * seems like overkill.
1161 	 */
1162 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1163 		UDP_INC_STATS(sock_net(sk),
1164 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1165 	}
1166 	return err;
1167 
1168 do_confirm:
1169 	if (msg->msg_flags & MSG_PROBE)
1170 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1171 	if (!(msg->msg_flags&MSG_PROBE) || len)
1172 		goto back_from_confirm;
1173 	err = 0;
1174 	goto out;
1175 }
1176 EXPORT_SYMBOL(udp_sendmsg);
1177 
1178 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1179 		 size_t size, int flags)
1180 {
1181 	struct inet_sock *inet = inet_sk(sk);
1182 	struct udp_sock *up = udp_sk(sk);
1183 	int ret;
1184 
1185 	if (flags & MSG_SENDPAGE_NOTLAST)
1186 		flags |= MSG_MORE;
1187 
1188 	if (!up->pending) {
1189 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1190 
1191 		/* Call udp_sendmsg to specify destination address which
1192 		 * sendpage interface can't pass.
1193 		 * This will succeed only when the socket is connected.
1194 		 */
1195 		ret = udp_sendmsg(sk, &msg, 0);
1196 		if (ret < 0)
1197 			return ret;
1198 	}
1199 
1200 	lock_sock(sk);
1201 
1202 	if (unlikely(!up->pending)) {
1203 		release_sock(sk);
1204 
1205 		net_dbg_ratelimited("cork failed\n");
1206 		return -EINVAL;
1207 	}
1208 
1209 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1210 			     page, offset, size, flags);
1211 	if (ret == -EOPNOTSUPP) {
1212 		release_sock(sk);
1213 		return sock_no_sendpage(sk->sk_socket, page, offset,
1214 					size, flags);
1215 	}
1216 	if (ret < 0) {
1217 		udp_flush_pending_frames(sk);
1218 		goto out;
1219 	}
1220 
1221 	up->len += size;
1222 	if (!(up->corkflag || (flags&MSG_MORE)))
1223 		ret = udp_push_pending_frames(sk);
1224 	if (!ret)
1225 		ret = size;
1226 out:
1227 	release_sock(sk);
1228 	return ret;
1229 }
1230 
1231 #define UDP_SKB_IS_STATELESS 0x80000000
1232 
1233 static void udp_set_dev_scratch(struct sk_buff *skb)
1234 {
1235 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1236 
1237 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1238 	scratch->_tsize_state = skb->truesize;
1239 #if BITS_PER_LONG == 64
1240 	scratch->len = skb->len;
1241 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1242 	scratch->is_linear = !skb_is_nonlinear(skb);
1243 #endif
1244 	/* all head states execept sp (dst, sk, nf) are always cleared by
1245 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1246 	 * process IP_CMSG_PASSSEC at recvmsg() time
1247 	 */
1248 	if (likely(!skb_sec_path(skb)))
1249 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1250 }
1251 
1252 static int udp_skb_truesize(struct sk_buff *skb)
1253 {
1254 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1255 }
1256 
1257 static bool udp_skb_has_head_state(struct sk_buff *skb)
1258 {
1259 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1260 }
1261 
1262 /* fully reclaim rmem/fwd memory allocated for skb */
1263 static void udp_rmem_release(struct sock *sk, int size, int partial,
1264 			     bool rx_queue_lock_held)
1265 {
1266 	struct udp_sock *up = udp_sk(sk);
1267 	struct sk_buff_head *sk_queue;
1268 	int amt;
1269 
1270 	if (likely(partial)) {
1271 		up->forward_deficit += size;
1272 		size = up->forward_deficit;
1273 		if (size < (sk->sk_rcvbuf >> 2))
1274 			return;
1275 	} else {
1276 		size += up->forward_deficit;
1277 	}
1278 	up->forward_deficit = 0;
1279 
1280 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1281 	 * if the called don't held it already
1282 	 */
1283 	sk_queue = &sk->sk_receive_queue;
1284 	if (!rx_queue_lock_held)
1285 		spin_lock(&sk_queue->lock);
1286 
1287 
1288 	sk->sk_forward_alloc += size;
1289 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1290 	sk->sk_forward_alloc -= amt;
1291 
1292 	if (amt)
1293 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1294 
1295 	atomic_sub(size, &sk->sk_rmem_alloc);
1296 
1297 	/* this can save us from acquiring the rx queue lock on next receive */
1298 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1299 
1300 	if (!rx_queue_lock_held)
1301 		spin_unlock(&sk_queue->lock);
1302 }
1303 
1304 /* Note: called with reader_queue.lock held.
1305  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1306  * This avoids a cache line miss while receive_queue lock is held.
1307  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1308  */
1309 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1310 {
1311 	prefetch(&skb->data);
1312 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1313 }
1314 EXPORT_SYMBOL(udp_skb_destructor);
1315 
1316 /* as above, but the caller held the rx queue lock, too */
1317 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1318 {
1319 	prefetch(&skb->data);
1320 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1321 }
1322 
1323 /* Idea of busylocks is to let producers grab an extra spinlock
1324  * to relieve pressure on the receive_queue spinlock shared by consumer.
1325  * Under flood, this means that only one producer can be in line
1326  * trying to acquire the receive_queue spinlock.
