1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 548 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 549 __be32 daddr, __be16 dport, int dif) 550 { 551 struct sock *sk; 552 553 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 554 dif, 0, &udp_table, NULL); 555 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 556 sk = NULL; 557 return sk; 558 } 559 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 560 #endif 561 562 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 563 __be16 loc_port, __be32 loc_addr, 564 __be16 rmt_port, __be32 rmt_addr, 565 int dif, int sdif, unsigned short hnum) 566 { 567 struct inet_sock *inet = inet_sk(sk); 568 569 if (!net_eq(sock_net(sk), net) || 570 udp_sk(sk)->udp_port_hash != hnum || 571 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 572 (inet->inet_dport != rmt_port && inet->inet_dport) || 573 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 574 ipv6_only_sock(sk) || 575 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 576 sk->sk_bound_dev_if != sdif)) 577 return false; 578 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 579 return false; 580 return true; 581 } 582 583 /* 584 * This routine is called by the ICMP module when it gets some 585 * sort of error condition. If err < 0 then the socket should 586 * be closed and the error returned to the user. If err > 0 587 * it's just the icmp type << 8 | icmp code. 588 * Header points to the ip header of the error packet. We move 589 * on past this. Then (as it used to claim before adjustment) 590 * header points to the first 8 bytes of the udp header. We need 591 * to find the appropriate port. 592 */ 593 594 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 595 { 596 struct inet_sock *inet; 597 const struct iphdr *iph = (const struct iphdr *)skb->data; 598 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 599 const int type = icmp_hdr(skb)->type; 600 const int code = icmp_hdr(skb)->code; 601 struct sock *sk; 602 int harderr; 603 int err; 604 struct net *net = dev_net(skb->dev); 605 606 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 607 iph->saddr, uh->source, skb->dev->ifindex, 0, 608 udptable, NULL); 609 if (!sk) { 610 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 611 return; /* No socket for error */ 612 } 613 614 err = 0; 615 harderr = 0; 616 inet = inet_sk(sk); 617 618 switch (type) { 619 default: 620 case ICMP_TIME_EXCEEDED: 621 err = EHOSTUNREACH; 622 break; 623 case ICMP_SOURCE_QUENCH: 624 goto out; 625 case ICMP_PARAMETERPROB: 626 err = EPROTO; 627 harderr = 1; 628 break; 629 case ICMP_DEST_UNREACH: 630 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 631 ipv4_sk_update_pmtu(skb, sk, info); 632 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 633 err = EMSGSIZE; 634 harderr = 1; 635 break; 636 } 637 goto out; 638 } 639 err = EHOSTUNREACH; 640 if (code <= NR_ICMP_UNREACH) { 641 harderr = icmp_err_convert[code].fatal; 642 err = icmp_err_convert[code].errno; 643 } 644 break; 645 case ICMP_REDIRECT: 646 ipv4_sk_redirect(skb, sk); 647 goto out; 648 } 649 650 /* 651 * RFC1122: OK. Passes ICMP errors back to application, as per 652 * 4.1.3.3. 653 */ 654 if (!inet->recverr) { 655 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 656 goto out; 657 } else 658 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 659 660 sk->sk_err = err; 661 sk->sk_error_report(sk); 662 out: 663 return; 664 } 665 666 void udp_err(struct sk_buff *skb, u32 info) 667 { 668 __udp4_lib_err(skb, info, &udp_table); 669 } 670 671 /* 672 * Throw away all pending data and cancel the corking. Socket is locked. 673 */ 674 void udp_flush_pending_frames(struct sock *sk) 675 { 676 struct udp_sock *up = udp_sk(sk); 677 678 if (up->pending) { 679 up->len = 0; 680 up->pending = 0; 681 ip_flush_pending_frames(sk); 682 } 683 } 684 EXPORT_SYMBOL(udp_flush_pending_frames); 685 686 /** 687 * udp4_hwcsum - handle outgoing HW checksumming 688 * @skb: sk_buff containing the filled-in UDP header 689 * (checksum field must be zeroed out) 690 * @src: source IP address 691 * @dst: destination IP address 692 */ 693 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 694 { 695 struct udphdr *uh = udp_hdr(skb); 696 int offset = skb_transport_offset(skb); 697 int len = skb->len - offset; 698 int hlen = len; 699 __wsum csum = 0; 700 701 if (!skb_has_frag_list(skb)) { 702 /* 703 * Only one fragment on the socket. 704 */ 705 skb->csum_start = skb_transport_header(skb) - skb->head; 706 skb->csum_offset = offsetof(struct udphdr, check); 707 uh->check = ~csum_tcpudp_magic(src, dst, len, 708 IPPROTO_UDP, 0); 709 } else { 710 struct sk_buff *frags; 711 712 /* 713 * HW-checksum won't work as there are two or more 714 * fragments on the socket so that all csums of sk_buffs 715 * should be together 716 */ 717 skb_walk_frags(skb, frags) { 718 csum = csum_add(csum, frags->csum); 719 hlen -= frags->len; 720 } 721 722 csum = skb_checksum(skb, offset, hlen, csum); 723 skb->ip_summed = CHECKSUM_NONE; 724 725 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 726 if (uh->check == 0) 727 uh->check = CSUM_MANGLED_0; 728 } 729 } 730 EXPORT_SYMBOL_GPL(udp4_hwcsum); 731 732 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 733 * for the simple case like when setting the checksum for a UDP tunnel. 734 */ 735 void udp_set_csum(bool nocheck, struct sk_buff *skb, 736 __be32 saddr, __be32 daddr, int len) 737 { 738 struct udphdr *uh = udp_hdr(skb); 739 740 if (nocheck) { 741 uh->check = 0; 742 } else if (skb_is_gso(skb)) { 743 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 744 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 745 uh->check = 0; 746 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 747 if (uh->check == 0) 748 uh->check = CSUM_MANGLED_0; 749 } else { 750 skb->ip_summed = CHECKSUM_PARTIAL; 751 skb->csum_start = skb_transport_header(skb) - skb->head; 752 skb->csum_offset = offsetof(struct udphdr, check); 753 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 754 } 755 } 756 EXPORT_SYMBOL(udp_set_csum); 757 758 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 759 struct inet_cork *cork) 760 { 761 struct sock *sk = skb->sk; 762 struct inet_sock *inet = inet_sk(sk); 763 struct udphdr *uh; 764 int err = 0; 765 int is_udplite = IS_UDPLITE(sk); 766 int offset = skb_transport_offset(skb); 767 int len = skb->len - offset; 768 __wsum csum = 0; 769 770 /* 771 * Create a UDP header 772 */ 773 uh = udp_hdr(skb); 774 uh->source = inet->inet_sport; 775 uh->dest = fl4->fl4_dport; 776 uh->len = htons(len); 777 uh->check = 0; 778 779 if (cork->gso_size) { 780 const int hlen = skb_network_header_len(skb) + 781 sizeof(struct udphdr); 782 783 if (hlen + cork->gso_size > cork->fragsize) 784 return -EINVAL; 785 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 786 return -EINVAL; 787 if (sk->sk_no_check_tx) 788 return -EINVAL; 789 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 790 dst_xfrm(skb_dst(skb))) 791 return -EIO; 792 793 skb_shinfo(skb)->gso_size = cork->gso_size; 794 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 795 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 796 cork->gso_size); 797 goto csum_partial; 798 } 799 800 if (is_udplite) /* UDP-Lite */ 801 csum = udplite_csum(skb); 802 803 else if (sk->sk_no_check_tx) { /* UDP csum off */ 804 805 skb->ip_summed = CHECKSUM_NONE; 806 goto send; 807 808 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 809 csum_partial: 810 811 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 812 goto send; 813 814 } else 815 csum = udp_csum(skb); 816 817 /* add protocol-dependent pseudo-header */ 818 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 819 sk->sk_protocol, csum); 820 if (uh->check == 0) 821 uh->check = CSUM_MANGLED_0; 822 823 send: 824 err = ip_send_skb(sock_net(sk), skb); 825 if (err) { 826 if (err == -ENOBUFS && !inet->recverr) { 827 UDP_INC_STATS(sock_net(sk), 828 UDP_MIB_SNDBUFERRORS, is_udplite); 829 err = 0; 830 } 831 } else 832 UDP_INC_STATS(sock_net(sk), 833 UDP_MIB_OUTDATAGRAMS, is_udplite); 834 return err; 835 } 836 837 /* 838 * Push out all pending data as one UDP datagram. Socket is locked. 