1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 118 struct udp_table udp_table __read_mostly; 119 EXPORT_SYMBOL(udp_table); 120 121 long sysctl_udp_mem[3] __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_mem); 123 124 int sysctl_udp_rmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_rmem_min); 126 127 int sysctl_udp_wmem_min __read_mostly; 128 EXPORT_SYMBOL(sysctl_udp_wmem_min); 129 130 atomic_long_t udp_memory_allocated; 131 EXPORT_SYMBOL(udp_memory_allocated); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 135 136 static int udp_lib_lport_inuse(struct net *net, __u16 num, 137 const struct udp_hslot *hslot, 138 unsigned long *bitmap, 139 struct sock *sk, 140 int (*saddr_comp)(const struct sock *sk1, 141 const struct sock *sk2, 142 bool match_wildcard), 143 unsigned int log) 144 { 145 struct sock *sk2; 146 struct hlist_nulls_node *node; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_nulls_for_each(sk2, node, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 (!sk2->sk_reuseport || !sk->sk_reuseport || 157 rcu_access_pointer(sk->sk_reuseport_cb) || 158 !uid_eq(uid, sock_i_uid(sk2))) && 159 saddr_comp(sk, sk2, true)) { 160 if (!bitmap) 161 return 1; 162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 163 } 164 } 165 return 0; 166 } 167 168 /* 169 * Note: we still hold spinlock of primary hash chain, so no other writer 170 * can insert/delete a socket with local_port == num 171 */ 172 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 173 struct udp_hslot *hslot2, 174 struct sock *sk, 175 int (*saddr_comp)(const struct sock *sk1, 176 const struct sock *sk2, 177 bool match_wildcard)) 178 { 179 struct sock *sk2; 180 struct hlist_nulls_node *node; 181 kuid_t uid = sock_i_uid(sk); 182 int res = 0; 183 184 spin_lock(&hslot2->lock); 185 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) { 186 if (net_eq(sock_net(sk2), net) && 187 sk2 != sk && 188 (udp_sk(sk2)->udp_port_hash == num) && 189 (!sk2->sk_reuse || !sk->sk_reuse) && 190 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 191 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 192 (!sk2->sk_reuseport || !sk->sk_reuseport || 193 rcu_access_pointer(sk->sk_reuseport_cb) || 194 !uid_eq(uid, sock_i_uid(sk2))) && 195 saddr_comp(sk, sk2, true)) { 196 res = 1; 197 break; 198 } 199 } 200 spin_unlock(&hslot2->lock); 201 return res; 202 } 203 204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot, 205 int (*saddr_same)(const struct sock *sk1, 206 const struct sock *sk2, 207 bool match_wildcard)) 208 { 209 struct net *net = sock_net(sk); 210 struct hlist_nulls_node *node; 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_nulls_for_each(sk2, node, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 (*saddr_same)(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2); 224 } 225 } 226 227 /* Initial allocation may have already happened via setsockopt */ 228 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 229 return reuseport_alloc(sk); 230 return 0; 231 } 232 233 /** 234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 235 * 236 * @sk: socket struct in question 237 * @snum: port number to look up 238 * @saddr_comp: AF-dependent comparison of bound local IP addresses 239 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 240 * with NULL address 241 */ 242 int udp_lib_get_port(struct sock *sk, unsigned short snum, 243 int (*saddr_comp)(const struct sock *sk1, 244 const struct sock *sk2, 245 bool match_wildcard), 246 unsigned int hash2_nulladdr) 247 { 248 struct udp_hslot *hslot, *hslot2; 249 struct udp_table *udptable = sk->sk_prot->h.udp_table; 250 int error = 1; 251 struct net *net = sock_net(sk); 252 253 if (!snum) { 254 int low, high, remaining; 255 unsigned int rand; 256 unsigned short first, last; 257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 258 259 inet_get_local_port_range(net, &low, &high); 260 remaining = (high - low) + 1; 261 262 rand = prandom_u32(); 263 first = reciprocal_scale(rand, remaining) + low; 264 /* 265 * force rand to be an odd multiple of UDP_HTABLE_SIZE 266 */ 267 rand = (rand | 1) * (udptable->mask + 1); 268 last = first + udptable->mask + 1; 269 do { 270 hslot = udp_hashslot(udptable, net, first); 271 bitmap_zero(bitmap, PORTS_PER_CHAIN); 272 spin_lock_bh(&hslot->lock); 273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 274 saddr_comp, udptable->log); 275 276 snum = first; 277 /* 278 * Iterate on all possible values of snum for this hash. 279 * Using steps of an odd multiple of UDP_HTABLE_SIZE 280 * give us randomization and full range coverage. 281 */ 282 do { 283 if (low <= snum && snum <= high && 284 !test_bit(snum >> udptable->log, bitmap) && 285 !inet_is_local_reserved_port(net, snum)) 286 goto found; 287 snum += rand; 288 } while (snum != first); 289 spin_unlock_bh(&hslot->lock); 290 } while (++first != last); 291 goto fail; 292 } else { 293 hslot = udp_hashslot(udptable, net, snum); 294 spin_lock_bh(&hslot->lock); 295 if (hslot->count > 10) { 296 int exist; 297 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 298 299 slot2 &= udptable->mask; 300 hash2_nulladdr &= udptable->mask; 301 302 hslot2 = udp_hashslot2(udptable, slot2); 303 if (hslot->count < hslot2->count) 304 goto scan_primary_hash; 305 306 exist = udp_lib_lport_inuse2(net, snum, hslot2, 307 sk, saddr_comp); 308 if (!exist && (hash2_nulladdr != slot2)) { 309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, 311 sk, saddr_comp); 312 } 313 if (exist) 314 goto fail_unlock; 315 else 316 goto found; 317 } 318 scan_primary_hash: 319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 320 saddr_comp, 0)) 321 goto fail_unlock; 322 } 323 found: 324 inet_sk(sk)->inet_num = snum; 325 udp_sk(sk)->udp_port_hash = snum; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 if (sk_unhashed(sk)) { 328 if (sk->sk_reuseport && 329 udp_reuseport_add_sock(sk, hslot, saddr_comp)) { 330 inet_sk(sk)->inet_num = 0; 331 udp_sk(sk)->udp_port_hash = 0; 332 udp_sk(sk)->udp_portaddr_hash ^= snum; 333 goto fail_unlock; 334 } 335 336 sk_nulls_add_node_rcu(sk, &hslot->head); 337 hslot->count++; 338 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 339 340 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 341 spin_lock(&hslot2->lock); 342 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 error = 0; 348 fail_unlock: 349 spin_unlock_bh(&hslot->lock); 350 fail: 351 return error; 352 } 353 EXPORT_SYMBOL(udp_lib_get_port); 354 355 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 356 * match_wildcard == false: addresses must be exactly the same, i.e. 357 * 0.0.0.0 only equals to 0.0.0.0 358 */ 359 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2, 360 bool match_wildcard) 361 { 362 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 363 364 if (!ipv6_only_sock(sk2)) { 365 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr) 366 return 1; 367 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr) 368 return match_wildcard; 369 } 370 return 0; 371 } 372 373 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 374 unsigned int port) 375 { 376 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 377 } 378 379 int udp_v4_get_port(struct sock *sk, unsigned short snum) 380 { 381 unsigned int hash2_nulladdr = 382 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 383 unsigned int hash2_partial = 384 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 385 386 /* precompute partial secondary hash */ 387 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 388 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 389 } 390 391 static inline int compute_score(struct sock *sk, struct net *net, 392 __be32 saddr, unsigned short hnum, __be16 sport, 393 __be32 daddr, __be16 dport, int dif) 394 { 395 int score; 396 struct inet_sock *inet; 397 398 if (!net_eq(sock_net(sk), net) || 399 udp_sk(sk)->udp_port_hash != hnum || 400 ipv6_only_sock(sk)) 401 return -1; 402 403 score = (sk->sk_family == PF_INET) ? 2 : 1; 404 inet = inet_sk(sk); 405 406 if (inet->inet_rcv_saddr) { 407 if (inet->inet_rcv_saddr != daddr) 408 return -1; 409 score += 4; 410 } 411 412 if (inet->inet_daddr) { 413 if (inet->inet_daddr != saddr) 414 return -1; 415 score += 4; 416 } 417 418 if (inet->inet_dport) { 419 if (inet->inet_dport != sport) 420 return -1; 421 score += 4; 422 } 423 424 if (sk->sk_bound_dev_if) { 425 if (sk->sk_bound_dev_if != dif) 426 return -1; 427 score += 4; 428 } 429 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 430 score++; 431 return score; 432 } 433 434 /* 435 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 436 */ 437 static inline int compute_score2(struct sock *sk, struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, int dif) 440 { 441 int score; 442 struct inet_sock *inet; 443 444 if (!net_eq(sock_net(sk), net) || 445 ipv6_only_sock(sk)) 446 return -1; 447 448 inet = inet_sk(sk); 449 450 if (inet->inet_rcv_saddr != daddr || 451 inet->inet_num != hnum) 452 return -1; 453 454 score = (sk->sk_family == PF_INET) ? 