1327  * These busylock can be allocated on a per cpu manner, instead of a
1328  * per socket one (that would consume a cache line per socket)
1329  */
1330 static int udp_busylocks_log __read_mostly;
1331 static spinlock_t *udp_busylocks __read_mostly;
1332 
1333 static spinlock_t *busylock_acquire(void *ptr)
1334 {
1335 	spinlock_t *busy;
1336 
1337 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1338 	spin_lock(busy);
1339 	return busy;
1340 }
1341 
1342 static void busylock_release(spinlock_t *busy)
1343 {
1344 	if (busy)
1345 		spin_unlock(busy);
1346 }
1347 
1348 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1349 {
1350 	struct sk_buff_head *list = &sk->sk_receive_queue;
1351 	int rmem, delta, amt, err = -ENOMEM;
1352 	spinlock_t *busy = NULL;
1353 	int size;
1354 
1355 	/* try to avoid the costly atomic add/sub pair when the receive
1356 	 * queue is full; always allow at least a packet
1357 	 */
1358 	rmem = atomic_read(&sk->sk_rmem_alloc);
1359 	if (rmem > sk->sk_rcvbuf)
1360 		goto drop;
1361 
1362 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1363 	 * having linear skbs :
1364 	 * - Reduce memory overhead and thus increase receive queue capacity
1365 	 * - Less cache line misses at copyout() time
1366 	 * - Less work at consume_skb() (less alien page frag freeing)
1367 	 */
1368 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1369 		skb_condense(skb);
1370 
1371 		busy = busylock_acquire(sk);
1372 	}
1373 	size = skb->truesize;
1374 	udp_set_dev_scratch(skb);
1375 
1376 	/* we drop only if the receive buf is full and the receive
1377 	 * queue contains some other skb
1378 	 */
1379 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1380 	if (rmem > (size + sk->sk_rcvbuf))
1381 		goto uncharge_drop;
1382 
1383 	spin_lock(&list->lock);
1384 	if (size >= sk->sk_forward_alloc) {
1385 		amt = sk_mem_pages(size);
1386 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1387 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1388 			err = -ENOBUFS;
1389 			spin_unlock(&list->lock);
1390 			goto uncharge_drop;
1391 		}
1392 
1393 		sk->sk_forward_alloc += delta;
1394 	}
1395 
1396 	sk->sk_forward_alloc -= size;
1397 
1398 	/* no need to setup a destructor, we will explicitly release the
1399 	 * forward allocated memory on dequeue
1400 	 */
1401 	sock_skb_set_dropcount(sk, skb);
1402 
1403 	__skb_queue_tail(list, skb);
1404 	spin_unlock(&list->lock);
1405 
1406 	if (!sock_flag(sk, SOCK_DEAD))
1407 		sk->sk_data_ready(sk);
1408 
1409 	busylock_release(busy);
1410 	return 0;
1411 
1412 uncharge_drop:
1413 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1414 
1415 drop:
1416 	atomic_inc(&sk->sk_drops);
1417 	busylock_release(busy);
1418 	return err;
1419 }
1420 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1421 
1422 void udp_destruct_sock(struct sock *sk)
1423 {
1424 	/* reclaim completely the forward allocated memory */
1425 	struct udp_sock *up = udp_sk(sk);
1426 	unsigned int total = 0;
1427 	struct sk_buff *skb;
1428 
1429 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1430 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1431 		total += skb->truesize;
1432 		kfree_skb(skb);
1433 	}
1434 	udp_rmem_release(sk, total, 0, true);
1435 
1436 	inet_sock_destruct(sk);
1437 }
1438 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1439 
1440 int udp_init_sock(struct sock *sk)
1441 {
1442 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1443 	sk->sk_destruct = udp_destruct_sock;
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(udp_init_sock);
1447 
1448 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1449 {
1450 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1451 		bool slow = lock_sock_fast(sk);
1452 
1453 		sk_peek_offset_bwd(sk, len);
1454 		unlock_sock_fast(sk, slow);
1455 	}
1456 
1457 	if (!skb_unref(skb))
1458 		return;
1459 
1460 	/* In the more common cases we cleared the head states previously,
1461 	 * see __udp_queue_rcv_skb().
1462 	 */
1463 	if (unlikely(udp_skb_has_head_state(skb)))
1464 		skb_release_head_state(skb);
1465 	__consume_stateless_skb(skb);
1466 }
1467 EXPORT_SYMBOL_GPL(skb_consume_udp);
1468 
1469 static struct sk_buff *__first_packet_length(struct sock *sk,
1470 					     struct sk_buff_head *rcvq,
1471 					     int *total)
1472 {
1473 	struct sk_buff *skb;
1474 
1475 	while ((skb = skb_peek(rcvq)) != NULL) {
1476 		if (udp_lib_checksum_complete(skb)) {
1477 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1478 					IS_UDPLITE(sk));
1479 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1480 					IS_UDPLITE(sk));
1481 			atomic_inc(&sk->sk_drops);
1482 			__skb_unlink(skb, rcvq);
1483 			*total += skb->truesize;
1484 			kfree_skb(skb);
1485 		} else {
1486 			/* the csum related bits could be changed, refresh
1487 			 * the scratch area
1488 			 */
1489 			udp_set_dev_scratch(skb);
1490 			break;
1491 		}
1492 	}
1493 	return skb;
1494 }
1495 
1496 /**
1497  *	first_packet_length	- return length of first packet in receive queue
1498  *	@sk: socket
1499  *
1500  *	Drops all bad checksum frames, until a valid one is found.
1501  *	Returns the length of found skb, or -1 if none is found.
1502  */
1503 static int first_packet_length(struct sock *sk)
1504 {
1505 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1506 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1507 	struct sk_buff *skb;
1508 	int total = 0;
1509 	int res;
1510 
1511 	spin_lock_bh(&rcvq->lock);
1512 	skb = __first_packet_length(sk, rcvq, &total);
1513 	if (!skb && !skb_queue_empty(sk_queue)) {
1514 		spin_lock(&sk_queue->lock);
1515 		skb_queue_splice_tail_init(sk_queue, rcvq);
1516 		spin_unlock(&sk_queue->lock);
1517 
1518 		skb = __first_packet_length(sk, rcvq, &total);
1519 	}
1520 	res = skb ? skb->len : -1;
1521 	if (total)
1522 		udp_rmem_release(sk, total, 1, false);
1523 	spin_unlock_bh(&rcvq->lock);
1524 	return res;
1525 }
1526 
1527 /*
1528  *	IOCTL requests applicable to the UDP protocol
1529  */
1530 
1531 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1532 {
1533 	switch (cmd) {
1534 	case SIOCOUTQ:
1535 	{
1536 		int amount = sk_wmem_alloc_get(sk);
1537 
1538 		return put_user(amount, (int __user *)arg);
1539 	}
1540 
1541 	case SIOCINQ:
1542 	{
1543 		int amount = max_t(int, 0, first_packet_length(sk));
1544 
1545 		return put_user(amount, (int __user *)arg);
1546 	}
1547 
1548 	default:
1549 		return -ENOIOCTLCMD;
1550 	}
1551 
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL(udp_ioctl);
1555 
1556 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1557 			       int noblock, int *peeked, int *off, int *err)
1558 {
1559 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1560 	struct sk_buff_head *queue;
1561 	struct sk_buff *last;
1562 	long timeo;
1563 	int error;
1564 
1565 	queue = &udp_sk(sk)->reader_queue;
1566 	flags |= noblock ? MSG_DONTWAIT : 0;
1567 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1568 	do {
1569 		struct sk_buff *skb;
1570 
1571 		error = sock_error(sk);
1572 		if (error)
1573 			break;
1574 
1575 		error = -EAGAIN;
1576 		*peeked = 0;
1577 		do {
1578 			spin_lock_bh(&queue->lock);
1579 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1580 							udp_skb_destructor,
1581 							peeked, off, err,
1582 							&last);
1583 			if (skb) {
1584 				spin_unlock_bh(&queue->lock);
1585 				return skb;
1586 			}
1587 
1588 			if (skb_queue_empty(sk_queue)) {
1589 				spin_unlock_bh(&queue->lock);
1590 				goto busy_check;
1591 			}
1592 
1593 			/* refill the reader queue and walk it again
1594 			 * keep both queues locked to avoid re-acquiring
1595 			 * the sk_receive_queue lock if fwd memory scheduling
1596 			 * is needed.