839 */ 840 int udp_push_pending_frames(struct sock *sk) 841 { 842 struct udp_sock *up = udp_sk(sk); 843 struct inet_sock *inet = inet_sk(sk); 844 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 845 struct sk_buff *skb; 846 int err = 0; 847 848 skb = ip_finish_skb(sk, fl4); 849 if (!skb) 850 goto out; 851 852 err = udp_send_skb(skb, fl4, &inet->cork.base); 853 854 out: 855 up->len = 0; 856 up->pending = 0; 857 return err; 858 } 859 EXPORT_SYMBOL(udp_push_pending_frames); 860 861 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 862 { 863 switch (cmsg->cmsg_type) { 864 case UDP_SEGMENT: 865 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 866 return -EINVAL; 867 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 868 return 0; 869 default: 870 return -EINVAL; 871 } 872 } 873 874 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 875 { 876 struct cmsghdr *cmsg; 877 bool need_ip = false; 878 int err; 879 880 for_each_cmsghdr(cmsg, msg) { 881 if (!CMSG_OK(msg, cmsg)) 882 return -EINVAL; 883 884 if (cmsg->cmsg_level != SOL_UDP) { 885 need_ip = true; 886 continue; 887 } 888 889 err = __udp_cmsg_send(cmsg, gso_size); 890 if (err) 891 return err; 892 } 893 894 return need_ip; 895 } 896 EXPORT_SYMBOL_GPL(udp_cmsg_send); 897 898 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 899 { 900 struct inet_sock *inet = inet_sk(sk); 901 struct udp_sock *up = udp_sk(sk); 902 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 903 struct flowi4 fl4_stack; 904 struct flowi4 *fl4; 905 int ulen = len; 906 struct ipcm_cookie ipc; 907 struct rtable *rt = NULL; 908 int free = 0; 909 int connected = 0; 910 __be32 daddr, faddr, saddr; 911 __be16 dport; 912 u8 tos; 913 int err, is_udplite = IS_UDPLITE(sk); 914 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 915 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 916 struct sk_buff *skb; 917 struct ip_options_data opt_copy; 918 919 if (len > 0xFFFF) 920 return -EMSGSIZE; 921 922 /* 923 * Check the flags. 924 */ 925 926 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 927 return -EOPNOTSUPP; 928 929 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 930 931 fl4 = &inet->cork.fl.u.ip4; 932 if (up->pending) { 933 /* 934 * There are pending frames. 935 * The socket lock must be held while it's corked. 936 */ 937 lock_sock(sk); 938 if (likely(up->pending)) { 939 if (unlikely(up->pending != AF_INET)) { 940 release_sock(sk); 941 return -EINVAL; 942 } 943 goto do_append_data; 944 } 945 release_sock(sk); 946 } 947 ulen += sizeof(struct udphdr); 948 949 /* 950 * Get and verify the address. 951 */ 952 if (usin) { 953 if (msg->msg_namelen < sizeof(*usin)) 954 return -EINVAL; 955 if (usin->sin_family != AF_INET) { 956 if (usin->sin_family != AF_UNSPEC) 957 return -EAFNOSUPPORT; 958 } 959 960 daddr = usin->sin_addr.s_addr; 961 dport = usin->sin_port; 962 if (dport == 0) 963 return -EINVAL; 964 } else { 965 if (sk->sk_state != TCP_ESTABLISHED) 966 return -EDESTADDRREQ; 967 daddr = inet->inet_daddr; 968 dport = inet->inet_dport; 969 /* Open fast path for connected socket. 970 Route will not be used, if at least one option is set. 971 */ 972 connected = 1; 973 } 974 975 ipcm_init_sk(&ipc, inet); 976 ipc.gso_size = up->gso_size; 977 978 if (msg->msg_controllen) { 979 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 980 if (err > 0) 981 err = ip_cmsg_send(sk, msg, &ipc, 982 sk->sk_family == AF_INET6); 983 if (unlikely(err < 0)) { 984 kfree(ipc.opt); 985 return err; 986 } 987 if (ipc.opt) 988 free = 1; 989 connected = 0; 990 } 991 if (!ipc.opt) { 992 struct ip_options_rcu *inet_opt; 993 994 rcu_read_lock(); 995 inet_opt = rcu_dereference(inet->inet_opt); 996 if (inet_opt) { 997 memcpy(&opt_copy, inet_opt, 998 sizeof(*inet_opt) + inet_opt->opt.optlen); 999 ipc.opt = &opt_copy.opt; 1000 } 1001 rcu_read_unlock(); 1002 } 1003 1004 if (cgroup_bpf_enabled && !connected) { 1005 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1006 (struct sockaddr *)usin, &ipc.addr); 1007 if (err) 1008 goto out_free; 1009 if (usin) { 1010 if (usin->sin_port == 0) { 1011 /* BPF program set invalid port. Reject it. */ 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 daddr = usin->sin_addr.s_addr; 1016 dport = usin->sin_port; 1017 } 1018 } 1019 1020 saddr = ipc.addr; 1021 ipc.addr = faddr = daddr; 1022 1023 if (ipc.opt && ipc.opt->opt.srr) { 1024 if (!daddr) { 1025 err = -EINVAL; 1026 goto out_free; 1027 } 1028 faddr = ipc.opt->opt.faddr; 1029 connected = 0; 1030 } 1031 tos = get_rttos(&ipc, inet); 1032 if (sock_flag(sk, SOCK_LOCALROUTE) || 1033 (msg->msg_flags & MSG_DONTROUTE) || 1034 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1035 tos |= RTO_ONLINK; 1036 connected = 0; 1037 } 1038 1039 if (ipv4_is_multicast(daddr)) { 1040 if (!ipc.oif) 1041 ipc.oif = inet->mc_index; 1042 if (!saddr) 1043 saddr = inet->mc_addr; 1044 connected = 0; 1045 } else if (!ipc.oif) { 1046 ipc.oif = inet->uc_index; 1047 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1048 /* oif is set, packet is to local broadcast and 1049 * and uc_index is set. oif is most likely set 1050 * by sk_bound_dev_if. If uc_index != oif check if the 1051 * oif is an L3 master and uc_index is an L3 slave. 1052 * If so, we want to allow the send using the uc_index. 1053 */ 1054 if (ipc.oif != inet->uc_index && 1055 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1056 inet->uc_index)) { 1057 ipc.oif = inet->uc_index; 1058 } 1059 } 1060 1061 if (connected) 1062 rt = (struct rtable *)sk_dst_check(sk, 0); 1063 1064 if (!rt) { 1065 struct net *net = sock_net(sk); 1066 __u8 flow_flags = inet_sk_flowi_flags(sk); 1067 1068 fl4 = &fl4_stack; 1069 1070 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1071 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1072 flow_flags, 1073 faddr, saddr, dport, inet->inet_sport, 1074 sk->sk_uid); 1075 1076 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1077 rt = ip_route_output_flow(net, fl4, sk); 1078 if (IS_ERR(rt)) { 1079 err = PTR_ERR(rt); 1080 rt = NULL; 1081 if (err == -ENETUNREACH) 1082 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1083 goto out; 1084 } 1085 1086 err = -EACCES; 1087 if ((rt->rt_flags & RTCF_BROADCAST) && 1088 !sock_flag(sk, SOCK_BROADCAST)) 1089 goto out; 1090 if (connected) 1091 sk_dst_set(sk, dst_clone(&rt->dst)); 1092 } 1093 1094 if (msg->msg_flags&MSG_CONFIRM) 1095 goto do_confirm; 1096 back_from_confirm: 1097 1098 saddr = fl4->saddr; 1099 if (!ipc.addr) 1100 daddr = ipc.addr = fl4->daddr; 1101 1102 /* Lockless fast path for the non-corking case. */ 1103 if (!corkreq) { 1104 struct inet_cork cork; 1105 1106 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1107 sizeof(struct udphdr), &ipc, &rt, 1108 &cork, msg->msg_flags); 1109 err = PTR_ERR(skb); 1110 if (!IS_ERR_OR_NULL(skb)) 1111 err = udp_send_skb(skb, fl4, &cork); 1112 goto out; 1113 } 1114 1115 lock_sock(sk); 1116 if (unlikely(up->pending)) { 1117 /* The socket is already corked while preparing it. */ 1118 /* ... which is an evident application bug. --ANK */ 1119 release_sock(sk); 1120 1121 net_dbg_ratelimited("socket already corked\n"); 1122 err = -EINVAL; 1123 goto out; 1124 } 1125 /* 1126 * Now cork the socket to pend data. 1127 */ 1128 fl4 = &inet->cork.fl.u.ip4; 1129 fl4->daddr = daddr; 1130 fl4->saddr = saddr; 1131 fl4->fl4_dport = dport; 1132 fl4->fl4_sport = inet->inet_sport; 1133 up->pending = AF_INET; 1134 1135 do_append_data: 1136 up->len += ulen; 1137 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1138 sizeof(struct udphdr), &ipc, &rt, 1139 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1140 if (err) 1141 udp_flush_pending_frames(sk); 1142 else if (!corkreq) 1143 err = udp_push_pending_frames(sk); 1144 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1145 up->pending = 0; 1146 release_sock(sk); 1147 1148 out: 1149 ip_rt_put(rt); 1150 out_free: 1151 if (free) 1152 kfree(ipc.opt); 1153 if (!err) 1154 return len; 1155 /* 1156 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1157 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1158 * we don't have a good statistic (IpOutDiscards but it can be too many 1159 * things). We could add another new stat but at least for now that 1160 * seems like overkill. 