2 : 1; 455 456 if (inet->inet_daddr) { 457 if (inet->inet_daddr != saddr) 458 return -1; 459 score += 4; 460 } 461 462 if (inet->inet_dport) { 463 if (inet->inet_dport != sport) 464 return -1; 465 score += 4; 466 } 467 468 if (sk->sk_bound_dev_if) { 469 if (sk->sk_bound_dev_if != dif) 470 return -1; 471 score += 4; 472 } 473 474 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 475 score++; 476 477 return score; 478 } 479 480 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 481 const __u16 lport, const __be32 faddr, 482 const __be16 fport) 483 { 484 static u32 udp_ehash_secret __read_mostly; 485 486 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 487 488 return __inet_ehashfn(laddr, lport, faddr, fport, 489 udp_ehash_secret + net_hash_mix(net)); 490 } 491 492 /* called with read_rcu_lock() */ 493 static struct sock *udp4_lib_lookup2(struct net *net, 494 __be32 saddr, __be16 sport, 495 __be32 daddr, unsigned int hnum, int dif, 496 struct udp_hslot *hslot2, unsigned int slot2, 497 struct sk_buff *skb) 498 { 499 struct sock *sk, *result; 500 struct hlist_nulls_node *node; 501 int score, badness, matches = 0, reuseport = 0; 502 u32 hash = 0; 503 504 begin: 505 result = NULL; 506 badness = 0; 507 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 508 score = compute_score2(sk, net, saddr, sport, 509 daddr, hnum, dif); 510 if (score > badness) { 511 result = sk; 512 badness = score; 513 reuseport = sk->sk_reuseport; 514 if (reuseport) { 515 struct sock *sk2; 516 hash = udp_ehashfn(net, daddr, hnum, 517 saddr, sport); 518 sk2 = reuseport_select_sock(sk, hash, skb, 519 sizeof(struct udphdr)); 520 if (sk2) { 521 result = sk2; 522 goto found; 523 } 524 matches = 1; 525 } 526 } else if (score == badness && reuseport) { 527 matches++; 528 if (reciprocal_scale(hash, matches) == 0) 529 result = sk; 530 hash = next_pseudo_random32(hash); 531 } 532 } 533 /* 534 * if the nulls value we got at the end of this lookup is 535 * not the expected one, we must restart lookup. 536 * We probably met an item that was moved to another chain. 537 */ 538 if (get_nulls_value(node) != slot2) 539 goto begin; 540 if (result) { 541 found: 542 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 543 result = NULL; 544 else if (unlikely(compute_score2(result, net, saddr, sport, 545 daddr, hnum, dif) < badness)) { 546 sock_put(result); 547 goto begin; 548 } 549 } 550 return result; 551 } 552 553 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 554 * harder than this. -DaveM 555 */ 556 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 557 __be16 sport, __be32 daddr, __be16 dport, 558 int dif, struct udp_table *udptable, struct sk_buff *skb) 559 { 560 struct sock *sk, *result; 561 struct hlist_nulls_node *node; 562 unsigned short hnum = ntohs(dport); 563 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 564 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 565 int score, badness, matches = 0, reuseport = 0; 566 u32 hash = 0; 567 568 rcu_read_lock(); 569 if (hslot->count > 10) { 570 hash2 = udp4_portaddr_hash(net, daddr, hnum); 571 slot2 = hash2 & udptable->mask; 572 hslot2 = &udptable->hash2[slot2]; 573 if (hslot->count < hslot2->count) 574 goto begin; 575 576 result = udp4_lib_lookup2(net, saddr, sport, 577 daddr, hnum, dif, 578 hslot2, slot2, skb); 579 if (!result) { 580 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 581 slot2 = hash2 & udptable->mask; 582 hslot2 = &udptable->hash2[slot2]; 583 if (hslot->count < hslot2->count) 584 goto begin; 585 586 result = udp4_lib_lookup2(net, saddr, sport, 587 htonl(INADDR_ANY), hnum, dif, 588 hslot2, slot2, skb); 589 } 590 rcu_read_unlock(); 591 return result; 592 } 593 begin: 594 result = NULL; 595 badness = 0; 596 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 597 score = compute_score(sk, net, saddr, hnum, sport, 598 daddr, dport, dif); 599 if (score > badness) { 600 result = sk; 601 badness = score; 602 reuseport = sk->sk_reuseport; 603 if (reuseport) { 604 struct sock *sk2; 605 hash = udp_ehashfn(net, daddr, hnum, 606 saddr, sport); 607 sk2 = reuseport_select_sock(sk, hash, skb, 608 sizeof(struct udphdr)); 609 if (sk2) { 610 result = sk2; 611 goto found; 612 } 613 matches = 1; 614 } 615 } else if (score == badness && reuseport) { 616 matches++; 617 if (reciprocal_scale(hash, matches) == 0) 618 result = sk; 619 hash = next_pseudo_random32(hash); 620 } 621 } 622 /* 623 * if the nulls value we got at the end of this lookup is 624 * not the expected one, we must restart lookup. 625 * We probably met an item that was moved to another chain. 626 */ 627 if (get_nulls_value(node) != slot) 628 goto begin; 629 630 if (result) { 631 found: 632 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 633 result = NULL; 634 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 635 daddr, dport, dif) < badness)) { 636 sock_put(result); 637 goto begin; 638 } 639 } 640 rcu_read_unlock(); 641 return result; 642 } 643 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 644 645 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 646 __be16 sport, __be16 dport, 647 struct udp_table *udptable) 648 { 649 const struct iphdr *iph = ip_hdr(skb); 650 651 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 652 iph->daddr, dport, inet_iif(skb), 653 udptable, skb); 654 } 655 656 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 657 __be32 daddr, __be16 dport, int dif) 658 { 659 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, 660 &udp_table, NULL); 661 } 662 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 663 664 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 665 __be16 loc_port, __be32 loc_addr, 666 __be16 rmt_port, __be32 rmt_addr, 667 int dif, unsigned short hnum) 668 { 669 struct inet_sock *inet = inet_sk(sk); 670 671 if (!net_eq(sock_net(sk), net) || 672 udp_sk(sk)->udp_port_hash != hnum || 673 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 674 (inet->inet_dport != rmt_port && inet->inet_dport) || 675 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 676 ipv6_only_sock(sk) || 677 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 678 return false; 679 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 680 return false; 681 return true; 682 } 683 684 /* 685 * This routine is called by the ICMP module when it gets some 686 * sort of error condition. If err < 0 then the socket should 687 * be closed and the error returned to the user. If err > 0 688 * it's just the icmp type << 8 | icmp code. 689 * Header points to the ip header of the error packet. We move 690 * on past this. Then (as it used to claim before adjustment) 691 * header points to the first 8 bytes of the udp header. We need 692 * to find the appropriate port. 693 */ 694 695 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 696 { 697 struct inet_sock *inet; 698 const struct iphdr *iph = (const struct iphdr *)skb->data; 699 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 700 const int type = icmp_hdr(skb)->type; 701 const int code = icmp_hdr(skb)->code; 702 struct sock *sk; 703 int harderr; 704 int err; 705 struct net *net = dev_net(skb->dev); 706 707 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 708 iph->saddr, uh->source, skb->dev->ifindex, udptable, 709 NULL); 710 if (!sk) { 711 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 712 return; /* No socket for error */ 713 } 714 715 err = 0; 716 harderr = 0; 717 inet = inet_sk(sk); 718 719 switch (type) { 720 default: 721 case ICMP_TIME_EXCEEDED: 722 err = EHOSTUNREACH; 723 break; 724 case ICMP_SOURCE_QUENCH: 725 goto out; 726 case ICMP_PARAMETERPROB: 727 err = EPROTO; 728 harderr = 1; 729 break; 730 case ICMP_DEST_UNREACH: 731 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 732 ipv4_sk_update_pmtu(skb, sk, info); 733 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 734 err = EMSGSIZE; 735 harderr = 1; 736 break; 737 } 738 goto out; 739 } 740 err = EHOSTUNREACH; 741 if (code <= NR_ICMP_UNREACH) { 742 harderr = icmp_err_convert[code].fatal; 743 err = icmp_err_convert[code].errno; 744 } 745 break; 746 case ICMP_REDIRECT: 747 ipv4_sk_redirect(skb, sk); 748 goto out; 749 } 750 751 /* 752 * RFC1122: OK. Passes ICMP errors back to application, as per 753 * 4.1.3.3. 