xref: /openbmc/linux/net/ipv4/udp.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 #if IS_ENABLED(CONFIG_IPV6)
116 #include <net/ipv6_stubs.h>
117 #endif
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 static int udp_lib_lport_inuse(struct net *net, __u16 num,
132 			       const struct udp_hslot *hslot,
133 			       unsigned long *bitmap,
134 			       struct sock *sk, unsigned int log)
135 {
136 	struct sock *sk2;
137 	kuid_t uid = sock_i_uid(sk);
138 
139 	sk_for_each(sk2, &hslot->head) {
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    inet_rcv_saddr_equal(sk, sk2, true)) {
147 			if (sk2->sk_reuseport && sk->sk_reuseport &&
148 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
149 			    uid_eq(uid, sock_i_uid(sk2))) {
150 				if (!bitmap)
151 					return 0;
152 			} else {
153 				if (!bitmap)
154 					return 1;
155 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
156 					  bitmap);
157 			}
158 		}
159 	}
160 	return 0;
161 }
162 
163 /*
164  * Note: we still hold spinlock of primary hash chain, so no other writer
165  * can insert/delete a socket with local_port == num
166  */
167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 				struct udp_hslot *hslot2,
169 				struct sock *sk)
170 {
171 	struct sock *sk2;
172 	kuid_t uid = sock_i_uid(sk);
173 	int res = 0;
174 
175 	spin_lock(&hslot2->lock);
176 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
177 		if (net_eq(sock_net(sk2), net) &&
178 		    sk2 != sk &&
179 		    (udp_sk(sk2)->udp_port_hash == num) &&
180 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
181 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
182 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
183 		    inet_rcv_saddr_equal(sk, sk2, true)) {
184 			if (sk2->sk_reuseport && sk->sk_reuseport &&
185 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
186 			    uid_eq(uid, sock_i_uid(sk2))) {
187 				res = 0;
188 			} else {
189 				res = 1;
190 			}
191 			break;
192 		}
193 	}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
199 {
200 	struct net *net = sock_net(sk);
201 	kuid_t uid = sock_i_uid(sk);
202 	struct sock *sk2;
203 
204 	sk_for_each(sk2, &hslot->head) {
205 		if (net_eq(sock_net(sk2), net) &&
206 		    sk2 != sk &&
207 		    sk2->sk_family == sk->sk_family &&
208 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
209 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
210 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
211 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
212 		    inet_rcv_saddr_equal(sk, sk2, false)) {
213 			return reuseport_add_sock(sk, sk2,
214 						  inet_rcv_saddr_any(sk));
215 		}
216 	}
217 
218 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
219 }
220 
221 /**
222  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
223  *
224  *  @sk:          socket struct in question
225  *  @snum:        port number to look up
226  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
227  *                   with NULL address
228  */
229 int udp_lib_get_port(struct sock *sk, unsigned short snum,
230 		     unsigned int hash2_nulladdr)
231 {
232 	struct udp_hslot *hslot, *hslot2;
233 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
234 	int    error = 1;
235 	struct net *net = sock_net(sk);
236 
237 	if (!snum) {
238 		int low, high, remaining;
239 		unsigned int rand;
240 		unsigned short first, last;
241 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
242 
243 		inet_get_local_port_range(net, &low, &high);
244 		remaining = (high - low) + 1;
245 
246 		rand = prandom_u32();
247 		first = reciprocal_scale(rand, remaining) + low;
248 		/*
249 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
250 		 */
251 		rand = (rand | 1) * (udptable->mask + 1);
252 		last = first + udptable->mask + 1;
253 		do {
254 			hslot = udp_hashslot(udptable, net, first);
255 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
256 			spin_lock_bh(&hslot->lock);
257 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
258 					    udptable->log);
259 
260 			snum = first;
261 			/*
262 			 * Iterate on all possible values of snum for this hash.
263 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
264 			 * give us randomization and full range coverage.
265 			 */
266 			do {
267 				if (low <= snum && snum <= high &&
268 				    !test_bit(snum >> udptable->log, bitmap) &&
269 				    !inet_is_local_reserved_port(net, snum))
270 					goto found;
271 				snum += rand;
272 			} while (snum != first);
273 			spin_unlock_bh(&hslot->lock);
274 			cond_resched();
275 		} while (++first != last);
276 		goto fail;
277 	} else {
278 		hslot = udp_hashslot(udptable, net, snum);
279 		spin_lock_bh(&hslot->lock);
280 		if (hslot->count > 10) {
281 			int exist;
282 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
283 
284 			slot2          &= udptable->mask;
285 			hash2_nulladdr &= udptable->mask;
286 
287 			hslot2 = udp_hashslot2(udptable, slot2);
288 			if (hslot->count < hslot2->count)
289 				goto scan_primary_hash;
290 
291 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
292 			if (!exist && (hash2_nulladdr != slot2)) {
293 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
294 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
295 							     sk);
296 			}
297 			if (exist)
298 				goto fail_unlock;
299 			else
300 				goto found;
301 		}
302 scan_primary_hash:
303 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
304 			goto fail_unlock;
305 	}
306 found:
307 	inet_sk(sk)->inet_num = snum;
308 	udp_sk(sk)->udp_port_hash = snum;
309 	udp_sk(sk)->udp_portaddr_hash ^= snum;
310 	if (sk_unhashed(sk)) {
311 		if (sk->sk_reuseport &&
312 		    udp_reuseport_add_sock(sk, hslot)) {
313 			inet_sk(sk)->inet_num = 0;
314 			udp_sk(sk)->udp_port_hash = 0;
315 			udp_sk(sk)->udp_portaddr_hash ^= snum;
316 			goto fail_unlock;
317 		}
318 
319 		sk_add_node_rcu(sk, &hslot->head);
320 		hslot->count++;
321 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
322 
323 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
324 		spin_lock(&hslot2->lock);
325 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
326 		    sk->sk_family == AF_INET6)
327 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		else
330 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		hslot2->count++;
333 		spin_unlock(&hslot2->lock);
334 	}
335 	sock_set_flag(sk, SOCK_RCU_FREE);
336 	error = 0;
337 fail_unlock:
338 	spin_unlock_bh(&hslot->lock);
339 fail:
340 	return error;
341 }
342 EXPORT_SYMBOL(udp_lib_get_port);
343 
344 int udp_v4_get_port(struct sock *sk, unsigned short snum)
345 {
346 	unsigned int hash2_nulladdr =
347 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
348 	unsigned int hash2_partial =
349 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
350 
351 	/* precompute partial secondary hash */
352 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
353 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
354 }
355 
356 static int compute_score(struct sock *sk, struct net *net,
357 			 __be32 saddr, __be16 sport,
358 			 __be32 daddr, unsigned short hnum,
359 			 int dif, int sdif)
360 {
361 	int score;
362 	struct inet_sock *inet;
363 	bool dev_match;
364 
365 	if (!net_eq(sock_net(sk), net) ||
366 	    udp_sk(sk)->udp_port_hash != hnum ||
367 	    ipv6_only_sock(sk))
368 		return -1;
369 
370 	if (sk->sk_rcv_saddr != daddr)
371 		return -1;
372 
373 	score = (sk->sk_family == PF_INET) ? 2 : 1;
374 
375 	inet = inet_sk(sk);
376 	if (inet->inet_daddr) {
377 		if (inet->inet_daddr != saddr)
378 			return -1;
379 		score += 4;
380 	}
381 
382 	if (inet->inet_dport) {
383 		if (inet->inet_dport != sport)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
389 					dif, sdif);
390 	if (!dev_match)
391 		return -1;
392 	score += 4;
393 
394 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
395 		score++;
396 	return score;
397 }
398 
399 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
400 		       const __u16 lport, const __be32 faddr,
401 		       const __be16 fport)
402 {
403 	static u32 udp_ehash_secret __read_mostly;
404 
405 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
406 
407 	return __inet_ehashfn(laddr, lport, faddr, fport,
408 			      udp_ehash_secret + net_hash_mix(net));
409 }
410 
411 /* called with rcu_read_lock() */
412 static struct sock *udp4_lib_lookup2(struct net *net,
413 				     __be32 saddr, __be16 sport,
414 				     __be32 daddr, unsigned int hnum,
415 				     int dif, int sdif,
416 				     struct udp_hslot *hslot2,
417 				     struct sk_buff *skb)
418 {
419 	struct sock *sk, *result, *reuseport_result;
420 	int score, badness;
421 	u32 hash = 0;
422 
423 	result = NULL;
424 	badness = 0;
425 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
426 		score = compute_score(sk, net, saddr, sport,
427 				      daddr, hnum, dif, sdif);
428 		if (score > badness) {
429 			reuseport_result = NULL;
430 
431 			if (sk->sk_reuseport &&
432 			    sk->sk_state != TCP_ESTABLISHED) {
433 				hash = udp_ehashfn(net, daddr, hnum,
434 						   saddr, sport);
435 				reuseport_result = reuseport_select_sock(sk, hash, skb,
436 									 sizeof(struct udphdr));
437 				if (reuseport_result && !reuseport_has_conns(sk, false))
438 					return reuseport_result;
439 			}
440 
441 			result = reuseport_result ? : sk;
442 			badness = score;
443 		}
444 	}
445 	return result;
446 }
447 
448 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
449  * harder than this. -DaveM
450  */
451 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
452 		__be16 sport, __be32 daddr, __be16 dport, int dif,
453 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
454 {
455 	struct sock *result;
456 	unsigned short hnum = ntohs(dport);
457 	unsigned int hash2, slot2;
458 	struct udp_hslot *hslot2;
459 
460 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
461 	slot2 = hash2 & udptable->mask;
462 	hslot2 = &udptable->hash2[slot2];
463 
464 	result = udp4_lib_lookup2(net, saddr, sport,
465 				  daddr, hnum, dif, sdif,
466 				  hslot2, skb);
467 	if (!result) {
468 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
469 		slot2 = hash2 & udptable->mask;
470 		hslot2 = &udptable->hash2[slot2];
471 
472 		result = udp4_lib_lookup2(net, saddr, sport,
473 					  htonl(INADDR_ANY), hnum, dif, sdif,
474 					  hslot2, skb);
475 	}
476 	if (IS_ERR(result))
477 		return NULL;
478 	return result;
479 }
480 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
481 
482 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
483 						 __be16 sport, __be16 dport,
484 						 struct udp_table *udptable)
485 {
486 	const struct iphdr *iph = ip_hdr(skb);
487 
488 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
489 				 iph->daddr, dport, inet_iif(skb),
490 				 inet_sdif(skb), udptable, skb);
491 }
492 
493 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
494 				 __be16 sport, __be16 dport)
495 {
496 	const struct iphdr *iph = ip_hdr(skb);
497 
498 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
499 				 iph->daddr, dport, inet_iif(skb),
500 				 inet_sdif(skb), &udp_table, NULL);
501 }
502 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
503 
504 /* Must be called under rcu_read_lock().
505  * Does increment socket refcount.