1597 			 */
1598 			spin_lock(&sk_queue->lock);
1599 			skb_queue_splice_tail_init(sk_queue, queue);
1600 
1601 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1602 							udp_skb_dtor_locked,
1603 							peeked, off, err,
1604 							&last);
1605 			spin_unlock(&sk_queue->lock);
1606 			spin_unlock_bh(&queue->lock);
1607 			if (skb)
1608 				return skb;
1609 
1610 busy_check:
1611 			if (!sk_can_busy_loop(sk))
1612 				break;
1613 
1614 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1615 		} while (!skb_queue_empty(sk_queue));
1616 
1617 		/* sk_queue is empty, reader_queue may contain peeked packets */
1618 	} while (timeo &&
1619 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1620 					      (struct sk_buff *)sk_queue));
1621 
1622 	*err = error;
1623 	return NULL;
1624 }
1625 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1626 
1627 /*
1628  * 	This should be easy, if there is something there we
1629  * 	return it, otherwise we block.
1630  */
1631 
1632 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1633 		int flags, int *addr_len)
1634 {
1635 	struct inet_sock *inet = inet_sk(sk);
1636 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1637 	struct sk_buff *skb;
1638 	unsigned int ulen, copied;
1639 	int peeked, peeking, off;
1640 	int err;
1641 	int is_udplite = IS_UDPLITE(sk);
1642 	bool checksum_valid = false;
1643 
1644 	if (flags & MSG_ERRQUEUE)
1645 		return ip_recv_error(sk, msg, len, addr_len);
1646 
1647 try_again:
1648 	peeking = flags & MSG_PEEK;
1649 	off = sk_peek_offset(sk, flags);
1650 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1651 	if (!skb)
1652 		return err;
1653 
1654 	ulen = udp_skb_len(skb);
1655 	copied = len;
1656 	if (copied > ulen - off)
1657 		copied = ulen - off;
1658 	else if (copied < ulen)
1659 		msg->msg_flags |= MSG_TRUNC;
1660 
1661 	/*
1662 	 * If checksum is needed at all, try to do it while copying the
1663 	 * data.  If the data is truncated, or if we only want a partial
1664 	 * coverage checksum (UDP-Lite), do it before the copy.
1665 	 */
1666 
1667 	if (copied < ulen || peeking ||
1668 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1669 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1670 				!__udp_lib_checksum_complete(skb);
1671 		if (!checksum_valid)
1672 			goto csum_copy_err;
1673 	}
1674 
1675 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1676 		if (udp_skb_is_linear(skb))
1677 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1678 		else
1679 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1680 	} else {
1681 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1682 
1683 		if (err == -EINVAL)
1684 			goto csum_copy_err;
1685 	}
1686 
1687 	if (unlikely(err)) {
1688 		if (!peeked) {
1689 			atomic_inc(&sk->sk_drops);
1690 			UDP_INC_STATS(sock_net(sk),
1691 				      UDP_MIB_INERRORS, is_udplite);
1692 		}
1693 		kfree_skb(skb);
1694 		return err;
1695 	}
1696 
1697 	if (!peeked)
1698 		UDP_INC_STATS(sock_net(sk),
1699 			      UDP_MIB_INDATAGRAMS, is_udplite);
1700 
1701 	sock_recv_ts_and_drops(msg, sk, skb);
1702 
1703 	/* Copy the address. */
1704 	if (sin) {
1705 		sin->sin_family = AF_INET;
1706 		sin->sin_port = udp_hdr(skb)->source;
1707 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1708 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1709 		*addr_len = sizeof(*sin);
1710 	}
1711 	if (inet->cmsg_flags)
1712 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1713 
1714 	err = copied;
1715 	if (flags & MSG_TRUNC)
1716 		err = ulen;
1717 
1718 	skb_consume_udp(sk, skb, peeking ? -err : err);
1719 	return err;
1720 
1721 csum_copy_err:
1722 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1723 				 udp_skb_destructor)) {
1724 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1725 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1726 	}
1727 	kfree_skb(skb);
1728 
1729 	/* starting over for a new packet, but check if we need to yield */
1730 	cond_resched();
1731 	msg->msg_flags &= ~MSG_TRUNC;
1732 	goto try_again;
1733 }
1734 
1735 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1736 {
1737 	/* This check is replicated from __ip4_datagram_connect() and
1738 	 * intended to prevent BPF program called below from accessing bytes
1739 	 * that are out of the bound specified by user in addr_len.
1740 	 */
1741 	if (addr_len < sizeof(struct sockaddr_in))
1742 		return -EINVAL;
1743 
1744 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1745 }
1746 EXPORT_SYMBOL(udp_pre_connect);
1747 
1748 int __udp_disconnect(struct sock *sk, int flags)
1749 {
1750 	struct inet_sock *inet = inet_sk(sk);
1751 	/*
1752 	 *	1003.1g - break association.
1753 	 */
1754 
1755 	sk->sk_state = TCP_CLOSE;
1756 	inet->inet_daddr = 0;
1757 	inet->inet_dport = 0;
1758 	sock_rps_reset_rxhash(sk);
1759 	sk->sk_bound_dev_if = 0;
1760 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1761 		inet_reset_saddr(sk);
1762 
1763 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1764 		sk->sk_prot->unhash(sk);
1765 		inet->inet_sport = 0;
1766 	}
1767 	sk_dst_reset(sk);
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(__udp_disconnect);
1771 
1772 int udp_disconnect(struct sock *sk, int flags)
1773 {
1774 	lock_sock(sk);
1775 	__udp_disconnect(sk, flags);
1776 	release_sock(sk);
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(udp_disconnect);
1780 
1781 void udp_lib_unhash(struct sock *sk)
1782 {
1783 	if (sk_hashed(sk)) {
1784 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1785 		struct udp_hslot *hslot, *hslot2;
1786 
1787 		hslot  = udp_hashslot(udptable, sock_net(sk),
1788 				      udp_sk(sk)->udp_port_hash);
1789 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1790 
1791 		spin_lock_bh(&hslot->lock);
1792 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1793 			reuseport_detach_sock(sk);
1794 		if (sk_del_node_init_rcu(sk)) {
1795 			hslot->count--;
1796 			inet_sk(sk)->inet_num = 0;
1797 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1798 
1799 			spin_lock(&hslot2->lock);
1800 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1801 			hslot2->count--;
1802 			spin_unlock(&hslot2->lock);
1803 		}
1804 		spin_unlock_bh(&hslot->lock);
1805 	}
1806 }
1807 EXPORT_SYMBOL(udp_lib_unhash);
1808 
1809 /*
1810  * inet_rcv_saddr was changed, we must rehash secondary hash
1811  */
1812 void udp_lib_rehash(struct sock *sk, u16 newhash)
1813 {
1814 	if (sk_hashed(sk)) {
1815 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1816 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1817 