1161 */ 1162 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1163 UDP_INC_STATS(sock_net(sk), 1164 UDP_MIB_SNDBUFERRORS, is_udplite); 1165 } 1166 return err; 1167 1168 do_confirm: 1169 if (msg->msg_flags & MSG_PROBE) 1170 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1171 if (!(msg->msg_flags&MSG_PROBE) || len) 1172 goto back_from_confirm; 1173 err = 0; 1174 goto out; 1175 } 1176 EXPORT_SYMBOL(udp_sendmsg); 1177 1178 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1179 size_t size, int flags) 1180 { 1181 struct inet_sock *inet = inet_sk(sk); 1182 struct udp_sock *up = udp_sk(sk); 1183 int ret; 1184 1185 if (flags & MSG_SENDPAGE_NOTLAST) 1186 flags |= MSG_MORE; 1187 1188 if (!up->pending) { 1189 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1190 1191 /* Call udp_sendmsg to specify destination address which 1192 * sendpage interface can't pass. 1193 * This will succeed only when the socket is connected. 1194 */ 1195 ret = udp_sendmsg(sk, &msg, 0); 1196 if (ret < 0) 1197 return ret; 1198 } 1199 1200 lock_sock(sk); 1201 1202 if (unlikely(!up->pending)) { 1203 release_sock(sk); 1204 1205 net_dbg_ratelimited("cork failed\n"); 1206 return -EINVAL; 1207 } 1208 1209 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1210 page, offset, size, flags); 1211 if (ret == -EOPNOTSUPP) { 1212 release_sock(sk); 1213 return sock_no_sendpage(sk->sk_socket, page, offset, 1214 size, flags); 1215 } 1216 if (ret < 0) { 1217 udp_flush_pending_frames(sk); 1218 goto out; 1219 } 1220 1221 up->len += size; 1222 if (!(up->corkflag || (flags&MSG_MORE))) 1223 ret = udp_push_pending_frames(sk); 1224 if (!ret) 1225 ret = size; 1226 out: 1227 release_sock(sk); 1228 return ret; 1229 } 1230 1231 #define UDP_SKB_IS_STATELESS 0x80000000 1232 1233 static void udp_set_dev_scratch(struct sk_buff *skb) 1234 { 1235 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1236 1237 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1238 scratch->_tsize_state = skb->truesize; 1239 #if BITS_PER_LONG == 64 1240 scratch->len = skb->len; 1241 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1242 scratch->is_linear = !skb_is_nonlinear(skb); 1243 #endif 1244 /* all head states execept sp (dst, sk, nf) are always cleared by 1245 * udp_rcv() and we need to preserve secpath, if present, to eventually 1246 * process IP_CMSG_PASSSEC at recvmsg() time 1247 */ 1248 if (likely(!skb_sec_path(skb))) 1249 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1250 } 1251 1252 static int udp_skb_truesize(struct sk_buff *skb) 1253 { 1254 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1255 } 1256 1257 static bool udp_skb_has_head_state(struct sk_buff *skb) 1258 { 1259 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1260 } 1261 1262 /* fully reclaim rmem/fwd memory allocated for skb */ 1263 static void udp_rmem_release(struct sock *sk, int size, int partial, 1264 bool rx_queue_lock_held) 1265 { 1266 struct udp_sock *up = udp_sk(sk); 1267 struct sk_buff_head *sk_queue; 1268 int amt; 1269 1270 if (likely(partial)) { 1271 up->forward_deficit += size; 1272 size = up->forward_deficit; 1273 if (size < (sk->sk_rcvbuf >> 2)) 1274 return; 1275 } else { 1276 size += up->forward_deficit; 1277 } 1278 up->forward_deficit = 0; 1279 1280 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1281 * if the called don't held it already 1282 */ 1283 sk_queue = &sk->sk_receive_queue; 1284 if (!rx_queue_lock_held) 1285 spin_lock(&sk_queue->lock); 1286 1287 1288 sk->sk_forward_alloc += size; 1289 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1290 sk->sk_forward_alloc -= amt; 1291 1292 if (amt) 1293 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1294 1295 atomic_sub(size, &sk->sk_rmem_alloc); 1296 1297 /* this can save us from acquiring the rx queue lock on next receive */ 1298 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1299 1300 if (!rx_queue_lock_held) 1301 spin_unlock(&sk_queue->lock); 1302 } 1303 1304 /* Note: called with reader_queue.lock held. 1305 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1306 * This avoids a cache line miss while receive_queue lock is held. 1307 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1308 */ 1309 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1310 { 1311 prefetch(&skb->data); 1312 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1313 } 1314 EXPORT_SYMBOL(udp_skb_destructor); 1315 1316 /* as above, but the caller held the rx queue lock, too */ 1317 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1318 { 1319 prefetch(&skb->data); 1320 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1321 } 1322 1323 /* Idea of busylocks is to let producers grab an extra spinlock 1324 * to relieve pressure on the receive_queue spinlock shared by consumer. 1325 * Under flood, this means that only one producer can be in line 1326 * trying to acquire the receive_queue spinlock. 1327 * These busylock can be allocated on a per cpu manner, instead of a 1328 * per socket one (that would consume a cache line per socket) 1329 */ 1330 static int udp_busylocks_log __read_mostly; 1331 static spinlock_t *udp_busylocks __read_mostly; 1332 1333 static spinlock_t *busylock_acquire(void *ptr) 1334 { 1335 spinlock_t *busy; 1336 1337 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1338 spin_lock(busy); 1339 return busy; 1340 } 1341 1342 static void busylock_release(spinlock_t *busy) 1343 { 1344 if (busy) 1345 spin_unlock(busy); 1346 } 1347 1348 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1349 { 1350 struct sk_buff_head *list = &sk->sk_receive_queue; 1351 int rmem, delta, amt, err = -ENOMEM; 1352 spinlock_t *busy = NULL; 1353 int size; 1354 1355 /* try to avoid the costly atomic add/sub pair when the receive 1356 * queue is full; always allow at least a packet 1357 */ 1358 rmem = atomic_read(&sk->sk_rmem_alloc); 1359 if (rmem > sk->sk_rcvbuf) 1360 goto drop; 1361 1362 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1363 * having linear skbs : 1364 * - Reduce memory overhead and thus increase receive queue capacity 1365 * - Less cache line misses at copyout() time 1366 * - Less work at consume_skb() (less alien page frag freeing) 1367 */ 1368 if (rmem > (sk->sk_rcvbuf >> 1)) { 1369 skb_condense(skb); 1370 1371 busy = busylock_acquire(sk); 1372 } 1373 size = skb->truesize; 1374 udp_set_dev_scratch(skb); 1375 1376 /* we drop only if the receive buf is full and the receive 1377 * queue contains some other skb 1378 */ 1379 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1380 if (rmem > (size + sk->sk_rcvbuf)) 1381 goto uncharge_drop; 1382 1383 spin_lock(&list->lock); 1384 if (size >= sk->sk_forward_alloc) { 1385 amt = sk_mem_pages(size); 1386 delta = amt << SK_MEM_QUANTUM_SHIFT; 1387 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1388 err = -ENOBUFS; 1389 spin_unlock(&list->lock); 1390 goto uncharge_drop; 1391 } 1392 1393 sk->sk_forward_alloc += delta; 1394 } 1395 1396 sk->sk_forward_alloc -= size; 1397 1398 /* no need to setup a destructor, we will explicitly release the 1399 * forward allocated memory on dequeue 1400 */ 1401 sock_skb_set_dropcount(sk, skb); 1402 1403 __skb_queue_tail(list, skb); 1404 spin_unlock(&list->lock); 1405 1406 if (!sock_flag(sk, SOCK_DEAD)) 1407 sk->sk_data_ready(sk); 1408 1409 busylock_release(busy); 1410 return 0; 1411 1412 uncharge_drop: 1413 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1414 1415 drop: 1416 atomic_inc(&sk->sk_drops); 1417 busylock_release(busy); 1418 return err; 1419 } 1420 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1421 1422 void udp_destruct_sock(struct sock *sk) 1423 { 1424 /* reclaim completely the forward allocated memory */ 1425 struct udp_sock *up = udp_sk(sk); 1426 unsigned int total = 0; 1427 struct sk_buff *skb; 1428 1429 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1430 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1431 total += skb->truesize; 1432 kfree_skb(skb); 1433 } 1434 udp_rmem_release(sk, total, 0, true); 1435 1436 inet_sock_destruct(sk); 1437 } 1438 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1439 1440 int udp_init_sock(struct sock *sk) 1441 { 1442 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1443 sk->sk_destruct = udp_destruct_sock; 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(udp_init_sock); 1447 1448 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1449 { 1450 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1451 bool slow = lock_sock_fast(sk); 1452 1453 sk_peek_offset_bwd(sk, len); 1454 unlock_sock_fast(sk, slow); 1455 } 1456 1457 if (!skb_unref(skb)) 1458 return; 1459 1460 /* In the more common cases we cleared the head states previously, 1461 * see __udp_queue_rcv_skb(). 