754 */ 755 if (!inet->recverr) { 756 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 757 goto out; 758 } else 759 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 760 761 sk->sk_err = err; 762 sk->sk_error_report(sk); 763 out: 764 sock_put(sk); 765 } 766 767 void udp_err(struct sk_buff *skb, u32 info) 768 { 769 __udp4_lib_err(skb, info, &udp_table); 770 } 771 772 /* 773 * Throw away all pending data and cancel the corking. Socket is locked. 774 */ 775 void udp_flush_pending_frames(struct sock *sk) 776 { 777 struct udp_sock *up = udp_sk(sk); 778 779 if (up->pending) { 780 up->len = 0; 781 up->pending = 0; 782 ip_flush_pending_frames(sk); 783 } 784 } 785 EXPORT_SYMBOL(udp_flush_pending_frames); 786 787 /** 788 * udp4_hwcsum - handle outgoing HW checksumming 789 * @skb: sk_buff containing the filled-in UDP header 790 * (checksum field must be zeroed out) 791 * @src: source IP address 792 * @dst: destination IP address 793 */ 794 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 795 { 796 struct udphdr *uh = udp_hdr(skb); 797 int offset = skb_transport_offset(skb); 798 int len = skb->len - offset; 799 int hlen = len; 800 __wsum csum = 0; 801 802 if (!skb_has_frag_list(skb)) { 803 /* 804 * Only one fragment on the socket. 805 */ 806 skb->csum_start = skb_transport_header(skb) - skb->head; 807 skb->csum_offset = offsetof(struct udphdr, check); 808 uh->check = ~csum_tcpudp_magic(src, dst, len, 809 IPPROTO_UDP, 0); 810 } else { 811 struct sk_buff *frags; 812 813 /* 814 * HW-checksum won't work as there are two or more 815 * fragments on the socket so that all csums of sk_buffs 816 * should be together 817 */ 818 skb_walk_frags(skb, frags) { 819 csum = csum_add(csum, frags->csum); 820 hlen -= frags->len; 821 } 822 823 csum = skb_checksum(skb, offset, hlen, csum); 824 skb->ip_summed = CHECKSUM_NONE; 825 826 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 827 if (uh->check == 0) 828 uh->check = CSUM_MANGLED_0; 829 } 830 } 831 EXPORT_SYMBOL_GPL(udp4_hwcsum); 832 833 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 834 * for the simple case like when setting the checksum for a UDP tunnel. 835 */ 836 void udp_set_csum(bool nocheck, struct sk_buff *skb, 837 __be32 saddr, __be32 daddr, int len) 838 { 839 struct udphdr *uh = udp_hdr(skb); 840 841 if (nocheck) 842 uh->check = 0; 843 else if (skb_is_gso(skb)) 844 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 845 else if (skb_dst(skb) && skb_dst(skb)->dev && 846 (skb_dst(skb)->dev->features & 847 (NETIF_F_IP_CSUM | NETIF_F_HW_CSUM))) { 848 849 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 850 851 skb->ip_summed = CHECKSUM_PARTIAL; 852 skb->csum_start = skb_transport_header(skb) - skb->head; 853 skb->csum_offset = offsetof(struct udphdr, check); 854 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 855 } else { 856 __wsum csum; 857 858 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 859 860 uh->check = 0; 861 csum = skb_checksum(skb, 0, len, 0); 862 uh->check = udp_v4_check(len, saddr, daddr, csum); 863 if (uh->check == 0) 864 uh->check = CSUM_MANGLED_0; 865 866 skb->ip_summed = CHECKSUM_UNNECESSARY; 867 } 868 } 869 EXPORT_SYMBOL(udp_set_csum); 870 871 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 872 { 873 struct sock *sk = skb->sk; 874 struct inet_sock *inet = inet_sk(sk); 875 struct udphdr *uh; 876 int err = 0; 877 int is_udplite = IS_UDPLITE(sk); 878 int offset = skb_transport_offset(skb); 879 int len = skb->len - offset; 880 __wsum csum = 0; 881 882 /* 883 * Create a UDP header 884 */ 885 uh = udp_hdr(skb); 886 uh->source = inet->inet_sport; 887 uh->dest = fl4->fl4_dport; 888 uh->len = htons(len); 889 uh->check = 0; 890 891 if (is_udplite) /* UDP-Lite */ 892 csum = udplite_csum(skb); 893 894 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 895 896 skb->ip_summed = CHECKSUM_NONE; 897 goto send; 898 899 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 900 901 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 902 goto send; 903 904 } else 905 csum = udp_csum(skb); 906 907 /* add protocol-dependent pseudo-header */ 908 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 909 sk->sk_protocol, csum); 910 if (uh->check == 0) 911 uh->check = CSUM_MANGLED_0; 912 913 send: 914 err = ip_send_skb(sock_net(sk), skb); 915 if (err) { 916 if (err == -ENOBUFS && !inet->recverr) { 917 UDP_INC_STATS_USER(sock_net(sk), 918 UDP_MIB_SNDBUFERRORS, is_udplite); 919 err = 0; 920 } 921 } else 922 UDP_INC_STATS_USER(sock_net(sk), 923 UDP_MIB_OUTDATAGRAMS, is_udplite); 924 return err; 925 } 926 927 /* 928 * Push out all pending data as one UDP datagram. Socket is locked. 929 */ 930 int udp_push_pending_frames(struct sock *sk) 931 { 932 struct udp_sock *up = udp_sk(sk); 933 struct inet_sock *inet = inet_sk(sk); 934 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 935 struct sk_buff *skb; 936 int err = 0; 937 938 skb = ip_finish_skb(sk, fl4); 939 if (!skb) 940 goto out; 941 942 err = udp_send_skb(skb, fl4); 943 944 out: 945 up->len = 0; 946 up->pending = 0; 947 return err; 948 } 949 EXPORT_SYMBOL(udp_push_pending_frames); 950 951 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 952 { 953 struct inet_sock *inet = inet_sk(sk); 954 struct udp_sock *up = udp_sk(sk); 955 struct flowi4 fl4_stack; 956 struct flowi4 *fl4; 957 int ulen = len; 958 struct ipcm_cookie ipc; 959 struct rtable *rt = NULL; 960 int free = 0; 961 int connected = 0; 962 __be32 daddr, faddr, saddr; 963 __be16 dport; 964 u8 tos; 965 int err, is_udplite = IS_UDPLITE(sk); 966 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 967 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 968 struct sk_buff *skb; 969 struct ip_options_data opt_copy; 970 971 if (len > 0xFFFF) 972 return -EMSGSIZE; 973 974 /* 975 * Check the flags. 976 */ 977 978 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 979 return -EOPNOTSUPP; 980 981 ipc.opt = NULL; 982 ipc.tx_flags = 0; 983 ipc.ttl = 0; 984 ipc.tos = -1; 985 986 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 987 988 fl4 = &inet->cork.fl.u.ip4; 989 if (up->pending) { 990 /* 991 * There are pending frames. 992 * The socket lock must be held while it's corked. 993 */ 994 lock_sock(sk); 995 if (likely(up->pending)) { 996 if (unlikely(up->pending != AF_INET)) { 997 release_sock(sk); 998 return -EINVAL; 999 } 1000 goto do_append_data; 1001 } 1002 release_sock(sk); 1003 } 1004 ulen += sizeof(struct udphdr); 1005 1006 /* 1007 * Get and verify the address. 1008 */ 1009 if (msg->msg_name) { 1010 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1011 if (msg->msg_namelen < sizeof(*usin)) 1012 return -EINVAL; 1013 if (usin->sin_family != AF_INET) { 1014 if (usin->sin_family != AF_UNSPEC) 1015 return -EAFNOSUPPORT; 1016 } 1017 1018 daddr = usin->sin_addr.s_addr; 1019 dport = usin->sin_port; 1020 if (dport == 0) 1021 return -EINVAL; 1022 } else { 1023 if (sk->sk_state != TCP_ESTABLISHED) 1024 return -EDESTADDRREQ; 1025 daddr = inet->inet_daddr; 1026 dport = inet->inet_dport; 1027 /* Open fast path for connected socket. 1028 Route will not be used, if at least one option is set. 1029 */ 1030 connected = 1; 1031 } 1032 ipc.addr = inet->inet_saddr; 1033 1034 ipc.oif = sk->sk_bound_dev_if; 1035 1036 sock_tx_timestamp(sk, &ipc.tx_flags); 1037 1038 if (msg->msg_controllen) { 1039 err = ip_cmsg_send(sock_net(sk), msg, &ipc, 1040 sk->sk_family == AF_INET6); 1041 if (err) 1042 return err; 1043 if (ipc.opt) 1044 free = 1; 1045 connected = 0; 1046 } 1047 if (!ipc.opt) { 1048 struct ip_options_rcu *inet_opt; 1049 1050 rcu_read_lock(); 1051 inet_opt = rcu_dereference(inet->inet_opt); 1052 if (inet_opt) { 1053 memcpy(&opt_copy, inet_opt, 1054 sizeof(*inet_opt) + inet_opt->opt.optlen); 1055 ipc.opt = &opt_copy.opt; 1056 } 1057 rcu_read_unlock(); 1058 } 1059 1060 saddr = ipc.addr; 1061 ipc.addr = faddr = daddr; 1062 1063 if (ipc.opt && ipc.opt->opt.srr) { 1064 if (!daddr) 1065 return -EINVAL; 1066 faddr = ipc.opt->opt.faddr; 1067 connected = 0; 1068 } 1069 tos = get_rttos(&ipc, inet); 1070 if (sock_flag(sk, SOCK_LOCALROUTE) || 1071 (msg->msg_flags & MSG_DONTROUTE) || 1072 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1073 tos |= RTO_ONLINK; 1074 connected = 0; 1075 } 1076 1077 if (ipv4_is_multicast(daddr)) { 1078 if (!ipc.oif) 1079 ipc.oif = inet->mc_index; 1080 if (!saddr) 1081 saddr = inet->mc_addr; 1082 connected = 0; 1083 } else if (!ipc.oif) 1084 ipc.oif = inet->uc_index; 1085 1086 if (connected) 1087 rt = (struct rtable *)sk_dst_check(sk, 0); 1088 1089 if (!rt) { 1090 struct net *net = sock_net(sk); 1091 __u8 flow_flags = inet_sk_flowi_flags(sk); 1092 1093 fl4 = &fl4_stack; 1094 1095 