1818 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1819 		nhslot2 = udp_hashslot2(udptable, newhash);
1820 		udp_sk(sk)->udp_portaddr_hash = newhash;
1821 
1822 		if (hslot2 != nhslot2 ||
1823 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1824 			hslot = udp_hashslot(udptable, sock_net(sk),
1825 					     udp_sk(sk)->udp_port_hash);
1826 			/* we must lock primary chain too */
1827 			spin_lock_bh(&hslot->lock);
1828 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1829 				reuseport_detach_sock(sk);
1830 
1831 			if (hslot2 != nhslot2) {
1832 				spin_lock(&hslot2->lock);
1833 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1834 				hslot2->count--;
1835 				spin_unlock(&hslot2->lock);
1836 
1837 				spin_lock(&nhslot2->lock);
1838 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1839 							 &nhslot2->head);
1840 				nhslot2->count++;
1841 				spin_unlock(&nhslot2->lock);
1842 			}
1843 
1844 			spin_unlock_bh(&hslot->lock);
1845 		}
1846 	}
1847 }
1848 EXPORT_SYMBOL(udp_lib_rehash);
1849 
1850 static void udp_v4_rehash(struct sock *sk)
1851 {
1852 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1853 					  inet_sk(sk)->inet_rcv_saddr,
1854 					  inet_sk(sk)->inet_num);
1855 	udp_lib_rehash(sk, new_hash);
1856 }
1857 
1858 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1859 {
1860 	int rc;
1861 
1862 	if (inet_sk(sk)->inet_daddr) {
1863 		sock_rps_save_rxhash(sk, skb);
1864 		sk_mark_napi_id(sk, skb);
1865 		sk_incoming_cpu_update(sk);
1866 	} else {
1867 		sk_mark_napi_id_once(sk, skb);
1868 	}
1869 
1870 	rc = __udp_enqueue_schedule_skb(sk, skb);
1871 	if (rc < 0) {
1872 		int is_udplite = IS_UDPLITE(sk);
1873 
1874 		/* Note that an ENOMEM error is charged twice */
1875 		if (rc == -ENOMEM)
1876 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1877 					is_udplite);
1878 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1879 		kfree_skb(skb);
1880 		trace_udp_fail_queue_rcv_skb(rc, sk);
1881 		return -1;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1888 void udp_encap_enable(void)
1889 {
1890 	static_branch_enable(&udp_encap_needed_key);
1891 }
1892 EXPORT_SYMBOL(udp_encap_enable);
1893 
1894 /* returns:
1895  *  -1: error
1896  *   0: success
1897  *  >0: "udp encap" protocol resubmission
1898  *
1899  * Note that in the success and error cases, the skb is assumed to
1900  * have either been requeued or freed.
1901  */
1902 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1903 {
1904 	struct udp_sock *up = udp_sk(sk);
1905 	int is_udplite = IS_UDPLITE(sk);
1906 
1907 	/*
1908 	 *	Charge it to the socket, dropping if the queue is full.
1909 	 */
1910 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1911 		goto drop;
1912 	nf_reset(skb);
1913 
1914 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1915 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1916 
1917 		/*
1918 		 * This is an encapsulation socket so pass the skb to
1919 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1920 		 * fall through and pass this up the UDP socket.
1921 		 * up->encap_rcv() returns the following value:
1922 		 * =0 if skb was successfully passed to the encap
1923 		 *    handler or was discarded by it.
1924 		 * >0 if skb should be passed on to UDP.
1925 		 * <0 if skb should be resubmitted as proto -N
1926 		 */
1927 
1928 		/* if we're overly short, let UDP handle it */
1929 		encap_rcv = READ_ONCE(up->encap_rcv);
1930 		if (encap_rcv) {
1931 			int ret;
1932 
1933 			/* Verify checksum before giving to encap */
1934 			if (udp_lib_checksum_complete(skb))
1935 				goto csum_error;
1936 
1937 			ret = encap_rcv(sk, skb);
1938 			if (ret <= 0) {
1939 				__UDP_INC_STATS(sock_net(sk),
1940 						UDP_MIB_INDATAGRAMS,
1941 						is_udplite);
1942 				return -ret;
1943 			}
1944 		}
1945 
1946 		/* FALLTHROUGH -- it's a UDP Packet */
1947 	}
1948 
1949 	/*
1950 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1951 	 */
1952 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1953 
1954 		/*
1955 		 * MIB statistics other than incrementing the error count are
1956 		 * disabled for the following two types of errors: these depend
1957 		 * on the application settings, not on the functioning of the
1958 		 * protocol stack as such.
1959 		 *
1960 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1961 		 * way ... to ... at least let the receiving application block
1962 		 * delivery of packets with coverage values less than a value
1963 		 * provided by the application."
1964 		 */
1965 		if (up->pcrlen == 0) {          /* full coverage was set  */
1966 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1967 					    UDP_SKB_CB(skb)->cscov, skb->len);
1968 			goto drop;
1969 		}
1970 		/* The next case involves violating the min. coverage requested
1971 		 * by the receiver. This is subtle: if receiver wants x and x is
1972 		 * greater than the buffersize/MTU then receiver will complain
1973 		 * that it wants x while sender emits packets of smaller size y.
1974 		 * Therefore the above ...()->partial_cov statement is essential.
1975 		 */
1976 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1977 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1978 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1979 			goto drop;
1980 		}
1981 	}
1982 
1983 	prefetch(&sk->sk_rmem_alloc);
1984 	if (rcu_access_pointer(sk->sk_filter) &&
1985 	    udp_lib_checksum_complete(skb))
1986 			goto csum_error;
1987 
1988 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1989 		goto drop;
1990 
1991 	udp_csum_pull_header(skb);
1992 
1993 	ipv4_pktinfo_prepare(sk, skb);
1994 	return __udp_queue_rcv_skb(sk, skb);
1995 
1996 csum_error:
1997 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1998 drop:
1999 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2000 	atomic_inc(&sk->sk_drops);
2001 	kfree_skb(skb);
2002 	return -1;
2003 }
2004 
2005 /* For TCP sockets, sk_rx_dst is protected by socket lock
2006  * For UDP, we use xchg() to guard against concurrent changes.
2007  */
2008 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2009 {
2010 	struct dst_entry *old;
2011 
2012 	if (dst_hold_safe(dst)) {
2013 		old = xchg(&sk->sk_rx_dst, dst);
2014 		dst_release(old);
2015 		return old != dst;
2016 	}
2017 	return false;
2018 }
2019 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2020 
2021 /*
2022  *	Multicasts and broadcasts go to each listener.
2023  *
2024  *	Note: called only from the BH handler context.