1462 */ 1463 if (unlikely(udp_skb_has_head_state(skb))) 1464 skb_release_head_state(skb); 1465 __consume_stateless_skb(skb); 1466 } 1467 EXPORT_SYMBOL_GPL(skb_consume_udp); 1468 1469 static struct sk_buff *__first_packet_length(struct sock *sk, 1470 struct sk_buff_head *rcvq, 1471 int *total) 1472 { 1473 struct sk_buff *skb; 1474 1475 while ((skb = skb_peek(rcvq)) != NULL) { 1476 if (udp_lib_checksum_complete(skb)) { 1477 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1478 IS_UDPLITE(sk)); 1479 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1480 IS_UDPLITE(sk)); 1481 atomic_inc(&sk->sk_drops); 1482 __skb_unlink(skb, rcvq); 1483 *total += skb->truesize; 1484 kfree_skb(skb); 1485 } else { 1486 /* the csum related bits could be changed, refresh 1487 * the scratch area 1488 */ 1489 udp_set_dev_scratch(skb); 1490 break; 1491 } 1492 } 1493 return skb; 1494 } 1495 1496 /** 1497 * first_packet_length - return length of first packet in receive queue 1498 * @sk: socket 1499 * 1500 * Drops all bad checksum frames, until a valid one is found. 1501 * Returns the length of found skb, or -1 if none is found. 1502 */ 1503 static int first_packet_length(struct sock *sk) 1504 { 1505 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1506 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1507 struct sk_buff *skb; 1508 int total = 0; 1509 int res; 1510 1511 spin_lock_bh(&rcvq->lock); 1512 skb = __first_packet_length(sk, rcvq, &total); 1513 if (!skb && !skb_queue_empty(sk_queue)) { 1514 spin_lock(&sk_queue->lock); 1515 skb_queue_splice_tail_init(sk_queue, rcvq); 1516 spin_unlock(&sk_queue->lock); 1517 1518 skb = __first_packet_length(sk, rcvq, &total); 1519 } 1520 res = skb ? skb->len : -1; 1521 if (total) 1522 udp_rmem_release(sk, total, 1, false); 1523 spin_unlock_bh(&rcvq->lock); 1524 return res; 1525 } 1526 1527 /* 1528 * IOCTL requests applicable to the UDP protocol 1529 */ 1530 1531 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1532 { 1533 switch (cmd) { 1534 case SIOCOUTQ: 1535 { 1536 int amount = sk_wmem_alloc_get(sk); 1537 1538 return put_user(amount, (int __user *)arg); 1539 } 1540 1541 case SIOCINQ: 1542 { 1543 int amount = max_t(int, 0, first_packet_length(sk)); 1544 1545 return put_user(amount, (int __user *)arg); 1546 } 1547 1548 default: 1549 return -ENOIOCTLCMD; 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL(udp_ioctl); 1555 1556 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1557 int noblock, int *peeked, int *off, int *err) 1558 { 1559 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1560 struct sk_buff_head *queue; 1561 struct sk_buff *last; 1562 long timeo; 1563 int error; 1564 1565 queue = &udp_sk(sk)->reader_queue; 1566 flags |= noblock ? MSG_DONTWAIT : 0; 1567 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1568 do { 1569 struct sk_buff *skb; 1570 1571 error = sock_error(sk); 1572 if (error) 1573 break; 1574 1575 error = -EAGAIN; 1576 *peeked = 0; 1577 do { 1578 spin_lock_bh(&queue->lock); 1579 skb = __skb_try_recv_from_queue(sk, queue, flags, 1580 udp_skb_destructor, 1581 peeked, off, err, 1582 &last); 1583 if (skb) { 1584 spin_unlock_bh(&queue->lock); 1585 return skb; 1586 } 1587 1588 if (skb_queue_empty(sk_queue)) { 1589 spin_unlock_bh(&queue->lock); 1590 goto busy_check; 1591 } 1592 1593 /* refill the reader queue and walk it again 1594 * keep both queues locked to avoid re-acquiring 1595 * the sk_receive_queue lock if fwd memory scheduling 1596 * is needed. 1597 */ 1598 spin_lock(&sk_queue->lock); 1599 skb_queue_splice_tail_init(sk_queue, queue); 1600 1601 skb = __skb_try_recv_from_queue(sk, queue, flags, 1602 udp_skb_dtor_locked, 1603 peeked, off, err, 1604 &last); 1605 spin_unlock(&sk_queue->lock); 1606 spin_unlock_bh(&queue->lock); 1607 if (skb) 1608 return skb; 1609 1610 busy_check: 1611 if (!sk_can_busy_loop(sk)) 1612 break; 1613 1614 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1615 } while (!skb_queue_empty(sk_queue)); 1616 1617 /* sk_queue is empty, reader_queue may contain peeked packets */ 1618 } while (timeo && 1619 !__skb_wait_for_more_packets(sk, &error, &timeo, 1620 (struct sk_buff *)sk_queue)); 1621 1622 *err = error; 1623 return NULL; 1624 } 1625 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1626 1627 /* 1628 * This should be easy, if there is something there we 1629 * return it, otherwise we block. 1630 */ 1631 1632 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1633 int flags, int *addr_len) 1634 { 1635 struct inet_sock *inet = inet_sk(sk); 1636 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1637 struct sk_buff *skb; 1638 unsigned int ulen, copied; 1639 int peeked, peeking, off; 1640 int err; 1641 int is_udplite = IS_UDPLITE(sk); 1642 bool checksum_valid = false; 1643 1644 if (flags & MSG_ERRQUEUE) 1645 return ip_recv_error(sk, msg, len, addr_len); 1646 1647 try_again: 1648 peeking = flags & MSG_PEEK; 1649 off = sk_peek_offset(sk, flags); 1650 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1651 if (!skb) 1652 return err; 1653 1654 ulen = udp_skb_len(skb); 1655 copied = len; 1656 if (copied > ulen - off) 1657 copied = ulen - off; 1658 else if (copied < ulen) 1659 msg->msg_flags |= MSG_TRUNC; 1660 1661 /* 1662 * If checksum is needed at all, try to do it while copying the 1663 * data. If the data is truncated, or if we only want a partial 1664 * coverage checksum (UDP-Lite), do it before the copy. 1665 */ 1666 1667 if (copied < ulen || peeking || 1668 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1669 checksum_valid = udp_skb_csum_unnecessary(skb) || 1670 !__udp_lib_checksum_complete(skb); 1671 if (!checksum_valid) 1672 goto csum_copy_err; 1673 } 1674 1675 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1676 if (udp_skb_is_linear(skb)) 1677 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1678 else 1679 err = skb_copy_datagram_msg(skb, off, msg, copied); 1680 } else { 1681 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1682 1683 if (err == -EINVAL) 1684 goto csum_copy_err; 1685 } 1686 1687 if (unlikely(err)) { 1688 if (!peeked) { 1689 atomic_inc(&sk->sk_drops); 1690 UDP_INC_STATS(sock_net(sk), 1691 UDP_MIB_INERRORS, is_udplite); 1692 } 1693 kfree_skb(skb); 1694 return err; 1695 } 1696 1697 if (!peeked) 1698 UDP_INC_STATS(sock_net(sk), 1699 UDP_MIB_INDATAGRAMS, is_udplite); 1700 1701 sock_recv_ts_and_drops(msg, sk, skb); 1702 1703 /* Copy the address. */ 1704 if (sin) { 1705 sin->sin_family = AF_INET; 1706 sin->sin_port = udp_hdr(skb)->source; 1707 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1708 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1709 *addr_len = sizeof(*sin); 1710 } 1711 if (inet->cmsg_flags) 1712 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1713 1714 err = copied; 1715 if (flags & MSG_TRUNC) 1716 err = ulen; 1717 1718 skb_consume_udp(sk, skb, peeking ? -err : err); 1719 return err; 1720 1721 csum_copy_err: 1722 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1723 udp_skb_destructor)) { 1724 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1725 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1726 } 1727 kfree_skb(skb); 1728 1729 /* starting over for a new packet, but check if we need to yield */ 1730 cond_resched(); 1731 msg->msg_flags &= ~MSG_TRUNC; 1732 goto try_again; 1733 } 1734 1735 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1736 { 1737 /* This check is replicated from __ip4_datagram_connect() and 1738 * intended to prevent BPF program called below from accessing bytes 1739 * that are out of the bound specified by user in addr_len. 1740 */ 1741 if (addr_len < sizeof(struct sockaddr_in)) 1742 return -EINVAL; 1743 1744 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1745 } 1746 EXPORT_SYMBOL(udp_pre_connect); 1747 1748 int __udp_disconnect(struct sock *sk, int flags) 1749 { 1750 struct inet_sock *inet = inet_sk(sk); 1751 /* 1752 * 1003.1g - break association. 