506  */
507 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
508 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
509 			     __be32 daddr, __be16 dport, int dif)
510 {
511 	struct sock *sk;
512 
513 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
514 			       dif, 0, &udp_table, NULL);
515 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
516 		sk = NULL;
517 	return sk;
518 }
519 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
520 #endif
521 
522 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
523 				       __be16 loc_port, __be32 loc_addr,
524 				       __be16 rmt_port, __be32 rmt_addr,
525 				       int dif, int sdif, unsigned short hnum)
526 {
527 	struct inet_sock *inet = inet_sk(sk);
528 
529 	if (!net_eq(sock_net(sk), net) ||
530 	    udp_sk(sk)->udp_port_hash != hnum ||
531 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
532 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
533 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
534 	    ipv6_only_sock(sk) ||
535 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
536 		return false;
537 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
538 		return false;
539 	return true;
540 }
541 
542 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
543 void udp_encap_enable(void)
544 {
545 	static_branch_inc(&udp_encap_needed_key);
546 }
547 EXPORT_SYMBOL(udp_encap_enable);
548 
549 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
550  * through error handlers in encapsulations looking for a match.
551  */
552 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
553 {
554 	int i;
555 
556 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
557 		int (*handler)(struct sk_buff *skb, u32 info);
558 		const struct ip_tunnel_encap_ops *encap;
559 
560 		encap = rcu_dereference(iptun_encaps[i]);
561 		if (!encap)
562 			continue;
563 		handler = encap->err_handler;
564 		if (handler && !handler(skb, info))
565 			return 0;
566 	}
567 
568 	return -ENOENT;
569 }
570 
571 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
572  * reversing source and destination port: this will match tunnels that force the
573  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
574  * lwtunnels might actually break this assumption by being configured with
575  * different destination ports on endpoints, in this case we won't be able to
576  * trace ICMP messages back to them.
577  *
578  * If this doesn't match any socket, probe tunnels with arbitrary destination
579  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
580  * we've sent packets to won't necessarily match the local destination port.
581  *
582  * Then ask the tunnel implementation to match the error against a valid
583  * association.
584  *
585  * Return an error if we can't find a match, the socket if we need further
586  * processing, zero otherwise.
587  */
588 static struct sock *__udp4_lib_err_encap(struct net *net,
589 					 const struct iphdr *iph,
590 					 struct udphdr *uh,
591 					 struct udp_table *udptable,
592 					 struct sk_buff *skb, u32 info)
593 {
594 	int network_offset, transport_offset;
595 	struct sock *sk;
596 
597 	network_offset = skb_network_offset(skb);
598 	transport_offset = skb_transport_offset(skb);
599 
600 	/* Network header needs to point to the outer IPv4 header inside ICMP */
601 	skb_reset_network_header(skb);
602 
603 	/* Transport header needs to point to the UDP header */
604 	skb_set_transport_header(skb, iph->ihl << 2);
605 
606 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
607 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
608 			       udptable, NULL);
609 	if (sk) {
610 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
611 		struct udp_sock *up = udp_sk(sk);
612 
613 		lookup = READ_ONCE(up->encap_err_lookup);
614 		if (!lookup || lookup(sk, skb))
615 			sk = NULL;
616 	}
617 
618 	if (!sk)
619 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
620 
621 	skb_set_transport_header(skb, transport_offset);
622 	skb_set_network_header(skb, network_offset);
623 
624 	return sk;
625 }
626 
627 /*
628  * This routine is called by the ICMP module when it gets some
629  * sort of error condition.  If err < 0 then the socket should
630  * be closed and the error returned to the user.  If err > 0
631  * it's just the icmp type << 8 | icmp code.
632  * Header points to the ip header of the error packet. We move
633  * on past this. Then (as it used to claim before adjustment)
634  * header points to the first 8 bytes of the udp header.  We need
635  * to find the appropriate port.
636  */
637 
638 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
639 {
640 	struct inet_sock *inet;
641 	const struct iphdr *iph = (const struct iphdr *)skb->data;
642 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
643 	const int type = icmp_hdr(skb)->type;
644 	const int code = icmp_hdr(skb)->code;
645 	bool tunnel = false;
646 	struct sock *sk;
647 	int harderr;
648 	int err;
649 	struct net *net = dev_net(skb->dev);
650 
651 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
652 			       iph->saddr, uh->source, skb->dev->ifindex,
653 			       inet_sdif(skb), udptable, NULL);
654 	if (!sk) {
655 		/* No socket for error: try tunnels before discarding */
656 		sk = ERR_PTR(-ENOENT);
657 		if (static_branch_unlikely(&udp_encap_needed_key)) {
658 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
659 						  info);
660 			if (!sk)
661 				return 0;
662 		}
663 
664 		if (IS_ERR(sk)) {
665 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
666 			return PTR_ERR(sk);
667 		}
668 
669 		tunnel = true;
670 	}
671 
672 	err = 0;
673 	harderr = 0;
674 	inet = inet_sk(sk);
675 
676 	switch (type) {
677 	default:
678 	case ICMP_TIME_EXCEEDED:
679 		err = EHOSTUNREACH;
680 		break;
681 	case ICMP_SOURCE_QUENCH:
682 		goto out;
683 	case ICMP_PARAMETERPROB:
684 		err = EPROTO;
685 		harderr = 1;
686 		break;
687 	case ICMP_DEST_UNREACH:
688 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
689 			ipv4_sk_update_pmtu(skb, sk, info);
690 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
691 				err = EMSGSIZE;
692 				harderr = 1;
693 				break;
694 			}
695 			goto out;
696 		}
697 		err = EHOSTUNREACH;
698 		if (code <= NR_ICMP_UNREACH) {
699 			harderr = icmp_err_convert[code].fatal;
700 			err = icmp_err_convert[code].errno;
701 		}
702 		break;
703 	case ICMP_REDIRECT:
704 		ipv4_sk_redirect(skb, sk);
705 		goto out;
706 	}
707 
708 	/*
709 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
710 	 *	4.1.3.3.
711 	 */
712 	if (tunnel) {
713 		/* ...not for tunnels though: we don't have a sending socket */
714 		goto out;
715 	}
716 	if (!inet->recverr) {
717 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
718 			goto out;
719 	} else
720 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
721 
722 	sk->sk_err = err;
723 	sk->sk_error_report(sk);
724 out:
725 	return 0;
726 }
727 
728 int udp_err(struct sk_buff *skb, u32 info)
729 {
730 	return __udp4_lib_err(skb, info, &udp_table);
731 }
732 
733 /*
734  * Throw away all pending data and cancel the corking. Socket is locked.
735  */
736 void udp_flush_pending_frames(struct sock *sk)
737 {
738 	struct udp_sock *up = udp_sk(sk);
739 
740 	if (up->pending) {
741 		up->len = 0;
742 		up->pending = 0;
743 		ip_flush_pending_frames(sk);
744 	}
745 }
746 EXPORT_SYMBOL(udp_flush_pending_frames);
747 
748 /**
749  * 	udp4_hwcsum  -  handle outgoing HW checksumming
750  * 	@skb: 	sk_buff containing the filled-in UDP header
751  * 	        (checksum field must be zeroed out)
752  *	@src:	source IP address
753  *	@dst:	destination IP address
754  */
755 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
756 {
757 	struct udphdr *uh = udp_hdr(skb);
758 	int offset = skb_transport_offset(skb);
759 	int len = skb->len - offset;
760 	int hlen = len;
761 	__wsum csum = 0;
762 
763 	if (!skb_has_frag_list(skb)) {
764 		/*
765 		 * Only one fragment on the socket.
766 		 */
767 		skb->csum_start = skb_transport_header(skb) - skb->head;
768 		skb->csum_offset = offsetof(struct udphdr, check);
769 		uh->check = ~csum_tcpudp_magic(src, dst, len,
770 					       IPPROTO_UDP, 0);
771 	} else {
772 		struct sk_buff *frags;
773 
774 		/*
775 		 * HW-checksum won't work as there are two or more
776 		 * fragments on the socket so that all csums of sk_buffs
777 		 * should be together
778 		 */
779 		skb_walk_frags(skb, frags) {
780 			csum = csum_add(csum, frags->csum);
781 			hlen -= frags->len;
782 		}
783 
784 		csum = skb_checksum(skb, offset, hlen, csum);
785 		skb->ip_summed = CHECKSUM_NONE;
786 
787 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
788 		if (uh->check == 0)
789 			uh->check = CSUM_MANGLED_0;
790 	}
791 }
792 EXPORT_SYMBOL_GPL(udp4_hwcsum);
793 
794 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
795  * for the simple case like when setting the checksum for a UDP tunnel.
796  */
797 void udp_set_csum(bool nocheck, struct sk_buff *skb,
798 		  __be32 saddr, __be32 daddr, int len)
799 {
800 	struct udphdr *uh = udp_hdr(skb);
801 
802 	if (nocheck) {
803 		uh->check = 0;
804 	} else if (skb_is_gso(skb)) {
805 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
806 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
807 		uh->check = 0;
808 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
809 		if (uh->check == 0)
810 			uh->check = CSUM_MANGLED_0;
811 	} else {
812 		skb->ip_summed = CHECKSUM_PARTIAL;
813 		skb->csum_start = skb_transport_header(skb) - skb->head;
814 		skb->csum_offset = offsetof(struct udphdr, check);
815 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
816 	}
817 }
818 EXPORT_SYMBOL(udp_set_csum);
819 
820 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
821 			struct inet_cork *cork)
822 {
823 	struct sock *sk = skb->sk;
824 	struct inet_sock *inet = inet_sk(sk);
825 	struct udphdr *uh;
826 	int err = 0;
827 	int is_udplite = IS_UDPLITE(sk);
828 	int offset = skb_transport_offset(skb);
829 	int len = skb->len - offset;
830 	int datalen = len - sizeof(*uh);
831 	__wsum csum = 0;
832 
833 	/*
834 	 * Create a UDP header
835 	 */
836 	uh = udp_hdr(skb);
837 	uh->source = inet->inet_sport;
838 	uh->dest = fl4->fl4_dport;
839 	uh->len = htons(len);
840 	uh->check = 0;
841 
842 	if (cork->gso_size) {
843 		const int hlen = skb_network_header_len(skb) +
844 				 sizeof(struct udphdr);
845 
846 		if (hlen + cork->gso_size > cork->fragsize) {
847 			kfree_skb(skb);
848 			return -EINVAL;
849 		}
850 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
851 			kfree_skb(skb);
852 			return -EINVAL;
853 		}
854 		if (sk->sk_no_check_tx) {
855 			kfree_skb(skb);
856 			return -EINVAL;
857 		}
858 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
859 		    dst_xfrm(skb_dst(skb))) {
860 			kfree_skb(skb);
861 			return -EIO;
862 		}
863 
864 		if (datalen > cork->gso_size) {
865 			skb_shinfo(skb)->gso_size = cork->gso_size;
866 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
867 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
868 								 cork->gso_size);
869 		}
870 		goto csum_partial;
871 	}
872 
873 	if (is_udplite)  				 /*     UDP-Lite      */
874 		csum = udplite_csum(skb);
875 
876 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
877 
878 		skb->ip_summed = CHECKSUM_NONE;
879 		goto send;
880 
881 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
882 csum_partial:
883 
884 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
885 		goto send;
886 
887 	} else
888 		csum = udp_csum(skb);
889 
890 	/* add protocol-dependent pseudo-header */
891 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
892 				      sk->sk_protocol, csum);
893 	if (uh->check == 0)
894 		uh->check = CSUM_MANGLED_0;
895 
896 send:
897 	err = ip_send_skb(sock_net(sk), skb);
898 	if (err) {
899 		if (err == -ENOBUFS && !inet->recverr) {
900 			UDP_INC_STATS(sock_net(sk),
901 				      UDP_MIB_SNDBUFERRORS, is_udplite);
902 			err = 0;
903 		}
904 	} else
905 		UDP_INC_STATS(sock_net(sk),
906 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
907 	return err;
908 }
909 
910 /*
911  * Push out all pending data as one UDP datagram. Socket is locked.