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1096 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1097 flow_flags, 1098 faddr, saddr, dport, inet->inet_sport); 1099 1100 if (!saddr && ipc.oif) { 1101 err = l3mdev_get_saddr(net, ipc.oif, fl4); 1102 if (err < 0) 1103 goto out; 1104 } 1105 1106 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1107 rt = ip_route_output_flow(net, fl4, sk); 1108 if (IS_ERR(rt)) { 1109 err = PTR_ERR(rt); 1110 rt = NULL; 1111 if (err == -ENETUNREACH) 1112 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1113 goto out; 1114 } 1115 1116 err = -EACCES; 1117 if ((rt->rt_flags & RTCF_BROADCAST) && 1118 !sock_flag(sk, SOCK_BROADCAST)) 1119 goto out; 1120 if (connected) 1121 sk_dst_set(sk, dst_clone(&rt->dst)); 1122 } 1123 1124 if (msg->msg_flags&MSG_CONFIRM) 1125 goto do_confirm; 1126 back_from_confirm: 1127 1128 saddr = fl4->saddr; 1129 if (!ipc.addr) 1130 daddr = ipc.addr = fl4->daddr; 1131 1132 /* Lockless fast path for the non-corking case. */ 1133 if (!corkreq) { 1134 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1135 sizeof(struct udphdr), &ipc, &rt, 1136 msg->msg_flags); 1137 err = PTR_ERR(skb); 1138 if (!IS_ERR_OR_NULL(skb)) 1139 err = udp_send_skb(skb, fl4); 1140 goto out; 1141 } 1142 1143 lock_sock(sk); 1144 if (unlikely(up->pending)) { 1145 /* The socket is already corked while preparing it. */ 1146 /* ... which is an evident application bug. --ANK */ 1147 release_sock(sk); 1148 1149 net_dbg_ratelimited("cork app bug 2\n"); 1150 err = -EINVAL; 1151 goto out; 1152 } 1153 /* 1154 * Now cork the socket to pend data. 1155 */ 1156 fl4 = &inet->cork.fl.u.ip4; 1157 fl4->daddr = daddr; 1158 fl4->saddr = saddr; 1159 fl4->fl4_dport = dport; 1160 fl4->fl4_sport = inet->inet_sport; 1161 up->pending = AF_INET; 1162 1163 do_append_data: 1164 up->len += ulen; 1165 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1166 sizeof(struct udphdr), &ipc, &rt, 1167 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1168 if (err) 1169 udp_flush_pending_frames(sk); 1170 else if (!corkreq) 1171 err = udp_push_pending_frames(sk); 1172 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1173 up->pending = 0; 1174 release_sock(sk); 1175 1176 out: 1177 ip_rt_put(rt); 1178 if (free) 1179 kfree(ipc.opt); 1180 if (!err) 1181 return len; 1182 /* 1183 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1184 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1185 * we don't have a good statistic (IpOutDiscards but it can be too many 1186 * things). We could add another new stat but at least for now that 1187 * seems like overkill. 1188 */ 1189 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1190 UDP_INC_STATS_USER(sock_net(sk), 1191 UDP_MIB_SNDBUFERRORS, is_udplite); 1192 } 1193 return err; 1194 1195 do_confirm: 1196 dst_confirm(&rt->dst); 1197 if (!(msg->msg_flags&MSG_PROBE) || len) 1198 goto back_from_confirm; 1199 err = 0; 1200 goto out; 1201 } 1202 EXPORT_SYMBOL(udp_sendmsg); 1203 1204 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1205 size_t size, int flags) 1206 { 1207 struct inet_sock *inet = inet_sk(sk); 1208 struct udp_sock *up = udp_sk(sk); 1209 int ret; 1210 1211 if (flags & MSG_SENDPAGE_NOTLAST) 1212 flags |= MSG_MORE; 1213 1214 if (!up->pending) { 1215 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1216 1217 /* Call udp_sendmsg to specify destination address which 1218 * sendpage interface can't pass. 1219 * This will succeed only when the socket is connected. 1220 */ 1221 ret = udp_sendmsg(sk, &msg, 0); 1222 if (ret < 0) 1223 return ret; 1224 } 1225 1226 lock_sock(sk); 1227 1228 if (unlikely(!up->pending)) { 1229 release_sock(sk); 1230 1231 net_dbg_ratelimited("udp cork app bug 3\n"); 1232 return -EINVAL; 1233 } 1234 1235 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1236 page, offset, size, flags); 1237 if (ret == -EOPNOTSUPP) { 1238 release_sock(sk); 1239 return sock_no_sendpage(sk->sk_socket, page, offset, 1240 size, flags); 1241 } 1242 if (ret < 0) { 1243 udp_flush_pending_frames(sk); 1244 goto out; 1245 } 1246 1247 up->len += size; 1248 if (!(up->corkflag || (flags&MSG_MORE))) 1249 ret = udp_push_pending_frames(sk); 1250 if (!ret) 1251 ret = size; 1252 out: 1253 release_sock(sk); 1254 return ret; 1255 } 1256 1257 /** 1258 * first_packet_length - return length of first packet in receive queue 1259 * @sk: socket 1260 * 1261 * Drops all bad checksum frames, until a valid one is found. 1262 * Returns the length of found skb, or 0 if none is found. 1263 */ 1264 static unsigned int first_packet_length(struct sock *sk) 1265 { 1266 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1267 struct sk_buff *skb; 1268 unsigned int res; 1269 1270 __skb_queue_head_init(&list_kill); 1271 1272 spin_lock_bh(&rcvq->lock); 1273 while ((skb = skb_peek(rcvq)) != NULL && 1274 udp_lib_checksum_complete(skb)) { 1275 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, 1276 IS_UDPLITE(sk)); 1277 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1278 IS_UDPLITE(sk)); 1279 atomic_inc(&sk->sk_drops); 1280 __skb_unlink(skb, rcvq); 1281 __skb_queue_tail(&list_kill, skb); 1282 } 1283 res = skb ? skb->len : 0; 1284 spin_unlock_bh(&rcvq->lock); 1285 1286 if (!skb_queue_empty(&list_kill)) { 1287 bool slow = lock_sock_fast(sk); 1288 1289 __skb_queue_purge(&list_kill); 1290 sk_mem_reclaim_partial(sk); 1291 unlock_sock_fast(sk, slow); 1292 } 1293 return res; 1294 } 1295 1296 /* 1297 * IOCTL requests applicable to the UDP protocol 1298 */ 1299 1300 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1301 { 1302 switch (cmd) { 1303 case SIOCOUTQ: 1304 { 1305 int amount = sk_wmem_alloc_get(sk); 1306 1307 return put_user(amount, (int __user *)arg); 1308 } 1309 1310 case SIOCINQ: 1311 { 1312 unsigned int amount = first_packet_length(sk); 1313 1314 if (amount) 1315 /* 1316 * We will only return the amount 1317 * of this packet since that is all 1318 * that will be read. 1319 */ 1320 amount -= sizeof(struct udphdr); 1321 1322 return put_user(amount, (int __user *)arg); 1323 } 1324 1325 default: 1326 return -ENOIOCTLCMD; 1327 } 1328 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(udp_ioctl); 1332 1333 /* 1334 * This should be easy, if there is something there we 1335 * return it, otherwise we block. 1336 */ 1337 1338 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1339 int flags, int *addr_len) 1340 { 1341 struct inet_sock *inet = inet_sk(sk); 1342 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1343 struct sk_buff *skb; 1344 unsigned int ulen, copied; 1345 int peeked, off = 0; 1346 int err; 1347 int is_udplite = IS_UDPLITE(sk); 1348 bool checksum_valid = false; 1349 bool slow; 1350 1351 if (flags & MSG_ERRQUEUE) 1352 return ip_recv_error(sk, msg, len, addr_len); 1353 1354 try_again: 1355 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1356 &peeked, &off, &err); 1357 if (!skb) 1358 goto out; 1359 1360 ulen = skb->len - sizeof(struct udphdr); 1361 copied = len; 1362 if (copied > ulen) 1363 copied = ulen; 1364 else if (copied < ulen) 1365 msg->msg_flags |= MSG_TRUNC; 1366 1367 /* 1368 * If checksum is needed at all, try to do it while copying the 1369 * data. If the data is truncated, or if we only want a partial 1370 * coverage checksum (UDP-Lite), do it before the copy. 1371 */ 1372 1373 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1374 checksum_valid = !udp_lib_checksum_complete(skb); 1375 if (!checksum_valid) 1376 goto csum_copy_err; 1377 } 1378 1379 if (checksum_valid || skb_csum_unnecessary(skb)) 1380 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr), 1381 msg, copied); 1382 else { 1383 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr), 1384 msg); 1385 1386 if (err == -EINVAL) 1387 goto csum_copy_err; 1388 } 1389 1390 if (unlikely(err)) { 1391 trace_kfree_skb(skb, udp_recvmsg); 1392 if (!peeked) { 1393 atomic_inc(&sk->sk_drops); 1394 UDP_INC_STATS_USER(sock_net(sk), 1395 UDP_MIB_INERRORS, is_udplite); 1396 } 1397 goto out_free; 1398 } 1399 1400 if (!peeked) 1401 UDP_INC_STATS_USER(sock_net(sk), 1402 UDP_MIB_INDATAGRAMS, is_udplite); 1403 1404 sock_recv_ts_and_drops(msg, sk, skb); 1405 1406 /* Copy the address. */ 1407 if (sin) { 1408 sin->sin_family = AF_INET; 1409 sin->sin_port = udp_hdr(skb)->source; 1410 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1411 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1412 *addr_len = sizeof(*sin); 1413 } 1414 if (inet->cmsg_flags) 1415 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr)); 1416 1417 err = copied; 1418 if (flags & MSG_TRUNC) 1419 err = ulen; 1420 1421 out_free: 1422 skb_free_datagram_locked(sk, skb); 1423 out: 1424 return err; 1425 1426 csum_copy_err: 1427 slow = lock_sock_fast(sk); 1428 if (!skb_kill_datagram(sk, skb, flags)) { 1429 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1430 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1431 } 1432 unlock_sock_fast(sk, slow); 1433 1434 /* starting over for a new packet, but check if we need to yield */ 1435 cond_resched(); 1436 msg->msg_flags &= ~MSG_TRUNC; 1437 goto try_again; 1438 } 1439 1440 int udp_disconnect(struct sock *sk, int flags) 1441 { 1442 struct inet_sock *inet = inet_sk(sk); 1443 /* 1444 * 1003.1g - break association. 