1753 */ 1754 1755 sk->sk_state = TCP_CLOSE; 1756 inet->inet_daddr = 0; 1757 inet->inet_dport = 0; 1758 sock_rps_reset_rxhash(sk); 1759 sk->sk_bound_dev_if = 0; 1760 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1761 inet_reset_saddr(sk); 1762 1763 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1764 sk->sk_prot->unhash(sk); 1765 inet->inet_sport = 0; 1766 } 1767 sk_dst_reset(sk); 1768 return 0; 1769 } 1770 EXPORT_SYMBOL(__udp_disconnect); 1771 1772 int udp_disconnect(struct sock *sk, int flags) 1773 { 1774 lock_sock(sk); 1775 __udp_disconnect(sk, flags); 1776 release_sock(sk); 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(udp_disconnect); 1780 1781 void udp_lib_unhash(struct sock *sk) 1782 { 1783 if (sk_hashed(sk)) { 1784 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1785 struct udp_hslot *hslot, *hslot2; 1786 1787 hslot = udp_hashslot(udptable, sock_net(sk), 1788 udp_sk(sk)->udp_port_hash); 1789 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1790 1791 spin_lock_bh(&hslot->lock); 1792 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1793 reuseport_detach_sock(sk); 1794 if (sk_del_node_init_rcu(sk)) { 1795 hslot->count--; 1796 inet_sk(sk)->inet_num = 0; 1797 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1798 1799 spin_lock(&hslot2->lock); 1800 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1801 hslot2->count--; 1802 spin_unlock(&hslot2->lock); 1803 } 1804 spin_unlock_bh(&hslot->lock); 1805 } 1806 } 1807 EXPORT_SYMBOL(udp_lib_unhash); 1808 1809 /* 1810 * inet_rcv_saddr was changed, we must rehash secondary hash 1811 */ 1812 void udp_lib_rehash(struct sock *sk, u16 newhash) 1813 { 1814 if (sk_hashed(sk)) { 1815 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1816 struct udp_hslot *hslot, *hslot2, *nhslot2; 1817 1818 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1819 nhslot2 = udp_hashslot2(udptable, newhash); 1820 udp_sk(sk)->udp_portaddr_hash = newhash; 1821 1822 if (hslot2 != nhslot2 || 1823 rcu_access_pointer(sk->sk_reuseport_cb)) { 1824 hslot = udp_hashslot(udptable, sock_net(sk), 1825 udp_sk(sk)->udp_port_hash); 1826 /* we must lock primary chain too */ 1827 spin_lock_bh(&hslot->lock); 1828 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1829 reuseport_detach_sock(sk); 1830 1831 if (hslot2 != nhslot2) { 1832 spin_lock(&hslot2->lock); 1833 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1834 hslot2->count--; 1835 spin_unlock(&hslot2->lock); 1836 1837 spin_lock(&nhslot2->lock); 1838 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1839 &nhslot2->head); 1840 nhslot2->count++; 1841 spin_unlock(&nhslot2->lock); 1842 } 1843 1844 spin_unlock_bh(&hslot->lock); 1845 } 1846 } 1847 } 1848 EXPORT_SYMBOL(udp_lib_rehash); 1849 1850 static void udp_v4_rehash(struct sock *sk) 1851 { 1852 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1853 inet_sk(sk)->inet_rcv_saddr, 1854 inet_sk(sk)->inet_num); 1855 udp_lib_rehash(sk, new_hash); 1856 } 1857 1858 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1859 { 1860 int rc; 1861 1862 if (inet_sk(sk)->inet_daddr) { 1863 sock_rps_save_rxhash(sk, skb); 1864 sk_mark_napi_id(sk, skb); 1865 sk_incoming_cpu_update(sk); 1866 } else { 1867 sk_mark_napi_id_once(sk, skb); 1868 } 1869 1870 rc = __udp_enqueue_schedule_skb(sk, skb); 1871 if (rc < 0) { 1872 int is_udplite = IS_UDPLITE(sk); 1873 1874 /* Note that an ENOMEM error is charged twice */ 1875 if (rc == -ENOMEM) 1876 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1877 is_udplite); 1878 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1879 kfree_skb(skb); 1880 trace_udp_fail_queue_rcv_skb(rc, sk); 1881 return -1; 1882 } 1883 1884 return 0; 1885 } 1886 1887 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1888 void udp_encap_enable(void) 1889 { 1890 static_branch_enable(&udp_encap_needed_key); 1891 } 1892 EXPORT_SYMBOL(udp_encap_enable); 1893 1894 /* returns: 1895 * -1: error 1896 * 0: success 1897 * >0: "udp encap" protocol resubmission 1898 * 1899 * Note that in the success and error cases, the skb is assumed to 1900 * have either been requeued or freed. 1901 */ 1902 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1903 { 1904 struct udp_sock *up = udp_sk(sk); 1905 int is_udplite = IS_UDPLITE(sk); 1906 1907 /* 1908 * Charge it to the socket, dropping if the queue is full. 1909 */ 1910 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1911 goto drop; 1912 nf_reset(skb); 1913 1914 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1915 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1916 1917 /* 1918 * This is an encapsulation socket so pass the skb to 1919 * the socket's udp_encap_rcv() hook. Otherwise, just 1920 * fall through and pass this up the UDP socket. 1921 * up->encap_rcv() returns the following value: 1922 * =0 if skb was successfully passed to the encap 1923 * handler or was discarded by it. 1924 * >0 if skb should be passed on to UDP. 1925 * <0 if skb should be resubmitted as proto -N 1926 */ 1927 1928 /* if we're overly short, let UDP handle it */ 1929 encap_rcv = READ_ONCE(up->encap_rcv); 1930 if (encap_rcv) { 1931 int ret; 1932 1933 /* Verify checksum before giving to encap */ 1934 if (udp_lib_checksum_complete(skb)) 1935 goto csum_error; 1936 1937 ret = encap_rcv(sk, skb); 1938 if (ret <= 0) { 1939 __UDP_INC_STATS(sock_net(sk), 1940 UDP_MIB_INDATAGRAMS, 1941 is_udplite); 1942 return -ret; 1943 } 1944 } 1945 1946 /* FALLTHROUGH -- it's a UDP Packet */ 1947 } 1948 1949 /* 1950 * UDP-Lite specific tests, ignored on UDP sockets 1951 */ 1952 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1953 1954 /* 1955 * MIB statistics other than incrementing the error count are 1956 * disabled for the following two types of errors: these depend 1957 * on the application settings, not on the functioning of the 1958 * protocol stack as such. 1959 * 1960 * RFC 3828 here recommends (sec 3.3): "There should also be a 1961 * way ... to ... at least let the receiving application block 1962 * delivery of packets with coverage values less than a value 1963 * provided by the application." 1964 */ 1965 if (up->pcrlen == 0) { /* full coverage was set */ 1966 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1967 UDP_SKB_CB(skb)->cscov, skb->len); 1968 goto drop; 1969 } 1970 /* The next case involves violating the min. coverage requested 1971 * by the receiver. This is subtle: if receiver wants x and x is 1972 * greater than the buffersize/MTU then receiver will complain 1973 * that it wants x while sender emits packets of smaller size y. 1974 * Therefore the above ...()->partial_cov statement is essential. 1975 */ 1976 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1977 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1978 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1979 goto drop; 1980 } 1981 } 1982 1983 prefetch(&sk->sk_rmem_alloc); 1984 if (rcu_access_pointer(sk->sk_filter) && 1985 udp_lib_checksum_complete(skb)) 1986 goto csum_error; 1987 1988 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1989 goto drop; 1990 1991 udp_csum_pull_header(skb); 1992 1993 ipv4_pktinfo_prepare(sk, skb); 1994 return __udp_queue_rcv_skb(sk, skb); 1995 1996 csum_error: 1997 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1998 drop: 1999 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2000 atomic_inc(&sk->sk_drops); 2001 kfree_skb(skb); 2002 return -1; 2003 } 2004 2005 /* For TCP sockets, sk_rx_dst is protected by socket lock 2006 * For UDP, we use xchg() to guard against concurrent changes. 2007 */ 2008 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2009 { 2010 struct dst_entry *old; 2011 2012 if (dst_hold_safe(dst)) { 2013 old = xchg(&sk->sk_rx_dst, dst); 2014 dst_release(old); 2015 return old != dst; 2016 } 2017 return false; 2018 } 2019 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2020 2021 /* 2022 * Multicasts and broadcasts go to each listener. 2023 * 2024 * Note: called only from the BH handler context. 