912  */
913 int udp_push_pending_frames(struct sock *sk)
914 {
915 	struct udp_sock  *up = udp_sk(sk);
916 	struct inet_sock *inet = inet_sk(sk);
917 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
918 	struct sk_buff *skb;
919 	int err = 0;
920 
921 	skb = ip_finish_skb(sk, fl4);
922 	if (!skb)
923 		goto out;
924 
925 	err = udp_send_skb(skb, fl4, &inet->cork.base);
926 
927 out:
928 	up->len = 0;
929 	up->pending = 0;
930 	return err;
931 }
932 EXPORT_SYMBOL(udp_push_pending_frames);
933 
934 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
935 {
936 	switch (cmsg->cmsg_type) {
937 	case UDP_SEGMENT:
938 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
939 			return -EINVAL;
940 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
941 		return 0;
942 	default:
943 		return -EINVAL;
944 	}
945 }
946 
947 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
948 {
949 	struct cmsghdr *cmsg;
950 	bool need_ip = false;
951 	int err;
952 
953 	for_each_cmsghdr(cmsg, msg) {
954 		if (!CMSG_OK(msg, cmsg))
955 			return -EINVAL;
956 
957 		if (cmsg->cmsg_level != SOL_UDP) {
958 			need_ip = true;
959 			continue;
960 		}
961 
962 		err = __udp_cmsg_send(cmsg, gso_size);
963 		if (err)
964 			return err;
965 	}
966 
967 	return need_ip;
968 }
969 EXPORT_SYMBOL_GPL(udp_cmsg_send);
970 
971 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
972 {
973 	struct inet_sock *inet = inet_sk(sk);
974 	struct udp_sock *up = udp_sk(sk);
975 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
976 	struct flowi4 fl4_stack;
977 	struct flowi4 *fl4;
978 	int ulen = len;
979 	struct ipcm_cookie ipc;
980 	struct rtable *rt = NULL;
981 	int free = 0;
982 	int connected = 0;
983 	__be32 daddr, faddr, saddr;
984 	__be16 dport;
985 	u8  tos;
986 	int err, is_udplite = IS_UDPLITE(sk);
987 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
988 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
989 	struct sk_buff *skb;
990 	struct ip_options_data opt_copy;
991 
992 	if (len > 0xFFFF)
993 		return -EMSGSIZE;
994 
995 	/*
996 	 *	Check the flags.
997 	 */
998 
999 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1000 		return -EOPNOTSUPP;
1001 
1002 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1003 
1004 	fl4 = &inet->cork.fl.u.ip4;
1005 	if (up->pending) {
1006 		/*
1007 		 * There are pending frames.
1008 		 * The socket lock must be held while it's corked.
1009 		 */
1010 		lock_sock(sk);
1011 		if (likely(up->pending)) {
1012 			if (unlikely(up->pending != AF_INET)) {
1013 				release_sock(sk);
1014 				return -EINVAL;
1015 			}
1016 			goto do_append_data;
1017 		}
1018 		release_sock(sk);
1019 	}
1020 	ulen += sizeof(struct udphdr);
1021 
1022 	/*
1023 	 *	Get and verify the address.
1024 	 */
1025 	if (usin) {
1026 		if (msg->msg_namelen < sizeof(*usin))
1027 			return -EINVAL;
1028 		if (usin->sin_family != AF_INET) {
1029 			if (usin->sin_family != AF_UNSPEC)
1030 				return -EAFNOSUPPORT;
1031 		}
1032 
1033 		daddr = usin->sin_addr.s_addr;
1034 		dport = usin->sin_port;
1035 		if (dport == 0)
1036 			return -EINVAL;
1037 	} else {
1038 		if (sk->sk_state != TCP_ESTABLISHED)
1039 			return -EDESTADDRREQ;
1040 		daddr = inet->inet_daddr;
1041 		dport = inet->inet_dport;
1042 		/* Open fast path for connected socket.
1043 		   Route will not be used, if at least one option is set.
1044 		 */
1045 		connected = 1;
1046 	}
1047 
1048 	ipcm_init_sk(&ipc, inet);
1049 	ipc.gso_size = up->gso_size;
1050 
1051 	if (msg->msg_controllen) {
1052 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1053 		if (err > 0)
1054 			err = ip_cmsg_send(sk, msg, &ipc,
1055 					   sk->sk_family == AF_INET6);
1056 		if (unlikely(err < 0)) {
1057 			kfree(ipc.opt);
1058 			return err;
1059 		}
1060 		if (ipc.opt)
1061 			free = 1;
1062 		connected = 0;
1063 	}
1064 	if (!ipc.opt) {
1065 		struct ip_options_rcu *inet_opt;
1066 
1067 		rcu_read_lock();
1068 		inet_opt = rcu_dereference(inet->inet_opt);
1069 		if (inet_opt) {
1070 			memcpy(&opt_copy, inet_opt,
1071 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1072 			ipc.opt = &opt_copy.opt;
1073 		}
1074 		rcu_read_unlock();
1075 	}
1076 
1077 	if (cgroup_bpf_enabled && !connected) {
1078 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1079 					    (struct sockaddr *)usin, &ipc.addr);
1080 		if (err)
1081 			goto out_free;
1082 		if (usin) {
1083 			if (usin->sin_port == 0) {
1084 				/* BPF program set invalid port. Reject it. */
1085 				err = -EINVAL;
1086 				goto out_free;
1087 			}
1088 			daddr = usin->sin_addr.s_addr;
1089 			dport = usin->sin_port;
1090 		}
1091 	}
1092 
1093 	saddr = ipc.addr;
1094 	ipc.addr = faddr = daddr;
1095 
1096 	if (ipc.opt && ipc.opt->opt.srr) {
1097 		if (!daddr) {
1098 			err = -EINVAL;
1099 			goto out_free;
1100 		}
1101 		faddr = ipc.opt->opt.faddr;
1102 		connected = 0;
1103 	}
1104 	tos = get_rttos(&ipc, inet);
1105 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1106 	    (msg->msg_flags & MSG_DONTROUTE) ||
1107 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1108 		tos |= RTO_ONLINK;
1109 		connected = 0;
1110 	}
1111 
1112 	if (ipv4_is_multicast(daddr)) {
1113 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1114 			ipc.oif = inet->mc_index;
1115 		if (!saddr)
1116 			saddr = inet->mc_addr;
1117 		connected = 0;
1118 	} else if (!ipc.oif) {
1119 		ipc.oif = inet->uc_index;
1120 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1121 		/* oif is set, packet is to local broadcast and
1122 		 * and uc_index is set. oif is most likely set
1123 		 * by sk_bound_dev_if. If uc_index != oif check if the
1124 		 * oif is an L3 master and uc_index is an L3 slave.
1125 		 * If so, we want to allow the send using the uc_index.
1126 		 */
1127 		if (ipc.oif != inet->uc_index &&
1128 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1129 							      inet->uc_index)) {
1130 			ipc.oif = inet->uc_index;
1131 		}
1132 	}
1133 
1134 	if (connected)
1135 		rt = (struct rtable *)sk_dst_check(sk, 0);
1136 
1137 	if (!rt) {
1138 		struct net *net = sock_net(sk);
1139 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1140 
1141 		fl4 = &fl4_stack;
1142 
1143 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1144 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1145 				   flow_flags,
1146 				   faddr, saddr, dport, inet->inet_sport,
1147 				   sk->sk_uid);
1148 
1149 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1150 		rt = ip_route_output_flow(net, fl4, sk);
1151 		if (IS_ERR(rt)) {
1152 			err = PTR_ERR(rt);
1153 			rt = NULL;
1154 			if (err == -ENETUNREACH)
1155 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1156 			goto out;
1157 		}
1158 
1159 		err = -EACCES;
1160 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1161 		    !sock_flag(sk, SOCK_BROADCAST))
1162 			goto out;
1163 		if (connected)
1164 			sk_dst_set(sk, dst_clone(&rt->dst));
1165 	}
1166 
1167 	if (msg->msg_flags&MSG_CONFIRM)
1168 		goto do_confirm;
1169 back_from_confirm:
1170 
1171 	saddr = fl4->saddr;
1172 	if (!ipc.addr)
1173 		daddr = ipc.addr = fl4->daddr;
1174 
1175 	/* Lockless fast path for the non-corking case. */
1176 	if (!corkreq) {
1177 		struct inet_cork cork;
1178 
1179 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1180 				  sizeof(struct udphdr), &ipc, &rt,
1181 				  &cork, msg->msg_flags);
1182 		err = PTR_ERR(skb);
1183 		if (!IS_ERR_OR_NULL(skb))
1184 			err = udp_send_skb(skb, fl4, &cork);
1185 		goto out;
1186 	}
1187 
1188 	lock_sock(sk);
1189 	if (unlikely(up->pending)) {
1190 		/* The socket is already corked while preparing it. */
1191 		/* ... which is an evident application bug. --ANK */
1192 		release_sock(sk);
1193 
1194 		net_dbg_ratelimited("socket already corked\n");
1195 		err = -EINVAL;
1196 		goto out;
1197 	}
1198 	/*
1199 	 *	Now cork the socket to pend data.
1200 	 */
1201 	fl4 = &inet->cork.fl.u.ip4;
1202 	fl4->daddr = daddr;
1203 	fl4->saddr = saddr;
1204 	fl4->fl4_dport = dport;
1205 	fl4->fl4_sport = inet->inet_sport;
1206 	up->pending = AF_INET;
1207 
1208 do_append_data:
1209 	up->len += ulen;
1210 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1211 			     sizeof(struct udphdr), &ipc, &rt,
1212 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1213 	if (err)
1214 		udp_flush_pending_frames(sk);
1215 	else if (!corkreq)
1216 		err = udp_push_pending_frames(sk);
1217 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1218 		up->pending = 0;
1219 	release_sock(sk);
1220 
1221 out:
1222 	ip_rt_put(rt);
1223 out_free:
1224 	if (free)
1225 		kfree(ipc.opt);
1226 	if (!err)
1227 		return len;
1228 	/*
1229 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1230 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1231 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1232 	 * things).  We could add another new stat but at least for now that
1233 	 * seems like overkill.
1234 	 */
1235 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1236 		UDP_INC_STATS(sock_net(sk),
1237 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1238 	}
1239 	return err;
1240 
1241 do_confirm:
1242 	if (msg->msg_flags & MSG_PROBE)
1243 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1244 	if (!(msg->msg_flags&MSG_PROBE) || len)
1245 		goto back_from_confirm;
1246 	err = 0;
1247 	goto out;
1248 }
1249 EXPORT_SYMBOL(udp_sendmsg);
1250 
1251 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1252 		 size_t size, int flags)
1253 {
1254 	struct inet_sock *inet = inet_sk(sk);
1255 	struct udp_sock *up = udp_sk(sk);
1256 	int ret;
1257 
1258 	if (flags & MSG_SENDPAGE_NOTLAST)
1259 		flags |= MSG_MORE;
1260 
1261 	if (!up->pending) {
1262 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1263 
1264 		/* Call udp_sendmsg to specify destination address which
1265 		 * sendpage interface can't pass.