1445 */ 1446 1447 sk->sk_state = TCP_CLOSE; 1448 inet->inet_daddr = 0; 1449 inet->inet_dport = 0; 1450 sock_rps_reset_rxhash(sk); 1451 sk->sk_bound_dev_if = 0; 1452 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1453 inet_reset_saddr(sk); 1454 1455 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1456 sk->sk_prot->unhash(sk); 1457 inet->inet_sport = 0; 1458 } 1459 sk_dst_reset(sk); 1460 return 0; 1461 } 1462 EXPORT_SYMBOL(udp_disconnect); 1463 1464 void udp_lib_unhash(struct sock *sk) 1465 { 1466 if (sk_hashed(sk)) { 1467 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1468 struct udp_hslot *hslot, *hslot2; 1469 1470 hslot = udp_hashslot(udptable, sock_net(sk), 1471 udp_sk(sk)->udp_port_hash); 1472 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1473 1474 spin_lock_bh(&hslot->lock); 1475 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1476 reuseport_detach_sock(sk); 1477 if (sk_nulls_del_node_init_rcu(sk)) { 1478 hslot->count--; 1479 inet_sk(sk)->inet_num = 0; 1480 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1481 1482 spin_lock(&hslot2->lock); 1483 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1484 hslot2->count--; 1485 spin_unlock(&hslot2->lock); 1486 } 1487 spin_unlock_bh(&hslot->lock); 1488 } 1489 } 1490 EXPORT_SYMBOL(udp_lib_unhash); 1491 1492 /* 1493 * inet_rcv_saddr was changed, we must rehash secondary hash 1494 */ 1495 void udp_lib_rehash(struct sock *sk, u16 newhash) 1496 { 1497 if (sk_hashed(sk)) { 1498 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1499 struct udp_hslot *hslot, *hslot2, *nhslot2; 1500 1501 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1502 nhslot2 = udp_hashslot2(udptable, newhash); 1503 udp_sk(sk)->udp_portaddr_hash = newhash; 1504 1505 if (hslot2 != nhslot2 || 1506 rcu_access_pointer(sk->sk_reuseport_cb)) { 1507 hslot = udp_hashslot(udptable, sock_net(sk), 1508 udp_sk(sk)->udp_port_hash); 1509 /* we must lock primary chain too */ 1510 spin_lock_bh(&hslot->lock); 1511 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1512 reuseport_detach_sock(sk); 1513 1514 if (hslot2 != nhslot2) { 1515 spin_lock(&hslot2->lock); 1516 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1517 hslot2->count--; 1518 spin_unlock(&hslot2->lock); 1519 1520 spin_lock(&nhslot2->lock); 1521 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1522 &nhslot2->head); 1523 nhslot2->count++; 1524 spin_unlock(&nhslot2->lock); 1525 } 1526 1527 spin_unlock_bh(&hslot->lock); 1528 } 1529 } 1530 } 1531 EXPORT_SYMBOL(udp_lib_rehash); 1532 1533 static void udp_v4_rehash(struct sock *sk) 1534 { 1535 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1536 inet_sk(sk)->inet_rcv_saddr, 1537 inet_sk(sk)->inet_num); 1538 udp_lib_rehash(sk, new_hash); 1539 } 1540 1541 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1542 { 1543 int rc; 1544 1545 if (inet_sk(sk)->inet_daddr) { 1546 sock_rps_save_rxhash(sk, skb); 1547 sk_mark_napi_id(sk, skb); 1548 sk_incoming_cpu_update(sk); 1549 } 1550 1551 rc = sock_queue_rcv_skb(sk, skb); 1552 if (rc < 0) { 1553 int is_udplite = IS_UDPLITE(sk); 1554 1555 /* Note that an ENOMEM error is charged twice */ 1556 if (rc == -ENOMEM) 1557 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1558 is_udplite); 1559 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1560 kfree_skb(skb); 1561 trace_udp_fail_queue_rcv_skb(rc, sk); 1562 return -1; 1563 } 1564 1565 return 0; 1566 1567 } 1568 1569 static struct static_key udp_encap_needed __read_mostly; 1570 void udp_encap_enable(void) 1571 { 1572 if (!static_key_enabled(&udp_encap_needed)) 1573 static_key_slow_inc(&udp_encap_needed); 1574 } 1575 EXPORT_SYMBOL(udp_encap_enable); 1576 1577 /* returns: 1578 * -1: error 1579 * 0: success 1580 * >0: "udp encap" protocol resubmission 1581 * 1582 * Note that in the success and error cases, the skb is assumed to 1583 * have either been requeued or freed. 1584 */ 1585 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1586 { 1587 struct udp_sock *up = udp_sk(sk); 1588 int rc; 1589 int is_udplite = IS_UDPLITE(sk); 1590 1591 /* 1592 * Charge it to the socket, dropping if the queue is full. 1593 */ 1594 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1595 goto drop; 1596 nf_reset(skb); 1597 1598 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1599 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1600 1601 /* 1602 * This is an encapsulation socket so pass the skb to 1603 * the socket's udp_encap_rcv() hook. Otherwise, just 1604 * fall through and pass this up the UDP socket. 1605 * up->encap_rcv() returns the following value: 1606 * =0 if skb was successfully passed to the encap 1607 * handler or was discarded by it. 1608 * >0 if skb should be passed on to UDP. 1609 * <0 if skb should be resubmitted as proto -N 1610 */ 1611 1612 /* if we're overly short, let UDP handle it */ 1613 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1614 if (skb->len > sizeof(struct udphdr) && encap_rcv) { 1615 int ret; 1616 1617 /* Verify checksum before giving to encap */ 1618 if (udp_lib_checksum_complete(skb)) 1619 goto csum_error; 1620 1621 ret = encap_rcv(sk, skb); 1622 if (ret <= 0) { 1623 UDP_INC_STATS_BH(sock_net(sk), 1624 UDP_MIB_INDATAGRAMS, 1625 is_udplite); 1626 return -ret; 1627 } 1628 } 1629 1630 /* FALLTHROUGH -- it's a UDP Packet */ 1631 } 1632 1633 /* 1634 * UDP-Lite specific tests, ignored on UDP sockets 1635 */ 1636 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1637 1638 /* 1639 * MIB statistics other than incrementing the error count are 1640 * disabled for the following two types of errors: these depend 1641 * on the application settings, not on the functioning of the 1642 * protocol stack as such. 1643 * 1644 * RFC 3828 here recommends (sec 3.3): "There should also be a 1645 * way ... to ... at least let the receiving application block 1646 * delivery of packets with coverage values less than a value 1647 * provided by the application." 1648 */ 1649 if (up->pcrlen == 0) { /* full coverage was set */ 1650 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1651 UDP_SKB_CB(skb)->cscov, skb->len); 1652 goto drop; 1653 } 1654 /* The next case involves violating the min. coverage requested 1655 * by the receiver. This is subtle: if receiver wants x and x is 1656 * greater than the buffersize/MTU then receiver will complain 1657 * that it wants x while sender emits packets of smaller size y. 1658 * Therefore the above ...()->partial_cov statement is essential. 1659 */ 1660 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1661 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1662 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1663 goto drop; 1664 } 1665 } 1666 1667 if (rcu_access_pointer(sk->sk_filter) && 1668 udp_lib_checksum_complete(skb)) 1669 goto csum_error; 1670 1671 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1672 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1673 is_udplite); 1674 goto drop; 1675 } 1676 1677 rc = 0; 1678 1679 ipv4_pktinfo_prepare(sk, skb); 1680 bh_lock_sock(sk); 1681 if (!sock_owned_by_user(sk)) 1682 rc = __udp_queue_rcv_skb(sk, skb); 1683 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1684 bh_unlock_sock(sk); 1685 goto drop; 1686 } 1687 bh_unlock_sock(sk); 1688 1689 return rc; 1690 1691 csum_error: 1692 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1693 drop: 1694 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1695 atomic_inc(&sk->sk_drops); 1696 kfree_skb(skb); 1697 return -1; 1698 } 1699 1700 static void flush_stack(struct sock **stack, unsigned int count, 1701 struct sk_buff *skb, unsigned int final) 1702 { 1703 unsigned int i; 1704 struct sk_buff *skb1 = NULL; 1705 struct sock *sk; 1706 1707 for (i = 0; i < count; i++) { 1708 sk = stack[i]; 1709 if (likely(!skb1)) 1710 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1711 1712 if (!skb1) { 1713 atomic_inc(&sk->sk_drops); 1714 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1715 IS_UDPLITE(sk)); 1716 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1717 IS_UDPLITE(sk)); 1718 } 1719 1720 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1721 skb1 = NULL; 1722 1723 sock_put(sk); 1724 } 1725 if (unlikely(skb1)) 1726 kfree_skb(skb1); 1727 } 1728 1729 /* For TCP sockets, sk_rx_dst is protected by socket lock 1730 * For UDP, we use xchg() to guard against concurrent changes. 