2025  */
2026 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2027 				    struct udphdr  *uh,
2028 				    __be32 saddr, __be32 daddr,
2029 				    struct udp_table *udptable,
2030 				    int proto)
2031 {
2032 	struct sock *sk, *first = NULL;
2033 	unsigned short hnum = ntohs(uh->dest);
2034 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2035 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2036 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2037 	int dif = skb->dev->ifindex;
2038 	int sdif = inet_sdif(skb);
2039 	struct hlist_node *node;
2040 	struct sk_buff *nskb;
2041 
2042 	if (use_hash2) {
2043 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2044 			    udptable->mask;
2045 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2046 start_lookup:
2047 		hslot = &udptable->hash2[hash2];
2048 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2049 	}
2050 
2051 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2052 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2053 					 uh->source, saddr, dif, sdif, hnum))
2054 			continue;
2055 
2056 		if (!first) {
2057 			first = sk;
2058 			continue;
2059 		}
2060 		nskb = skb_clone(skb, GFP_ATOMIC);
2061 
2062 		if (unlikely(!nskb)) {
2063 			atomic_inc(&sk->sk_drops);
2064 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2065 					IS_UDPLITE(sk));
2066 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2067 					IS_UDPLITE(sk));
2068 			continue;
2069 		}
2070 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2071 			consume_skb(nskb);
2072 	}
2073 
2074 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2075 	if (use_hash2 && hash2 != hash2_any) {
2076 		hash2 = hash2_any;
2077 		goto start_lookup;
2078 	}
2079 
2080 	if (first) {
2081 		if (udp_queue_rcv_skb(first, skb) > 0)
2082 			consume_skb(skb);
2083 	} else {
2084 		kfree_skb(skb);
2085 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2086 				proto == IPPROTO_UDPLITE);
2087 	}
2088 	return 0;
2089 }
2090 
2091 /* Initialize UDP checksum. If exited with zero value (success),
2092  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2093  * Otherwise, csum completion requires chacksumming packet body,
2094  * including udp header and folding it to skb->csum.
2095  */
2096 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2097 				 int proto)
2098 {
2099 	int err;
2100 
2101 	UDP_SKB_CB(skb)->partial_cov = 0;
2102 	UDP_SKB_CB(skb)->cscov = skb->len;
2103 
2104 	if (proto == IPPROTO_UDPLITE) {
2105 		err = udplite_checksum_init(skb, uh);
2106 		if (err)
2107 			return err;
2108 
2109 		if (UDP_SKB_CB(skb)->partial_cov) {
2110 			skb->csum = inet_compute_pseudo(skb, proto);
2111 			return 0;
2112 		}
2113 	}
2114 
2115 	/* Note, we are only interested in != 0 or == 0, thus the
2116 	 * force to int.
2117 	 */
2118 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2119 							 inet_compute_pseudo);
2120 }
2121 
2122 /*
2123  *	All we need to do is get the socket, and then do a checksum.
2124  */
2125 
2126 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2127 		   int proto)
2128 {
2129 	struct sock *sk;
2130 	struct udphdr *uh;
2131 	unsigned short ulen;
2132 	struct rtable *rt = skb_rtable(skb);
2133 	__be32 saddr, daddr;
2134 	struct net *net = dev_net(skb->dev);
2135 
2136 	/*
2137 	 *  Validate the packet.
2138 	 */
2139 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2140 		goto drop;		/* No space for header. */
2141 
2142 	uh   = udp_hdr(skb);
2143 	ulen = ntohs(uh->len);
2144 	saddr = ip_hdr(skb)->saddr;
2145 	daddr = ip_hdr(skb)->daddr;
2146 
2147 	if (ulen > skb->len)
2148 		goto short_packet;
2149 
2150 	if (proto == IPPROTO_UDP) {
2151 		/* UDP validates ulen. */
2152 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2153 			goto short_packet;
2154 		uh = udp_hdr(skb);
2155 	}
2156 
2157 	if (udp4_csum_init(skb, uh, proto))
2158 		goto csum_error;
2159 
2160 	sk = skb_steal_sock(skb);
2161 	if (sk) {
2162 		struct dst_entry *dst = skb_dst(skb);
2163 		int ret;
2164 
2165 		if (unlikely(sk->sk_rx_dst != dst))
2166 			udp_sk_rx_dst_set(sk, dst);
2167 
2168 		ret = udp_queue_rcv_skb(sk, skb);
2169 		sock_put(sk);
2170 		/* a return value > 0 means to resubmit the input, but
2171 		 * it wants the return to be -protocol, or 0
2172 		 */
2173 		if (ret > 0)
2174 			return -ret;
2175 		return 0;
2176 	}
2177 
2178 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2179 		return __udp4_lib_mcast_deliver(net, skb, uh,
2180 						saddr, daddr, udptable, proto);
2181 
2182 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2183 	if (sk) {
2184 		int ret;
2185 
2186 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2187 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2188 						 inet_compute_pseudo);
2189 
2190 		ret = udp_queue_rcv_skb(sk, skb);
2191 
2192 		/* a return value > 0 means to resubmit the input, but
2193 		 * it wants the return to be -protocol, or 0
2194 		 */
2195 		if (ret > 0)
2196 			return -ret;
2197 		return 0;
2198 	}
2199 
2200 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2201 		goto drop;
2202 	nf_reset(skb);
2203 
2204 	/* No socket. Drop packet silently, if checksum is wrong */
2205 	if (udp_lib_checksum_complete(skb))
2206 		goto csum_error;
2207 
2208 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2209 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2210 
2211 	/*
2212 	 * Hmm.  We got an UDP packet to a port to which we
2213 	 * don't wanna listen.  Ignore it.
2214 	 */
2215 	kfree_skb(skb);
2216 	return 0;
2217 
2218 short_packet:
2219 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2220 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2221 			    &saddr, ntohs(uh->source),
2222 			    ulen, skb->len,
2223 			    &daddr, ntohs(uh->dest));
2224 	goto drop;
2225 
2226 csum_error:
2227 	/*
2228 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2229 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2230 	 */
2231 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2232 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2233 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2234 			    ulen);
2235 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2236 drop:
2237 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2238 	kfree_skb(skb);
2239 	return 0;
2240 }
2241 
2242 /* We can only early demux multicast if there is a single matching socket.
2243  * If more than one socket found returns NULL
2244  */
2245 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2246 						  __be16 loc_port, __be32 loc_addr,
2247 						  __be16 rmt_port, __be32 rmt_addr,
2248 						  int dif, int sdif)
2249 {
2250 	struct sock *sk, *result;
2251 	unsigned short hnum = ntohs(loc_port);
2252 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2253 	struct udp_hslot *hslot = &udp_table.hash[slot];
2254 
2255 	/* Do not bother scanning a too big list */
2256 	if (hslot->count > 10)
2257 		return NULL;
2258 
2259 	result = NULL;
2260 	sk_for_each_rcu(sk, &hslot->head) {
2261 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2262 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2263 			if (result)
2264 				return NULL;
2265 			result = sk;
2266 		}
2267 	}
2268 
2269 	return result;
2270 }
2271 
2272 /* For unicast we should only early demux connected sockets or we can
2273  * break forwarding setups.  The chains here can be long so only check
2274  * if the first socket is an exact match and if not move on.