1266 		 * This will succeed only when the socket is connected.
1267 		 */
1268 		ret = udp_sendmsg(sk, &msg, 0);
1269 		if (ret < 0)
1270 			return ret;
1271 	}
1272 
1273 	lock_sock(sk);
1274 
1275 	if (unlikely(!up->pending)) {
1276 		release_sock(sk);
1277 
1278 		net_dbg_ratelimited("cork failed\n");
1279 		return -EINVAL;
1280 	}
1281 
1282 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1283 			     page, offset, size, flags);
1284 	if (ret == -EOPNOTSUPP) {
1285 		release_sock(sk);
1286 		return sock_no_sendpage(sk->sk_socket, page, offset,
1287 					size, flags);
1288 	}
1289 	if (ret < 0) {
1290 		udp_flush_pending_frames(sk);
1291 		goto out;
1292 	}
1293 
1294 	up->len += size;
1295 	if (!(up->corkflag || (flags&MSG_MORE)))
1296 		ret = udp_push_pending_frames(sk);
1297 	if (!ret)
1298 		ret = size;
1299 out:
1300 	release_sock(sk);
1301 	return ret;
1302 }
1303 
1304 #define UDP_SKB_IS_STATELESS 0x80000000
1305 
1306 /* all head states (dst, sk, nf conntrack) except skb extensions are
1307  * cleared by udp_rcv().
1308  *
1309  * We need to preserve secpath, if present, to eventually process
1310  * IP_CMSG_PASSSEC at recvmsg() time.
1311  *
1312  * Other extensions can be cleared.
1313  */
1314 static bool udp_try_make_stateless(struct sk_buff *skb)
1315 {
1316 	if (!skb_has_extensions(skb))
1317 		return true;
1318 
1319 	if (!secpath_exists(skb)) {
1320 		skb_ext_reset(skb);
1321 		return true;
1322 	}
1323 
1324 	return false;
1325 }
1326 
1327 static void udp_set_dev_scratch(struct sk_buff *skb)
1328 {
1329 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1330 
1331 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1332 	scratch->_tsize_state = skb->truesize;
1333 #if BITS_PER_LONG == 64
1334 	scratch->len = skb->len;
1335 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1336 	scratch->is_linear = !skb_is_nonlinear(skb);
1337 #endif
1338 	if (udp_try_make_stateless(skb))
1339 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1340 }
1341 
1342 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1343 {
1344 	/* We come here after udp_lib_checksum_complete() returned 0.
1345 	 * This means that __skb_checksum_complete() might have
1346 	 * set skb->csum_valid to 1.
1347 	 * On 64bit platforms, we can set csum_unnecessary
1348 	 * to true, but only if the skb is not shared.
1349 	 */
1350 #if BITS_PER_LONG == 64
1351 	if (!skb_shared(skb))
1352 		udp_skb_scratch(skb)->csum_unnecessary = true;
1353 #endif
1354 }
1355 
1356 static int udp_skb_truesize(struct sk_buff *skb)
1357 {
1358 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1359 }
1360 
1361 static bool udp_skb_has_head_state(struct sk_buff *skb)
1362 {
1363 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1364 }
1365 
1366 /* fully reclaim rmem/fwd memory allocated for skb */
1367 static void udp_rmem_release(struct sock *sk, int size, int partial,
1368 			     bool rx_queue_lock_held)
1369 {
1370 	struct udp_sock *up = udp_sk(sk);
1371 	struct sk_buff_head *sk_queue;
1372 	int amt;
1373 
1374 	if (likely(partial)) {
1375 		up->forward_deficit += size;
1376 		size = up->forward_deficit;
1377 		if (size < (sk->sk_rcvbuf >> 2) &&
1378 		    !skb_queue_empty(&up->reader_queue))
1379 			return;
1380 	} else {
1381 		size += up->forward_deficit;
1382 	}
1383 	up->forward_deficit = 0;
1384 
1385 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1386 	 * if the called don't held it already
1387 	 */
1388 	sk_queue = &sk->sk_receive_queue;
1389 	if (!rx_queue_lock_held)
1390 		spin_lock(&sk_queue->lock);
1391 
1392 
1393 	sk->sk_forward_alloc += size;
1394 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1395 	sk->sk_forward_alloc -= amt;
1396 
1397 	if (amt)
1398 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1399 
1400 	atomic_sub(size, &sk->sk_rmem_alloc);
1401 
1402 	/* this can save us from acquiring the rx queue lock on next receive */
1403 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1404 
1405 	if (!rx_queue_lock_held)
1406 		spin_unlock(&sk_queue->lock);
1407 }
1408 
1409 /* Note: called with reader_queue.lock held.
1410  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1411  * This avoids a cache line miss while receive_queue lock is held.
1412  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1413  */
1414 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1415 {
1416 	prefetch(&skb->data);
1417 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1418 }
1419 EXPORT_SYMBOL(udp_skb_destructor);
1420 
1421 /* as above, but the caller held the rx queue lock, too */
1422 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1423 {
1424 	prefetch(&skb->data);
1425 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1426 }
1427 
1428 /* Idea of busylocks is to let producers grab an extra spinlock
1429  * to relieve pressure on the receive_queue spinlock shared by consumer.
1430  * Under flood, this means that only one producer can be in line
1431  * trying to acquire the receive_queue spinlock.
1432  * These busylock can be allocated on a per cpu manner, instead of a
1433  * per socket one (that would consume a cache line per socket)
1434  */
1435 static int udp_busylocks_log __read_mostly;
1436 static spinlock_t *udp_busylocks __read_mostly;
1437 
1438 static spinlock_t *busylock_acquire(void *ptr)
1439 {
1440 	spinlock_t *busy;
1441 
1442 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1443 	spin_lock(busy);
1444 	return busy;
1445 }
1446 
1447 static void busylock_release(spinlock_t *busy)
1448 {
1449 	if (busy)
1450 		spin_unlock(busy);
1451 }
1452 
1453 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1454 {
1455 	struct sk_buff_head *list = &sk->sk_receive_queue;
1456 	int rmem, delta, amt, err = -ENOMEM;
1457 	spinlock_t *busy = NULL;
1458 	int size;
1459 
1460 	/* try to avoid the costly atomic add/sub pair when the receive
1461 	 * queue is full; always allow at least a packet
1462 	 */
1463 	rmem = atomic_read(&sk->sk_rmem_alloc);
1464 	if (rmem > sk->sk_rcvbuf)
1465 		goto drop;
1466 
1467 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1468 	 * having linear skbs :
1469 	 * - Reduce memory overhead and thus increase receive queue capacity
1470 	 * - Less cache line misses at copyout() time
1471 	 * - Less work at consume_skb() (less alien page frag freeing)
1472 	 */
1473 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1474 		skb_condense(skb);
1475 
1476 		busy = busylock_acquire(sk);
1477 	}
1478 	size = skb->truesize;
1479 	udp_set_dev_scratch(skb);
1480 
1481 	/* we drop only if the receive buf is full and the receive
1482 	 * queue contains some other skb
1483 	 */
1484 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1485 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1486 		goto uncharge_drop;
1487 
1488 	spin_lock(&list->lock);
1489 	if (size >= sk->sk_forward_alloc) {
1490 		amt = sk_mem_pages(size);
1491 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1492 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1493 			err = -ENOBUFS;
1494 			spin_unlock(&list->lock);
1495 			goto uncharge_drop;
1496 		}
1497 
1498 		sk->sk_forward_alloc += delta;
1499 	}
1500 
1501 	sk->sk_forward_alloc -= size;
1502 
1503 	/* no need to setup a destructor, we will explicitly release the
1504 	 * forward allocated memory on dequeue
1505 	 */
1506 	sock_skb_set_dropcount(sk, skb);
1507 
1508 	__skb_queue_tail(list, skb);
1509 	spin_unlock(&list->lock);
1510 
1511 	if (!sock_flag(sk, SOCK_DEAD))
1512 		sk->sk_data_ready(sk);
1513 
1514 	busylock_release(busy);
1515 	return 0;
1516 
1517 uncharge_drop:
1518 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1519 
1520 drop:
1521 	atomic_inc(&sk->sk_drops);
1522 	busylock_release(busy);
1523 	return err;
1524 }
1525 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1526 
1527 void udp_destruct_sock(struct sock *sk)
1528 {
1529 	/* reclaim completely the forward allocated memory */
1530 	struct udp_sock *up = udp_sk(sk);
1531 	unsigned int total = 0;
1532 	struct sk_buff *skb;
1533 
1534 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1535 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1536 		total += skb->truesize;
1537 		kfree_skb(skb);
1538 	}
1539 	udp_rmem_release(sk, total, 0, true);
1540 
1541 	inet_sock_destruct(sk);
1542 }
1543 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1544 
1545 int udp_init_sock(struct sock *sk)
1546 {
1547 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1548 	sk->sk_destruct = udp_destruct_sock;
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(udp_init_sock);
1552 
1553 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1554 {
1555 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1556 		bool slow = lock_sock_fast(sk);
1557 
1558 		sk_peek_offset_bwd(sk, len);
1559 		unlock_sock_fast(sk, slow);
1560 	}
1561 
1562 	if (!skb_unref(skb))
1563 		return;
1564 
1565 	/* In the more common cases we cleared the head states previously,
1566 	 * see __udp_queue_rcv_skb().
1567 	 */
1568 	if (unlikely(udp_skb_has_head_state(skb)))
1569 		skb_release_head_state(skb);
1570 	__consume_stateless_skb(skb);
1571 }
1572 EXPORT_SYMBOL_GPL(skb_consume_udp);
1573 
1574 static struct sk_buff *__first_packet_length(struct sock *sk,
1575 					     struct sk_buff_head *rcvq,
1576 					     int *total)
1577 {
1578 	struct sk_buff *skb;
1579 
1580 	while ((skb = skb_peek(rcvq)) != NULL) {
1581 		if (udp_lib_checksum_complete(skb)) {
1582 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1583 					IS_UDPLITE(sk));
1584 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1585 					IS_UDPLITE(sk));
1586 			atomic_inc(&sk->sk_drops);
1587 			__skb_unlink(skb, rcvq);
1588 			*total += skb->truesize;
1589 			kfree_skb(skb);
1590 		} else {
1591 			udp_skb_csum_unnecessary_set(skb);
1592 			break;
1593 		}
1594 	}
1595 	return skb;
1596 }
1597 
1598 /**
1599  *	first_packet_length	- return length of first packet in receive queue
1600  *	@sk: socket
1601  *
1602  *	Drops all bad checksum frames, until a valid one is found.
1603  *	Returns the length of found skb, or -1 if none is found.