2025 */ 2026 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2027 struct udphdr *uh, 2028 __be32 saddr, __be32 daddr, 2029 struct udp_table *udptable, 2030 int proto) 2031 { 2032 struct sock *sk, *first = NULL; 2033 unsigned short hnum = ntohs(uh->dest); 2034 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2035 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2036 unsigned int offset = offsetof(typeof(*sk), sk_node); 2037 int dif = skb->dev->ifindex; 2038 int sdif = inet_sdif(skb); 2039 struct hlist_node *node; 2040 struct sk_buff *nskb; 2041 2042 if (use_hash2) { 2043 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2044 udptable->mask; 2045 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2046 start_lookup: 2047 hslot = &udptable->hash2[hash2]; 2048 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2049 } 2050 2051 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2052 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2053 uh->source, saddr, dif, sdif, hnum)) 2054 continue; 2055 2056 if (!first) { 2057 first = sk; 2058 continue; 2059 } 2060 nskb = skb_clone(skb, GFP_ATOMIC); 2061 2062 if (unlikely(!nskb)) { 2063 atomic_inc(&sk->sk_drops); 2064 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2065 IS_UDPLITE(sk)); 2066 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2067 IS_UDPLITE(sk)); 2068 continue; 2069 } 2070 if (udp_queue_rcv_skb(sk, nskb) > 0) 2071 consume_skb(nskb); 2072 } 2073 2074 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2075 if (use_hash2 && hash2 != hash2_any) { 2076 hash2 = hash2_any; 2077 goto start_lookup; 2078 } 2079 2080 if (first) { 2081 if (udp_queue_rcv_skb(first, skb) > 0) 2082 consume_skb(skb); 2083 } else { 2084 kfree_skb(skb); 2085 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2086 proto == IPPROTO_UDPLITE); 2087 } 2088 return 0; 2089 } 2090 2091 /* Initialize UDP checksum. If exited with zero value (success), 2092 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2093 * Otherwise, csum completion requires chacksumming packet body, 2094 * including udp header and folding it to skb->csum. 2095 */ 2096 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2097 int proto) 2098 { 2099 int err; 2100 2101 UDP_SKB_CB(skb)->partial_cov = 0; 2102 UDP_SKB_CB(skb)->cscov = skb->len; 2103 2104 if (proto == IPPROTO_UDPLITE) { 2105 err = udplite_checksum_init(skb, uh); 2106 if (err) 2107 return err; 2108 2109 if (UDP_SKB_CB(skb)->partial_cov) { 2110 skb->csum = inet_compute_pseudo(skb, proto); 2111 return 0; 2112 } 2113 } 2114 2115 /* Note, we are only interested in != 0 or == 0, thus the 2116 * force to int. 2117 */ 2118 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2119 inet_compute_pseudo); 2120 } 2121 2122 /* 2123 * All we need to do is get the socket, and then do a checksum. 2124 */ 2125 2126 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2127 int proto) 2128 { 2129 struct sock *sk; 2130 struct udphdr *uh; 2131 unsigned short ulen; 2132 struct rtable *rt = skb_rtable(skb); 2133 __be32 saddr, daddr; 2134 struct net *net = dev_net(skb->dev); 2135 2136 /* 2137 * Validate the packet. 2138 */ 2139 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2140 goto drop; /* No space for header. */ 2141 2142 uh = udp_hdr(skb); 2143 ulen = ntohs(uh->len); 2144 saddr = ip_hdr(skb)->saddr; 2145 daddr = ip_hdr(skb)->daddr; 2146 2147 if (ulen > skb->len) 2148 goto short_packet; 2149 2150 if (proto == IPPROTO_UDP) { 2151 /* UDP validates ulen. */ 2152 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2153 goto short_packet; 2154 uh = udp_hdr(skb); 2155 } 2156 2157 if (udp4_csum_init(skb, uh, proto)) 2158 goto csum_error; 2159 2160 sk = skb_steal_sock(skb); 2161 if (sk) { 2162 struct dst_entry *dst = skb_dst(skb); 2163 int ret; 2164 2165 if (unlikely(sk->sk_rx_dst != dst)) 2166 udp_sk_rx_dst_set(sk, dst); 2167 2168 ret = udp_queue_rcv_skb(sk, skb); 2169 sock_put(sk); 2170 /* a return value > 0 means to resubmit the input, but 2171 * it wants the return to be -protocol, or 0 2172 */ 2173 if (ret > 0) 2174 return -ret; 2175 return 0; 2176 } 2177 2178 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2179 return __udp4_lib_mcast_deliver(net, skb, uh, 2180 saddr, daddr, udptable, proto); 2181 2182 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2183 if (sk) { 2184 int ret; 2185 2186 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2187 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2188 inet_compute_pseudo); 2189 2190 ret = udp_queue_rcv_skb(sk, skb); 2191 2192 /* a return value > 0 means to resubmit the input, but 2193 * it wants the return to be -protocol, or 0 2194 */ 2195 if (ret > 0) 2196 return -ret; 2197 return 0; 2198 } 2199 2200 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2201 goto drop; 2202 nf_reset(skb); 2203 2204 /* No socket. Drop packet silently, if checksum is wrong */ 2205 if (udp_lib_checksum_complete(skb)) 2206 goto csum_error; 2207 2208 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2209 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2210 2211 /* 2212 * Hmm. We got an UDP packet to a port to which we 2213 * don't wanna listen. Ignore it. 2214 */ 2215 kfree_skb(skb); 2216 return 0; 2217 2218 short_packet: 2219 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2220 proto == IPPROTO_UDPLITE ? "Lite" : "", 2221 &saddr, ntohs(uh->source), 2222 ulen, skb->len, 2223 &daddr, ntohs(uh->dest)); 2224 goto drop; 2225 2226 csum_error: 2227 /* 2228 * RFC1122: OK. Discards the bad packet silently (as far as 2229 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2230 */ 2231 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2232 proto == IPPROTO_UDPLITE ? "Lite" : "", 2233 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2234 ulen); 2235 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2236 drop: 2237 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2238 kfree_skb(skb); 2239 return 0; 2240 } 2241 2242 /* We can only early demux multicast if there is a single matching socket. 2243 * If more than one socket found returns NULL 2244 */ 2245 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2246 __be16 loc_port, __be32 loc_addr, 2247 __be16 rmt_port, __be32 rmt_addr, 2248 int dif, int sdif) 2249 { 2250 struct sock *sk, *result; 2251 unsigned short hnum = ntohs(loc_port); 2252 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2253 struct udp_hslot *hslot = &udp_table.hash[slot]; 2254 2255 /* Do not bother scanning a too big list */ 2256 if (hslot->count > 10) 2257 return NULL; 2258 2259 result = NULL; 2260 sk_for_each_rcu(sk, &hslot->head) { 2261 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2262 rmt_port, rmt_addr, dif, sdif, hnum)) { 2263 if (result) 2264 return NULL; 2265 result = sk; 2266 } 2267 } 2268 2269 return result; 2270 } 2271 2272 /* For unicast we should only early demux connected sockets or we can 2273 * break forwarding setups. The chains here can be long so only check 2274 * if the first socket is an exact match and if not move on. 2275 */ 2276 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2277 __be16 loc_port, __be32 loc_addr, 2278 __be16 rmt_port, __be32 rmt_addr, 2279 int dif, int sdif) 2280 { 2281 unsigned short hnum = ntohs(loc_port); 2282 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2283 unsigned int slot2 = hash2 & udp_table.mask; 2284 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2285 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2286 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2287 struct sock *sk; 2288 2289 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2290 if (INET_MATCH(sk, net, acookie, rmt_addr, 2291 loc_addr, ports, dif, sdif)) 2292 return sk; 2293 /* Only check first socket in chain */ 2294 break; 2295 } 2296 return NULL; 2297 } 2298 2299 int udp_v4_early_demux(struct sk_buff *skb) 2300 { 2301 struct net *net = dev_net(skb->dev); 2302 struct in_device *in_dev = NULL; 2303 const struct iphdr *iph; 2304 const struct udphdr *uh; 2305 struct sock *sk = NULL; 2306 struct dst_entry *dst; 2307 int dif = skb->dev->ifindex; 2308 int sdif = inet_sdif(skb); 2309 int ours; 2310 2311 /* validate the packet */ 2312 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2313 return 0; 2314 2315 iph = ip_hdr(skb); 2316 uh = udp_hdr(skb); 2317 2318 if (skb->pkt_type == PACKET_MULTICAST) { 2319 in_dev = __in_dev_get_rcu(skb->dev); 2320 2321 if (!in_dev) 2322 return 0; 2323 2324 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2325 iph->protocol); 2326 if (!ours) 2327 return 0; 2328 2329 