1731 */ 1732 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1733 { 1734 struct dst_entry *old; 1735 1736 dst_hold(dst); 1737 old = xchg(&sk->sk_rx_dst, dst); 1738 dst_release(old); 1739 } 1740 1741 /* 1742 * Multicasts and broadcasts go to each listener. 1743 * 1744 * Note: called only from the BH handler context. 1745 */ 1746 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1747 struct udphdr *uh, 1748 __be32 saddr, __be32 daddr, 1749 struct udp_table *udptable, 1750 int proto) 1751 { 1752 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1753 struct hlist_nulls_node *node; 1754 unsigned short hnum = ntohs(uh->dest); 1755 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1756 int dif = skb->dev->ifindex; 1757 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node); 1758 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1759 bool inner_flushed = false; 1760 1761 if (use_hash2) { 1762 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1763 udp_table.mask; 1764 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1765 start_lookup: 1766 hslot = &udp_table.hash2[hash2]; 1767 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1768 } 1769 1770 spin_lock(&hslot->lock); 1771 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) { 1772 if (__udp_is_mcast_sock(net, sk, 1773 uh->dest, daddr, 1774 uh->source, saddr, 1775 dif, hnum)) { 1776 if (unlikely(count == ARRAY_SIZE(stack))) { 1777 flush_stack(stack, count, skb, ~0); 1778 inner_flushed = true; 1779 count = 0; 1780 } 1781 stack[count++] = sk; 1782 sock_hold(sk); 1783 } 1784 } 1785 1786 spin_unlock(&hslot->lock); 1787 1788 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1789 if (use_hash2 && hash2 != hash2_any) { 1790 hash2 = hash2_any; 1791 goto start_lookup; 1792 } 1793 1794 /* 1795 * do the slow work with no lock held 1796 */ 1797 if (count) { 1798 flush_stack(stack, count, skb, count - 1); 1799 } else { 1800 if (!inner_flushed) 1801 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI, 1802 proto == IPPROTO_UDPLITE); 1803 consume_skb(skb); 1804 } 1805 return 0; 1806 } 1807 1808 /* Initialize UDP checksum. If exited with zero value (success), 1809 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1810 * Otherwise, csum completion requires chacksumming packet body, 1811 * including udp header and folding it to skb->csum. 1812 */ 1813 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1814 int proto) 1815 { 1816 int err; 1817 1818 UDP_SKB_CB(skb)->partial_cov = 0; 1819 UDP_SKB_CB(skb)->cscov = skb->len; 1820 1821 if (proto == IPPROTO_UDPLITE) { 1822 err = udplite_checksum_init(skb, uh); 1823 if (err) 1824 return err; 1825 } 1826 1827 return skb_checksum_init_zero_check(skb, proto, uh->check, 1828 inet_compute_pseudo); 1829 } 1830 1831 /* 1832 * All we need to do is get the socket, and then do a checksum. 1833 */ 1834 1835 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1836 int proto) 1837 { 1838 struct sock *sk; 1839 struct udphdr *uh; 1840 unsigned short ulen; 1841 struct rtable *rt = skb_rtable(skb); 1842 __be32 saddr, daddr; 1843 struct net *net = dev_net(skb->dev); 1844 1845 /* 1846 * Validate the packet. 1847 */ 1848 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1849 goto drop; /* No space for header. */ 1850 1851 uh = udp_hdr(skb); 1852 ulen = ntohs(uh->len); 1853 saddr = ip_hdr(skb)->saddr; 1854 daddr = ip_hdr(skb)->daddr; 1855 1856 if (ulen > skb->len) 1857 goto short_packet; 1858 1859 if (proto == IPPROTO_UDP) { 1860 /* UDP validates ulen. */ 1861 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1862 goto short_packet; 1863 uh = udp_hdr(skb); 1864 } 1865 1866 if (udp4_csum_init(skb, uh, proto)) 1867 goto csum_error; 1868 1869 sk = skb_steal_sock(skb); 1870 if (sk) { 1871 struct dst_entry *dst = skb_dst(skb); 1872 int ret; 1873 1874 if (unlikely(sk->sk_rx_dst != dst)) 1875 udp_sk_rx_dst_set(sk, dst); 1876 1877 ret = udp_queue_rcv_skb(sk, skb); 1878 sock_put(sk); 1879 /* a return value > 0 means to resubmit the input, but 1880 * it wants the return to be -protocol, or 0 1881 */ 1882 if (ret > 0) 1883 return -ret; 1884 return 0; 1885 } 1886 1887 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1888 return __udp4_lib_mcast_deliver(net, skb, uh, 1889 saddr, daddr, udptable, proto); 1890 1891 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1892 if (sk) { 1893 int ret; 1894 1895 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1896 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1897 inet_compute_pseudo); 1898 1899 ret = udp_queue_rcv_skb(sk, skb); 1900 sock_put(sk); 1901 1902 /* a return value > 0 means to resubmit the input, but 1903 * it wants the return to be -protocol, or 0 1904 */ 1905 if (ret > 0) 1906 return -ret; 1907 return 0; 1908 } 1909 1910 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1911 goto drop; 1912 nf_reset(skb); 1913 1914 /* No socket. Drop packet silently, if checksum is wrong */ 1915 if (udp_lib_checksum_complete(skb)) 1916 goto csum_error; 1917 1918 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1919 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1920 1921 /* 1922 * Hmm. We got an UDP packet to a port to which we 1923 * don't wanna listen. Ignore it. 1924 */ 1925 kfree_skb(skb); 1926 return 0; 1927 1928 short_packet: 1929 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1930 proto == IPPROTO_UDPLITE ? "Lite" : "", 1931 &saddr, ntohs(uh->source), 1932 ulen, skb->len, 1933 &daddr, ntohs(uh->dest)); 1934 goto drop; 1935 1936 csum_error: 1937 /* 1938 * RFC1122: OK. Discards the bad packet silently (as far as 1939 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1940 */ 1941 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1942 proto == IPPROTO_UDPLITE ? "Lite" : "", 1943 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1944 ulen); 1945 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1946 drop: 1947 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1948 kfree_skb(skb); 1949 return 0; 1950 } 1951 1952 /* We can only early demux multicast if there is a single matching socket. 1953 * If more than one socket found returns NULL 1954 */ 1955 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1956 __be16 loc_port, __be32 loc_addr, 1957 __be16 rmt_port, __be32 rmt_addr, 1958 int dif) 1959 { 1960 struct sock *sk, *result; 1961 struct hlist_nulls_node *node; 1962 unsigned short hnum = ntohs(loc_port); 1963 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask); 1964 struct udp_hslot *hslot = &udp_table.hash[slot]; 1965 1966 /* Do not bother scanning a too big list */ 1967 if (hslot->count > 10) 1968 return NULL; 1969 1970 rcu_read_lock(); 1971 begin: 1972 count = 0; 1973 result = NULL; 1974 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 1975 if (__udp_is_mcast_sock(net, sk, 1976 loc_port, loc_addr, 1977 rmt_port, rmt_addr, 1978 dif, hnum)) { 1979 result = sk; 1980 ++count; 1981 } 1982 } 1983 /* 1984 * if the nulls value we got at the end of this lookup is 1985 * not the expected one, we must restart lookup. 1986 * We probably met an item that was moved to another chain. 1987 */ 1988 if (get_nulls_value(node) != slot) 1989 goto begin; 1990 1991 if (result) { 1992 if (count != 1 || 1993 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 1994 result = NULL; 1995 else if (unlikely(!