1604  */
1605 static int first_packet_length(struct sock *sk)
1606 {
1607 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1608 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1609 	struct sk_buff *skb;
1610 	int total = 0;
1611 	int res;
1612 
1613 	spin_lock_bh(&rcvq->lock);
1614 	skb = __first_packet_length(sk, rcvq, &total);
1615 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1616 		spin_lock(&sk_queue->lock);
1617 		skb_queue_splice_tail_init(sk_queue, rcvq);
1618 		spin_unlock(&sk_queue->lock);
1619 
1620 		skb = __first_packet_length(sk, rcvq, &total);
1621 	}
1622 	res = skb ? skb->len : -1;
1623 	if (total)
1624 		udp_rmem_release(sk, total, 1, false);
1625 	spin_unlock_bh(&rcvq->lock);
1626 	return res;
1627 }
1628 
1629 /*
1630  *	IOCTL requests applicable to the UDP protocol
1631  */
1632 
1633 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1634 {
1635 	switch (cmd) {
1636 	case SIOCOUTQ:
1637 	{
1638 		int amount = sk_wmem_alloc_get(sk);
1639 
1640 		return put_user(amount, (int __user *)arg);
1641 	}
1642 
1643 	case SIOCINQ:
1644 	{
1645 		int amount = max_t(int, 0, first_packet_length(sk));
1646 
1647 		return put_user(amount, (int __user *)arg);
1648 	}
1649 
1650 	default:
1651 		return -ENOIOCTLCMD;
1652 	}
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(udp_ioctl);
1657 
1658 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1659 			       int noblock, int *off, int *err)
1660 {
1661 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1662 	struct sk_buff_head *queue;
1663 	struct sk_buff *last;
1664 	long timeo;
1665 	int error;
1666 
1667 	queue = &udp_sk(sk)->reader_queue;
1668 	flags |= noblock ? MSG_DONTWAIT : 0;
1669 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1670 	do {
1671 		struct sk_buff *skb;
1672 
1673 		error = sock_error(sk);
1674 		if (error)
1675 			break;
1676 
1677 		error = -EAGAIN;
1678 		do {
1679 			spin_lock_bh(&queue->lock);
1680 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1681 							err, &last);
1682 			if (skb) {
1683 				if (!(flags & MSG_PEEK))
1684 					udp_skb_destructor(sk, skb);
1685 				spin_unlock_bh(&queue->lock);
1686 				return skb;
1687 			}
1688 
1689 			if (skb_queue_empty_lockless(sk_queue)) {
1690 				spin_unlock_bh(&queue->lock);
1691 				goto busy_check;
1692 			}
1693 
1694 			/* refill the reader queue and walk it again
1695 			 * keep both queues locked to avoid re-acquiring
1696 			 * the sk_receive_queue lock if fwd memory scheduling
1697 			 * is needed.
1698 			 */
1699 			spin_lock(&sk_queue->lock);
1700 			skb_queue_splice_tail_init(sk_queue, queue);
1701 
1702 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1703 							err, &last);
1704 			if (skb && !(flags & MSG_PEEK))
1705 				udp_skb_dtor_locked(sk, skb);
1706 			spin_unlock(&sk_queue->lock);
1707 			spin_unlock_bh(&queue->lock);
1708 			if (skb)
1709 				return skb;
1710 
1711 busy_check:
1712 			if (!sk_can_busy_loop(sk))
1713 				break;
1714 
1715 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1716 		} while (!skb_queue_empty_lockless(sk_queue));
1717 
1718 		/* sk_queue is empty, reader_queue may contain peeked packets */
1719 	} while (timeo &&
1720 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1721 					      &error, &timeo,
1722 					      (struct sk_buff *)sk_queue));
1723 
1724 	*err = error;
1725 	return NULL;
1726 }
1727 EXPORT_SYMBOL(__skb_recv_udp);
1728 
1729 /*
1730  * 	This should be easy, if there is something there we
1731  * 	return it, otherwise we block.
1732  */
1733 
1734 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1735 		int flags, int *addr_len)
1736 {
1737 	struct inet_sock *inet = inet_sk(sk);
1738 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1739 	struct sk_buff *skb;
1740 	unsigned int ulen, copied;
1741 	int off, err, peeking = flags & MSG_PEEK;
1742 	int is_udplite = IS_UDPLITE(sk);
1743 	bool checksum_valid = false;
1744 
1745 	if (flags & MSG_ERRQUEUE)
1746 		return ip_recv_error(sk, msg, len, addr_len);
1747 
1748 try_again:
1749 	off = sk_peek_offset(sk, flags);
1750 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1751 	if (!skb)
1752 		return err;
1753 
1754 	ulen = udp_skb_len(skb);
1755 	copied = len;
1756 	if (copied > ulen - off)
1757 		copied = ulen - off;
1758 	else if (copied < ulen)
1759 		msg->msg_flags |= MSG_TRUNC;
1760 
1761 	/*
1762 	 * If checksum is needed at all, try to do it while copying the
1763 	 * data.  If the data is truncated, or if we only want a partial
1764 	 * coverage checksum (UDP-Lite), do it before the copy.
1765 	 */
1766 
1767 	if (copied < ulen || peeking ||
1768 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1769 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1770 				!__udp_lib_checksum_complete(skb);
1771 		if (!checksum_valid)
1772 			goto csum_copy_err;
1773 	}
1774 
1775 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1776 		if (udp_skb_is_linear(skb))
1777 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1778 		else
1779 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1780 	} else {
1781 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1782 
1783 		if (err == -EINVAL)
1784 			goto csum_copy_err;
1785 	}
1786 
1787 	if (unlikely(err)) {
1788 		if (!peeking) {
1789 			atomic_inc(&sk->sk_drops);
1790 			UDP_INC_STATS(sock_net(sk),
1791 				      UDP_MIB_INERRORS, is_udplite);
1792 		}
1793 		kfree_skb(skb);
1794 		return err;
1795 	}
1796 
1797 	if (!peeking)
1798 		UDP_INC_STATS(sock_net(sk),
1799 			      UDP_MIB_INDATAGRAMS, is_udplite);
1800 
1801 	sock_recv_ts_and_drops(msg, sk, skb);
1802 
1803 	/* Copy the address. */
1804 	if (sin) {
1805 		sin->sin_family = AF_INET;
1806 		sin->sin_port = udp_hdr(skb)->source;
1807 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1808 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1809 		*addr_len = sizeof(*sin);
1810 
1811 		if (cgroup_bpf_enabled)
1812 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1813 							(struct sockaddr *)sin);
1814 	}
1815 
1816 	if (udp_sk(sk)->gro_enabled)
1817 		udp_cmsg_recv(msg, sk, skb);
1818 
1819 	if (inet->cmsg_flags)
1820 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1821 
1822 	err = copied;
1823 	if (flags & MSG_TRUNC)
1824 		err = ulen;
1825 
1826 	skb_consume_udp(sk, skb, peeking ? -err : err);
1827 	return err;
1828 
1829 csum_copy_err:
1830 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1831 				 udp_skb_destructor)) {
1832 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1833 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1834 	}
1835 	kfree_skb(skb);
1836 
1837 	/* starting over for a new packet, but check if we need to yield */
1838 	cond_resched();
1839 	msg->msg_flags &= ~MSG_TRUNC;
1840 	goto try_again;
1841 }
1842 
1843 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1844 {
1845 	/* This check is replicated from __ip4_datagram_connect() and
1846 	 * intended to prevent BPF program called below from accessing bytes
1847 	 * that are out of the bound specified by user in addr_len.
1848 	 */
1849 	if (addr_len < sizeof(struct sockaddr_in))
1850 		return -EINVAL;
1851 
1852 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1853 }
1854 EXPORT_SYMBOL(udp_pre_connect);
1855 
1856 int __udp_disconnect(struct sock *sk, int flags)
1857 {
1858 	struct inet_sock *inet = inet_sk(sk);
1859 	/*
1860 	 *	1003.1g - break association.
1861 	 */
1862 
1863 	sk->sk_state = TCP_CLOSE;
1864 	inet->inet_daddr = 0;
1865 	inet->inet_dport = 0;
1866 	sock_rps_reset_rxhash(sk);
1867 	sk->sk_bound_dev_if = 0;
1868 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1869 		inet_reset_saddr(sk);
1870 		if (sk->sk_prot->rehash &&
1871 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1872 			sk->sk_prot->rehash(sk);
1873 	}
1874 
1875 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1876 		sk->sk_prot->unhash(sk);
1877 		inet->inet_sport = 0;
1878 	}
1879 	sk_dst_reset(sk);
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL(__udp_disconnect);
1883 
1884 int udp_disconnect(struct sock *sk, int flags)
1885 {
1886 	lock_sock(sk);
1887 	__udp_disconnect(sk, flags);
1888 	release_sock(sk);
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL(udp_disconnect);
1892 
1893 void udp_lib_unhash(struct sock *sk)
1894 {
1895 	if (sk_hashed(sk)) {
1896 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1897 		struct udp_hslot *hslot, *hslot2;
1898 
1899 		hslot  = udp_hashslot(udptable, sock_net(sk),
1900 				      udp_sk(sk)->udp_port_hash);
1901 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1902 
1903 		spin_lock_bh(&hslot->lock);
1904 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1905 			reuseport_detach_sock(sk);
1906 		if (sk_del_node_init_rcu(sk)) {
1907 			hslot->count--;
1908 			inet_sk(sk)->inet_num = 0;
1909 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1910 
1911 			spin_lock(&hslot2->lock);
1912 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1913 			hslot2->count--;
1914 			spin_unlock(&hslot2->lock);
1915 		}
1916 		spin_unlock_bh(&hslot->lock);
1917 	}
1918 }
1919 EXPORT_SYMBOL(udp_lib_unhash);
1920 
1921 /*
1922  * inet_rcv_saddr was changed, we must rehash secondary hash
1923  */
1924 void udp_lib_rehash(struct sock *sk, u16 newhash)
1925 {
1926 	if (sk_hashed(sk)) {
1927 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1928 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1929 
1930 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1931 		nhslot2 = udp_hashslot2(udptable, newhash);
1932 		udp_sk(sk)->udp_portaddr_hash = newhash;
1933 
1934 		if (hslot2 != nhslot2 ||
1935 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1936 			hslot = udp_hashslot(udptable, sock_net(sk),
1937 					     udp_sk(sk)->udp_port_hash);
1938 			/* we must lock primary chain too */
1939 			spin_lock_bh(&hslot->lock);
1940 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1941 				reuseport_detach_sock(sk);
1942 
1943 			if (hslot2 != nhslot2) {
1944 				spin_lock(&hslot2->lock);
1945 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1946 				hslot2->count--;
1947 				spin_unlock(&hslot2->lock);
1948 
1949 				spin_lock(&nhslot2->lock);
1950 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1951 							 &nhslot2->head);
1952 				nhslot2->count++;
1953 				spin_unlock(&nhslot2->lock);
1954 			}
1955 
1956 			spin_unlock_bh(&hslot->lock);
1957 		}
1958 	}
1959 }
1960 EXPORT_SYMBOL(udp_lib_rehash);
1961 
1962 void udp_v4_rehash(struct sock *sk)
1963 {
1964 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1965 					  inet_sk(sk)->inet_rcv_saddr,
1966 					  inet_sk(sk)->inet_num);
1967 	udp_lib_rehash(sk, new_hash);
1968 }
1969 
1970 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1971 {
1972 	int rc;
1973 
1974 	if (inet_sk(sk)->inet_daddr) {
1975 		sock_rps_save_rxhash(sk, skb);
1976 		sk_mark_napi_id(sk, skb);
1977 		sk_incoming_cpu_update(sk);
1978 	} else {
1979 		sk_mark_napi_id_once(sk, skb);
1980 	}
1981 
1982 	rc = __udp_enqueue_schedule_skb(sk, skb);
1983 	if (rc < 0) {
1984 		int is_udplite = IS_UDPLITE(sk);
1985 
1986 		/* Note that an ENOMEM error is charged twice */
1987 		if (rc == -ENOMEM)
1988 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1989 					is_udplite);
1990 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1991 		kfree_skb(skb);
1992 		trace_udp_fail_queue_rcv_skb(rc, sk);
1993 		return -1;
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 /* returns:
2000  *  -1: error
2001  *   0: success
2002  *  >0: "udp encap" protocol resubmission
2003  *
2004  * Note that in the success and error cases, the skb is assumed to
2005  * have either been requeued or freed.