2275  */
2276 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2277 					    __be16 loc_port, __be32 loc_addr,
2278 					    __be16 rmt_port, __be32 rmt_addr,
2279 					    int dif, int sdif)
2280 {
2281 	unsigned short hnum = ntohs(loc_port);
2282 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2283 	unsigned int slot2 = hash2 & udp_table.mask;
2284 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2285 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2286 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2287 	struct sock *sk;
2288 
2289 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2290 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2291 			       loc_addr, ports, dif, sdif))
2292 			return sk;
2293 		/* Only check first socket in chain */
2294 		break;
2295 	}
2296 	return NULL;
2297 }
2298 
2299 int udp_v4_early_demux(struct sk_buff *skb)
2300 {
2301 	struct net *net = dev_net(skb->dev);
2302 	struct in_device *in_dev = NULL;
2303 	const struct iphdr *iph;
2304 	const struct udphdr *uh;
2305 	struct sock *sk = NULL;
2306 	struct dst_entry *dst;
2307 	int dif = skb->dev->ifindex;
2308 	int sdif = inet_sdif(skb);
2309 	int ours;
2310 
2311 	/* validate the packet */
2312 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2313 		return 0;
2314 
2315 	iph = ip_hdr(skb);
2316 	uh = udp_hdr(skb);
2317 
2318 	if (skb->pkt_type == PACKET_MULTICAST) {
2319 		in_dev = __in_dev_get_rcu(skb->dev);
2320 
2321 		if (!in_dev)
2322 			return 0;
2323 
2324 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2325 				       iph->protocol);
2326 		if (!ours)
2327 			return 0;
2328 
2329 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2330 						   uh->source, iph->saddr,
2331 						   dif, sdif);
2332 	} else if (skb->pkt_type == PACKET_HOST) {
2333 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2334 					     uh->source, iph->saddr, dif, sdif);
2335 	}
2336 
2337 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2338 		return 0;
2339 
2340 	skb->sk = sk;
2341 	skb->destructor = sock_efree;
2342 	dst = READ_ONCE(sk->sk_rx_dst);
2343 
2344 	if (dst)
2345 		dst = dst_check(dst, 0);
2346 	if (dst) {
2347 		u32 itag = 0;
2348 
2349 		/* set noref for now.
2350 		 * any place which wants to hold dst has to call
2351 		 * dst_hold_safe()
2352 		 */
2353 		skb_dst_set_noref(skb, dst);
2354 
2355 		/* for unconnected multicast sockets we need to validate
2356 		 * the source on each packet
2357 		 */
2358 		if (!inet_sk(sk)->inet_daddr && in_dev)
2359 			return ip_mc_validate_source(skb, iph->daddr,
2360 						     iph->saddr, iph->tos,
2361 						     skb->dev, in_dev, &itag);
2362 	}
2363 	return 0;
2364 }
2365 
2366 int udp_rcv(struct sk_buff *skb)
2367 {
2368 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2369 }
2370 
2371 void udp_destroy_sock(struct sock *sk)
2372 {
2373 	struct udp_sock *up = udp_sk(sk);
2374 	bool slow = lock_sock_fast(sk);
2375 	udp_flush_pending_frames(sk);
2376 	unlock_sock_fast(sk, slow);
2377 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2378 		void (*encap_destroy)(struct sock *sk);
2379 		encap_destroy = READ_ONCE(up->encap_destroy);
2380 		if (encap_destroy)
2381 			encap_destroy(sk);
2382 	}
2383 }
2384 
2385 /*
2386  *	Socket option code for UDP
2387  */
2388 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2389 		       char __user *optval, unsigned int optlen,
2390 		       int (*push_pending_frames)(struct sock *))
2391 {
2392 	struct udp_sock *up = udp_sk(sk);
2393 	int val, valbool;
2394 	int err = 0;
2395 	int is_udplite = IS_UDPLITE(sk);
2396 
2397 	if (optlen < sizeof(int))
2398 		return -EINVAL;
2399 
2400 	if (get_user(val, (int __user *)optval))
2401 		return -EFAULT;
2402 
2403 	valbool = val ? 1 : 0;
2404 
2405 	switch (optname) {
2406 	case UDP_CORK:
2407 		if (val != 0) {
2408 			up->corkflag = 1;
2409 		} else {
2410 			up->corkflag = 0;
2411 			lock_sock(sk);
2412 			push_pending_frames(sk);
2413 			release_sock(sk);
2414 		}
2415 		break;
2416 
2417 	case UDP_ENCAP:
2418 		switch (val) {
2419 		case 0:
2420 		case UDP_ENCAP_ESPINUDP:
2421 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2422 			up->encap_rcv = xfrm4_udp_encap_rcv;
2423 			/* FALLTHROUGH */
2424 		case UDP_ENCAP_L2TPINUDP:
2425 			up->encap_type = val;
2426 			udp_encap_enable();
2427 			break;
2428 		default:
2429 			err = -ENOPROTOOPT;
2430 			break;
2431 		}
2432 		break;
2433 
2434 	case UDP_NO_CHECK6_TX:
2435 		up->no_check6_tx = valbool;
2436 		break;
2437 
2438 	case UDP_NO_CHECK6_RX:
2439 		up->no_check6_rx = valbool;
2440 		break;
2441 
2442 	case UDP_SEGMENT:
2443 		if (val < 0 || val > USHRT_MAX)
2444 			return -EINVAL;
2445 		up->gso_size = val;
2446 		break;
2447 
2448 	/*
2449 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2450 	 */
2451 	/* The sender sets actual checksum coverage length via this option.