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2330 uh->source, iph->saddr, 2331 dif, sdif); 2332 } else if (skb->pkt_type == PACKET_HOST) { 2333 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2334 uh->source, iph->saddr, dif, sdif); 2335 } 2336 2337 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2338 return 0; 2339 2340 skb->sk = sk; 2341 skb->destructor = sock_efree; 2342 dst = READ_ONCE(sk->sk_rx_dst); 2343 2344 if (dst) 2345 dst = dst_check(dst, 0); 2346 if (dst) { 2347 u32 itag = 0; 2348 2349 /* set noref for now. 2350 * any place which wants to hold dst has to call 2351 * dst_hold_safe() 2352 */ 2353 skb_dst_set_noref(skb, dst); 2354 2355 /* for unconnected multicast sockets we need to validate 2356 * the source on each packet 2357 */ 2358 if (!inet_sk(sk)->inet_daddr && in_dev) 2359 return ip_mc_validate_source(skb, iph->daddr, 2360 iph->saddr, iph->tos, 2361 skb->dev, in_dev, &itag); 2362 } 2363 return 0; 2364 } 2365 2366 int udp_rcv(struct sk_buff *skb) 2367 { 2368 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2369 } 2370 2371 void udp_destroy_sock(struct sock *sk) 2372 { 2373 struct udp_sock *up = udp_sk(sk); 2374 bool slow = lock_sock_fast(sk); 2375 udp_flush_pending_frames(sk); 2376 unlock_sock_fast(sk, slow); 2377 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2378 void (*encap_destroy)(struct sock *sk); 2379 encap_destroy = READ_ONCE(up->encap_destroy); 2380 if (encap_destroy) 2381 encap_destroy(sk); 2382 } 2383 } 2384 2385 /* 2386 * Socket option code for UDP 2387 */ 2388 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2389 char __user *optval, unsigned int optlen, 2390 int (*push_pending_frames)(struct sock *)) 2391 { 2392 struct udp_sock *up = udp_sk(sk); 2393 int val, valbool; 2394 int err = 0; 2395 int is_udplite = IS_UDPLITE(sk); 2396 2397 if (optlen < sizeof(int)) 2398 return -EINVAL; 2399 2400 if (get_user(val, (int __user *)optval)) 2401 return -EFAULT; 2402 2403 valbool = val ? 1 : 0; 2404 2405 switch (optname) { 2406 case UDP_CORK: 2407 if (val != 0) { 2408 up->corkflag = 1; 2409 } else { 2410 up->corkflag = 0; 2411 lock_sock(sk); 2412 push_pending_frames(sk); 2413 release_sock(sk); 2414 } 2415 break; 2416 2417 case UDP_ENCAP: 2418 switch (val) { 2419 case 0: 2420 case UDP_ENCAP_ESPINUDP: 2421 case UDP_ENCAP_ESPINUDP_NON_IKE: 2422 up->encap_rcv = xfrm4_udp_encap_rcv; 2423 /* FALLTHROUGH */ 2424 case UDP_ENCAP_L2TPINUDP: 2425 up->encap_type = val; 2426 udp_encap_enable(); 2427 break; 2428 default: 2429 err = -ENOPROTOOPT; 2430 break; 2431 } 2432 break; 2433 2434 case UDP_NO_CHECK6_TX: 2435 up->no_check6_tx = valbool; 2436 break; 2437 2438 case UDP_NO_CHECK6_RX: 2439 up->no_check6_rx = valbool; 2440 break; 2441 2442 case UDP_SEGMENT: 2443 if (val < 0 || val > USHRT_MAX) 2444 return -EINVAL; 2445 up->gso_size = val; 2446 break; 2447 2448 /* 2449 * UDP-Lite's partial checksum coverage (RFC 3828). 2450 */ 2451 /* The sender sets actual checksum coverage length via this option. 2452 * The case coverage > packet length is handled by send module. */ 2453 case UDPLITE_SEND_CSCOV: 2454 if (!is_udplite) /* Disable the option on UDP sockets */ 2455 return -ENOPROTOOPT; 2456 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2457 val = 8; 2458 else if (val > USHRT_MAX) 2459 val = USHRT_MAX; 2460 up->pcslen = val; 2461 up->pcflag |= UDPLITE_SEND_CC; 2462 break; 2463 2464 /* The receiver specifies a minimum checksum coverage value. To make 2465 * sense, this should be set to at least 8 (as done below). If zero is 2466 * used, this again means full checksum coverage. */ 2467 case UDPLITE_RECV_CSCOV: 2468 if (!is_udplite) /* Disable the option on UDP sockets */ 2469 return -ENOPROTOOPT; 2470 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2471 val = 8; 2472 else if (val > USHRT_MAX) 2473 val = USHRT_MAX; 2474 up->pcrlen = val; 2475 up->pcflag |= UDPLITE_RECV_CC; 2476 break; 2477 2478 default: 2479 err = -ENOPROTOOPT; 2480 break; 2481 } 2482 2483 return err; 2484 } 2485 EXPORT_SYMBOL(udp_lib_setsockopt); 2486 2487 int udp_setsockopt(struct sock *sk, int level, int optname, 2488 char __user *optval, unsigned int optlen) 2489 { 2490 if (level == SOL_UDP || level == SOL_UDPLITE) 2491 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2492 udp_push_pending_frames); 2493 return ip_setsockopt(sk, level, optname, optval, optlen); 2494 } 2495 2496 #ifdef CONFIG_COMPAT 2497 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2498 char __user *optval, unsigned int optlen) 2499 { 2500 if (level == SOL_UDP || level == SOL_UDPLITE) 2501 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2502 udp_push_pending_frames); 2503 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2504 } 2505 #endif 2506 2507 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2508 char __user *optval, int __user *optlen) 2509 { 2510 struct udp_sock *up = udp_sk(sk); 2511 int val, len; 2512 2513 if (get_user(len, optlen)) 2514 return -EFAULT; 2515 2516 len = min_t(unsigned int, len, sizeof(int)); 2517 2518 if (len < 0) 2519 return -EINVAL; 2520 2521 switch (optname) { 2522 case UDP_CORK: 2523 val = up->corkflag; 2524 break; 2525 2526 case UDP_ENCAP: 2527 val = up->encap_type; 2528 break; 2529 2530 case UDP_NO_CHECK6_TX: 2531 val = up->no_check6_tx; 2532 break; 2533 2534 case UDP_NO_CHECK6_RX: 2535 val = up->no_check6_rx; 2536 break; 2537 2538 case UDP_SEGMENT: 2539 val = up->gso_size; 2540 break; 2541 2542 /* The following two cannot be changed on UDP sockets, the return is 2543 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2544 case UDPLITE_SEND_CSCOV: 2545 val = up->pcslen; 2546 break; 2547 2548 case UDPLITE_RECV_CSCOV: 2549 val = up->pcrlen; 2550 break; 2551 2552 default: 2553 return -ENOPROTOOPT; 2554 } 2555 2556 if (put_user(len, optlen)) 2557 return -EFAULT; 2558 if (copy_to_user(optval, &val, len)) 2559 return -EFAULT; 2560 return 0; 2561 } 2562 EXPORT_SYMBOL(udp_lib_getsockopt); 2563 2564 int udp_getsockopt(struct sock *sk, int level, int optname, 2565 char __user *optval, int __user *optlen) 2566 { 2567 if (level == SOL_UDP || level == SOL_UDPLITE) 2568 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2569 return ip_getsockopt(sk, level, optname, optval, optlen); 2570 } 2571 2572 #ifdef CONFIG_COMPAT 2573 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2574 char __user *optval, int __user *optlen) 2575 { 2576 if (level == SOL_UDP || level == SOL_UDPLITE) 2577 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2578 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2579 } 2580 #endif 2581 /** 2582 * udp_poll - wait for a UDP event. 2583 * @file - file struct 2584 * @sock - socket 2585 * @wait - poll table 2586 * 2587 * This is same as datagram poll, except for the special case of 2588 * blocking sockets. If application is using a blocking fd 2589 * and a packet with checksum error is in the queue; 2590 * then it could get return from select indicating data available 2591 * but then block when reading it. Add special case code 2592 * to work around these arguably broken applications. 