2006  */
2007 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2008 {
2009 	struct udp_sock *up = udp_sk(sk);
2010 	int is_udplite = IS_UDPLITE(sk);
2011 
2012 	/*
2013 	 *	Charge it to the socket, dropping if the queue is full.
2014 	 */
2015 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2016 		goto drop;
2017 	nf_reset_ct(skb);
2018 
2019 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2020 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2021 
2022 		/*
2023 		 * This is an encapsulation socket so pass the skb to
2024 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2025 		 * fall through and pass this up the UDP socket.
2026 		 * up->encap_rcv() returns the following value:
2027 		 * =0 if skb was successfully passed to the encap
2028 		 *    handler or was discarded by it.
2029 		 * >0 if skb should be passed on to UDP.
2030 		 * <0 if skb should be resubmitted as proto -N
2031 		 */
2032 
2033 		/* if we're overly short, let UDP handle it */
2034 		encap_rcv = READ_ONCE(up->encap_rcv);
2035 		if (encap_rcv) {
2036 			int ret;
2037 
2038 			/* Verify checksum before giving to encap */
2039 			if (udp_lib_checksum_complete(skb))
2040 				goto csum_error;
2041 
2042 			ret = encap_rcv(sk, skb);
2043 			if (ret <= 0) {
2044 				__UDP_INC_STATS(sock_net(sk),
2045 						UDP_MIB_INDATAGRAMS,
2046 						is_udplite);
2047 				return -ret;
2048 			}
2049 		}
2050 
2051 		/* FALLTHROUGH -- it's a UDP Packet */
2052 	}
2053 
2054 	/*
2055 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2056 	 */
2057 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2058 
2059 		/*
2060 		 * MIB statistics other than incrementing the error count are
2061 		 * disabled for the following two types of errors: these depend
2062 		 * on the application settings, not on the functioning of the
2063 		 * protocol stack as such.
2064 		 *
2065 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2066 		 * way ... to ... at least let the receiving application block
2067 		 * delivery of packets with coverage values less than a value
2068 		 * provided by the application."
2069 		 */
2070 		if (up->pcrlen == 0) {          /* full coverage was set  */
2071 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2072 					    UDP_SKB_CB(skb)->cscov, skb->len);
2073 			goto drop;
2074 		}
2075 		/* The next case involves violating the min. coverage requested
2076 		 * by the receiver. This is subtle: if receiver wants x and x is
2077 		 * greater than the buffersize/MTU then receiver will complain
2078 		 * that it wants x while sender emits packets of smaller size y.
2079 		 * Therefore the above ...()->partial_cov statement is essential.
2080 		 */
2081 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2082 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2083 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2084 			goto drop;
2085 		}
2086 	}
2087 
2088 	prefetch(&sk->sk_rmem_alloc);
2089 	if (rcu_access_pointer(sk->sk_filter) &&
2090 	    udp_lib_checksum_complete(skb))
2091 			goto csum_error;
2092 
2093 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2094 		goto drop;
2095 
2096 	udp_csum_pull_header(skb);
2097 
2098 	ipv4_pktinfo_prepare(sk, skb);
2099 	return __udp_queue_rcv_skb(sk, skb);
2100 
2101 csum_error:
2102 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2103 drop:
2104 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2105 	atomic_inc(&sk->sk_drops);
2106 	kfree_skb(skb);
2107 	return -1;
2108 }
2109 
2110 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2111 {
2112 	struct sk_buff *next, *segs;
2113 	int ret;
2114 
2115 	if (likely(!udp_unexpected_gso(sk, skb)))
2116 		return udp_queue_rcv_one_skb(sk, skb);
2117 
2118 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2119 	__skb_push(skb, -skb_mac_offset(skb));
2120 	segs = udp_rcv_segment(sk, skb, true);
2121 	skb_list_walk_safe(segs, skb, next) {
2122 		__skb_pull(skb, skb_transport_offset(skb));
2123 		ret = udp_queue_rcv_one_skb(sk, skb);
2124 		if (ret > 0)
2125 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2126 	}
2127 	return 0;
2128 }
2129 
2130 /* For TCP sockets, sk_rx_dst is protected by socket lock
2131  * For UDP, we use xchg() to guard against concurrent changes.
2132  */
2133 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2134 {
2135 	struct dst_entry *old;
2136 
2137 	if (dst_hold_safe(dst)) {
2138 		old = xchg(&sk->sk_rx_dst, dst);
2139 		dst_release(old);
2140 		return old != dst;
2141 	}
2142 	return false;
2143 }
2144 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2145 
2146 /*
2147  *	Multicasts and broadcasts go to each listener.
2148  *
2149  *	Note: called only from the BH handler context.
2150  */
2151 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2152 				    struct udphdr  *uh,
2153 				    __be32 saddr, __be32 daddr,
2154 				    struct udp_table *udptable,
2155 				    int proto)
2156 {
2157 	struct sock *sk, *first = NULL;
2158 	unsigned short hnum = ntohs(uh->dest);
2159 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2160 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2161 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2162 	int dif = skb->dev->ifindex;
2163 	int sdif = inet_sdif(skb);
2164 	struct hlist_node *node;
2165 	struct sk_buff *nskb;
2166 
2167 	if (use_hash2) {
2168 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2169 			    udptable->mask;
2170 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2171 start_lookup:
2172 		hslot = &udptable->hash2[hash2];
2173 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2174 	}
2175 
2176 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2177 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2178 					 uh->source, saddr, dif, sdif, hnum))
2179 			continue;
2180 
2181 		if (!first) {
2182 			first = sk;
2183 			continue;
2184 		}
2185 		nskb = skb_clone(skb, GFP_ATOMIC);
2186 
2187 		if (unlikely(!nskb)) {
2188 			atomic_inc(&sk->sk_drops);
2189 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2190 					IS_UDPLITE(sk));
2191 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2192 					IS_UDPLITE(sk));
2193 			continue;
2194 		}
2195 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2196 			consume_skb(nskb);
2197 	}
2198 
2199 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2200 	if (use_hash2 && hash2 != hash2_any) {
2201 		hash2 = hash2_any;
2202 		goto start_lookup;
2203 	}
2204 
2205 	if (first) {
2206 		if (udp_queue_rcv_skb(first, skb) > 0)
2207 			consume_skb(skb);
2208 	} else {
2209 		kfree_skb(skb);
2210 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2211 				proto == IPPROTO_UDPLITE);
2212 	}
2213 	return 0;
2214 }
2215 
2216 /* Initialize UDP checksum. If exited with zero value (success),
2217  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2218  * Otherwise, csum completion requires checksumming packet body,
2219  * including udp header and folding it to skb->csum.
2220  */
2221 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2222 				 int proto)
2223 {
2224 	int err;
2225 
2226 	UDP_SKB_CB(skb)->partial_cov = 0;
2227 	UDP_SKB_CB(skb)->cscov = skb->len;
2228 
2229 	if (proto == IPPROTO_UDPLITE) {
2230 		err = udplite_checksum_init(skb, uh);
2231 		if (err)
2232 			return err;
2233 
2234 		if (UDP_SKB_CB(skb)->partial_cov) {
2235 			skb->csum = inet_compute_pseudo(skb, proto);
2236 			return 0;
2237 		}
2238 	}
2239 
2240 	/* Note, we are only interested in != 0 or == 0, thus the
2241 	 * force to int.
2242 	 */
2243 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2244 							inet_compute_pseudo);
2245 	if (err)
2246 		return err;
2247 
2248 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2249 		/* If SW calculated the value, we know it's bad */
2250 		if (skb->csum_complete_sw)
2251 			return 1;
2252 
2253 		/* HW says the value is bad. Let's validate that.
2254 		 * skb->csum is no longer the full packet checksum,
2255 		 * so don't treat it as such.
2256 		 */
2257 		skb_checksum_complete_unset(skb);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2264  * return code conversion for ip layer consumption
2265  */
2266 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2267 			       struct udphdr *uh)
2268 {
2269 	int ret;
2270 
2271 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2272 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2273 
2274 	ret = udp_queue_rcv_skb(sk, skb);
2275 
2276 	/* a return value > 0 means to resubmit the input, but
2277 	 * it wants the return to be -protocol, or 0
2278 	 */
2279 	if (ret > 0)
2280 		return -ret;
2281 	return 0;
2282 }
2283 
2284 /*
2285  *	All we need to do is get the socket, and then do a checksum.
2286  */
2287 
2288 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2289 		   int proto)
2290 {
2291 	struct sock *sk;
2292 	struct udphdr *uh;
2293 	unsigned short ulen;
2294 	struct rtable *rt = skb_rtable(skb);
2295 	__be32 saddr, daddr;
2296 	struct net *net = dev_net(skb->dev);
2297 	bool refcounted;
2298 
2299 	/*
2300 	 *  Validate the packet.
2301 	 */
2302 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2303 		goto drop;		/* No space for header. */
2304 
2305 	uh   = udp_hdr(skb);
2306 	ulen = ntohs(uh->len);
2307 	saddr = ip_hdr(skb)->saddr;
2308 	daddr = ip_hdr(skb)->daddr;
2309 
2310 	if (ulen > skb->len)
2311 		goto short_packet;
2312 
2313 	if (proto == IPPROTO_UDP) {
2314 		/* UDP validates ulen. */
2315 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2316 			goto short_packet;
2317 		uh = udp_hdr(skb);
2318 	}
2319 
2320 	if (udp4_csum_init(skb, uh, proto))
2321 		goto csum_error;
2322 
2323 	sk = skb_steal_sock(skb, &refcounted);
2324 	if (sk) {
2325 		struct dst_entry *dst = skb_dst(skb);
2326 		int ret;
2327 
2328 		if (unlikely(sk->sk_rx_dst != dst))
2329 			udp_sk_rx_dst_set(sk, dst);
2330 
2331 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2332 		if (refcounted)
2333 			sock_put(sk);
2334 		return ret;
2335 	}
2336 
2337 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2338 		return __udp4_lib_mcast_deliver(net, skb, uh,
2339 						saddr, daddr, udptable, proto);
2340 
2341 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2342 	if (sk)
2343 		return udp_unicast_rcv_skb(sk, skb, uh);
2344 
2345 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2346 		goto drop;
2347 	nf_reset_ct(skb);
2348 
2349 	/* No socket. Drop packet silently, if checksum is wrong */
2350 	if (udp_lib_checksum_complete(skb))
2351 		goto csum_error;
2352 
2353 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2354 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2355 
2356 	/*
2357 	 * Hmm.  We got an UDP packet to a port to which we
2358 	 * don't wanna listen.  Ignore it.
2359 	 */
2360 	kfree_skb(skb);
2361 	return 0;
2362 
2363 short_packet:
2364 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2365 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2366 			    &saddr, ntohs(uh->source),
2367 			    ulen, skb->len,
2368 			    &daddr, ntohs(uh->dest));
2369 	goto drop;
2370 
2371 csum_error:
2372 	/*
2373 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2374 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2375 	 */
2376 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2377 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2378 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2379 			    ulen);
2380 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2381 drop:
2382 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2383 	kfree_skb(skb);
2384 	return 0;
2385 }
2386 
2387 /* We can only early demux multicast if there is a single matching socket.