2452 	 * The case coverage > packet length is handled by send module. */
2453 	case UDPLITE_SEND_CSCOV:
2454 		if (!is_udplite)         /* Disable the option on UDP sockets */
2455 			return -ENOPROTOOPT;
2456 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2457 			val = 8;
2458 		else if (val > USHRT_MAX)
2459 			val = USHRT_MAX;
2460 		up->pcslen = val;
2461 		up->pcflag |= UDPLITE_SEND_CC;
2462 		break;
2463 
2464 	/* The receiver specifies a minimum checksum coverage value. To make
2465 	 * sense, this should be set to at least 8 (as done below). If zero is
2466 	 * used, this again means full checksum coverage.                     */
2467 	case UDPLITE_RECV_CSCOV:
2468 		if (!is_udplite)         /* Disable the option on UDP sockets */
2469 			return -ENOPROTOOPT;
2470 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2471 			val = 8;
2472 		else if (val > USHRT_MAX)
2473 			val = USHRT_MAX;
2474 		up->pcrlen = val;
2475 		up->pcflag |= UDPLITE_RECV_CC;
2476 		break;
2477 
2478 	default:
2479 		err = -ENOPROTOOPT;
2480 		break;
2481 	}
2482 
2483 	return err;
2484 }
2485 EXPORT_SYMBOL(udp_lib_setsockopt);
2486 
2487 int udp_setsockopt(struct sock *sk, int level, int optname,
2488 		   char __user *optval, unsigned int optlen)
2489 {
2490 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2491 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2492 					  udp_push_pending_frames);
2493 	return ip_setsockopt(sk, level, optname, optval, optlen);
2494 }
2495 
2496 #ifdef CONFIG_COMPAT
2497 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2498 			  char __user *optval, unsigned int optlen)
2499 {
2500 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2501 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2502 					  udp_push_pending_frames);
2503 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2504 }
2505 #endif
2506 
2507 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2508 		       char __user *optval, int __user *optlen)
2509 {
2510 	struct udp_sock *up = udp_sk(sk);
2511 	int val, len;
2512 
2513 	if (get_user(len, optlen))
2514 		return -EFAULT;
2515 
2516 	len = min_t(unsigned int, len, sizeof(int));
2517 
2518 	if (len < 0)
2519 		return -EINVAL;
2520 
2521 	switch (optname) {
2522 	case UDP_CORK:
2523 		val = up->corkflag;
2524 		break;
2525 
2526 	case UDP_ENCAP:
2527 		val = up->encap_type;
2528 		break;
2529 
2530 	case UDP_NO_CHECK6_TX:
2531 		val = up->no_check6_tx;
2532 		break;
2533 
2534 	case UDP_NO_CHECK6_RX:
2535 		val = up->no_check6_rx;
2536 		break;
2537 
2538 	case UDP_SEGMENT:
2539 		val = up->gso_size;
2540 		break;
2541 
2542 	/* The following two cannot be changed on UDP sockets, the return is
2543 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2544 	case UDPLITE_SEND_CSCOV:
2545 		val = up->pcslen;
2546 		break;
2547 
2548 	case UDPLITE_RECV_CSCOV:
2549 		val = up->pcrlen;
2550 		break;
2551 
2552 	default:
2553 		return -ENOPROTOOPT;
2554 	}
2555 
2556 	if (put_user(len, optlen))
2557 		return -EFAULT;
2558 	if (copy_to_user(optval, &val, len))
2559 		return -EFAULT;
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL(udp_lib_getsockopt);
2563 
2564 int udp_getsockopt(struct sock *sk, int level, int optname,
2565 		   char __user *optval, int __user *optlen)
2566 {
2567 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2568 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2569 	return ip_getsockopt(sk, level, optname, optval, optlen);
2570 }
2571 
2572 #ifdef CONFIG_COMPAT
2573 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2574 				 char __user *optval, int __user *optlen)
2575 {
2576 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2577 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2578 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2579 }
2580 #endif
2581 /**
2582  * 	udp_poll - wait for a UDP event.
2583  *	@file - file struct
2584  *	@sock - socket
2585  *	@wait - poll table
2586  *
2587  *	This is same as datagram poll, except for the special case of
2588  *	blocking sockets. If application is using a blocking fd
2589  *	and a packet with checksum error is in the queue;
2590  *	then it could get return from select indicating data available
2591  *	but then block when reading it. Add special case code
2592  *	to work around these arguably broken applications.
2593  */
2594 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2595 {
2596 	__poll_t mask = datagram_poll(file, sock, wait);
2597 	struct sock *sk = sock->sk;
2598 
2599 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2600 		mask |= EPOLLIN | EPOLLRDNORM;
2601 
2602 	/* Check for false positives due to checksum errors */
2603 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2604 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2605 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2606 
2607 	return mask;
2608 
2609 }
2610 EXPORT_SYMBOL(udp_poll);
2611 
2612 int udp_abort(struct sock *sk, int err)
2613 {
2614 	lock_sock(sk);
2615 
2616 	sk->sk_err = err;
2617 	sk->sk_error_report(sk);
2618 	__udp_disconnect(sk, 0);
2619 
2620 	release_sock(sk);
2621 
2622 	return 0;
2623 }
2624 EXPORT_SYMBOL_GPL(udp_abort);
2625 
2626 struct proto udp_prot = {
2627 	.name			= "UDP",
2628 	.owner			= THIS_MODULE,
2629 	.close			= udp_lib_close,
2630 	.pre_connect		= udp_pre_connect,
2631 	.connect		= ip4_datagram_connect,
2632 	.disconnect		= udp_disconnect,
2633 	.ioctl			= udp_ioctl,
2634 	.init			= udp_init_sock,
2635 	.destroy		= udp_destroy_sock,
2636 	.setsockopt		= udp_setsockopt,
2637 	.getsockopt		= udp_getsockopt,
2638 	.sendmsg		= udp_sendmsg,
2639 	.recvmsg		= udp_recvmsg,
2640 	.sendpage		= udp_sendpage,
2641 	.release_cb		= ip4_datagram_release_cb,
2642 	.hash			= udp_lib_hash,
2643 	.unhash			= udp_lib_unhash,
2644 	.rehash			= udp_v4_rehash,
2645 	.get_port		= udp_v4_get_port,
2646 	.memory_allocated	= &udp_memory_allocated,
2647 	.sysctl_mem		= sysctl_udp_mem,
2648 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2649 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2650 	.obj_size		= sizeof(struct udp_sock),
2651 	.h.udp_table		= &udp_table,
2652 #ifdef CONFIG_COMPAT
2653 	.compat_setsockopt	= compat_udp_setsockopt,
2654 	.compat_getsockopt	= compat_udp_getsockopt,
2655 #endif
2656 	.diag_destroy		= udp_abort,
2657 };
2658 EXPORT_SYMBOL(udp_prot);
2659 
2660 /* ------------------------------------------------------------------------ */
2661 #ifdef CONFIG_PROC_FS
2662 
2663 static struct sock *udp_get_first(struct seq_file *seq, int start)
2664 {
2665 	struct sock *sk;
2666 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2667 	struct udp_iter_state *state = seq->private;
2668 	struct net *net = seq_file_net(seq);
2669 
2670 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2671 	     ++state->bucket) {
2672 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2673 
2674 		if (hlist_empty(&hslot->head))
2675 			continue;
2676 
2677 		spin_lock_bh(&hslot->lock);
2678 		sk_for_each(sk, &hslot->head) {
2679 			if (!net_eq(sock_net(sk), net))
2680 				continue;
2681 			if (sk->sk_family == afinfo->family)