__udp_is_mcast_sock(net, result, 1996 loc_port, loc_addr, 1997 rmt_port, rmt_addr, 1998 dif, hnum))) { 1999 sock_put(result); 2000 result = NULL; 2001 } 2002 } 2003 rcu_read_unlock(); 2004 return result; 2005 } 2006 2007 /* For unicast we should only early demux connected sockets or we can 2008 * break forwarding setups. The chains here can be long so only check 2009 * if the first socket is an exact match and if not move on. 2010 */ 2011 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2012 __be16 loc_port, __be32 loc_addr, 2013 __be16 rmt_port, __be32 rmt_addr, 2014 int dif) 2015 { 2016 struct sock *sk, *result; 2017 struct hlist_nulls_node *node; 2018 unsigned short hnum = ntohs(loc_port); 2019 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 2020 unsigned int slot2 = hash2 & udp_table.mask; 2021 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2022 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2023 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2024 2025 rcu_read_lock(); 2026 result = NULL; 2027 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 2028 if (INET_MATCH(sk, net, acookie, 2029 rmt_addr, loc_addr, ports, dif)) 2030 result = sk; 2031 /* Only check first socket in chain */ 2032 break; 2033 } 2034 2035 if (result) { 2036 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 2037 result = NULL; 2038 else if (unlikely(!INET_MATCH(sk, net, acookie, 2039 rmt_addr, loc_addr, 2040 ports, dif))) { 2041 sock_put(result); 2042 result = NULL; 2043 } 2044 } 2045 rcu_read_unlock(); 2046 return result; 2047 } 2048 2049 void udp_v4_early_demux(struct sk_buff *skb) 2050 { 2051 struct net *net = dev_net(skb->dev); 2052 const struct iphdr *iph; 2053 const struct udphdr *uh; 2054 struct sock *sk; 2055 struct dst_entry *dst; 2056 int dif = skb->dev->ifindex; 2057 int ours; 2058 2059 /* validate the packet */ 2060 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2061 return; 2062 2063 iph = ip_hdr(skb); 2064 uh = udp_hdr(skb); 2065 2066 if (skb->pkt_type == PACKET_BROADCAST || 2067 skb->pkt_type == PACKET_MULTICAST) { 2068 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 2069 2070 if (!in_dev) 2071 return; 2072 2073 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2074 iph->protocol); 2075 if (!ours) 2076 return; 2077 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2078 uh->source, iph->saddr, dif); 2079 } else if (skb->pkt_type == PACKET_HOST) { 2080 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2081 uh->source, iph->saddr, dif); 2082 } else { 2083 return; 2084 } 2085 2086 if (!sk) 2087 return; 2088 2089 skb->sk = sk; 2090 skb->destructor = sock_efree; 2091 dst = READ_ONCE(sk->sk_rx_dst); 2092 2093 if (dst) 2094 dst = dst_check(dst, 0); 2095 if (dst) { 2096 /* DST_NOCACHE can not be used without taking a reference */ 2097 if (dst->flags & DST_NOCACHE) { 2098 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 2099 skb_dst_set(skb, dst); 2100 } else { 2101 skb_dst_set_noref(skb, dst); 2102 } 2103 } 2104 } 2105 2106 int udp_rcv(struct sk_buff *skb) 2107 { 2108 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2109 } 2110 2111 void udp_destroy_sock(struct sock *sk) 2112 { 2113 struct udp_sock *up = udp_sk(sk); 2114 bool slow = lock_sock_fast(sk); 2115 udp_flush_pending_frames(sk); 2116 unlock_sock_fast(sk, slow); 2117 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2118 void (*encap_destroy)(struct sock *sk); 2119 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2120 if (encap_destroy) 2121 encap_destroy(sk); 2122 } 2123 } 2124 2125 /* 2126 * Socket option code for UDP 2127 */ 2128 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2129 char __user *optval, unsigned int optlen, 2130 int (*push_pending_frames)(struct sock *)) 2131 { 2132 struct udp_sock *up = udp_sk(sk); 2133 int val, valbool; 2134 int err = 0; 2135 int is_udplite = IS_UDPLITE(sk); 2136 2137 if (optlen < sizeof(int)) 2138 return -EINVAL; 2139 2140 if (get_user(val, (int __user *)optval)) 2141 return -EFAULT; 2142 2143 valbool = val ? 1 : 0; 2144 2145 switch (optname) { 2146 case UDP_CORK: 2147 if (val != 0) { 2148 up->corkflag = 1; 2149 } else { 2150 up->corkflag = 0; 2151 lock_sock(sk); 2152 push_pending_frames(sk); 2153 release_sock(sk); 2154 } 2155 break; 2156 2157 case UDP_ENCAP: 2158 switch (val) { 2159 case 0: 2160 case UDP_ENCAP_ESPINUDP: 2161 case UDP_ENCAP_ESPINUDP_NON_IKE: 2162 up->encap_rcv = xfrm4_udp_encap_rcv; 2163 /* FALLTHROUGH */ 2164 case UDP_ENCAP_L2TPINUDP: 2165 up->encap_type = val; 2166 udp_encap_enable(); 2167 break; 2168 default: 2169 err = -ENOPROTOOPT; 2170 break; 2171 } 2172 break; 2173 2174 case UDP_NO_CHECK6_TX: 2175 up->no_check6_tx = valbool; 2176 break; 2177 2178 case UDP_NO_CHECK6_RX: 2179 up->no_check6_rx = valbool; 2180 break; 2181 2182 /* 2183 * UDP-Lite's partial checksum coverage (RFC 3828). 2184 */ 2185 /* The sender sets actual checksum coverage length via this option. 2186 * The case coverage > packet length is handled by send module. */ 2187 case UDPLITE_SEND_CSCOV: 2188 if (!is_udplite) /* Disable the option on UDP sockets */ 2189 return -ENOPROTOOPT; 2190 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2191 val = 8; 2192 else if (val > USHRT_MAX) 2193 val = USHRT_MAX; 2194 up->pcslen = val; 2195 up->pcflag |= UDPLITE_SEND_CC; 2196 break; 2197 2198 /* The receiver specifies a minimum checksum coverage value. To make 2199 * sense, this should be set to at least 8 (as done below). If zero is 2200 * used, this again means full checksum coverage. */ 2201 case UDPLITE_RECV_CSCOV: 2202 if (!is_udplite) /* Disable the option on UDP sockets */ 2203 return -ENOPROTOOPT; 2204 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2205 val = 8; 2206 else if (val > USHRT_MAX) 2207 val = USHRT_MAX; 2208 up->pcrlen = val; 2209 up->pcflag |= UDPLITE_RECV_CC; 2210 break; 2211 2212 default: 2213 err = -ENOPROTOOPT; 2214 break; 2215 } 2216 2217 return err; 2218 } 2219 EXPORT_SYMBOL(udp_lib_setsockopt); 2220 2221 int udp_setsockopt(struct sock *sk, int level, int optname, 2222 char __user *optval, unsigned int optlen) 2223 { 2224 if (level == SOL_UDP || level == SOL_UDPLITE) 2225 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2226 udp_push_pending_frames); 2227 return ip_setsockopt(sk, level, optname, optval, optlen); 2228 } 2229 2230 #ifdef CONFIG_COMPAT 2231 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2232 char __user *optval, unsigned int optlen) 2233 { 2234 if (level == SOL_UDP || level == SOL_UDPLITE) 2235 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2236 udp_push_pending_frames); 2237 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2238 } 2239 #endif 2240 2241 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2242 char __user *optval, int __user *optlen) 2243 { 2244 struct udp_sock *up = udp_sk(sk); 2245 int val, len; 2246 2247 if (get_user(len, optlen)) 2248 return -EFAULT; 2249 2250 len = min_t(unsigned int, len, sizeof(int)); 2251 2252 if (len < 0) 2253 return -EINVAL; 2254 2255 switch (optname) { 2256 case UDP_CORK: 2257 val = up->corkflag; 2258 break; 2259 2260 case UDP_ENCAP: 2261 val = up->encap_type; 2262 break; 2263 2264 case UDP_NO_CHECK6_TX: 2265 val = up->no_check6_tx; 2266 break; 2267 2268 case UDP_NO_CHECK6_RX: 2269 val = up->no_check6_rx; 2270 break; 2271 2272 /* The following two cannot be changed on UDP sockets, the return is 2273 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2274 case UDPLITE_SEND_CSCOV: 2275 val = up->pcslen; 2276 break; 2277 2278 case UDPLITE_RECV_CSCOV: 2279 val = up->pcrlen; 2280 break; 2281 2282 default: 2283 return -ENOPROTOOPT; 2284 } 2285 2286 if (put_user(len, optlen)) 2287 return -EFAULT; 2288 if (copy_to_user(optval, &val, len)) 2289 return -EFAULT; 2290 return 0; 2291 } 2292 EXPORT_SYMBOL(udp_lib_getsockopt); 2293 2294 int udp_getsockopt(struct sock *sk, int level, int optname, 2295 char __user *optval, int __user *optlen) 2296 { 2297 if (level == SOL_UDP || level == SOL_UDPLITE) 2298 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2299 return ip_getsockopt(sk, level, optname, optval, optlen); 2300 } 2301 2302 #ifdef CONFIG_COMPAT 2303 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2304 char __user *optval, int __user *optlen) 2305 { 2306 if (level == SOL_UDP || level == SOL_UDPLITE) 2307 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2308 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2309 } 2310 #endif 2311 /** 2312 * udp_poll - wait for a UDP event. 2313 * @file - file struct 2314 * @sock - socket 2315 * @wait - poll table 2316 * 2317 * This is same as datagram poll, except for the special case of 2318 * blocking sockets. If application is using a blocking fd 2319 * and a packet with checksum error is in the queue; 2320 * then it could get return from select indicating data available 2321 * but then block when reading it. Add special case code 2322 * to work around these arguably broken applications. 