2388  * If more than one socket found returns NULL
2389  */
2390 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2391 						  __be16 loc_port, __be32 loc_addr,
2392 						  __be16 rmt_port, __be32 rmt_addr,
2393 						  int dif, int sdif)
2394 {
2395 	struct sock *sk, *result;
2396 	unsigned short hnum = ntohs(loc_port);
2397 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2398 	struct udp_hslot *hslot = &udp_table.hash[slot];
2399 
2400 	/* Do not bother scanning a too big list */
2401 	if (hslot->count > 10)
2402 		return NULL;
2403 
2404 	result = NULL;
2405 	sk_for_each_rcu(sk, &hslot->head) {
2406 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2407 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2408 			if (result)
2409 				return NULL;
2410 			result = sk;
2411 		}
2412 	}
2413 
2414 	return result;
2415 }
2416 
2417 /* For unicast we should only early demux connected sockets or we can
2418  * break forwarding setups.  The chains here can be long so only check
2419  * if the first socket is an exact match and if not move on.
2420  */
2421 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2422 					    __be16 loc_port, __be32 loc_addr,
2423 					    __be16 rmt_port, __be32 rmt_addr,
2424 					    int dif, int sdif)
2425 {
2426 	unsigned short hnum = ntohs(loc_port);
2427 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2428 	unsigned int slot2 = hash2 & udp_table.mask;
2429 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2430 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2431 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2432 	struct sock *sk;
2433 
2434 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2435 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2436 			       loc_addr, ports, dif, sdif))
2437 			return sk;
2438 		/* Only check first socket in chain */
2439 		break;
2440 	}
2441 	return NULL;
2442 }
2443 
2444 int udp_v4_early_demux(struct sk_buff *skb)
2445 {
2446 	struct net *net = dev_net(skb->dev);
2447 	struct in_device *in_dev = NULL;
2448 	const struct iphdr *iph;
2449 	const struct udphdr *uh;
2450 	struct sock *sk = NULL;
2451 	struct dst_entry *dst;
2452 	int dif = skb->dev->ifindex;
2453 	int sdif = inet_sdif(skb);
2454 	int ours;
2455 
2456 	/* validate the packet */
2457 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2458 		return 0;
2459 
2460 	iph = ip_hdr(skb);
2461 	uh = udp_hdr(skb);
2462 
2463 	if (skb->pkt_type == PACKET_MULTICAST) {
2464 		in_dev = __in_dev_get_rcu(skb->dev);
2465 
2466 		if (!in_dev)
2467 			return 0;
2468 
2469 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2470 				       iph->protocol);
2471 		if (!ours)
2472 			return 0;
2473 
2474 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2475 						   uh->source, iph->saddr,
2476 						   dif, sdif);
2477 	} else if (skb->pkt_type == PACKET_HOST) {
2478 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2479 					     uh->source, iph->saddr, dif, sdif);
2480 	}
2481 
2482 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2483 		return 0;
2484 
2485 	skb->sk = sk;
2486 	skb->destructor = sock_efree;
2487 	dst = READ_ONCE(sk->sk_rx_dst);
2488 
2489 	if (dst)
2490 		dst = dst_check(dst, 0);
2491 	if (dst) {
2492 		u32 itag = 0;
2493 
2494 		/* set noref for now.
2495 		 * any place which wants to hold dst has to call
2496 		 * dst_hold_safe()
2497 		 */
2498 		skb_dst_set_noref(skb, dst);
2499 
2500 		/* for unconnected multicast sockets we need to validate
2501 		 * the source on each packet
2502 		 */
2503 		if (!inet_sk(sk)->inet_daddr && in_dev)
2504 			return ip_mc_validate_source(skb, iph->daddr,
2505 						     iph->saddr, iph->tos,
2506 						     skb->dev, in_dev, &itag);
2507 	}
2508 	return 0;
2509 }
2510 
2511 int udp_rcv(struct sk_buff *skb)
2512 {
2513 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2514 }
2515 
2516 void udp_destroy_sock(struct sock *sk)
2517 {
2518 	struct udp_sock *up = udp_sk(sk);
2519 	bool slow = lock_sock_fast(sk);
2520 	udp_flush_pending_frames(sk);
2521 	unlock_sock_fast(sk, slow);
2522 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2523 		if (up->encap_type) {
2524 			void (*encap_destroy)(struct sock *sk);
2525 			encap_destroy = READ_ONCE(up->encap_destroy);
2526 			if (encap_destroy)
2527 				encap_destroy(sk);
2528 		}
2529 		if (up->encap_enabled)
2530 			static_branch_dec(&udp_encap_needed_key);
2531 	}
2532 }
2533 
2534 /*
2535  *	Socket option code for UDP
2536  */
2537 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2538 		       char __user *optval, unsigned int optlen,
2539 		       int (*push_pending_frames)(struct sock *))
2540 {
2541 	struct udp_sock *up = udp_sk(sk);
2542 	int val, valbool;
2543 	int err = 0;
2544 	int is_udplite = IS_UDPLITE(sk);
2545 
2546 	if (optlen < sizeof(int))
2547 		return -EINVAL;
2548 
2549 	if (get_user(val, (int __user *)optval))
2550 		return -EFAULT;
2551 
2552 	valbool = val ? 1 : 0;
2553 
2554 	switch (optname) {
2555 	case UDP_CORK:
2556 		if (val != 0) {
2557 			up->corkflag = 1;
2558 		} else {
2559 			up->corkflag = 0;
2560 			lock_sock(sk);
2561 			push_pending_frames(sk);
2562 			release_sock(sk);
2563 		}
2564 		break;
2565 
2566 	case UDP_ENCAP:
2567 		switch (val) {
2568 		case 0:
2569 #ifdef CONFIG_XFRM
2570 		case UDP_ENCAP_ESPINUDP:
2571 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2572 #if IS_ENABLED(CONFIG_IPV6)
2573 			if (sk->sk_family == AF_INET6)
2574 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2575 			else
2576 #endif
2577 				up->encap_rcv = xfrm4_udp_encap_rcv;
2578 #endif
2579 			fallthrough;
2580 		case UDP_ENCAP_L2TPINUDP:
2581 			up->encap_type = val;
2582 			lock_sock(sk);
2583 			udp_tunnel_encap_enable(sk->sk_socket);
2584 			release_sock(sk);
2585 			break;
2586 		default:
2587 			err = -ENOPROTOOPT;
2588 			break;
2589 		}
2590 		break;
2591 
2592 	case UDP_NO_CHECK6_TX:
2593 		up->no_check6_tx = valbool;
2594 		break;
2595 
2596 	case UDP_NO_CHECK6_RX:
2597 		up->no_check6_rx = valbool;
2598 		break;
2599 
2600 	case UDP_SEGMENT:
2601 		if (val < 0 || val > USHRT_MAX)
2602 			return -EINVAL;
2603 		up->gso_size = val;
2604 		break;
2605 
2606 	case UDP_GRO:
2607 		lock_sock(sk);
2608 		if (valbool)
2609 			udp_tunnel_encap_enable(sk->sk_socket);
2610 		up->gro_enabled = valbool;
2611 		release_sock(sk);
2612 		break;
2613 
2614 	/*
2615 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2616 	 */
2617 	/* The sender sets actual checksum coverage length via this option.
2618 	 * The case coverage > packet length is handled by send module. */
2619 	case UDPLITE_SEND_CSCOV:
2620 		if (!is_udplite)         /* Disable the option on UDP sockets */
2621 			return -ENOPROTOOPT;
2622 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2623 			val = 8;
2624 		else if (val > USHRT_MAX)
2625 			val = USHRT_MAX;
2626 		up->pcslen = val;
2627 		up->pcflag |= UDPLITE_SEND_CC;
2628 		break;
2629 
2630 	/* The receiver specifies a minimum checksum coverage value. To make
2631 	 * sense, this should be set to at least 8 (as done below). If zero is
2632 	 * used, this again means full checksum coverage.                     */
2633 	case UDPLITE_RECV_CSCOV:
2634 		if (!is_udplite)         /* Disable the option on UDP sockets */
2635 			return -ENOPROTOOPT;
2636 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2637 			val = 8;
2638 		else if (val > USHRT_MAX)
2639 			val = USHRT_MAX;
2640 		up->pcrlen = val;
2641 		up->pcflag |= UDPLITE_RECV_CC;
2642 		break;
2643 
2644 	default:
2645 		err = -ENOPROTOOPT;
2646 		break;
2647 	}
2648 
2649 	return err;
2650 }
2651 EXPORT_SYMBOL(udp_lib_setsockopt);
2652 
2653 int udp_setsockopt(struct sock *sk, int level, int optname,
2654 		   char __user *optval, unsigned int optlen)
2655 {
2656 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2657 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2658 					  udp_push_pending_frames);
2659 	return ip_setsockopt(sk, level, optname, optval, optlen);
2660 }
2661 
2662 #ifdef CONFIG_COMPAT
2663 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2664 			  char __user *optval, unsigned int optlen)
2665 {
2666 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2667 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2668 					  udp_push_pending_frames);
2669 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2670 }
2671 #endif
2672 
2673 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2674 		       char __user *optval, int __user *optlen)
2675 {
2676 	struct udp_sock *up = udp_sk(sk);
2677 	int val, len;
2678 
2679 	if (get_user(len, optlen))
2680 		return -EFAULT;
2681 
2682 	len = min_t(unsigned int, len, sizeof(int));
2683 
2684 	if (len < 0)
2685 		return -EINVAL;
2686 
2687 	switch (optname) {
2688 	case UDP_CORK:
2689 		val = up->corkflag;
2690 		break;
2691 
2692 	case UDP_ENCAP:
2693 		val = up->encap_type;
2694 		break;
2695 
2696 	case UDP_NO_CHECK6_TX:
2697 		val = up->no_check6_tx;
2698 		break;
2699 
2700 	case UDP_NO_CHECK6_RX:
2701 		val = up->no_check6_rx;
2702 		break;
2703 
2704 	case UDP_SEGMENT:
2705 		val = up->gso_size;
2706 		break;
2707 
2708 	/* The following two cannot be changed on UDP sockets, the return is
2709 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2710 	case UDPLITE_SEND_CSCOV:
2711 		val = up->pcslen;
2712 		break;
2713 
2714 	case UDPLITE_RECV_CSCOV:
2715 		val = up->pcrlen;
2716 		break;
2717 
2718 	default:
2719 		return -ENOPROTOOPT;
2720 	}
2721 
2722 	if (put_user(len, optlen))
2723 		return -EFAULT;
2724 	if (copy_to_user(optval, &val, len))
2725 		return -EFAULT;
2726 	return 0;
2727 }
2728 EXPORT_SYMBOL(udp_lib_getsockopt);
2729 
2730 int udp_getsockopt(struct sock *sk, int level, int optname,
2731 		   char __user *optval, int __user *optlen)
2732 {
2733 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2734 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2735 	return ip_getsockopt(sk, level, optname, optval, optlen);
2736 }
2737 
2738 #ifdef CONFIG_COMPAT
2739 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2740 				 char __user *optval, int __user *optlen)
2741 {
2742 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2743 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2744 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2745 }
2746 #endif
2747 /**
2748  * 	udp_poll - wait for a UDP event.