2682 				goto found;
2683 		}
2684 		spin_unlock_bh(&hslot->lock);
2685 	}
2686 	sk = NULL;
2687 found:
2688 	return sk;
2689 }
2690 
2691 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2692 {
2693 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2694 	struct udp_iter_state *state = seq->private;
2695 	struct net *net = seq_file_net(seq);
2696 
2697 	do {
2698 		sk = sk_next(sk);
2699 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2700 
2701 	if (!sk) {
2702 		if (state->bucket <= afinfo->udp_table->mask)
2703 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2704 		return udp_get_first(seq, state->bucket + 1);
2705 	}
2706 	return sk;
2707 }
2708 
2709 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2710 {
2711 	struct sock *sk = udp_get_first(seq, 0);
2712 
2713 	if (sk)
2714 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2715 			--pos;
2716 	return pos ? NULL : sk;
2717 }
2718 
2719 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2720 {
2721 	struct udp_iter_state *state = seq->private;
2722 	state->bucket = MAX_UDP_PORTS;
2723 
2724 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2725 }
2726 EXPORT_SYMBOL(udp_seq_start);
2727 
2728 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2729 {
2730 	struct sock *sk;
2731 
2732 	if (v == SEQ_START_TOKEN)
2733 		sk = udp_get_idx(seq, 0);
2734 	else
2735 		sk = udp_get_next(seq, v);
2736 
2737 	++*pos;
2738 	return sk;
2739 }
2740 EXPORT_SYMBOL(udp_seq_next);
2741 
2742 void udp_seq_stop(struct seq_file *seq, void *v)
2743 {
2744 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2745 	struct udp_iter_state *state = seq->private;
2746 
2747 	if (state->bucket <= afinfo->udp_table->mask)
2748 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2749 }
2750 EXPORT_SYMBOL(udp_seq_stop);
2751 
2752 /* ------------------------------------------------------------------------ */
2753 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2754 		int bucket)
2755 {
2756 	struct inet_sock *inet = inet_sk(sp);
2757 	__be32 dest = inet->inet_daddr;
2758 	__be32 src  = inet->inet_rcv_saddr;
2759 	__u16 destp	  = ntohs(inet->inet_dport);
2760 	__u16 srcp	  = ntohs(inet->inet_sport);
2761 
2762 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2763 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2764 		bucket, src, srcp, dest, destp, sp->sk_state,
2765 		sk_wmem_alloc_get(sp),
2766 		udp_rqueue_get(sp),
2767 		0, 0L, 0,
2768 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2769 		0, sock_i_ino(sp),
2770 		refcount_read(&sp->sk_refcnt), sp,
2771 		atomic_read(&sp->sk_drops));
2772 }
2773 
2774 int udp4_seq_show(struct seq_file *seq, void *v)
2775 {
2776 	seq_setwidth(seq, 127);
2777 	if (v == SEQ_START_TOKEN)
2778 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2779 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2780 			   "inode ref pointer drops");
2781 	else {
2782 		struct udp_iter_state *state = seq->private;
2783 
2784 		udp4_format_sock(v, seq, state->bucket);
2785 	}
2786 	seq_pad(seq, '\n');
2787 	return 0;
2788 }
2789 
2790 const struct seq_operations udp_seq_ops = {
2791 	.start		= udp_seq_start,
2792 	.next		= udp_seq_next,
2793 	.stop		= udp_seq_stop,
2794 	.show		= udp4_seq_show,
2795 };
2796 EXPORT_SYMBOL(udp_seq_ops);
2797 
2798 static struct udp_seq_afinfo udp4_seq_afinfo = {
2799 	.family		= AF_INET,
2800 	.udp_table	= &udp_table,
2801 };
2802 
2803 static int __net_init udp4_proc_init_net(struct net *net)
2804 {
2805 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2806 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2807 		return -ENOMEM;
2808 	return 0;
2809 }
2810 
2811 static void __net_exit udp4_proc_exit_net(struct net *net)
2812 {
2813 	remove_proc_entry("udp", net->proc_net);
2814 }
2815 
2816 static struct pernet_operations udp4_net_ops = {
2817 	.init = udp4_proc_init_net,
2818 	.exit = udp4_proc_exit_net,
2819 };
2820 
2821 int __init udp4_proc_init(void)
2822 {
2823 	return register_pernet_subsys(&udp4_net_ops);
2824 }
2825 
2826 void udp4_proc_exit(void)
2827 {
2828 	unregister_pernet_subsys(&udp4_net_ops);
2829 }
2830 #endif /* CONFIG_PROC_FS */
2831 
2832 static __initdata unsigned long uhash_entries;
2833 static int __init set_uhash_entries(char *str)
2834 {
2835 	ssize_t ret;
2836 
2837 	if (!str)
2838 		return 0;
2839 
2840 	ret = kstrtoul(str, 0, &uhash_entries);
2841 	if (ret)
2842 		return 0;
2843 
2844 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2845 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2846 	return 1;
2847 }
2848 __setup("uhash_entries=", set_uhash_entries);
2849 
2850 void __init udp_table_init(struct udp_table *table, const char *name)
2851 {
2852 	unsigned int i;
2853 
2854 	table->hash = alloc_large_system_hash(name,
2855 					      2 * sizeof(struct udp_hslot),
2856 					      uhash_entries,
2857 					      21, /* one slot per 2 MB */
2858 					      0,
2859 					      &table->log,
2860 					      &table->mask,
2861 					      UDP_HTABLE_SIZE_MIN,
2862 					      64 * 1024);
2863 
2864 	table->hash2 = table->hash + (table->mask + 1);
2865 	for (i = 0; i <= table->mask; i++) {
2866 		INIT_HLIST_HEAD(&table->hash[i].head);
2867 		table->hash[i].count = 0;
2868 		spin_lock_init(&table->hash[i].lock);
2869 	}
2870 	for (i = 0; i <= table->mask; i++) {
2871 		INIT_HLIST_HEAD(&table->hash2[i].head);
2872 		table->hash2[i].count = 0;
2873 		spin_lock_init(&table->hash2[i].lock);
2874 	}
2875 }
2876 
2877 u32 udp_flow_hashrnd(void)
2878 {
2879 	static u32 hashrnd __read_mostly;
2880 
2881 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2882 
2883 	return hashrnd;
2884 }
2885 EXPORT_SYMBOL(udp_flow_hashrnd);
2886 
2887 static void __udp_sysctl_init(struct net *net)
2888 {
2889 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2890 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2891 
2892 #ifdef CONFIG_NET_L3_MASTER_DEV
2893 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2894 #endif
2895 }
2896 
2897 static int __net_init udp_sysctl_init(struct net *net)
2898 {
2899 	__udp_sysctl_init(net);
2900 	return 0;
2901 }
2902 
2903 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2904 	.init	= udp_sysctl_init,
2905 };
2906 
2907 void __init udp_init(void)
2908 {
2909 	unsigned long limit;
2910 	unsigned int i;
2911 
2912 	udp_table_init(&udp_table, "UDP");
2913 	limit = nr_free_buffer_pages() / 8;
2914 	limit = max(limit, 128UL);
2915 	sysctl_udp_mem[0] = limit / 4 * 3;
2916 	sysctl_udp_mem[1] = limit;
2917 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2918 
2919 	__udp_sysctl_init(&init_net);
2920 
2921 	/* 16 spinlocks per cpu */
2922 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2923 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2924 				GFP_KERNEL);
2925 	if (!udp_busylocks)
2926 		panic("UDP: failed to alloc udp_busylocks\n");
2927 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2928 		spin_lock_init(udp_busylocks + i);
2929 
2930 	if (register_pernet_subsys(&udp_sysctl_ops))
2931 		panic("UDP: failed to init sysctl parameters.\n");
2932 }
2933