2323 */ 2324 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2325 { 2326 unsigned int mask = datagram_poll(file, sock, wait); 2327 struct sock *sk = sock->sk; 2328 2329 sock_rps_record_flow(sk); 2330 2331 /* Check for false positives due to checksum errors */ 2332 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2333 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 2334 mask &= ~(POLLIN | POLLRDNORM); 2335 2336 return mask; 2337 2338 } 2339 EXPORT_SYMBOL(udp_poll); 2340 2341 struct proto udp_prot = { 2342 .name = "UDP", 2343 .owner = THIS_MODULE, 2344 .close = udp_lib_close, 2345 .connect = ip4_datagram_connect, 2346 .disconnect = udp_disconnect, 2347 .ioctl = udp_ioctl, 2348 .destroy = udp_destroy_sock, 2349 .setsockopt = udp_setsockopt, 2350 .getsockopt = udp_getsockopt, 2351 .sendmsg = udp_sendmsg, 2352 .recvmsg = udp_recvmsg, 2353 .sendpage = udp_sendpage, 2354 .backlog_rcv = __udp_queue_rcv_skb, 2355 .release_cb = ip4_datagram_release_cb, 2356 .hash = udp_lib_hash, 2357 .unhash = udp_lib_unhash, 2358 .rehash = udp_v4_rehash, 2359 .get_port = udp_v4_get_port, 2360 .memory_allocated = &udp_memory_allocated, 2361 .sysctl_mem = sysctl_udp_mem, 2362 .sysctl_wmem = &sysctl_udp_wmem_min, 2363 .sysctl_rmem = &sysctl_udp_rmem_min, 2364 .obj_size = sizeof(struct udp_sock), 2365 .slab_flags = SLAB_DESTROY_BY_RCU, 2366 .h.udp_table = &udp_table, 2367 #ifdef CONFIG_COMPAT 2368 .compat_setsockopt = compat_udp_setsockopt, 2369 .compat_getsockopt = compat_udp_getsockopt, 2370 #endif 2371 .clear_sk = sk_prot_clear_portaddr_nulls, 2372 }; 2373 EXPORT_SYMBOL(udp_prot); 2374 2375 /* ------------------------------------------------------------------------ */ 2376 #ifdef CONFIG_PROC_FS 2377 2378 static struct sock *udp_get_first(struct seq_file *seq, int start) 2379 { 2380 struct sock *sk; 2381 struct udp_iter_state *state = seq->private; 2382 struct net *net = seq_file_net(seq); 2383 2384 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2385 ++state->bucket) { 2386 struct hlist_nulls_node *node; 2387 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2388 2389 if (hlist_nulls_empty(&hslot->head)) 2390 continue; 2391 2392 spin_lock_bh(&hslot->lock); 2393 sk_nulls_for_each(sk, node, &hslot->head) { 2394 if (!net_eq(sock_net(sk), net)) 2395 continue; 2396 if (sk->sk_family == state->family) 2397 goto found; 2398 } 2399 spin_unlock_bh(&hslot->lock); 2400 } 2401 sk = NULL; 2402 found: 2403 return sk; 2404 } 2405 2406 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2407 { 2408 struct udp_iter_state *state = seq->private; 2409 struct net *net = seq_file_net(seq); 2410 2411 do { 2412 sk = sk_nulls_next(sk); 2413 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2414 2415 if (!sk) { 2416 if (state->bucket <= state->udp_table->mask) 2417 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2418 return udp_get_first(seq, state->bucket + 1); 2419 } 2420 return sk; 2421 } 2422 2423 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2424 { 2425 struct sock *sk = udp_get_first(seq, 0); 2426 2427 if (sk) 2428 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2429 --pos; 2430 return pos ? NULL : sk; 2431 } 2432 2433 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2434 { 2435 struct udp_iter_state *state = seq->private; 2436 state->bucket = MAX_UDP_PORTS; 2437 2438 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2439 } 2440 2441 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2442 { 2443 struct sock *sk; 2444 2445 if (v == SEQ_START_TOKEN) 2446 sk = udp_get_idx(seq, 0); 2447 else 2448 sk = udp_get_next(seq, v); 2449 2450 ++*pos; 2451 return sk; 2452 } 2453 2454 static void udp_seq_stop(struct seq_file *seq, void *v) 2455 { 2456 struct udp_iter_state *state = seq->private; 2457 2458 if (state->bucket <= state->udp_table->mask) 2459 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2460 } 2461 2462 int udp_seq_open(struct inode *inode, struct file *file) 2463 { 2464 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2465 struct udp_iter_state *s; 2466 int err; 2467 2468 err = seq_open_net(inode, file, &afinfo->seq_ops, 2469 sizeof(struct udp_iter_state)); 2470 if (err < 0) 2471 return err; 2472 2473 s = ((struct seq_file *)file->private_data)->private; 2474 s->family = afinfo->family; 2475 s->udp_table = afinfo->udp_table; 2476 return err; 2477 } 2478 EXPORT_SYMBOL(udp_seq_open); 2479 2480 /* ------------------------------------------------------------------------ */ 2481 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2482 { 2483 struct proc_dir_entry *p; 2484 int rc = 0; 2485 2486 afinfo->seq_ops.start = udp_seq_start; 2487 afinfo->seq_ops.next = udp_seq_next; 2488 afinfo->seq_ops.stop = udp_seq_stop; 2489 2490 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2491 afinfo->seq_fops, afinfo); 2492 if (!p) 2493 rc = -ENOMEM; 2494 return rc; 2495 } 2496 EXPORT_SYMBOL(udp_proc_register); 2497 2498 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2499 { 2500 remove_proc_entry(afinfo->name, net->proc_net); 2501 } 2502 EXPORT_SYMBOL(udp_proc_unregister); 2503 2504 /* ------------------------------------------------------------------------ */ 2505 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2506 int bucket) 2507 { 2508 struct inet_sock *inet = inet_sk(sp); 2509 __be32 dest = inet->inet_daddr; 2510 __be32 src = inet->inet_rcv_saddr; 2511 __u16 destp = ntohs(inet->inet_dport); 2512 __u16 srcp = ntohs(inet->inet_sport); 2513 2514 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2515 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2516 bucket, src, srcp, dest, destp, sp->sk_state, 2517 sk_wmem_alloc_get(sp), 2518 sk_rmem_alloc_get(sp), 2519 0, 0L, 0, 2520 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2521 0, sock_i_ino(sp), 2522 atomic_read(&sp->sk_refcnt), sp, 2523 atomic_read(&sp->sk_drops)); 2524 } 2525 2526 int udp4_seq_show(struct seq_file *seq, void *v) 2527 { 2528 seq_setwidth(seq, 127); 2529 if (v == SEQ_START_TOKEN) 2530 seq_puts(seq, " sl local_address rem_address st tx_queue " 2531 "rx_queue tr tm->when retrnsmt uid timeout " 2532 "inode ref pointer drops"); 2533 else { 2534 struct udp_iter_state *state = seq->private; 2535 2536 udp4_format_sock(v, seq, state->bucket); 2537 } 2538 seq_pad(seq, '\n'); 2539 return 0; 2540 } 2541 2542 static const struct file_operations udp_afinfo_seq_fops = { 2543 .owner = THIS_MODULE, 2544 .open = udp_seq_open, 2545 .read = seq_read, 2546 .llseek = seq_lseek, 2547 .release = seq_release_net 2548 }; 2549 2550 /* ------------------------------------------------------------------------ */ 2551 static struct udp_seq_afinfo udp4_seq_afinfo = { 2552 .name = "udp", 2553 .family = AF_INET, 2554 .udp_table = &udp_table, 2555 .seq_fops = &udp_afinfo_seq_fops, 2556 .seq_ops = { 2557 .show = udp4_seq_show, 2558 }, 2559 }; 2560 2561 static int __net_init udp4_proc_init_net(struct net *net) 2562 { 2563 return udp_proc_register(net, &udp4_seq_afinfo); 2564 } 2565 2566 static void __net_exit udp4_proc_exit_net(struct net *net) 2567 { 2568 udp_proc_unregister(net, &udp4_seq_afinfo); 2569 } 2570 2571 static struct pernet_operations udp4_net_ops = { 2572 .init = udp4_proc_init_net, 2573 .exit = udp4_proc_exit_net, 2574 }; 2575 2576 int __init udp4_proc_init(void) 2577 { 2578 return register_pernet_subsys(&udp4_net_ops); 2579 } 2580 2581 void udp4_proc_exit(void) 2582 { 2583 unregister_pernet_subsys(&udp4_net_ops); 2584 } 2585 #endif /* CONFIG_PROC_FS */ 2586 2587 static __initdata unsigned long uhash_entries; 2588 static int __init set_uhash_entries(char *str) 2589 { 2590 ssize_t ret; 2591 2592 if (!str) 2593 return 0; 2594 2595 ret = kstrtoul(str, 0, &uhash_entries); 2596 if (ret) 2597 return 0; 2598 2599 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2600 uhash_entries = UDP_HTABLE_SIZE_MIN; 2601 return 1; 2602 } 2603 __setup("uhash_entries=", set_uhash_entries); 2604 2605 void __init udp_table_init(struct udp_table *table, const char *name) 2606 { 2607 unsigned int i; 2608 2609 table->hash = alloc_large_system_hash(name, 2610 2 * sizeof(struct udp_hslot), 2611 uhash_entries, 2612 21, /* one slot per 2 MB */ 2613 0, 2614 &table->log, 2615 &table->mask, 2616 UDP_HTABLE_SIZE_MIN, 2617 64 * 1024); 2618 2619 table->hash2 = table->hash + (table->mask + 1); 2620 for (i = 0; i <= table->mask; i++) { 2621 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2622 table->hash[i].count = 0; 2623 spin_lock_init(&table->hash[i].lock); 2624 } 2625 for (i = 0; i <= table->mask; i++) { 2626 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2627 table->hash2[i].count = 0; 2628 spin_lock_init(&table->hash2[i].lock); 2629 } 2630 } 2631 2632 u32 udp_flow_hashrnd(void) 2633 { 2634 static u32 hashrnd __read_mostly; 2635 2636 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2637 2638 return hashrnd; 2639 } 2640 EXPORT_SYMBOL(udp_flow_hashrnd); 2641 2642 void __init udp_init(void) 2643 { 2644 unsigned long limit; 2645 2646 udp_table_init(&udp_table, "UDP"); 2647 limit = nr_free_buffer_pages() / 8; 2648 limit = max(limit, 128UL); 2649 sysctl_udp_mem[0] = limit / 4 * 3; 2650 sysctl_udp_mem[1] = limit; 2651 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2652 2653 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2654 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2655 } 2656