2749  *	@file - file struct
2750  *	@sock - socket
2751  *	@wait - poll table
2752  *
2753  *	This is same as datagram poll, except for the special case of
2754  *	blocking sockets. If application is using a blocking fd
2755  *	and a packet with checksum error is in the queue;
2756  *	then it could get return from select indicating data available
2757  *	but then block when reading it. Add special case code
2758  *	to work around these arguably broken applications.
2759  */
2760 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2761 {
2762 	__poll_t mask = datagram_poll(file, sock, wait);
2763 	struct sock *sk = sock->sk;
2764 
2765 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2766 		mask |= EPOLLIN | EPOLLRDNORM;
2767 
2768 	/* Check for false positives due to checksum errors */
2769 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2770 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2771 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2772 
2773 	return mask;
2774 
2775 }
2776 EXPORT_SYMBOL(udp_poll);
2777 
2778 int udp_abort(struct sock *sk, int err)
2779 {
2780 	lock_sock(sk);
2781 
2782 	sk->sk_err = err;
2783 	sk->sk_error_report(sk);
2784 	__udp_disconnect(sk, 0);
2785 
2786 	release_sock(sk);
2787 
2788 	return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(udp_abort);
2791 
2792 struct proto udp_prot = {
2793 	.name			= "UDP",
2794 	.owner			= THIS_MODULE,
2795 	.close			= udp_lib_close,
2796 	.pre_connect		= udp_pre_connect,
2797 	.connect		= ip4_datagram_connect,
2798 	.disconnect		= udp_disconnect,
2799 	.ioctl			= udp_ioctl,
2800 	.init			= udp_init_sock,
2801 	.destroy		= udp_destroy_sock,
2802 	.setsockopt		= udp_setsockopt,
2803 	.getsockopt		= udp_getsockopt,
2804 	.sendmsg		= udp_sendmsg,
2805 	.recvmsg		= udp_recvmsg,
2806 	.sendpage		= udp_sendpage,
2807 	.release_cb		= ip4_datagram_release_cb,
2808 	.hash			= udp_lib_hash,
2809 	.unhash			= udp_lib_unhash,
2810 	.rehash			= udp_v4_rehash,
2811 	.get_port		= udp_v4_get_port,
2812 	.memory_allocated	= &udp_memory_allocated,
2813 	.sysctl_mem		= sysctl_udp_mem,
2814 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2815 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2816 	.obj_size		= sizeof(struct udp_sock),
2817 	.h.udp_table		= &udp_table,
2818 #ifdef CONFIG_COMPAT
2819 	.compat_setsockopt	= compat_udp_setsockopt,
2820 	.compat_getsockopt	= compat_udp_getsockopt,
2821 #endif
2822 	.diag_destroy		= udp_abort,
2823 };
2824 EXPORT_SYMBOL(udp_prot);
2825 
2826 /* ------------------------------------------------------------------------ */
2827 #ifdef CONFIG_PROC_FS
2828 
2829 static struct sock *udp_get_first(struct seq_file *seq, int start)
2830 {
2831 	struct sock *sk;
2832 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2833 	struct udp_iter_state *state = seq->private;
2834 	struct net *net = seq_file_net(seq);
2835 
2836 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2837 	     ++state->bucket) {
2838 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2839 
2840 		if (hlist_empty(&hslot->head))
2841 			continue;
2842 
2843 		spin_lock_bh(&hslot->lock);
2844 		sk_for_each(sk, &hslot->head) {
2845 			if (!net_eq(sock_net(sk), net))
2846 				continue;
2847 			if (sk->sk_family == afinfo->family)
2848 				goto found;
2849 		}
2850 		spin_unlock_bh(&hslot->lock);
2851 	}
2852 	sk = NULL;
2853 found:
2854 	return sk;
2855 }
2856 
2857 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2858 {
2859 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2860 	struct udp_iter_state *state = seq->private;
2861 	struct net *net = seq_file_net(seq);
2862 
2863 	do {
2864 		sk = sk_next(sk);
2865 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2866 
2867 	if (!sk) {
2868 		if (state->bucket <= afinfo->udp_table->mask)
2869 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2870 		return udp_get_first(seq, state->bucket + 1);
2871 	}
2872 	return sk;
2873 }
2874 
2875 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2876 {
2877 	struct sock *sk = udp_get_first(seq, 0);
2878 
2879 	if (sk)
2880 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2881 			--pos;
2882 	return pos ? NULL : sk;
2883 }
2884 
2885 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2886 {
2887 	struct udp_iter_state *state = seq->private;
2888 	state->bucket = MAX_UDP_PORTS;
2889 
2890 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2891 }
2892 EXPORT_SYMBOL(udp_seq_start);
2893 
2894 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895 {
2896 	struct sock *sk;
2897 
2898 	if (v == SEQ_START_TOKEN)
2899 		sk = udp_get_idx(seq, 0);
2900 	else
2901 		sk = udp_get_next(seq, v);
2902 
2903 	++*pos;
2904 	return sk;
2905 }
2906 EXPORT_SYMBOL(udp_seq_next);
2907 
2908 void udp_seq_stop(struct seq_file *seq, void *v)
2909 {
2910 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2911 	struct udp_iter_state *state = seq->private;
2912 
2913 	if (state->bucket <= afinfo->udp_table->mask)
2914 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2915 }
2916 EXPORT_SYMBOL(udp_seq_stop);
2917 
2918 /* ------------------------------------------------------------------------ */
2919 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2920 		int bucket)
2921 {
2922 	struct inet_sock *inet = inet_sk(sp);
2923 	__be32 dest = inet->inet_daddr;
2924 	__be32 src  = inet->inet_rcv_saddr;
2925 	__u16 destp	  = ntohs(inet->inet_dport);
2926 	__u16 srcp	  = ntohs(inet->inet_sport);
2927 
2928 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2929 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2930 		bucket, src, srcp, dest, destp, sp->sk_state,
2931 		sk_wmem_alloc_get(sp),
2932 		udp_rqueue_get(sp),
2933 		0, 0L, 0,
2934 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2935 		0, sock_i_ino(sp),
2936 		refcount_read(&sp->sk_refcnt), sp,
2937 		atomic_read(&sp->sk_drops));
2938 }
2939 
2940 int udp4_seq_show(struct seq_file *seq, void *v)
2941 {
2942 	seq_setwidth(seq, 127);
2943 	if (v == SEQ_START_TOKEN)
2944 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2945 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2946 			   "inode ref pointer drops");
2947 	else {
2948 		struct udp_iter_state *state = seq->private;
2949 
2950 		udp4_format_sock(v, seq, state->bucket);
2951 	}
2952 	seq_pad(seq, '\n');
2953 	return 0;
2954 }
2955 
2956 const struct seq_operations udp_seq_ops = {
2957 	.start		= udp_seq_start,
2958 	.next		= udp_seq_next,
2959 	.stop		= udp_seq_stop,
2960 	.show		= udp4_seq_show,
2961 };
2962 EXPORT_SYMBOL(udp_seq_ops);
2963 
2964 static struct udp_seq_afinfo udp4_seq_afinfo = {
2965 	.family		= AF_INET,
2966 	.udp_table	= &udp_table,
2967 };
2968 
2969 static int __net_init udp4_proc_init_net(struct net *net)
2970 {
2971 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2972 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2973 		return -ENOMEM;
2974 	return 0;
2975 }
2976 
2977 static void __net_exit udp4_proc_exit_net(struct net *net)
2978 {
2979 	remove_proc_entry("udp", net->proc_net);
2980 }
2981 
2982 static struct pernet_operations udp4_net_ops = {
2983 	.init = udp4_proc_init_net,
2984 	.exit = udp4_proc_exit_net,
2985 };
2986 
2987 int __init udp4_proc_init(void)
2988 {
2989 	return register_pernet_subsys(&udp4_net_ops);
2990 }
2991 
2992 void udp4_proc_exit(void)
2993 {
2994 	unregister_pernet_subsys(&udp4_net_ops);
2995 }
2996 #endif /* CONFIG_PROC_FS */
2997 
2998 static __initdata unsigned long uhash_entries;
2999 static int __init set_uhash_entries(char *str)
3000 {
3001 	ssize_t ret;
3002 
3003 	if (!str)
3004 		return 0;
3005 
3006 	ret = kstrtoul(str, 0, &uhash_entries);
3007 	if (ret)
3008 		return 0;
3009 
3010 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3011 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3012 	return 1;
3013 }
3014 __setup("uhash_entries=", set_uhash_entries);
3015 
3016 void __init udp_table_init(struct udp_table *table, const char *name)
3017 {
3018 	unsigned int i;
3019 
3020 	table->hash = alloc_large_system_hash(name,
3021 					      2 * sizeof(struct udp_hslot),
3022 					      uhash_entries,
3023 					      21, /* one slot per 2 MB */
3024 					      0,
3025 					      &table->log,
3026 					      &table->mask,
3027 					      UDP_HTABLE_SIZE_MIN,
3028 					      64 * 1024);
3029 
3030 	table->hash2 = table->hash + (table->mask + 1);
3031 	for (i = 0; i <= table->mask; i++) {
3032 		INIT_HLIST_HEAD(&table->hash[i].head);
3033 		table->hash[i].count = 0;
3034 		spin_lock_init(&table->hash[i].lock);
3035 	}
3036 	for (i = 0; i <= table->mask; i++) {
3037 		INIT_HLIST_HEAD(&table->hash2[i].head);
3038 		table->hash2[i].count = 0;
3039 		spin_lock_init(&table->hash2[i].lock);
3040 	}
3041 }
3042 
3043 u32 udp_flow_hashrnd(void)
3044 {
3045 	static u32 hashrnd __read_mostly;
3046 
3047 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3048 
3049 	return hashrnd;
3050 }
3051 EXPORT_SYMBOL(udp_flow_hashrnd);
3052 
3053 static void __udp_sysctl_init(struct net *net)
3054 {
3055 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3056 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3057 
3058 #ifdef CONFIG_NET_L3_MASTER_DEV
3059 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3060 #endif
3061 }
3062 
3063 static int __net_init udp_sysctl_init(struct net *net)
3064 {
3065 	__udp_sysctl_init(net);
3066 	return 0;
3067 }
3068 
3069 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3070 	.init	= udp_sysctl_init,
3071 };
3072 
3073 void __init udp_init(void)
3074 {
3075 	unsigned long limit;
3076 	unsigned int i;
3077 
3078 	udp_table_init(&udp_table, "UDP");
3079 	limit = nr_free_buffer_pages() / 8;
3080 	limit = max(limit, 128UL);
3081 	sysctl_udp_mem[0] = limit / 4 * 3;
3082 	sysctl_udp_mem[1] = limit;
3083 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3084 
3085 	__udp_sysctl_init(&init_net);
3086 
3087 	/* 16 spinlocks per cpu */
3088 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3089 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3090 				GFP_KERNEL);
3091 	if (!udp_busylocks)
3092 		panic("UDP: failed to alloc udp_busylocks\n");
3093 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3094 		spin_lock_init(udp_busylocks + i);
3095 
3096 	if (register_pernet_subsys(&udp_sysctl_ops))
3097 		panic("UDP: failed to init sysctl parameters.\n");
3098 }
3099