2593 */ 2594 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2595 { 2596 __poll_t mask = datagram_poll(file, sock, wait); 2597 struct sock *sk = sock->sk; 2598 2599 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2600 mask |= EPOLLIN | EPOLLRDNORM; 2601 2602 /* Check for false positives due to checksum errors */ 2603 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2604 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2605 mask &= ~(EPOLLIN | EPOLLRDNORM); 2606 2607 return mask; 2608 2609 } 2610 EXPORT_SYMBOL(udp_poll); 2611 2612 int udp_abort(struct sock *sk, int err) 2613 { 2614 lock_sock(sk); 2615 2616 sk->sk_err = err; 2617 sk->sk_error_report(sk); 2618 __udp_disconnect(sk, 0); 2619 2620 release_sock(sk); 2621 2622 return 0; 2623 } 2624 EXPORT_SYMBOL_GPL(udp_abort); 2625 2626 struct proto udp_prot = { 2627 .name = "UDP", 2628 .owner = THIS_MODULE, 2629 .close = udp_lib_close, 2630 .pre_connect = udp_pre_connect, 2631 .connect = ip4_datagram_connect, 2632 .disconnect = udp_disconnect, 2633 .ioctl = udp_ioctl, 2634 .init = udp_init_sock, 2635 .destroy = udp_destroy_sock, 2636 .setsockopt = udp_setsockopt, 2637 .getsockopt = udp_getsockopt, 2638 .sendmsg = udp_sendmsg, 2639 .recvmsg = udp_recvmsg, 2640 .sendpage = udp_sendpage, 2641 .release_cb = ip4_datagram_release_cb, 2642 .hash = udp_lib_hash, 2643 .unhash = udp_lib_unhash, 2644 .rehash = udp_v4_rehash, 2645 .get_port = udp_v4_get_port, 2646 .memory_allocated = &udp_memory_allocated, 2647 .sysctl_mem = sysctl_udp_mem, 2648 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2649 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2650 .obj_size = sizeof(struct udp_sock), 2651 .h.udp_table = &udp_table, 2652 #ifdef CONFIG_COMPAT 2653 .compat_setsockopt = compat_udp_setsockopt, 2654 .compat_getsockopt = compat_udp_getsockopt, 2655 #endif 2656 .diag_destroy = udp_abort, 2657 }; 2658 EXPORT_SYMBOL(udp_prot); 2659 2660 /* ------------------------------------------------------------------------ */ 2661 #ifdef CONFIG_PROC_FS 2662 2663 static struct sock *udp_get_first(struct seq_file *seq, int start) 2664 { 2665 struct sock *sk; 2666 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2667 struct udp_iter_state *state = seq->private; 2668 struct net *net = seq_file_net(seq); 2669 2670 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2671 ++state->bucket) { 2672 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2673 2674 if (hlist_empty(&hslot->head)) 2675 continue; 2676 2677 spin_lock_bh(&hslot->lock); 2678 sk_for_each(sk, &hslot->head) { 2679 if (!net_eq(sock_net(sk), net)) 2680 continue; 2681 if (sk->sk_family == afinfo->family) 2682 goto found; 2683 } 2684 spin_unlock_bh(&hslot->lock); 2685 } 2686 sk = NULL; 2687 found: 2688 return sk; 2689 } 2690 2691 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2692 { 2693 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2694 struct udp_iter_state *state = seq->private; 2695 struct net *net = seq_file_net(seq); 2696 2697 do { 2698 sk = sk_next(sk); 2699 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2700 2701 if (!sk) { 2702 if (state->bucket <= afinfo->udp_table->mask) 2703 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2704 return udp_get_first(seq, state->bucket + 1); 2705 } 2706 return sk; 2707 } 2708 2709 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2710 { 2711 struct sock *sk = udp_get_first(seq, 0); 2712 2713 if (sk) 2714 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2715 --pos; 2716 return pos ? NULL : sk; 2717 } 2718 2719 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2720 { 2721 struct udp_iter_state *state = seq->private; 2722 state->bucket = MAX_UDP_PORTS; 2723 2724 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2725 } 2726 EXPORT_SYMBOL(udp_seq_start); 2727 2728 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2729 { 2730 struct sock *sk; 2731 2732 if (v == SEQ_START_TOKEN) 2733 sk = udp_get_idx(seq, 0); 2734 else 2735 sk = udp_get_next(seq, v); 2736 2737 ++*pos; 2738 return sk; 2739 } 2740 EXPORT_SYMBOL(udp_seq_next); 2741 2742 void udp_seq_stop(struct seq_file *seq, void *v) 2743 { 2744 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2745 struct udp_iter_state *state = seq->private; 2746 2747 if (state->bucket <= afinfo->udp_table->mask) 2748 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2749 } 2750 EXPORT_SYMBOL(udp_seq_stop); 2751 2752 /* ------------------------------------------------------------------------ */ 2753 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2754 int bucket) 2755 { 2756 struct inet_sock *inet = inet_sk(sp); 2757 __be32 dest = inet->inet_daddr; 2758 __be32 src = inet->inet_rcv_saddr; 2759 __u16 destp = ntohs(inet->inet_dport); 2760 __u16 srcp = ntohs(inet->inet_sport); 2761 2762 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2763 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2764 bucket, src, srcp, dest, destp, sp->sk_state, 2765 sk_wmem_alloc_get(sp), 2766 udp_rqueue_get(sp), 2767 0, 0L, 0, 2768 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2769 0, sock_i_ino(sp), 2770 refcount_read(&sp->sk_refcnt), sp, 2771 atomic_read(&sp->sk_drops)); 2772 } 2773 2774 int udp4_seq_show(struct seq_file *seq, void *v) 2775 { 2776 seq_setwidth(seq, 127); 2777 if (v == SEQ_START_TOKEN) 2778 seq_puts(seq, " sl local_address rem_address st tx_queue " 2779 "rx_queue tr tm->when retrnsmt uid timeout " 2780 "inode ref pointer drops"); 2781 else { 2782 struct udp_iter_state *state = seq->private; 2783 2784 udp4_format_sock(v, seq, state->bucket); 2785 } 2786 seq_pad(seq, '\n'); 2787 return 0; 2788 } 2789 2790 const struct seq_operations udp_seq_ops = { 2791 .start = udp_seq_start, 2792 .next = udp_seq_next, 2793 .stop = udp_seq_stop, 2794 .show = udp4_seq_show, 2795 }; 2796 EXPORT_SYMBOL(udp_seq_ops); 2797 2798 static struct udp_seq_afinfo udp4_seq_afinfo = { 2799 .family = AF_INET, 2800 .udp_table = &udp_table, 2801 }; 2802 2803 static int __net_init udp4_proc_init_net(struct net *net) 2804 { 2805 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2806 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2807 return -ENOMEM; 2808 return 0; 2809 } 2810 2811 static void __net_exit udp4_proc_exit_net(struct net *net) 2812 { 2813 remove_proc_entry("udp", net->proc_net); 2814 } 2815 2816 static struct pernet_operations udp4_net_ops = { 2817 .init = udp4_proc_init_net, 2818 .exit = udp4_proc_exit_net, 2819 }; 2820 2821 int __init udp4_proc_init(void) 2822 { 2823 return register_pernet_subsys(&udp4_net_ops); 2824 } 2825 2826 void udp4_proc_exit(void) 2827 { 2828 unregister_pernet_subsys(&udp4_net_ops); 2829 } 2830 #endif /* CONFIG_PROC_FS */ 2831 2832 static __initdata unsigned long uhash_entries; 2833 static int __init set_uhash_entries(char *str) 2834 { 2835 ssize_t ret; 2836 2837 if (!str) 2838 return 0; 2839 2840 ret = kstrtoul(str, 0, &uhash_entries); 2841 if (ret) 2842 return 0; 2843 2844 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2845 uhash_entries = UDP_HTABLE_SIZE_MIN; 2846 return 1; 2847 } 2848 __setup("uhash_entries=", set_uhash_entries); 2849 2850 void __init udp_table_init(struct udp_table *table, const char *name) 2851 { 2852 unsigned int i; 2853 2854 table->hash = alloc_large_system_hash(name, 2855 2 * sizeof(struct udp_hslot), 2856 uhash_entries, 2857 21, /* one slot per 2 MB */ 2858 0, 2859 &table->log, 2860 &table->mask, 2861 UDP_HTABLE_SIZE_MIN, 2862 64 * 1024); 2863 2864 table->hash2 = table->hash + (table->mask + 1); 2865 for (i = 0; i <= table->mask; i++) { 2866 INIT_HLIST_HEAD(&table->hash[i].head); 2867 table->hash[i].count = 0; 2868 spin_lock_init(&table->hash[i].lock); 2869 } 2870 for (i = 0; i <= table->mask; i++) { 2871 INIT_HLIST_HEAD(&table->hash2[i].head); 2872 table->hash2[i].count = 0; 2873 spin_lock_init(&table->hash2[i].lock); 2874 } 2875 } 2876 2877 u32 udp_flow_hashrnd(void) 2878 { 2879 static u32 hashrnd __read_mostly; 2880 2881 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2882 2883 return hashrnd; 2884 } 2885 EXPORT_SYMBOL(udp_flow_hashrnd); 2886 2887 static void __udp_sysctl_init(struct net *net) 2888 { 2889 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2890 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2891 2892 #ifdef CONFIG_NET_L3_MASTER_DEV 2893 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2894 #endif 2895 } 2896 2897 static int __net_init udp_sysctl_init(struct net *net) 2898 { 2899 __udp_sysctl_init(net); 2900 return 0; 2901 } 2902 2903 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2904 .init = udp_sysctl_init, 2905 }; 2906 2907 void __init udp_init(void) 2908 { 2909 unsigned long limit; 2910 unsigned int i; 2911 2912 udp_table_init(&udp_table, "UDP"); 2913 limit = nr_free_buffer_pages() / 8; 2914 limit = max(limit, 128UL); 2915 sysctl_udp_mem[0] = limit / 4 * 3; 2916 sysctl_udp_mem[1] = limit; 2917 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2918 2919 __udp_sysctl_init(&init_net); 2920 2921 /* 16 spinlocks per cpu */ 2922 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2923 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2924 GFP_KERNEL); 2925 if (!udp_busylocks) 2926 panic("UDP: failed to alloc udp_busylocks\n"); 2927 for (i = 0; i < (1U << udp_busylocks_log); i++) 2928 spin_lock_init(udp_busylocks + i); 2929 2930 if (register_pernet_subsys(&udp_sysctl_ops)) 2931 panic("UDP: failed to init sysctl parameters.\n"); 2932 } 2933